Automatic Detection of Display Defects for Smart Meters based on Deep Learning

Ye Chen, Zhihu Hong, Yaohua Liao, Mengmeng Zhu, Tong Han, Quan Shen

Abstract


The smart meter is an essential part of an intelligent grid system. Defects in the LCD screen the smart meters affect their use. Therefore, detection of LCD screen defects of smart meters is of great significance for management and use of smart electricity meters. At present, detection methods are mainly realized by manual detection and automatic detection based on machine vision. However, performance of these two methods is not satisfactory. The fault detection task of a smart meter LCD screen can be divided into two parts: smart meter LCD localization and LCD fault detection. Therefore, this paper proposes a twostage system based on deep learning, which combines YOLOv5 with ResNet34. YOLOv5 is used for smart meter LCD localization and the classification network based on ResNet34 for LCD fault detection. We have constructed an LCD screen localization dataset and an LCD screen defect detection dataset to train and test our model. As a result, our model achieves a defect detection accuracy of 98.9% on the dataset proposed in this paper and can accurately detect the common defects of an LCD screen.


Keywords


smart meter, display defects, YOLOv5, ResNet34

Full Text:

PDF


Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Crossref Similarity Check logo

Crossref logologo_doaj