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Interior scene design is a comprehensive field involv-
ing space planning, color matching, furniture arrange-
ment, texture expression and other aspects, aiming at 
designing an aesthetically pleasing and functional in-
terior environment. The existing Vincentian graphical 
models often have problems such as chaotic spatial 
layout and disproportionate components when deal-
ing with architectural images with strict structural 
requirements. In this study, we propose a structural 
consistency loss function to realize implicit struc-
tural control by constraining the spatial distribution 
and semantic alignment of the cross-attention graph 
of the Qwen-Image model. Specifically, it includes 
1) designing the spatial concentration loss to induce 
the attention regions corresponding to architectural 
components to be more compact and focused, and 2) 
introducing the semantic alignment loss to reduce the 
similarity between the attention maps corresponding 
to different components, and to enhance the discrim-
inative power of visual-semantic correspondence. 
This loss function is jointly optimized with the base 
loss to drive the model to spontaneously learn from 
the text and follow the underlying laws of the build-
ing structure. Experiments on the MMIS dataset show 
that the final model achieves an optimal performance 
of FID 11.06 and IS 34.82 and also performs best on 
the CLIPScore (0.869), a measure of graphic align-
ment. There is a significant improvement in the ac-
tual generation of building images in terms of scale 
coordination, rationality of component location and 
overall structural realism. Unlike the methods relying 
on external conditions, this method provides a scalable 
solution to achieve structure-aware image generation 
by relying only on textual cues, which promotes the 
practicalization of generative AI in the field of profes-
sional design, and provides effective technical ideas 
and methodological references for the in-depth appli-
cation of text-generated image technology in the field 
of strong structural requirements such as architecture 
and design.

ACM CCS (2012) Classification: Computing method-
ologies → Artificial intelligence → Computer vision  
→ Computer vision representations → Image repre-
sentations
Applied computing → Arts and humanities → Archi-
tecture (buildings)
Keywords: text-to-image generation, architectural 
image generation, structurally controlled generation, 
attention mechanism, loss function design, attention 
mechanism

1.	Introduction

Architectural image generation is an important 
task in the fields of architectural design, urban 
planning and cultural heritage preservation, and 
its goal is to generate architectural images with 
reasonable structure, accurate proportion and 
aesthetic value based on textual descriptions 
[1]. With the development of artificial intelli-
gence technology, the diffusion models repre-
sented by Stable Diffusion, Midjourney, and 
DALL-E have demonstrated powerful capabili-
ties in generalized text-to-image generation [2]. 
However, they still face core challenges when 
targeting specialized domains such as architec-
ture with strict geometric and functional con-
straints. Images generated by existing models 
often suffer from structural instability, dispro-
portion, and confusing spatial relationships [3], 
which are rooted in the inherent gap between 
the training goals of general-purpose models 
and the precise structural control required by 
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architecture, as well as the variety of training 
data, which makes it difficult for models to take 
into account any one proprietary domain. How 
to make the model learn the structural semantics 
in textual descriptions has become the current 
bottleneck in image generation in architecture.
To enhance the controllability of generation, 
researchers have proposed two main classes of 
methods. The first category is based on external 
conditional inputs, such as ControlNet [4] and 
T2I-Adapter [5] methods, which guide the gen-
eration by introducing additional control signals 
such as edge maps and depth maps. Although 
this type of methods can improve the spatial 
control accuracy, they rely on the production 
of high-quality conditional graphs, sacrific-
ing the directness and flexibility of text-driven 
approach. The second category is based on in-
ternal attention optimization methods, such as 
Attend-and-Excite [6], which ensures the gen-
eration of specific semantic objects by adjust-
ing the cross-attention graph. However, these 
approaches focus on ''object existence'' and lack 
explicit modeling of complex structural proper-
ties such as overall layout and component rela-
tionships.
In the task of architectural image generation, 
there are obvious deficiencies in the existing 
methods: (1) mismatch between the control 
method and the application scenario: archi-
tectural design emphasizes the direct transfor-
mation from textual concepts to the overall 
structure, and the frequent production of con-
trol charts is not in line with the workflow of 
the initial creative dispersion; (2) lack of con-
straints on the structure of the ''reasonableness'' 
of the existing methods. The existing methods 
are not embedded with the a priori knowledge 
of composition, proportion, perspective, etc. in 
architecture, which leads to the generation of 
results that ''seem to be true'' but ''do not make 
sense''. Therefore, exploring a new method that 
can embed structural constraints without exter-
nal conditions and only through textual hints 
has important theoretical value and application 
prospects.
To address the above shortcomings, the core 
objective of this paper is to enable the generic 
Vincennes graphical model to acquire the in-
trinsic perception and generation capability of 
building structures by designing a new training 

constraint mechanism without relying on any 
external condition signals. The main innova-
tions of this paper are as follows:
1.	 Proposal of a structural consistency loss 

function to implicitly encode structural 
generation rules by constraining the spatial 
concentration and semantic alignment of 
the cross-attention graph and guiding the 
model to learn a robust mapping between 
architectural components in text and spa-
tial regions in images.

2.	 Explore a ''text-only'' generation method, 
i.e., extract control signals only from the 
textual cues themselves, and realize the 
controlled generation without external 
inputs, which significantly improves the 
structural reasonableness of the architec-
tural images while maintaining the free-
dom of generation.

The remainder of the paper is organized as fol-
lows. In Section 2, systematic review of the re-
lated work on Vincentian graphs and controlled 
generation methods is performed. Section 3 
elaborates on the design motivation, mathemat-
ical definition and implementation details of the 
proposed structural consistency loss function. 
Section 4 describes the experimental setup, in-
cluding dataset processing, baseline modeling, 
and evaluation metrics, and conducts a compre-
hensive analysis of the results and ablation ex-
periments. Section 5 analyzes the results of the 
study, compares them with the previous studies 
and explains the comparison methodology. Sec-
tion 6 summarizes the full work and discusses 
the limitations of the current methodology and 
future research directions.

2.	Related Review

2.1.	Text-to-Image Generation Model

Text-to-image generation models are based on 
diffusion techniques to generate images based 
on textual cues. Throughout this research, the 
initial AttnGAN [7] family of models was used 
to establish associations between text and im-
age regions through the attention mechanism, 
however, it was limited in generative diversity 
due to unstable Generative Adversarial Network 
(GAN) training and crash problems. Subsequent 
potential diffusion models, represented by Sta-
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try and weight-locked weights of the original 
U-Net encoder that achieves accurate injection 
of multiple conditions. Subsequent studies such 
as T2I-Adapter and ControlNeXt [12] have 
been devoted to improving control efficien-
cy and flexibility, e.g., PixArt-δ [13] migrated 
ControlNet ideas to the Transformer backbone 
and combined with the potential consistency 
model to reduce the number of sampling steps 
to 4, realizing the ''seconds'' of controlled gener-
ation. However, the performance of such meth-
ods is strictly dependent on the availability of 
high-quality external conditions. For creative 
tasks such as architectural design that require 
starting from free-text ideas, pre-preparing pre-
cise condition maps instead constitutes a work-
flow bottleneck, limiting the freedom of design 
exploration.

2.2.2.	Methods to Optimize Internal Model 
Mechanisms

When it is not possible to make improvements 
in the generated images through external meth-
ods, it is a good approach to make modifica-
tions directly inside the model. This approach 
enables more flexible control by directly inter-
vening in the forward reasoning process inside 
the model by modulating the cross-attention 
mechanism of text-image association. For ex-
ample, Attend-and-Excite ensures that all sub-
ject tokens in the cue are fully activated in the 
attentional layer through optimization; Paint-
with-Words [14] allows the user to specify the 
correspondence of text tokens to image regions 
for local editing; and GLIGEN [15] anchors lin-
guistic descriptions to spatial features through 
gating mechanisms. These types of approach-
es maintain the smoothness of the authoring 
process by starting directly from textual cues. 
However, they lack explicit mechanisms to 
force the generated results to conform to the 
structural relationships, scale and geometric 
consistency necessary for specialized domains 
(e.g., architecture), and suffer from manual ma-
nipulation, which may result in results that are 
visually plausible but untenable in a profession-
al sense.

ble Diffusion [8], strike a balance between gen-
eration quality and computational efficiency, 
laying the foundation for subsequent research. 
These models rely on the CLIP [9] text encoder 
to encode cue words as semantic vectors and 
achieve graphical semantic alignment through a 
cross-attention mechanism. Recently, large lan-
guage models, represented by the Qwen fami-
ly, have gained strong generalized knowledge 
representation capabilities by pre-training on 
massive data. Among them, visual-linguistic 
bigram models such as Qwen-Image [10] and 
LAION-5B [11] further extend this capability 
to the multimodal domain, which can process 
and understand image and text information 
simultaneously, and further fuse deep text un-
derstanding and image generation capabilities 
in a unified Transformer framework, showing 
strong generality. Although these models per-
form well in the general-purpose domain, when 
applied directly to specialized domains such as 
interior design, there is still a certain deficiency 
in the accuracy of the generated images when 
compared to specialized images.

2.2.	Controllable Image Generation 
Technology

In order to achieve accurate and high-quality 
control of the generated images, existing re-
search has been carried out in three main tech-
nical paths, each with its own advantages and 
limitations.

2.2.1.	A Method that Relies on External 
Condition Inputs

When there is a posing requirement for the gen-
erated image, using this method allows for the 
introduction of a learnable external adaptation 
controller while keeping the generative capa-
bilities of the Vincentian graph model intact. 
This controller is responsible for parsing ad-
ditional user-supplied spatial conditions (e.g., 
edge maps, depth maps, semantic segmentation 
maps) and encoding them into control signals 
aligned with the model's internal noise latent 
images, thus enabling pixel-level spatial con-
straints. ControlNet is the seminal work in this 
paradigm, which constitutes a bypass branch 
via a trainable copy with structural symme-
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2.2.3.	Internal Knowledge Editing and 
Adaptation Technology

When a generic model lacks knowledge of 
specific concepts (e.g., personalized objects, 
unique styles), the method implants new con-
ceptual representations for the model by mak-
ing lightweight, localized edits to its internal 
weights or embedding space. Represented by 
LoRA [16], it enables the model to efficiently 
learn and stably generate new concepts while 
avoiding catastrophic forgetting by injecting a 
trainable low-rank decomposition matrix into 
the weight matrix of the Transformer attention 
module. Multiple LoRA modules can be linear-
ly combined for multi-concept blending during 
inference. This technique enables a high degree 
of personalization, but the granularity of its 
control usually lies in the text itself rather than 
in its precise spatial structural relationships.

2.3.	This Work

In summary, with the existing methods, it is dif-
ficult to ensure that the generated results satis-
fy the strong structural constraints of the spe-
cialized domain based on textual descriptions 
alone. Methods that rely on external conditions 
are highly accurate but not flexible enough; 
methods that optimize internal mechanisms are 
flexible but have weak structural constraints. 
Therefore, how to generate high-quality archi-
tectural images without relying on any addi-
tional conditional inputs and only through tex-
tual cues is a key issue.
The aim of this work is to study and explore this 
problem and propose a tractable solution. This 
study proposes a structural consistency loss 
function that is dynamically optimized during 
the sampling process of the diffusion model. 
Unlike external control methods, it does not 
require any auxiliary input; and unlike generic 
internal optimization methods, it implicitly in-
jects a structural coherence a priori by explicit-
ly steering the cross-attention graph, prompting 
the spatial concentration of textual markers de-
scribing the key architectural components, and 
driving the semantic separation between differ-
ent components. This enables the adaptation of 
a powerful generic visual-linguistic model to 
architectural image generation tasks without 
relying on architectural drawings or modifying 

the core architecture of the model, providing a 
new path towards flexible and structure-aware 
textual graph generation.

3.	Method

3.1.	Overall Framework

When generating large models using generic 
text-to-image generation, the problem of gen-
erating architectural images by inputting textu-
al prompts is often structurally illogical and is 
rooted in the model's lack of explicit constraints 
on the structural principles of architecture. In 
order to solve the accuracy of the model in 
building image generation, this paper proposes 
an improved method of building image gener-
ation based on Qwen-Image model and MMIS 
dataset [17]. The overall framework is shown in 
Figure 1, and the core innovation lies in the in-
troduction of a structural consistency loss func-
tion, which does not change the original model 
structure by constraining the attention mecha-
nism distribution within the model during the 
training process, thus reducing the cost of the 
model; instead, a regularization term of the at-
tention mechanism based on the location of the 
building is introduced in the training to guide 
the model to learn the structural rules of each 
component in the building image.
The overall process is as follows: first, the text 
prompt is put into the Qwen-Image model to 
start the diffusion generation process; when the 
model is forward calculated, the text prompt is 
put into the Qwen-Image model to start the dif-
fusion generation process, and the text prompt is 
put into the Qwen-Image model to start the dif-
fusion generation process, the attention weights 
between text and image features are extracted 
synchronously from the cross-attention layer of 
DIT module. Based on these weights, the spa-
tial concentration loss and semantic alignment 
loss are calculated, which together constitute 
the structural consistency loss. Finally, this loss 
is weighted with the original diffusion loss to 
obtain the total training loss. The model is con-
tinuously optimized to generate images with 
reasonable building structures.
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Qwen-Image is a text-to-image generation 
model based on the Diffusion Transformer 
(DiT), and its overall architecture consists of 
three core components: the Text Encoder, the 
Diffusion Transformer (DiT), and the Variable 
Auto-Encoder (VAE). The text encoder adopts 
the Qwen2.5 visual language model (Qwen2.5_
VL), which contains a 32-layer visual coder 
and a 28-layer language model to process im-
age and text inputs, respectively. The diffusion 
transformer part contains 60 QwenImageTrans-
formerBlocks, and the QwenDoubleStreamAt-
tention mechanism is integrated within each 
block for multilevel fusion of text and image 
features. The VAE coder and decoder use a 3D 
convolutional architecture, which is responsi-
ble for coding and reconstruction of the image 
latent space. In this study, the attention graph 
extraction mechanism captures the attention 
weight tensor of shape (B, H, L, S) in real time 
by registering forward propagation hooks to the 
dual-stream attention module of layers 12 to 16 
of the DiT module, which provides the basis 
for the computation of the structural coherence 
loss. The structure of Figure 1 is refined to ob-
tain the detailed network structure as shown in 
Figure 2.

3.2.	Attention Map Extraction Mechanism

The attention graph is the basis for constructing 
structural constraints. During the training pro-
cess, attention weights are extracted in real time 
from the cross-attention layer of the DiT mod-
ule via forward propagation hooks to obtain the 
strength of association between text tokens and 
image spatial locations.

Specifically, there are H attention heads in the 
cross-attention module in the l layer of the 
DiT model. With the acquired text features 
Xl  ∈ B×L×D and image features Yl ∈ B×S×D, for 
the h-th attention head h = 1, …, H, independent 
queries are first performed with key projection 
computation:

Ql
h = Xl WQ

l, h,  Kl
h = Yl WK

l, h.         (1)

WQ
l, h, WK

l, h
 ∈ D×Dh are the learnable query and 

key projection matrices corresponding to the 
l-th level of the h-th attentional header, respec-
tively, and Dh is the eigendimension of each 
header (usually Dh = D/H ).
The weight matrix for this attention header is 
then computed based on the Query-Key:

( )softmax
h h T

h B L Sl l
l

h

Q KA
D

× ×
 

= ∈  
 

 .        (2)

The formula Al
h[b, i, j] denotes that in the b-th 

sample b = 1, ..., B, the i-th token of the text 
i = 1, ..., L pairs with the j-th spatial bit of the 
image j = 1, ..., S in the h-th attention weight of 
the head.
The outputs of all the attention heads are 
stacked in the second dimension, i.e., the com-
plete four-dimensional attention tensor of the 
l-th layer is obtained:
Al = stack([Al

1, Al
2, ..., Al

H], dim = 1) ∈ B×H×L×S

(3)
Its element Al [b, h, i, j] accurately represents 
the attention weight of the text's i-th token to 
the image's j-th spatial location in the b-th sam-
ple, h-th attention head.

Figure 1. Qwen-Image Model with Loss Introduction.
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Figure 2. Detailed network structure.
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By registering PyTorch forward propagation 
hooks into the QwenDoubleStreamAttention 
module of the Qwen-Image model, the fine-
grained association between text and image 
spatial locations is obtained by capturing the at-
tention tensor A_l in real time during the train-
ing process. It provides processing basis for the 
subsequent Spatial Concentration Loss and Se-
mantic Alignment Loss.

3.3.	Spatial Concentration Loss

In building image generation, specific building 
components (such as ''Windows'', ''Doors'', etc.) 
should correspond to specific local areas in the 
image, rather than diffuse distribution. In order 
to strengthen this positioning characteristic, the 
spatial concentration loss is designed to make 
the model focus on a specific local area rather 
than the whole image when dealing with build-
ing keywords.
That is, the attention distribution of a building 
component corresponding to a specific phys-
ical component should be spatially compact 
and continuous, with its probability mass con-
centrated in a coherent region. For the set of 
building component tokens K identified in the 
textual cue words, their cross-attention maps 
are extracted at the key layer of the denoising 
network to perform the following computation-
al process:
1.	 Extraction and normalization: their atten-

tion vectors are obtained and reshaped into 
a two-dimensional matrix Mt ∈ H×W, and 
the spatial probability distribution maps 
are obtained by a Softmax function con-
trolled by the temperature parameter τ:

( )
( )( )

,

exp( ( , ) / ),
exp , /

t
t

t
i' j'

M i jP i j
M i' j'

τ
τ

=
∑

        

(4)

where τ is used to adjust the smoothness 
of the distribution at the beginning of the 
optimization.

2.	 Calculation of spatial moments:
The center of mass (first order moments) 
is given as:

, ,
( , ) , ( , )x t y t

i j i j
P i j j P i j iµ µ= ⋅ = ⋅∑ ∑

     
(5)

The variance (second-order central moments) is 
given as:

2 2

,
( , ) ( )x t x

i j
P i j jσ µ= ⋅ −∑

               
(6)

2 2

,
( , ) ( )y t y

i j
P i j iσ µ= ⋅ −∑

               
(7)

3.	 Defining loss: The loss of spatial concen-
tration is defined as the mean of the vari-
ance of all target markers:

Lspatial ( )2 21
| | x y

t KK
σ σ

∈

= +∑
           

(8)

By minimizing Lspatial, the model is explicitly 
steered during the training process so that the 
generated signals of the building components 
are constrained to be within a local region cen-
tered on their attentional centers of mass, which 
ensures higher spatial localization accuracy and 
structural integrity in the generation of building 
components. The set of building components is 
not combined with the word list of the origi-
nal model but is obtained through textual cue 
words and attention extraction.

3.4.	Semantic Alignment Loss

In the task of fine-grained text-to-image gen-
eration, ensuring that different semantic con-
cepts are accurately mapped to different spa-
tial regions in the image is a key challenge in 
achieving high-fidelity generation. In the case 
of architectural image generation, in order to 
distinguish the visual regions of specific com-
ponents such as ''window'', ''door'', etc., the 
cross-attention maps corresponding to each ar-
chitectural component (Token) need to reduce 
the similarity between the attention maps corre-
sponding to different architectural components. 
For each building component (Token), it is nec-
essary to reduce the similarity between the at-
tention maps corresponding to different build-
ing components, so that the model can assign 
more separate and exclusive attention regions 
to them in the image space during the genera-
tion process, thus enhancing the independence 
and localization accuracy of each component in 
the final image.
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For a collection of building component token 
indices K identified in a batch, let Pi ∈ S de-
note the vector of attention graphs after flat-
tening corresponding to the keyword i (with S 
being the number of spatial locations), and |K| 
is the number of building components identi-
fied in the batch. The semantic alignment loss 
is defined as the average of the cosine similar-
ity of the attention graphs between all different 
keyword pairs:

Lsemantic ( )
 

 ,
2 2

2
1

i j

i K j K j i i j

P P
K K P P∈ ∈ >

⋅
=

− ⋅
∑ ∑

    
(9)

In order to eliminate the bias of different atten-
tion maps in the range and distribution of val-
ues, and to ensure the fairness and stability of 
similarity comparisons, we normalize each at-
tention vector before computation:


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=
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∑
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(10)

where ε is a small constant used to maintain nu-
merical stability. μk is the mean of the vector Pk, 
and σk is the standard deviation of the vector Pk.

3.5.	Overall Structural Consistency Loss

To synthesize attention concentration and dif-
ferentiation optimization, the above two loss 
terms are combined to obtain a total structural 
consistency loss:

Lstruct = α ∙ Ltextspatial + β ∙ Lsemantic       (11)
Where α and β are the balance hyperparameters; 
these two hyperparameters are used to jointly 
guide model learning to conform to architectur-
al principles for structural representations.

3.6.	The Total Loss Function

Adding structural consistency loss as a regular 
term to the original diffusion loss results in the 
total loss function:

Ltotal = Ldiffusion + λ ∙ Lstruct ∙ textstruct     (12) 

Where Ldiffusion is the raw training loss (MSE 
loss) of Qwen-Image, λ controls the strength of 
the structural constraint. This combination en-
sures that the model maintains its original gen-
eration capabilities while specifically optimiz-
ing the structural rationality of building image 
generation through the guidance of structural 
consistency loss.

4.	Results

4.1.	Experimental Setup

4.1.1.	The MMIS Dataset

In this experiment, we use the MMIS data-
set, which is a large-scale dataset specially 
constructed for advancing multimodal indoor 
scene understanding and generation. The data-
set is constructed with multimodal alignment 
data, containing nearly 160,000 high-quality 
indoor scene images, and each image is accu-
rately paired with a detailed textual description 
and a voice recording of the description, form-
ing an ''image-text-audio'' trinity data structure. 
The textual descriptions in this dataset accu-
rately and meticulously reflect the visual ele-
ments and spatial relationships in the images, 
while the corresponding audio recordings fur-
ther increase the modal diversity and potential 
research dimensions. The data consists of 11 
decorative styles, namely Art Deco, Bohemian, 
Coastal, Contemporary, Eclectic, Farmhouse, 
Mediterranean, Mid-Century Modern, Rustic, 
and Traditional. In the experiment, the dataset 
is divided into a training set, a validation set 
and a test set according to the ratio of 7:2:1. The 
training set is used for learning and optimizing 
the model parameters, the validation set is re-
sponsible for monitoring the training process, 
and the test set is used for objectively assessing 
the generalization ability of the final model.

4.1.2.	Model Training Configuration

The model was trained based on data shown in 
Table 1 and Table 2, and LoRA was used for 
style migration. The considered models were:



275Structurally Controllable Text-to-Image Generation for Architectural Images Using...

1.	 Stable Diffusion 3 (SD3): open-source, 
baseline model.

2.	 Qwen-Image (raw): native model not fine-
tuned on architectural data.

3.	 Qwen-Image + FT: Base model fine-tuned 
on the MMIS dataset only.

4.	 Our Full Model: fine-tuned base with 
structural consistency loss for joint train-
ing.

4.1.3.	Evaluation Metrics

In order to comprehensively assess the quality 
of the generated images, a multi-dimensional 
evaluation system was used in this study:

1.	 IS (Inception Score) [18]: assesses the 
quality and diversity of generated images 
by pre-training the Inception network, the 
higher the value the better.

2.	 FID (Fréchet Inception Distance) [19]: 
measures the distribution distance between 
the generated and real images in the feature 
space of the Inception network, with lower 
values indicating higher visual realism.

3.	 KID (Kernel Inception Distance) [20]: as 
an unbiased estimation of FID, also used 
to assess distributional similarity, more ro-
bust to sample size, lower values are better.

Table 1. Model training parameters.

Configuration Item Configuration Content

Optimizer AdamW

Batch Size 6

Epochs 50

Learning rate 1e-4

Hardware environment 10 × NVIDIA A100 GPU (100 GB)

Memory Optimization Gradient checkpointing techniques, mixed precision training (BF16)

Table 2. LoRA Configuration Parameters.

Configuration Item Configuration Content

Target module to_q, to_k, to_v, add_q_proj, add_k_proj, add_v_proj, to_out.0, to_add_out, 
img_mlp.net.2, img_mod.1, txt_mlp.net.2, txt_mod.1

Lora rank 32

Lora alpha 64

Dropout 0.1
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reasonableness and compositional accuracy of 
the image by these indicators. Thus, it is pos-
sible that Our Full Model has a more accurate 
and reasonable image generation of buildings 
in a multi-dimensional way.
The change in loss during model training is 
shown in Figure 3. In the early stage of train-
ing, due to the introduction of the structural 
consistency loss function, the model needs to 
adapt to the new optimization objectives and 
constraints, and the loss value appears to rise 
briefly. With the increase in the number of iter-
ations, the model gradually learns an effective 
representation of the building structure, and the 
loss starts to decrease steadily. Eventually, the 
loss curve converges and stabilizes, indicating 
that the model has sufficiently adapted to the 
new architecture and is able to stably generate 
structurally sound building images. This train-
ing dynamic confirms the optimizability of the 
proposed loss function and its benign guiding 
effect on the model convergence process.

4.2.2.	 Ablation Experiments

In order to verify the specific contribution of 
each loss component, ablation experiments 
were designed on the validation set to direct-
ly respond to the degree of semantic alignment 
between the image and the input text with the 
CLIPScore metric, and the distribution distance 
between the generated image and the real image 
with the FID metric. The results were obtained 
as shown in Table 4.
From the analysis in Table 4, it is evident that 
the addition of spatial concentration loss (Qw-
en-Image + Lspatial) alone significantly improves 
the spatial consistency of the building compo-

4.	 CLIPScore [21]: based on the cosine sim-
ilarity between the generated image and 
the input text computed by the pre-trained 
CLIP visual-linguistic model, directly re-
flecting the degree of semantic alignment 
between the image and the input text, the 
higher the value the better.

5.	 LPIPS (Learned Perceptual Image Patch 
Similarity) [22]: calculates the similarity 
between image pairs based on perceptual 
features to assess detail fidelity and struc-
tural consistency, the lower the value the 
more similar perceptually, in this study 
VGG network is used to do the calculation.

4.2.	Results Analysis

4.2.1.	Comparative Experiment

The MMIS training set was used to train the 
model and the quantitative evaluation results 
obtained from the validation on the validation 
set using MMIS are shown in Table 3.
From Table 3, it can be seen that the fine-tuned 
model (Qwen-Image + FT) significantly out-
performs both Qwen-Image and Stable Diffu-
sion 3 in terms of FID and IS; whereas Our Full 
Model achieves the best performance with the 
lowest FID/KID (11.06/6.23) and the highest 
IS (34.82). It shows that the generated image 
is optimal in terms of visual realism, diversi-
ty and clarity; the highest CLIPScore (0.869) 
proves that Our Full Model is able to obtain 
better graphic semantic alignment in terms of 
textual cue word comprehension; and the low-
est LPIPS (0.352) verifies that the proposed 
loss function effectively improves the structural 

Table 3. Quantitative evaluation results of different models on the MMIS test set.

Model FID KID IS CLIPScore LPIPS(VGG)

Stable Diffusion 3 18.73 12.45 25.41 0.792 0.421

Qwen-Image 15.82 14.82 24.18 0.815 0.438

Qwen-Image + FT 13.45 8.91 31.25 0.841 0.385

Our Full Model 11.06 6.23 34.82 0.869 0.352
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nents, but has limited direct enhancement of 
the graphic alignment; the addition of semantic 
alignment loss (Qwen-Image + Lsemantic) alone is 
most effective in improving the graphic align-
ment (CLIPScore). The combination of the two 
(Our Full Model) achieves complementarity and 
synergy, optimizing on all metrics and making 
the images generated from textual cue words 
spatially and semantically consistent with reali-
ty. This demonstrates that the two loss functions 
are explicitly complementary: the spatial loss 
dominates layout optimization and the seman-
tic loss dominates association enhancement, and 
the two work synergistically to drive the model 
towards a more structurally and semantically 
aligned building image generation.

4.3.	Qualitative Results

Figure 4 shows a comparison of the results 
of different models for the same textual cues. 
For example, for the prompt ''Art Deco, a 

bathroom with a white bathtub and an open 
doorway leading into the adjacent room. The 
bathroom is decorated with black and white 
wallpaper, which adds a stylish touch to the 
space.'' Figure 4 on the left is generated using 
the Qwen-Image model. One can observe that 
there are two doors, which is an obvious mis-
take. On the right, the image is generated using 
the Our Full Model, which produces an image 
that makes the most sense in terms of spatial 
layout.

In Figure 5, the dynamic process of Our Full 
Model in generating multiple styles of build-
ing images under different denoising steps is 
shown. The experimental results show that the 
model achieves a good balance between gener-
ation efficiency and generation quality: only at 
the 15th step, it can generate structurally com-
plete and stylized architectural images, and its 
visual effect is close to the convergence state.

Figure 3. Model Training Losses.

Table 4. Results of ablation experiments.

Model Configuration CLIPScore FID

Qwen-Image + Lspatial 0.833 11.73

Qwen-Image + Lsemantic 0.852 12.82

Our Full Model 0.869 11.06
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Figure 5. Our Full Model under Different Cue Words and with Step Image Generation.

Figure 4. An Example of Image Generation for the Qwen-Image model (left) and Our Full Model (right).
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Meanwhile, in order to further demonstrate the 
detailed differences of the images generated by 
the domain adaptive fine-tuning of Qwen-Im-
age + FT under the same set of text prompts, the 
results are shown in Figure 6. It can be seen that, 
although the overall composition and content of 
the images generated by the model in step 15 
and step 25 are basically the same, there are ob-
vious differences in the detailed performance. 
The results generated in step 25 show better 
visual rationality in multiple dimensions: the 
natural lighting effect and pillow fabric texture 
in the first row of images are more realistic; the 
second and third rows of images are better than 
the results in step 15 in terms of spatial layout, 
size ratio of the furniture, and the overall spatial 
utilization of the scene, which shows the effect 
of more iteration steps on the improvement of 
image detail quality.

In order to further assess the overall advantages 
of the proposed method, Figures 7 and Figures 
8 show the generation results of Our Full Model 
(left) and Qwen-Image + FT (right) side by side 
at the same number of sampling steps. It can be 
clearly observed by visual comparison that the 
left column of images significantly outperforms 
the right baseline model in terms of overall 
quality. In Figure 7, the first row of right-side 
images shows misalignment and distortion of 
the door frame structure, while the second row 
of right-side images has obvious color distor-
tion. The results in Figure 8 further confirm this 
trend: the windows in the first row of right-side 
images are unnaturally tilted; the roof generat-
ed in the second row of right images is com-
pletely external to the building, which does not 
correspond to the semantic requirement of the 
cue word ''a modern living room''.

Figure 6. Qwen-Image + FT different cue words and step image generation.
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Figure 7. Our Full Model (left) and Qwen-Image + FT (right) generated building plans (1).

Figure 8. Our Full Model (left) and Qwen-Image + FT (right) generated building plans (2).
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By comparing the above multi-group and 
multi-angle generation results, it can be con-
cluded that Our Full Model proposed in this 
thesis outperforms Qwen-Image and Qwen-Im-
age + FT model on the architectural image gen-
eration task, which verifies the effectiveness of 
the introduced structural consistency loss and 
domain adaptive strategy.

5.	Discussion

The innovation of this study is that the pro-
posed loss of structural coherence can provide 
new ideas for the application of Vincentian di-
agram models in structured domains such as 
architecture. In the generalized Vincentian di-
agram model, the attention map tends to spread 
over semantically similar texture regions, re-
sulting in a high degree of overlap in the atten-
tion regions of architectural components, such 
as ''windows'' and ''walls'', and thus generating 
adherent and disproportionate components. The 
loss function introduced in this study allows the 
spatial focus loss of building components in 
textual cues to mimic the requirement of clarity 
of component positioning in architectural de-
sign by maximizing the distribution of attention 
and contracting the attentional quality of each 
building component towards a certain spatial 
focal point; the semantic alignment loss min-
imizes the cosine similarity between different 
components by applying an attentional vector 
to the different components in the representa-
tional space to ensure that the cosine similari-
ty between ''window'' and ''wall'' is minimized. 
''Doors'' and ''windows'', ''roofs'', and ''founda-
tions'' are visually separated from each other, 
thus occupying a more distinguishable position 
in the generated image. The ''door'' and ''win-
dow'', ''roof'' and ''foundation'' are separated 
from each other in the visual representation, 
thus occupying a more distinguishable spatial 
region in the generated image.
The difference between our approach and the 
existing technology is that we do not use ex-
ternal methods such as ControlNet, T2I-Adapt-
er, etc. to assist in image generation, nor do we 
optimize the text-image alignment of the mod-
el by LoRA fine-tuning alone. Rather, the loss 
of structural coherence was introduced under 
LoRA fine-tuning to allow the model to accu-

rately localize the position and space of build-
ing-related words, which further intervened the 
model's spatial compositional ability more ac-
curately through attentional correction.
However, several limitations still exist in this 
study. First, the structural control effect relies to 
a certain extent on the predefined architectural 
terminology dictionary, and the control of new 
components or descriptors that are not included 
may be weakened; second, although the overall 
structural reasonableness is improved, the con-
trol of fine-grained attributes such as furniture 
materials and light and shadow details is still 
not fine enough; third, it is currently limited 
to 2D image generation, and has not yet been 
extended to 3D spatial layout, which is still a 
distance away from the 3D modeling of the 
real architectural design process. The demand 
for 3D modeling in the real architectural design 
process is still a distance away. Based on this 
limitation, this method can be optimized and 
developed in the future.

6.	Conclusion

This study proposes an improved method based 
on the Qwen-Image model for the precise con-
trol of style and layout in architectural text-to-
image generation. The generic generative mod-
el will have problems such as chaotic layout, 
disproportion and inconsistent style when deal-
ing with architectural texts containing complex 
spatial relations and specialized semantics. For 
this reason, effective control over the stylistic 
consistency, spatial rationality and semantic 
relevance of the generated images is achieved 
by introducing the loss of structural consisten-
cy in the model and combining it with LoRA 
fine-tuning, which guides the model to extract 
and follow the architectural structure from 
within the textual descriptions. This approach 
enhances the understanding of the structured 
semantics of the professional domain while 
maintaining the flexibility of generation and 
provides an idea for the practicalization of the 
text-generated image technology in the field of 
strong structural requirements such as architec-
ture and interior design.
It is shown through experiments that this meth-
od significantly outperforms mainstream base-
line models in several dimensions. In MMIS 
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data, Our Full Model excels in evaluating the 
quality metrics of the generated images, which 
signifies a significant improvement in the visu-
al realism and diversity of the generated imag-
es. More importantly, it performs well in CLIP-
Score, LPIPS, etc., which confirms the unique 
advantages of the proposed method in terms of 
fine-grained semantic alignment and geomet-
ric structure fidelity. The ablation study further 
validates the effectiveness of each of the two 
proposed loss functions and their synergistic 
effects.
Future research work will be carried out in the 
following areas:
1.	 exploring the fine control of details such 

as furniture materials and lighting effects.
2.	 extending the generation of 2D architec-

tural images to 3D interior scenes, realiz-
ing the complete design process from text 
to 3D space.

3.	 developing a user-interactive interface that 
allows designers to adjust text prompts in 
real time and view the generated effects 
immediately.
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