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Interior scene design is a comprehensive field involv-
ing space planning, color matching, furniture arrange-
ment, texture expression and other aspects, aiming at
designing an aesthetically pleasing and functional in-
terior environment. The existing Vincentian graphical
models often have problems such as chaotic spatial
layout and disproportionate components when deal-
ing with architectural images with strict structural
requirements. In this study, we propose a structural
consistency loss function to realize implicit struc-
tural control by constraining the spatial distribution
and semantic alignment of the cross-attention graph
of the Qwen-Image model. Specifically, it includes
1) designing the spatial concentration loss to induce
the attention regions corresponding to architectural
components to be more compact and focused, and 2)
introducing the semantic alignment loss to reduce the
similarity between the attention maps corresponding
to different components, and to enhance the discrim-
inative power of visual-semantic correspondence.
This loss function is jointly optimized with the base
loss to drive the model to spontaneously learn from
the text and follow the underlying laws of the build-
ing structure. Experiments on the MMIS dataset show
that the final model achieves an optimal performance
of FID 11.06 and IS 34.82 and also performs best on
the CLIPScore (0.869), a measure of graphic align-
ment. There is a significant improvement in the ac-
tual generation of building images in terms of scale
coordination, rationality of component location and
overall structural realism. Unlike the methods relying
on external conditions, this method provides a scalable
solution to achieve structure-aware image generation
by relying only on textual cues, which promotes the
practicalization of generative Al in the field of profes-
sional design, and provides effective technical ideas
and methodological references for the in-depth appli-
cation of text-generated image technology in the field
of strong structural requirements such as architecture
and design.
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1. Introduction

Architectural image generation is an important
task in the fields of architectural design, urban
planning and cultural heritage preservation, and
its goal is to generate architectural images with
reasonable structure, accurate proportion and
aesthetic value based on textual descriptions
[1]. With the development of artificial intelli-
gence technology, the diffusion models repre-
sented by Stable Diffusion, Midjourney, and
DALL-E have demonstrated powerful capabili-
ties in generalized text-to-image generation [2].
However, they still face core challenges when
targeting specialized domains such as architec-
ture with strict geometric and functional con-
straints. Images generated by existing models
often suffer from structural instability, dispro-
portion, and confusing spatial relationships [3],
which are rooted in the inherent gap between
the training goals of general-purpose models
and the precise structural control required by
architecture, as well as the variety of training
data, which makes it difficult for models to take
into account any one proprietary domain. How
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to make the model learn the structural semantics
in textual descriptions has become the current
bottleneck in image generation in architecture.

To enhance the controllability of generation,
researchers have proposed two main classes of
methods. The first category is based on external
conditional inputs, such as ControlNet [4] and
T2I-Adapter [5] methods, which guide the gen-
eration by introducing additional control signals
such as edge maps and depth maps. Although
this type of methods can improve the spatial
control accuracy, they rely on the production
of high-quality conditional graphs, sacrific-
ing the directness and flexibility of text-driven
approach. The second category is based on in-
ternal attention optimization methods, such as
Attend-and-Excite [6], which ensures the gen-
eration of specific semantic objects by adjust-
ing the cross-attention graph. However, these
approaches focus on "object existence" and lack
explicit modeling of complex structural proper-
ties such as overall layout and component rela-
tionships.

In the task of architectural image generation,
there are obvious deficiencies in the existing
methods: (1) mismatch between the control
method and the application scenario: archi-
tectural design emphasizes the direct transfor-
mation from textual concepts to the overall
structure, and the frequent production of con-
trol charts is not in line with the workflow of
the initial creative dispersion; (2) lack of con-
straints on the structure of the "reasonableness"
of the existing methods. The existing methods
are not embedded with the a priori knowledge
of composition, proportion, perspective, efc. in
architecture, which leads to the generation of
results that "seem to be true" but "do not make
sense". Therefore, exploring a new method that
can embed structural constraints without exter-
nal conditions and only through textual hints
has important theoretical value and application
prospects.

To address the above shortcomings, the core
objective of this paper is to enable the generic
Vincennes graphical model to acquire the in-
trinsic perception and generation capability of
building structures by designing a new training
constraint mechanism without relying on any
external condition signals. The main innova-
tions of this paper are as follows:

1. Proposal of a structural consistency loss
function to implicitly encode structural
generation rules by constraining the spatial
concentration and semantic alignment of
the cross-attention graph and guiding the
model to learn a robust mapping between
architectural components in text and spa-
tial regions in images.

2. Explore a "text-only" generation method,
i.e., extract control signals only from the
textual cues themselves, and realize the
controlled generation without external
inputs, which significantly improves the
structural reasonableness of the architec-
tural images while maintaining the free-
dom of generation.

The remainder of the paper is organized as fol-
lows. In Section 2, systematic review of the re-
lated work on Vincentian graphs and controlled
generation methods is performed. Section 3
elaborates on the design motivation, mathemat-
ical definition and implementation details of the
proposed structural consistency loss function.
Section 4 describes the experimental setup, in-
cluding dataset processing, baseline modeling,
and evaluation metrics, and conducts a compre-
hensive analysis of the results and ablation ex-
periments. Section 5 analyzes the results of the
study, compares them with the previous studies
and explains the comparison methodology. Sec-
tion 6 summarizes the full work and discusses
the limitations of the current methodology and
future research directions.

2. Related Review

2.1. Text-to-Image Generation Model

Text-to-image generation models are based on
diffusion techniques to generate images based
on textual cues. Throughout this research, the
initial AttnGAN [7] family of models was used
to establish associations between text and im-
age regions through the attention mechanism,
however, it was limited in generative diversity
due to unstable Generative Adversarial Network
(GAN) training and crash problems. Subsequent
potential diffusion models, represented by Sta-
ble Diffusion [8], strike a balance between gen-
eration quality and computational efficiency,
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laying the foundation for subsequent research.
These models rely on the CLIP [9] text encoder
to encode cue words as semantic vectors and
achieve graphical semantic alignment through a
cross-attention mechanism. Recently, large lan-
guage models, represented by the Qwen fami-
ly, have gained strong generalized knowledge
representation capabilities by pre-training on
massive data. Among them, visual-linguistic
bigram models such as Qwen-Image [10] and
LAION-5B [11] further extend this capability
to the multimodal domain, which can process
and understand image and text information
simultaneously, and further fuse deep text un-
derstanding and image generation capabilities
in a unified Transformer framework, showing
strong generality. Although these models per-
form well in the general-purpose domain, when
applied directly to specialized domains such as
interior design, there is still a certain deficiency
in the accuracy of the generated images when
compared to specialized images.

2.2. Controllable Image Generation
Technology

In order to achieve accurate and high-quality
control of the generated images, existing re-
search has been carried out in three main tech-
nical paths, each with its own advantages and
limitations.

2.2.1. A Method that Relies on External
Condition Inputs

When there is a posing requirement for the gen-
erated image, using this method allows for the
introduction of a learnable external adaptation
controller while keeping the generative capa-
bilities of the Vincentian graph model intact.
This controller is responsible for parsing ad-
ditional user-supplied spatial conditions (e.g.,
edge maps, depth maps, semantic segmentation
maps) and encoding them into control signals
aligned with the model's internal noise latent
images, thus enabling pixel-level spatial con-
straints. ControlNet is the seminal work in this
paradigm, which constitutes a bypass branch
via a trainable copy with structural symme-
try and weight-locked weights of the original
U-Net encoder that achieves accurate injection

of multiple conditions. Subsequent studies such
as T2I-Adapter and ControlNeXt [12] have
been devoted to improving control efficien-
cy and flexibility, e.g., PixArt-0 [13] migrated
ControlNet ideas to the Transformer backbone
and combined with the potential consistency
model to reduce the number of sampling steps
to 4, realizing the "seconds" of controlled gener-
ation. However, the performance of such meth-
ods is strictly dependent on the availability of
high-quality external conditions. For creative
tasks such as architectural design that require
starting from free-text ideas, pre-preparing pre-
cise condition maps instead constitutes a work-
flow bottleneck, limiting the freedom of design
exploration.

2.2.2. Methods to Optimize Internal Model
Mechanisms

When it is not possible to make improvements
in the generated images through external meth-
ods, it is a good approach to make modifica-
tions directly inside the model. This approach
enables more flexible control by directly inter-
vening in the forward reasoning process inside
the model by modulating the cross-attention
mechanism of text-image association. For ex-
ample, Attend-and-Excite ensures that all sub-
ject tokens in the cue are fully activated in the
attentional layer through optimization; Paint-
with-Words [14] allows the user to specify the
correspondence of text tokens to image regions
for local editing; and GLIGEN [15] anchors lin-
guistic descriptions to spatial features through
gating mechanisms. These types of approach-
es maintain the smoothness of the authoring
process by starting directly from textual cues.
However, they lack explicit mechanisms to
force the generated results to conform to the
structural relationships, scale and geometric
consistency necessary for specialized domains
(e.g., architecture), and suffer from manual ma-
nipulation, which may result in results that are
visually plausible but untenable in a profession-
al sense.
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2.2.3. Internal Knowledge Editing and
Adaptation Technology

When a generic model lacks knowledge of
specific concepts (e.g., personalized objects,
unique styles), the method implants new con-
ceptual representations for the model by mak-
ing lightweight, localized edits to its internal
weights or embedding space. Represented by
LoRA [16], it enables the model to efficiently
learn and stably generate new concepts while
avoiding catastrophic forgetting by injecting a
trainable low-rank decomposition matrix into
the weight matrix of the Transformer attention
module. Multiple LoORA modules can be linear-
ly combined for multi-concept blending during
inference. This technique enables a high degree
of personalization, but the granularity of its
control usually lies in the text itself rather than
in its precise spatial structural relationships.

2.3. This Work

In summary, with the existing methods, it is dif-
ficult to ensure that the generated results satis-
fy the strong structural constraints of the spe-
cialized domain based on textual descriptions
alone. Methods that rely on external conditions
are highly accurate but not flexible enough;
methods that optimize internal mechanisms are
flexible but have weak structural constraints.
Therefore, how to generate high-quality archi-
tectural images without relying on any addi-
tional conditional inputs and only through tex-
tual cues is a key issue.

The aim of this work is to study and explore this
problem and propose a tractable solution. This
study proposes a structural consistency loss
function that is dynamically optimized during
the sampling process of the diffusion model.
Unlike external control methods, it does not
require any auxiliary input; and unlike generic
internal optimization methods, it implicitly in-
jects a structural coherence a priori by explicit-
ly steering the cross-attention graph, prompting
the spatial concentration of textual markers de-
scribing the key architectural components, and
driving the semantic separation between differ-
ent components. This enables the adaptation of
a powerful generic visual-linguistic model to
architectural image generation tasks without
relying on architectural drawings or modifying

the core architecture of the model, providing a
new path towards flexible and structure-aware
textual graph generation.

3. Method

3.1. Overall Framework

When generating large models using generic
text-to-image generation, the problem of gen-
erating architectural images by inputting textu-
al prompts is often structurally illogical and is
rooted in the model's lack of explicit constraints
on the structural principles of architecture. In
order to solve the accuracy of the model in
building image generation, this paper proposes
an improved method of building image gener-
ation based on Qwen-Image model and MMIS
dataset [17]. The overall framework is shown in
Figure 1, and the core innovation lies in the in-
troduction of a structural consistency loss func-
tion, which does not change the original model
structure by constraining the attention mecha-
nism distribution within the model during the
training process, thus reducing the cost of the
model; instead, a regularization term of the at-
tention mechanism based on the location of the
building is introduced in the training to guide
the model to learn the structural rules of each
component in the building image.

The overall process is as follows: first, the text
prompt is put into the Qwen-Image model to
start the diffusion generation process; when the
model is forward calculated, the text prompt is
put into the Qwen-Image model to start the dif-
fusion generation process, and the text prompt is
put into the Qwen-Image model to start the dif-
fusion generation process, the attention weights
between text and image features are extracted
synchronously from the cross-attention layer of
DIT module. Based on these weights, the spa-
tial concentration loss and semantic alignment
loss are calculated, which together constitute
the structural consistency loss. Finally, this loss
is weighted with the original diffusion loss to
obtain the total training loss. The model is con-
tinuously optimized to generate images with
reasonable building structures.



Structurally Controllable Text-to-Image Generation for Architectural Images Using... 5

Optimized Qwen-

Semantic Alignment
Loss

Structural loss
L struct

Image model

Figure 1. Qwen-Image Model with Loss Introduction.

Qwen-Image is a text-to-image generation
model based on the Diffusion Transformer
(DiT), and its overall architecture consists of
three core components: the Text Encoder, the
Diffusion Transformer (DiT), and the Variable
Auto-Encoder (VAE). The text encoder adopts
the Qwen2.5 visual language model (Qwen2.5
VL), which contains a 32-layer visual coder
and a 28-layer language model to process im-
age and text inputs, respectively. The diffusion
transformer part contains 60 QwenlmageTrans-
formerBlocks, and the QwenDoubleStreamAt-
tention mechanism is integrated within each
block for multilevel fusion of text and image
features. The VAE coder and decoder use a 3D
convolutional architecture, which is responsi-
ble for coding and reconstruction of the image
latent space. In this study, the attention graph
extraction mechanism captures the attention
weight tensor of shape (B, H, L, S) in real time
by registering forward propagation hooks to the
dual-stream attention module of layers 12 to 16
of the DiT module, which provides the basis
for the computation of the structural coherence
loss. The structure of Figure 1 is refined to ob-
tain the detailed network structure as shown in
Figure 2.

3.2. Attention Map Extraction Mechanism

The attention graph is the basis for constructing
structural constraints. During the training pro-
cess, attention weights are extracted in real time
from the cross-attention layer of the DiT mod-
ule via forward propagation hooks to obtain the
strength of association between text tokens and
image spatial locations.

Specifically, there are H attention heads in the
cross-attention module in the / layer of the
DiT model. With the acquired text features
X, € REL*D and image features Y,€ RE*S*P for
the A-th attention head 2= 1, ..., H, independent
queries are first performed with key projection
computation:

O =X, Woh", K=y, w b (1)

WQl’ h Wi lhe RP*Pi are the learnable query and
key projection matrices corresponding to the
[-th level of the A-th attentional header, respec-
tively, and D, is the eigendimension of each
header (usually D, = D/H).

The weight matrix for this attention header is
then computed based on the Query-Key:

h hN\T
A" = softmax [—QZ (& J e RS (2)

JD,

The formula A/'[b, i, j] denotes that in the b-th
sample b = 1, ..., B, the i-th token of the text
i =1, ..., L pairs with the j-th spatial bit of the
image j = 1, ..., S in the A-th attention weight of
the head.

The outputs of all the attention heads are
stacked in the second dimension, i.e., the com-
plete four-dimensional attention tensor of the
[-th layer is obtained:

A= stack([4,, A2, ..., 4[], dim = 1) & REH*LxS

3)
Its element A, [b, h, i, j] accurately represents
the attention weight of the text's i-th token to

the image's j-th spatial location in the b-th sam-
ple, h-th attention head.
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Figure 2. Detailed network structure.
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By registering PyTorch forward propagation
hooks into the QwenDoubleStreamAttention
module of the Qwen-Image model, the fine-
grained association between text and image
spatial locations is obtained by capturing the at-
tention tensor A_1 in real time during the train-
ing process. It provides processing basis for the
subsequent Spatial Concentration Loss and Se-
mantic Alignment Loss.

3.3. Spatial Concentration Loss

In building image generation, specific building
components (such as "Windows", "Doors", etc.)
should correspond to specific local areas in the
image, rather than diffuse distribution. In order
to strengthen this positioning characteristic, the
spatial concentration loss is designed to make
the model focus on a specific local area rather
than the whole image when dealing with build-
ing keywords.

That is, the attention distribution of a building
component corresponding to a specific phys-
ical component should be spatially compact
and continuous, with its probability mass con-
centrated in a coherent region. For the set of
building component tokens K identified in the
textual cue words, their cross-attention maps
are extracted at the key layer of the denoising
network to perform the following computation-
al process:

1. Extraction and normalization: their atten-
tion vectors are obtained and reshaped into
a two-dimensional matrix M,e R”*" and
the spatial probability distribution maps
are obtained by a Softmax function con-
trolled by the temperature parameter z:

Xp(M, (i) 7) @

- Zexp(Mt (i"j")/ r)
i',j'

P (i.j)

where 7 is used to adjust the smoothness
of the distribution at the beginning of the
optimization.

2. Calculation of spatial moments:
The center of mass (first order moments)
is given as:

#o=2 RGN gy 1y =2 RGN ()

The variance (second-order central moments) is
given as:

ol =2 R./) (- ) (6)

o) =2 R.))(i-n)’ (7

3. Defining loss: The loss of spatial concen-
tration is defined as the mean of the vari-
ance of all target markers:

1 2 2
£Spatial = m Z (Gx + g, ) (8)

tek

By minimizing L., the model is explicitly
steered during the training process so that the
generated signals of the building components
are constrained to be within a local region cen-
tered on their attentional centers of mass, which
ensures higher spatial localization accuracy and
structural integrity in the generation of building
components. The set of building components is
not combined with the word list of the origi-
nal model but is obtained through textual cue
words and attention extraction.

3.4. Semantic Alignment Loss

In the task of fine-grained text-to-image gen-
eration, ensuring that different semantic con-
cepts are accurately mapped to different spa-
tial regions in the image is a key challenge in
achieving high-fidelity generation. In the case
of architectural image generation, in order to
distinguish the visual regions of specific com-
ponents such as "window", "door", etc., the
cross-attention maps corresponding to each ar-
chitectural component (Token) need to reduce
the similarity between the attention maps corre-
sponding to different architectural components.
For each building component (Token), it is nec-
essary to reduce the similarity between the at-
tention maps corresponding to different build-
ing components, so that the model can assign
more separate and exclusive attention regions
to them in the image space during the genera-
tion process, thus enhancing the independence
and localization accuracy of each component in
the final image.
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For a collection of building component token
indices K identified in a batch, let P, RS de-
note the vector of attention graphs after flat-
tening corresponding to the keyword i (with §
being the number of spatial locations), and |K]
is the number of building components identi-
fied in the batch. The semantic alignment loss
is defined as the average of the cosine similar-
ity of the attention graphs between all different
keyword pairs:

BB,

Jop—— = MG
semantic |K|(|K|_1)z z Pi“z"Pj 2 ( )

ieK jeK,j>i

In order to eliminate the bias of different atten-
tion maps in the range and distribution of val-
ues, and to ensure the fairness and stability of
similarity comparisons, we normalize each at-
tention vector before computation:

2
o, t+¢

1 S
Ay :_ZP]((S):'
S5

13 ) 2
Oy = EZ(‘% _,UA) :

S=1

ﬁk :})/c_luk

(10)

where ¢ is a small constant used to maintain nu-
merical stability. x4, is the mean of the vector P,
and o, 1s the standard deviation of the vector P;.

3.5. Overall Structural Consistency Loss

To synthesize attention concentration and dif-
ferentiation optimization, the above two loss
terms are combined to obtain a total structural
consistency loss:

Lstruct o Ltextspatial + ﬁ ) Lsemantic (1 1)

Where a and f are the balance hyperparameters;
these two hyperparameters are used to jointly
guide model learning to conform to architectur-
al principles for structural representations.

3.6. The Total Loss Function

Adding structural consistency loss as a regular
term to the original diffusion loss results in the
total loss function:

Ltolal = Ldifusion + ﬂ' : L * fextsll"uct

(12)

struct

Where L, 18 the raw training loss (MSE
loss) of Qwen-Image, 4 controls the strength of
the structural constraint. This combination en-
sures that the model maintains its original gen-
eration capabilities while specifically optimiz-
ing the structural rationality of building image
generation through the guidance of structural
consistency loss.

4. Results

4.1. Experimental Setup

4.1.1. The MMIS Dataset

In this experiment, we use the MMIS data-
set, which 1s a large-scale dataset specially
constructed for advancing multimodal indoor
scene understanding and generation. The data-
set 1s constructed with multimodal alignment
data, containing nearly 160,000 high-quality
indoor scene images, and each image is accu-
rately paired with a detailed textual description
and a voice recording of the description, form-
ing an "image-text-audio" trinity data structure.
The textual descriptions in this dataset accu-
rately and meticulously reflect the visual ele-
ments and spatial relationships in the images,
while the corresponding audio recordings fur-
ther increase the modal diversity and potential
research dimensions. The data consists of 11
decorative styles, namely Art Deco, Bohemian,
Coastal, Contemporary, Eclectic, Farmhouse,
Mediterranean, Mid-Century Modern, Rustic,
and Traditional. In the experiment, the dataset
is divided into a training set, a validation set
and a test set according to the ratio of 7:2:1. The
training set is used for learning and optimizing
the model parameters, the validation set is re-
sponsible for monitoring the training process,
and the test set is used for objectively assessing
the generalization ability of the final model.

4.1.2. Model Training Configuration

The model was trained based on data shown in
Table 1 and Table 2, and LoRA was used for
style migration. The considered models were:



Structurally Controllable Text-to-Image Generation for Architectural Images Using... 9

Table 1. Model training parameters.

Configuration Item

Configuration Content

Optimizer AdamW
Batch Size 6
Epochs 50
Learning rate le-4

Hardware environment

10 x NVIDIA A100 GPU (100 GB)

Memory Optimization

Gradient checkpointing techniques, mixed precision training (BF16)

1. Stable Diffusion 3 (SD3): open-source,
baseline model.

2. Qwen-Image (raw): native model not fine-
tuned on architectural data.

3. Qwen-Image + FT: Base model fine-tuned
on the MMIS dataset only.

4. Our Full Model: fine-tuned base with
structural consistency loss for joint train-
ing.

4.1.3. Evaluation Metrics

In order to comprehensively assess the quality
of the generated images, a multi-dimensional
evaluation system was used in this study:

1. IS (Inception Score) [18]: assesses the
quality and diversity of generated images
by pre-training the Inception network, the
higher the value the better.

2. FID (Fréchet Inception Distance) [19]:
measures the distribution distance between
the generated and real images in the feature
space of the Inception network, with lower
values indicating higher visual realism.

3. KID (Kernel Inception Distance) [20]: as
an unbiased estimation of FID, also used
to assess distributional similarity, more ro-
bust to sample size, lower values are better.

Table 2. LoRA Configuration Parameters.

Configuration Item

Configuration Content

Target module

to_q,to_k, to v,add _q proj, add k proj, add v_proj, to_out.0, to_add out,
img_mlp.net.2, img_mod.1, txt_mlp.net.2, txt mod.1

Lora rank 32
Lora alpha 64
Dropout 0.1
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4. CLIPScore [21]: based on the cosine sim-
ilarity between the generated image and
the input text computed by the pre-trained
CLIP visual-linguistic model, directly re-
flecting the degree of semantic alignment
between the image and the input text, the
higher the value the better.

5. LPIPS (Learned Perceptual Image Patch
Similarity) [22]: calculates the similarity
between image pairs based on perceptual
features to assess detail fidelity and struc-
tural consistency, the lower the value the
more similar perceptually, in this study
VGG network is used to do the calculation.

4.2. Results Analysis

4.2.1. Comparative Experiment

The MMIS training set was used to train the
model and the quantitative evaluation results
obtained from the validation on the validation
set using MMIS are shown in Table 3.

From Table 3, it can be seen that the fine-tuned
model (Qwen-Image + FT) significantly out-
performs both Qwen-Image and Stable Diffu-
sion 3 in terms of FID and IS; whereas Our Full
Model achieves the best performance with the
lowest FID/KID (11.06/6.23) and the highest
IS (34.82). It shows that the generated image
is optimal in terms of visual realism, diversi-
ty and clarity; the highest CLIPScore (0.869)
proves that Our Full Model is able to obtain
better graphic semantic alignment in terms of
textual cue word comprehension; and the low-
est LPIPS (0.352) verifies that the proposed
loss function effectively improves the structural

reasonableness and compositional accuracy of
the image by these indicators. Thus, it is pos-
sible that Our Full Model has a more accurate
and reasonable image generation of buildings
in a multi-dimensional way.

The change in loss during model training is
shown in Figure 3. In the early stage of train-
ing, due to the introduction of the structural
consistency loss function, the model needs to
adapt to the new optimization objectives and
constraints, and the loss value appears to rise
briefly. With the increase in the number of iter-
ations, the model gradually learns an effective
representation of the building structure, and the
loss starts to decrease steadily. Eventually, the
loss curve converges and stabilizes, indicating
that the model has sufficiently adapted to the
new architecture and is able to stably generate
structurally sound building images. This train-
ing dynamic confirms the optimizability of the
proposed loss function and its benign guiding
effect on the model convergence process.

4.2.2. Ablation Experiments

In order to verify the specific contribution of
each loss component, ablation experiments
were designed on the validation set to direct-
ly respond to the degree of semantic alignment
between the image and the input text with the
CLIPScore metric, and the distribution distance
between the generated image and the real image
with the FID metric. The results were obtained
as shown in Table 4.

From the analysis in Table 4, it is evident that
the addition of spatial concentration loss (Qw-
en-Image + L, ,,,,;) alone significantly improves
the spatial consistency of the building compo-

Table 3. Quantitative evaluation results of different models on the MMIS test set.

Model FID KID IS CLIPScore LPIPS(VGG)
Stable Diffusion 3 18.73 12.45 25.41 0.792 0.421
Qwen-Image 15.82 14.82 24.18 0.815 0.438
Qwen-Image + FT 13.45 8.91 31.25 0.841 0.385
Our Full Model 11.06 6.23 34.82 0.869 0.352
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Table 4. Results of ablation experiments.

Model Configuration CLIPScore FID
Qwen-Image + L, 4 0.833 11.73
Qwen-Image + Le,antic 0.852 12.82
Our Full Model 0.869 11.06

nents, but has limited direct enhancement of
the graphic alignment; the addition of semantic
alignment loss (Qwen-Image + L,,,,,,.....) alone is
most effective in improving the graphic align-
ment (CLIPScore). The combination of the two
(Our Full Model) achieves complementarity and
synergy, optimizing on all metrics and making
the images generated from textual cue words
spatially and semantically consistent with reali-
ty. This demonstrates that the two loss functions
are explicitly complementary: the spatial loss
dominates layout optimization and the seman-
tic loss dominates association enhancement, and
the two work synergistically to drive the model
towards a more structurally and semantically
aligned building image generation.

4 3. Qualitative Results

Figure 4 shows a comparison of the results
of different models for the same textual cues.
For example, for the prompt "Art Deco, a

bathroom with a white bathtub and an open
doorway leading into the adjacent room. The
bathroom is decorated with black and white
wallpaper, which adds a stylish touch to the
space." Figure 4 on the left is generated using
the Qwen-Image model. One can observe that
there are two doors, which is an obvious mis-
take. On the right, the image is generated using
the Our Full Model, which produces an image
that makes the most sense in terms of spatial
layout.

In Figure 5, the dynamic process of Our Full
Model in generating multiple styles of build-
ing images under different denoising steps is
shown. The experimental results show that the
model achieves a good balance between gener-
ation efficiency and generation quality: only at
the 15th step, it can generate structurally com-
plete and stylized architectural images, and its
visual effect is close to the convergence state.
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Figure 4. An Example of Image Generation for the Qwen-Image model (left) and Our Full Model (right).

step 10

\

Figure 5. Our Full Model under Different Cue Words and with Step Image Generation.
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Meanwhile, in order to further demonstrate the
detailed differences of the images generated by
the domain adaptive fine-tuning of Qwen-Im-
age + FT under the same set of text prompts, the
results are shown in Figure 6. It can be seen that,
although the overall composition and content of
the images generated by the model in step 15
and step 25 are basically the same, there are ob-
vious differences in the detailed performance.
The results generated in step 25 show better
visual rationality in multiple dimensions: the
natural lighting effect and pillow fabric texture
in the first row of images are more realistic; the
second and third rows of images are better than
the results in step 15 in terms of spatial layout,
size ratio of the furniture, and the overall spatial
utilization of the scene, which shows the effect
of more iteration steps on the improvement of
image detail quality.

step 10

A .l_ 2 an

“"3*‘“ -

step 5

In order to further assess the overall advantages
of the proposed method, Figures 7 and Figures
8 show the generation results of Our Full Model
(left) and Qwen-Image + FT (right) side by side
at the same number of sampling steps. It can be
clearly observed by visual comparison that the
left column of images significantly outperforms
the right baseline model in terms of overall
quality. In Figure 7, the first row of right-side
images shows misalignment and distortion of
the door frame structure, while the second row
of right-side images has obvious color distor-
tion. The results in Figure 8 further confirm this
trend: the windows in the first row of right-side
images are unnaturally tilted; the roof generat-
ed in the second row of right images is com-
pletely external to the building, which does not
correspond to the semantic requirement of the
cue word "a modern living room".

step 15

step 25

Figure 6. Qwen-Image + FT different cue words and step image generation.
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our Full Model Qwen-Image + FT

Figure 7. Our Full Model (left) and Qwen-Image + FT (right) generated building plans (1).

our Full Model i Qwen-Image + FT

Figure 8. Our Full Model (left) and Qwen-Image + FT (right) generated building plans (2).
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By comparing the above multi-group and
multi-angle generation results, it can be con-
cluded that Our Full Model proposed in this
thesis outperforms Qwen-Image and Qwen-Im-
age + FT model on the architectural image gen-
eration task, which verifies the effectiveness of
the introduced structural consistency loss and
domain adaptive strategy.

5. Discussion

The innovation of this study is that the pro-
posed loss of structural coherence can provide
new ideas for the application of Vincentian di-
agram models in structured domains such as
architecture. In the generalized Vincentian di-
agram model, the attention map tends to spread
over semantically similar texture regions, re-
sulting in a high degree of overlap in the atten-
tion regions of architectural components, such
as "windows" and "walls", and thus generating
adherent and disproportionate components. The
loss function introduced in this study allows the
spatial focus loss of building components in
textual cues to mimic the requirement of clarity
of component positioning in architectural de-
sign by maximizing the distribution of attention
and contracting the attentional quality of each
building component towards a certain spatial
focal point; the semantic alignment loss min-
imizes the cosine similarity between different
components by applying an attentional vector
to the different components in the representa-
tional space to ensure that the cosine similari-
ty between "window" and "wall" is minimized.
"Doors" and "windows", "roofs", and "founda-
tions" are visually separated from each other,
thus occupying a more distinguishable position
in the generated image. The "door" and "win-
dow", "roof" and "foundation" are separated
from each other in the visual representation,
thus occupying a more distinguishable spatial
region in the generated image.

The difference between our approach and the
existing technology is that we do not use ex-
ternal methods such as ControlNet, T2I-Adapt-
er, efc. to assist in image generation, nor do we
optimize the text-image alignment of the mod-
el by LoRA fine-tuning alone. Rather, the loss
of structural coherence was introduced under
LoRA fine-tuning to allow the model to accu-

rately localize the position and space of build-
ing-related words, which further intervened the
model's spatial compositional ability more ac-
curately through attentional correction.

However, several limitations still exist in this
study. First, the structural control effect relies to
a certain extent on the predefined architectural
terminology dictionary, and the control of new
components or descriptors that are not included
may be weakened; second, although the overall
structural reasonableness is improved, the con-
trol of fine-grained attributes such as furniture
materials and light and shadow details is still
not fine enough; third, it is currently limited
to 2D image generation, and has not yet been
extended to 3D spatial layout, which is still a
distance away from the 3D modeling of the
real architectural design process. The demand
for 3D modeling in the real architectural design
process is still a distance away. Based on this
limitation, this method can be optimized and
developed in the future.

6. Conclusion

This study proposes an improved method based
on the Qwen-Image model for the precise con-
trol of style and layout in architectural text-to-
image generation. The generic generative mod-
el will have problems such as chaotic layout,
disproportion and inconsistent style when deal-
ing with architectural texts containing complex
spatial relations and specialized semantics. For
this reason, effective control over the stylistic
consistency, spatial rationality and semantic
relevance of the generated images is achieved
by introducing the loss of structural consisten-
cy in the model and combining it with LoRA
fine-tuning, which guides the model to extract
and follow the architectural structure from
within the textual descriptions. This approach
enhances the understanding of the structured
semantics of the professional domain while
maintaining the flexibility of generation and
provides an idea for the practicalization of the
text-generated image technology in the field of
strong structural requirements such as architec-
ture and interior design.

It is shown through experiments that this meth-
od significantly outperforms mainstream base-
line models in several dimensions. In MMIS
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data, Our Full Model excels in evaluating the
quality metrics of the generated images, which
signifies a significant improvement in the visu-
al realism and diversity of the generated imag-
es. More importantly, it performs well in CLIP-
Score, LPIPS, etc., which confirms the unique
advantages of the proposed method in terms of
fine-grained semantic alignment and geomet-
ric structure fidelity. The ablation study further
validates the effectiveness of each of the two
proposed loss functions and their synergistic
effects.

Future research work will be carried out in the
following areas:

1. exploring the fine control of details such
as furniture materials and lighting effects.

2. extending the generation of 2D architec-
tural images to 3D interior scenes, realiz-
ing the complete design process from text
to 3D space.

3. developing a user-interactive interface that
allows designers to adjust text prompts in
real time and view the generated effects
immediately.

Declaration of Competing Interests

The authors declare no conflict of interest.

Funding

Ths research received no specific grant from
any funding agency in the public, commercial,
or not-for-profit sectors.

Data Availability

Data used in this article are openly available at:
https://github.com/AhmedMahmoudMostafa/MMIS

References

[1] M. Fisheret et al., "Activity-centric Scene Syn-
thesis for Functional 3D Scene Modeling", ACM
Trans. Graph., vol. 34, no. 6, p. 179, 2015.
https://doi.org/10.1145/2816795.2818057

[2] R.Rombach et al., "High-Resolution Image Syn-
thesis with Latent Diffusion Models", in Proc. of’
the 2022 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), New Orle-
ans, LA, USA, 2022, pp. 10674—10685.
https://doi.org/10.1109/CVPR52688.2022.01042

[3] K. Wang et al., "Deep Convolutional Priors for
Indoor Scene Synthesis", ACM Trans. Graph.,
vol. 37, no. 4, p. 70, 2018.
https://doi.org/10.1145/3197517.3201362

[4] L. Zhang et al., "Adding Conditional Control to
Text-to-Image Diffusion Models", in Proc. of the
2023 IEEE/CVF International Conference on
Computer Vision (ICCV), Paris, France, 2023,
pp- 3813-3824.
https://doi.org/10.1109/ICCV51070.2023.00355

[5] C. Mou et al., "T2I-Adapter: Learning Adapters
to Dig Out More Controllable Ability for Text-
to-Image Diffusion Models", in Proc. of the AAAI
Conference on Artificial Intelligence, vol. 38, no.
5, pp. 4296-4304.
https://doi.org/10.1609/aaai.v38i5.28226

[6] H. Chefer et al., "Attend-and-Excite: Atten-
tion-Based Semantic Guidance for Text-to-Image
Diffusion Models", ACM Trans. Graph., vol. 42,
no. 4, p. 148, 2023.
https://doi.org/10.1145/3592116

[7]1 T.Xuetal,"AttnGAN: Fine-Grained Text to Im-
age Generation with Attentional Generative Ad-
versarial Networks", in Proc. of the 2018 IEEE/
CVF Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, pp. 1316—
1324, 2018.
https://doi.org/10.1109/CVPR.2018.00143

[8] W. Peebles and S. Xie, "Scalable Diffusion Mod-
els with Transformers", in Proc. of the 2023
IEEE/CVF International Conference on Com-
puter Vision (ICCV), Paris, France, 2023, pp.
4172-4182.
https://doi.org/10.1109/ICCV51070.2023.00387

[9] A. Radford et al., "Learning Transferable Visu-
al Models From Natural Language Supervision",
ICML 2021, pp. 8748—-8763, 2021.
https://doi.org/10.48550/arXiv.2103.00020

[10] C. Wu et al., "Qwen-Image Technical Report",
ArXiv.
https://doi.org/10.48550/arXiv.2508.02324

[11] C. Schuhmann et al., "LAION-5B: An Open
Large-scale Dataset for Training Next Generation
Image-text Models", NIPS'22: Proceedings of the
36th International Conference on Neural Infor-
mation Processing Systems, article no. 1833, pp.
25278-25294, 2022.
https://doi.org/10.48550/arXiv.2210.08402

[12] B. Peng et al., "ControlNeXt: Powerful and Effi-
cient Control for Image and Video Generation",
ArXiv.
https://doi.org/10.48550/arXiv.2408.06070


https://github.com/AhmedMahmoudMostafa/MMIS
https://doi.org/10.1145/2816795.2818057
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1145/3197517.3201362
https://doi.org/10.1109/ICCV51070.2023.00355
https://doi.org/10.1609/aaai.v38i5.28226
https://doi.org/10.1145/3592116
https://doi.org/10.1109/CVPR.2018.00143
https://doi.org/10.1109/ICCV51070.2023.00387
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.48550/arXiv.2508.02324
https://doi.org/10.48550/arXiv.2408.06070

Structurally Controllable Text-to-Image Generation for Architectural Images Using...

17

[13]J. Chen et al., "PIXART-6: Fast and Controllable
Image Generation with Latent Consistency Mod-
els", ArXiv.
https://doi.org/10.48550/arXiv.2401.05252

[14] G. Couairon et al., "Diffedit: Diffusion-based
Semantic Image Editing with Mask Guidance",
in Proc. of the 11th International Conference on
Learning Representation (ICLR), 2023.
https://doi.org/10.48550/arXiv.2210.11427

[15]1Y. Li et al., "GLIGEN: Open-Set Grounded Text-
to-Image Generation", in Proc. of the 2023 IEEE/
CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Vancouver, BC, Canada,
2023, pp. 22511-22521.
https://doi.org/10.1109/CVPR52729.2023.02156

[16]J. E. Hu et al., "LoRA: Low-Rank Adaptation of
Large Language Models", in Proc. of the 10th In-
ternational Conference on Learning Representa-
tions (ICLR), 2022.
https://doi.org/10.48550/arXiv.2106.09685

[17]1H. Kassab et al., "MMIS: Multimodal Dataset
for Interior Scene Visual Generation and Recog-
nition", in Proc. of the 2024 Intelligent Methods,
Systems, and Applications (IMSA), Giza, Egypt,
2024, pp. 172-177, 2024.
https://doi.org/10.1109/IMSA61967.2024.10652794

[18] T. Salimans et al., "Improved Techniques for
Training GANSs", NIPS'16: Proceedings of the
30th International Conference on Neural Infor-
mation Processing Systems, pp. 2234-2242,2016.
https://doi.org/10.48550/arXiv.1606.03498

[19] M. Heusel et al., "GANs Trained by a Two Time-
Scale Update Rule Converge to a Local Nash
Equilibrium", NIPS'17: Proceedings of the 31st
International Conference on Neural Information
Processing Systems, pp. 6629—6640, 2017.

[20] M. Binkowski et al, "Demystifying MMD
GANSs", in Proc. of the 6th International Confer-
ence on Learning Representations (ICLR), 2018.
https://doi.org/10.48550/ARXIV.1801.01401

[21]J. Hessel et al., "CLIPScore: A Reference-free
Evaluation Metric for Image Captioning", in Pro-
ceedings of the 2021 Conference on Empirical

Methods in Natural Language Processing, 2021.
https://doi.org/10.48550/ARXIV.2104.08718

[22] R. Zhang et al., "The Unreasonable Effectiveness
of Deep Features as a Perceptual Metric", in Proc.
of the 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018 pp. 586-595.
https://doi.org/10.1109/cvpr.2018.00068

Received: October 2025
Revised: December 2025
Accepted: December 2025

Contact addresses:

Yuanshuai Lan

School of Electronic Information Engineering
Geely University

Chengdu

Sichuan

China

e-mail: 448916030@qq.com

Min Liao

School of Electronic Information Engineering
Geely University

Chengdu

Sichuan

China

e-mail: liaomin@guc.edu.cn

Mo Chen

School of Electronic Information Engineering
Geely University

Chengdu

Sichuan

China

e-mail: chenmo@guc.edu.cn

Yi Ou

School of Electronic Information Engineering
Geely University

Chengdu

Sichuan

China

e-mail: ouyi@guc.edu.cn

YUANSHUAI LAN ...

Min LiAo ...

Mo CHEN ...

Y10u ...



https://doi.org/10.48550/arXiv.2401.05252
https://doi.org/10.48550/arXiv.2210.11427
https://doi.org/10.1109/CVPR52729.2023.02156
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.1109/IMSA61967.2024.10652794
https://doi.org/10.48550/arXiv.1606.03498
https://doi.org/10.48550/ARXIV.1801.01401
https://doi.org/10.48550/ARXIV.2104.08718
https://doi.org/10.1109/cvpr.2018.00068

