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with Graph Convolutional Networks
for Collaborative Task Scheduling in
Distributed Virtual Reality Systems
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Efficiently scheduling collaborative tasks in multi-us-
er, distributed virtual reality systems is challenging
due to the dynamic nature of user interactions and re-
source constraints. To address this problem, a novel
task scheduling framework integrating multi-agent
reinforcement learning and graph convolutional net-
works is proposed. The distributed VR scheduling
problem is formulated as a Markov game, for which
the multi-agent proximal policy optimisation algo-
rithm serves as the foundational decision-making
framework. Graph convolutional networks are used to
capture the dynamic topological relationships between
tasks and users. This enhances global perception ca-
pabilities and enables more refined collaborative de-
cision-making through graph attention mechanisms.
Experimental results demonstrated that the proposed
model outperformed baseline approaches in terms of
task completion rate, system throughput, and resource
utilisation. In simulation environments, the framework
maintained low latency and high success rates across a
range of VR application scenarios. This research pres-
ents a structured methodology for intelligent schedul-
ing in distributed collaborative systems, promoting the
integration of graph-based learning and multi-agent
coordination in complex virtual environments. This
work makes a valuable contribution to scheduling the-
ory and practical system design, offering valuable in-
sights for the development of responsive and scalable
VR platforms.
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1. Introduction

With the rapid advancement of artificial intelli-
gence, edge computing, and virtual reality (VR)
technologies, multi-user collaborative tasks
have garnered significant attention in fields
such as remote collaborative design, multiplay-
er online gaming, and virtual training [1]. These
applications involve numerous users simulta-
neously executing complex tasks within virtual
environments, imposing stringent demands on
system real-time performance, collaborative
efficiency, and resource scheduling capabili-
ties [2]. However, traditional centralized task
scheduling (TS) methods struggle to effectively
handle dynamic, multi-user environments, suf-
fering from high response delays, low resource
utilisation, and insufficient coordination effi-
ciency [3].

Addressing these challenges requires innova-
tions that lie at the intersection of distributed
computing and intelligent systems. Multi-agent
reinforcement learning (MARL) has emerged
as a promising paradigm for enabling decen-
tralized decision-making in collaborative envi-
ronments [4]. MARL is well suited for scalable
and adaptive coordination in distributed VR
systems due to its ability to operate based on
local observations without global information

[5].
For instance, Johnson et al. developed a decen-
tralized MARL-based scheduling method uti-



250

J. Zhao

lizing deep Q-networks with centralized train-
ing, which effectively reduced task completion
times compared to heuristic approaches [6].
Similarly, Jayanetti e al. designed a multi-agent
deep reinforcement learning (DRL) framework
for dynamic wireless networks. They demon-
strated that distributed decision-making could
substantially improve the quality of the user ex-
perience [7]. Extending this, Betalo et al. pro-
posed a collaborative multi-agent DRL sched-
uling framework, achieving performance gains
of up to 70% over competing methods [8]. In
large-scale, distributed systems, such as satel-
lite-ground networks, Lin et al. decomposed
the scheduling problem into long-term load bal-
ancing and short-term decisions. This approach
achieved high throughput with minimal latency
[9]. Applications in smart grids were advanced
by Zhang et al., who employed a multi-step
MARL framework for energy scheduling, en-
hancing both economic efficiency and user sat-
isfaction [10]. Despite these advances, a com-
mon limitation of existing MARL approaches
is their inadequate modelling of structural de-
pendencies among tasks and users. The lack of
a global relational perspective often constrains
the decision-making process, restricting the po-
tential for fully optimized collaboration in com-
plex, networked environments.

To address the relational complexity in multi-
agent systems, graph convolutional networks
(GCNs) have recently been integrated with
reinforcement learning. GCNs are a power-
ful mechanism for representing and reason-
ing about graph-structured data. They enable
agents to capture topological features and in-
terdependencies [11]. For example, Jing et al.
integrated GCNs with MARL for scheduling in
flexible manufacturing workshops, yielding su-
perior performance in complex scenarios [12].
Yang et al. used GCNs to reduce the compu-
tational complexity of DRL in time-sensitive
networks and improve end-to-end delay perfor-
mance [13]. Liu et al. combined MARL with
graph attention networks to achieve efficient
communication and lower overhead [14]. Fur-
thermore, Yang et al. incorporated GCNs into a
multi-policy DRL framework, thereby increas-
ing resource utilisation by 18%. Additionally,
Xiao et al. proposed a two-stage GCN-assist-
ed DRL method for service chain embedding,
which improved acceptance rates in multi-da-

tacenter networks [15-16]. Although these
studies emphasize the benefits of graph-based
learning, the use of GCN-enhanced MARL in
distributed VR settings is still underdeveloped.
Additionally, effectively fusing dynamic topo-
logical reasoning with multi-agent policy opti-
misation under real-time system constraints has
not been sufficiently addressed.

The reviewed literature reveals several inter-
connected gaps. First, MARL-based schedulers
often lack explicit mechanisms for modelling
dynamic task-user topologies. Second, although
GCNs improve relational reasoning, they have
not been adapted to meet the high-concurren-
cy, low-latency requirements of distributed VR
environments. Third, a comprehensive solution
that unifies topological perception and collab-
orative scheduling under real-world VR condi-
tions is still lacking.

To bridge these gaps, a multi-user collaborative
task scheduling (MUCTS) optimisation mod-
el that integrates MARL with GCNs has been
proposed. This model not only improves upon
existing baselines in terms of performance but
also represents a computing innovation that en-
hances coordination and scalability in distrib-
uted VR architectures. The innovation of this
study lies in:

1. Anovel computing framework has been de-
veloped that deeply integrates GCNs with
the multi-agent proximal policy optimisa-
tion (MAPPO) algorithm. This integration
allows topological dependencies between
tasks and users to be modelled dynamical-
ly, thereby enhancing global perception in
distributed VR environments.

2. The introduction of graph attention mech-
anisms and structural reconstruction loss
enables adaptive learning of node impor-
tance and improves feature representation
(FR), supporting more efficient and scal-
able collaborative decision-making.

2. Optimisation Method of MUCTS

This section constructs a VR TS model based
on MARL. Subsequently, GCNs are introduced
to propose a policy enhancement method based
on heterogeneous GCNs, achieving scheduling
optimisation for multi-user collaborative tasks.
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2.1. VR TS modelling based on MARL

Distributed VR systems face challenges in
terms of TS that demand high concurrency, low
latency, and high reliability. Traditional cen-
tralised scheduling methods struggle to han-
dle dynamic, partially observable, multi-user
environments, resulting in poor resource util-
isation, high response latency, and inefficient
coordination [17]. MARL enables locally op-
timal scheduling in the absence of global in-
formation through distributed decision-making
and collaborative optimisation [18]. Therefore,
this study constructs a distributed VR TS mod-
el based on MARL, aiming to achieve dynam-
ic and efficient scheduling of multi-user tasks.
Equation (1) illustrates how the research initial-
ly models the MUCTS problem as a Markov
game process under the MARL framework.

(1

In Equation (1), J(7) denotes the expected cu-
mulative discounted reward obtained by the in-

telligent population under policy 7 - 7 represents
the joint policy of all agents. E,, is the expecta-
tion of policy 7 and state transition probabili-
ties. y represents the discount factor. R, is the
global reward at time step (TiS) ¢. N denotes
the total number of agents. 7/ is the individual
reward obtained by agent i at TiS ¢. Figure 1 de-
picts a schematic diagram of the Markov game
process.

In Figure 1, multiple agents simultaneously
perceive their own states within a distributed
environment. They take activities and make
judgments based on local observations, each of
which is rewarded with feedback. To evaluate
strategy performance, each agent must main-
tain its own policy function and value function
[19]. Agent i's policy function is 7,(a,]s,), and
its value function is V(s,), parameterized by
actor network (AN) and critic networks (CN)
respectively. The study employs an advantage
function (AF) to measure an action's superiority
relative to the mean, thereby more accurately
estimating the advantage value, as shown in
Equation (2) [20].

At = 6r + (7//1)@ +e-t (7A)T7H1 6771 (2)
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Figure 1. Schematic diagram of Markov game process.
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In Equation (2), 4, denotes the estimated value
of the AF at TiS . 6, is the temporal difference
error at TiS 7. A denotes the AF parameter. 7 in-
dicates the total quantity of TiSs in the trajec-
tory. The calculation of the temporal difference
error is shown in Equation (3).

8, =1+ 7V,(5,,) =V, (s,) €)

In Equation (3), 7, displays the immediate re-
ward at TiS 7. V(s,) represents the value func-
tion's estimated value for state s, under param-
eter ¢. ¢ denotes the parameters of the value
function. Figure 2 displays the actor-critic net-
work's structural diagram.

Figure 2(a) depicts the AN, comprising an input
layer (IL), hidden layer (HL), and output layer.
Before the output layer creates actions, the HL
processes the state information that is sent to
the IL. Figure 2(b) shows the CN, whose output
layer estimates the state value function to eval-
uate state quality and guide policy optimisation.
To ensure training stability, the study uses the
proximal policy optimisation (PPO) technique
to limit the step size of policy updates [21]. The
PPO objective function (OF) for each agent is
shown in Equation (4).

LCLIP (6) —

E, [min(p, 0)4, clip(pt(@),1-&,1-5)4)] P

Status

Output layer

(a) The structure of actor network

In Equation (4), L°*'"(0) denotes the pruning
OF of the PPO. 4 are the parameters of the poli-
cy network (PN). p(6) indicates the probability
ratio. clip(pt(6), 1—¢, 1—¢) signifies the pruning
function. ¢ denotes the pruning hyperparameter.
The study further trains the CN by minimizing
the mean squared error between the predicted
and target values of the value function, with its
loss function shown in Equation (5).

L) = Et[ (VH(5,) = Ve (5))’ |

5)
I/1argc>t (St) = Z}/II/;-H
=0

In Equation (5), L(¢) denotes the value loss
function. Vé(s,) and Vi,..(s,) represent the pre-
dicted and target values of the value function,
respectively. 7, ; denotes the immediate reward
obtained at TiS ¢ + 1. To encourage the agent
to explore unknown state and action spaces, an
entropy regularization term is incorporated into
the OF, as shown in Equation (6).

L") = Et[ H(m,(]s,))] (6)

In Equation (6), LENT(6) denotes the entropy
regularization term. H represents the entropy
function. my(|s,) indicates the action probability
distribution generated by policy 7 under state s,.
By adjusting the weights of different loss terms
to balance the relationship among policy per-

Status

Input layer

Output layer

(b) The structure of critic network

Figure 2. Schematic diagram of the structure of actor network and critic network.
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Figure 3. Schematic diagram of VR TS framework based on MARL and PPO algorithm.

formance, value accuracy, and exploration lev-
el, the agent's total loss is expressed as shown
in Equation (7).

L(0.$)=L""(0) - L(H)+c, L™ (0 (7)

In Equation (7), L(0, ¢) denotes the total loss
function of agent i. ¢, represents the value loss
weighting hyperparameter. ¢, denotes the en-
tropy regularization weighting hyperparame-
ter. Under the CT and decentralized execution
framework, all agents share network parameters
but execute policies independently [22]. Glob-
al optimisation is achieved by synchronously
updating the PN and value network (VN), as
shown in Equation (8).

N
0« 0+aV,> L(0,¢)
i=1

v ®)
¢’<—¢—ﬂV¢ZL,-(9,¢)

In Equation (8), 8" and ¢' denote the shared pa-
rameters of the PN and VN, respectively. o and

[ represent the learning rates (LRs) for the PN
and VN, respectively. Vy displays the gradi-
ent with respect to the policy parameters 6. V,
displays the gradient with respect to the value
parameters ¢. A schematic diagram of the VR
TS framework based on MARL and the PPO
algorithm is shown in Figure 3.

In Figure 3, the VR TS framework compris-
es multiple agents, each of which is equipped
with an AN and a CN. Agents gather experi-
ence data through interactions with the envi-
ronment, which is then saved in a CT expe-
rience replay buffer. State information serves
as input, while action outputs facilitate TS de-
cisions, enabling distributed coordination and
efficient resource allocation.

2.2. Policy Enhancement Method Based
on GCNs

Although MARL exhibits robust local deci-
sion-making capabilities within distributed VR
TS, it fails to consider the intricate topological
relationships between tasks and users, leading
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to inadequate global awareness [23]. To achieve
more refined collaborative decision-making,
the study incorporates GCNs further, proposing
a policy enhancement method based on hetero-
geneous GCNs. This approach captures and
leverages the dynamic topological relationships
between tasks and users, thereby improving the
agents' global awareness. Within the construct-
ed heterogeneous GCN, the study enhances
the expressive power of node representations
through the topological structure defined by the
adjacency matrix (AM) [24]. In the research
graph, the node feature matrix (FM) is denoted
as H® € RM*F and the AM A € RM*M represents
the connection relationships between nodes.
Among them, M displays the quantity of nodes,
and £ is the feature dimension. To maintain nu-
merical stability, the AM undergoes normaliza-
tion processing as shown in Equation (9).

1 1

A'=D2A4D ?

)

In Equation (9), A" denotes the rllormalized AM.

D denotes the degree matrix. D * denotes the di-
agonal matrix. The aggregation process of node
features is expressed in Equation (10).

H®Y =6 (4" HO wO) (10)

In Equation (10), H Y displays the FM of
nodes in layer /+1. W displays the trainable

weight matrix of layer /. o displays the nonlin-
ear activation function. A schematic diagram of
the aggregation of node features within the re-
gion is shown in Figure 4.

Figure 4 illustrates the feature aggregation pro-
cess in a GCN, where a value of 1 in the AM
indicates a connection between nodes, and the
FM represents the initial features of each node.
Through the topology specified by the AM, the
graph convolution operation (GCO) combines
each node's features with those of its neigh-
bours. This study uses the GCO to aggregate
the features of surrounding nodes and update
the representation of the current node to efti-
ciently extract node features from the graph
structure and facilitate information propagation
[25]. Its output is shown in Equation (11).

R :o-( Z CLW“)hf”J (11)
veX (u) “oy

In Equation (11), #,""D denotes the FR of
node u at layer /+1. X(u) represents the set of
neighbouring nodes of node u. c,, denotes the
normalization constant. 4, denotes the FR of
neighbouring node v at layer /. Considering the
heterogeneity of nodes and relationships in re-
al-world systems, the study further introduces
a heterogeneous GCN to distinguish different
types of nodes and edges, as shown in Equation
(12).

Aggregation features

X1 +x2

XptX3+Xy

e X31+Xy

Critical matrix X4

X

- ____ I X X

X31+Xs

X3 Xy

Figure 4. Schematic diagram of aggregation of node features within the region.
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h:“”w(Z > iWJ”h&”] (12)

ecEveX,(u) “ye

In Equation (12), £ denotes the set of all rela-
tion types in the graph. X,(u) is the set of neigh-
bour nodes connected to node u via relation 7.
To dynamically learn the importance of dif-
ferent neighbour nodes, the study introduces a
graph attention mechanism and normalizes the
attention coefficients (ACs) using the softmax
function, as shown in Equation (13).

b, =a(Wh,Wh)

13
a, =exp(b,,)/ (ZkeX(u) exp(b,, )) ( )

In Equation (13), b,,, is the AC between node u
and v. a,, represents the normalized attention
weight. a denotes the shared attention func-
tion. b, denotes the AC between node u and its
neighbour node k. Through multi-layer graph
convolutions and attention mechanisms, each
node obtains enhanced FRs [26]. These features
are concatenated with the agent's original ob-
servations to form the augmented state input, as
shown in Equation (14).

(14)

- o
s; = concat(s,, h,

In Equation (14), s, denotes the augmented
state input. &, represents the augmented FR
of a node u processed by the / layer graph atten-
tion network. To enhance the quality of FRs in
GCNess, this study introduces a graph structure
reconstruction loss during training, as shown in
Equation (15).

2

() (O]
hu - hl’

LGCN = Z

(u,v)eX

(15)

In Equation (15), Lscn denotes the value of
the graph structure reconstruction loss func-
tion. 4, and A, represent the final FRs of
nodes u and v after passing through the layer
GCN. Integrating GCN outputs into MARL
policy updates is a critical step in the proposed
framework. GCN processes state information
and captures dynamic topological relation-
ships between tasks and users. The enhanced

FRs obtained from the GCN are then concat-
enated with the original state information to
create an augmented state input for each agent.
This augmented state input is then used by the
actor and CNs to make decisions and evaluate
states, respectively. Specifically, the GCN out-
puts are incorporated into the policy updates
as follows.

1. The state information for each agent is fed
into the GCN to produce enhanced FRs.

2. These enhanced FRs are then concatenated
with the original state information to form
the augmented state input.

3. The augmented state input is used by the
AN to select actions, and by the CN to es-
timate state values.

4. The CN's estimates are used to calculate
the AF, and the AN is updated using the
PPO OF, which incorporates the augment-
ed state input and the calculated AF.

The computational complexity of the proposed
MARL-GCN framework depends on the com-
plexity of the MARL and GCN components.
The MARL component involves training mul-
tiple actors and CNs, and its complexity is pri-
marily determined by the number of agents,
the size of the state and action spaces, and the
number of iterations. The GCN component
comprises GCOs and attention mechanisms.
The complexity of this component depends on
the number of nodes and edges in the graph,
as well as the number of convolutional layers.
Figure 5 illustrates the schematic diagram of
MUCTS integrating MARL with a heteroge-
neous GCN.

In Figure 5, the MUCTS framework acquires
state information through agent-environment
interactions, while the experience replay buf-
fer stores samples for CT. The GCN performs
multi-layer aggregation and pooling on node
features to enhance global perception capabili-
ties. The actor-critic network achieves efficient,
distributed TS optimisation through collabora-
tive updates.

An algorithmic pseudocode the MARL-GCN
training workflow is as follows.
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Figure 5. MUCTS integrating MARL and heterogeneous GCNss.

Algorithm 1. MARL-GCN Training Procedure.

Input: Task graph G = (V, E), Number of agents N, Training episodes E
Output: Trained actor and critic networks

1. Initialize actor networks 7 _i and critic networks V i for all agents i € [1, N]
2. Initialize GCN with parameters 0 G
3. Initialize experience replay buffer D

4.
5
6.
7
8

9

10.
I1.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21

for episode =1 to E do

Reset environment and observe initial state s_0

fort=1toTdo
for each agent i do

Extract local observation o_i*t from s_t

end for

end for

end for
. end for

for cach training step do
Sample mini-batch from D
Update GCN using graph reconstruction loss
Update actor and critic networks using PPO loss and value loss

Execute joint action a’t = (a_1"t, ..., a N”t)
Observe reward 't and next state s {t+1}
Store transition (s_t, a’t, rt, s _{t+1})in D

Compute graph-enhanced state s_i*aug = [o_i"t, GCN(o_i*t; 8_G)]
Sample action a_i’t ~ t_i(*]s_i"aug)
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3. Comprehensive Analysis of
a Novel MUCTS Optimisation
Model

Through analysis, the suggested MUCTS opti-
misation model's performance is confirmed. To
confirm the model's practical deployability, sta-
bility, and generalization ability in a setting that
approximates distributed VR applications in the
real world, simulation tests are conducted.

3.1. Performance Validation Analysis of a
Novel MUCTS Optimisation Model

To validate the performance of the proposed
model, experiments are conducted on two open-
source datasets: the Alibaba Cluster Trace Pro-
gram (ACTP) and VRCollaborate. The ACTP
dataset comprises 12,548 task instances with
diverse resource requirements. These include
CPU-intensive rendering tasks (42%), memo-
ry-bound data synchronisation tasks (35%), and
I/O-intensive interaction tasks (23%). User ac-
tivity follows a diurnal pattern, reaching a peak
of 280 simultaneous users. The VRCollaborate
dataset comprises 8,932 collaborative tasks of
varying complexity. Task durations range from
50 ms to 2.5 s, and resource demands span 2—16
CPU cores with memory requirements of 4-32
GB. The study compares the proposed model
with existing mainstream MARL models based

on PPO, including traditional PPO, indepen-
dent proximal policy optimisation (IPPO), and
MAPPO. The experiment is built using Python
3.9, PyTorch 1.13, and the Stable-Baselines3
framework. The runtime environment is Ubun-
tu 20.04 equipped with an NVIDIA RTX 3090
GPU. Table 1 lists the experimental parameters.

The study first conducts a comparative analysis
of the average reward across different models
using the ACTP and VRCollaborate datasets.
In Figure 6(a), for the ACTP dataset, at 1200
iterations, the average rewards for PPO, IPPO,
and MAPPO are —227.30, 17.62, and 208.57.
The average reward for the proposed model is
335.24. At 2000 iterations, the average rewards
for the four models are —212.15, 48.21, 242.36,
and 382.17, respectively. In Figure 6(b), for the
VRCollaborate dataset, the average rewards at
iteration 1200 are —276.52 for PPO, —108.54
for IPPO, 62.36 for MAPPO, and 252.76 for the
proposed model. The findings reveal the effica-
cy of the suggested model by displaying that it
produces better rewards on both datasets. The
superior convergence observed in Figure 6 is
attributed to the GCN-enhanced state represen-
tations, which give the agents structural aware-
ness of the task-user interaction patterns. This
topological encoding allows for more efficient
policy learning by identifying latent dependen-
cies that are inaccessible to traditional MARL
methods.

Table 1. Experimental parameter settings.

Parameter names Parameter values Parameter names Parameter values
LR (Actor) 0.0003 Batch size 512
LR (Critic) 0.001 Experience .replay buffer 106
size
Discount factor 0.99 Number O.f convolutional 2
layers in the graph

GAE parameters 0.95 HL dimension 128
PPO cutting coefficient 0.20 Iterations 2000
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Figure 6. Average rewards of different models on ACTP and VRCollaborate datasets.

The study further conducts a comparative anal-
ysis of task completion rates across different
models using two open-source datasets. In
Figure 7(a), for the ACTP dataset, when the
iteration count reaches 1200, the task com-
pletion rates for PPO, IPPO, MAPPO, and the
proposed model are 50.05%, 69.24%, 85.36%,
and 93.87%, respectively. When the iteration
count reached 2000, the task completion rates
increased to 59.69%, 77.62%, 88.21%, and
94.52%, respectively. In Figure 7(b), for the
VRCollaborate dataset, the task completion
rates of the four models at 1200 iterations are
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(a) Task completion rates of different models on
the ACTP dataset

41.35%, 55.64%, 62.38%, and 89.69%, respec-
tively. When the iteration count increases to
2000, the completion rates are 45.84%, 68.27%,
80.06%, and 92.39%, respectively. The results
demonstrate that the proposed model achieves
a higher task completion rate and greater sta-
bility in MUCTS. In Figure 7, the higher task
completion rates demonstrate how the integra-
tion of graph structural priors facilitates better
resource coordination, particularly in handling
interdependent tasks that require synchronized
execution across multiple users.
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(b) Task completion rates of different models on
the VRCollaborate dataset

Figure 7. Task completion rates of different models on ACTP and VRCollaborate datasets.
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Ablation experiments are conducted to system-
atically evaluate the contributions of each com-
ponent in the proposed MARL-GCN frame-
work. The results are shown in Table 2. In Table
2, the complete model performs best on all
evaluation metrics, achieving a task completion
rate of 94.52%, an average reward of 382.17,
a throughput of 125.86 tasks per second and
a resource utilisation rate of 96.53%=+1.08%.
Removing the GCN component significantly
decreases performance, with the task comple-
tion rate dropping from 91.7% to 85.36%. This
indicates that GCN plays a critical role in im-
proving model performance. After removing
the attention mechanism, all indicators showed
a moderate decrease, with an average reward
decrease of 66.75%. This suggests that the at-
tention mechanism can effectively enhance the
quality of decisions. Although the impact of re-
moving the structural loss function is relatively
small, it still reduces the task completion rate
by 2.69 percentage points, which verifies the
stabilising effect of this component on mod-
el performance. GCN components contribute
most to performance improvement overall, fol-
lowed by attention mechanisms. The structural
loss function mainly serves as an additional op-
timisation tool.

A comparison analysis of throughput and re-
source consumption across various models is
carried out on two datasets to assess the effec-
tiveness of the suggested model in terms of sys-
tem efficiency and resource economy. In Figure
8(a), the task throughputs of PPO, IPPO, and
MAPPO on the ACTP dataset are 82.27 tasks/s,
92.16 tasks/s, and 114.62 tasks/s, respectively.
On the VRCollaborate dataset, their through-
puts are 68.21 tasks/s, 83.57 tasks/s, and 108.10
tasks/s, respectively. In comparison, the pro-
posed model achieves throughputs of 125.86
tasks/s and 116.73 tasks/s on the two datasets. In
Figure 8(b), the resource utilisation rates of the
four models in the ACTP dataset are 72.17%,
81.54%, 91.02%, and 96.53%, respectively. In
the VRCollaborate dataset, the resource utili-
sation rates are 65.84%, 75.24%, 87.65%, and
91.87%. The results indicate that the suggested
paradigm can improve system throughput while
making better use of computational resources.
The throughput improvements shown in Fig-
ure 8 are directly linked to the model's abili-
ty to prioritise critical paths in the task graph
dynamically using attention mechanisms. This
capability enables more intelligent load balanc-
ing and resource allocation, thereby reducing
contention in high-concurrency scenarios.

Table 2. Ablation study results (Mean+95% CI).

Mo varan | TSI | g revara | Thrbut | e,
(JX%&?EIN) 94.52+1.23 382.17 + 8.45 125.86 + 2.67 96.53 + 1.08
wio GEEY(;WARL 8536 +£2.14 24236 + 12.37 114.62 +3.82 91.02+2.15
w/o attention 89.27 + 1.87 315.42 +9.83 119.35+3.15 93.76 + 1.64
mechanism
w/o structural loss 91.83 +£1.65 348.26 £ 8.92 122.14 +£2.89 95.12 +£1.37

Note: Results are reported on ACTP dataset after 2000 training iterations.
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Figure 8. Throughput and resource utilisation of different models on ACTP and VRCollaborate datasets.

The study compares the running times of differ-
ent models in the ACTP dataset, conducting a
statistical analysis in the process. The results are
shown in Table 3. On the ACTP dataset, the task
completion rate of OURS is 94.52%+1.23%.
This is 6.31%, 16.90%, and 34.83% higher
than the rates for MAPPO, IPPO and PPO, re-
spectively. Statistical tests shows significant
differences (p < 0.001). Similar performance
advantages are observed on the VRCollaborate
dataset. However, this performance improve-
ment comes at the cost of increased computa-
tional requirements: the training time of the pro-
posed model is approximately 36% longer than
that of MAPPO, and it also uses more memory.
This reflects the trade-off between model com-
plexity and performance, showing that the pro-
posed method delivers a more significant per-
formance improvement by incurring reasonable
additional computational cost.

A sensitivity analysis of parameters is conduct-
ed to evaluate the impact of model hyperparam-
eter settings on performance, and the results
are shown in Table 4. The best performance is
achieved on both the ACTP and VRCollabo-
rate datasets when the LR is set to 0.0003: av-
erage rewards are 382.17 and 252.76, respec-
tively, and task completion rates are 94.52%
and 92.39%, respectively. Increasing the LR to
0.001 resulted in a decrease in the average re-

wards of the two datasets to 365.21 and 238.45,
respectively. This indicates that excessive LRs
can affect training stability. The effect is opti-
mal when the number of GCN layers is 2. Re-
ducing or increasing this number will result in
a slight decrease in performance. The optimal
balance is achieved with 2 attention heads, and
increasing to 4 heads offers limited improve-
ment. Setting the HL dimension to 128 yields
optimal performance. At 64 dimensions, the av-
erage rewards for the two datasets decrease to
375.63 and 242.17, respectively. Increasing to
256 dimensions only brings marginal improve-
ment. These results indicate that the model's
optimal performance configuration is achieved
with a LR 0f 0.0003, 2 GCN layers, 2 attention
heads, and HL dimensions of 128. The mod-
el also exhibits good robustness to parameter
changes.

3.2. Analysis of Simulation Application
Results for a Novel MUCTS
Optimisation Model

To further validate the model's performance in
practical application scenarios, a distributed VR
simulation platform is constructed to simulate
two application scenarios: multi-user collabo-
rative design and large-scale multiplayer online
games. The VR collaborative design platform
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Table 3. Runtime Performance and Statistical Analysis.

Models Datasets Tl"aining Inference Memory Corzziel:(tion p-value
Time (h) Latency (ms) | Usage (GB) Rate (%)
OURS 8.52+0.32 423+0.18 3.82+0.21 94.52 £1.23 /
MAPPO 6.24+0.25 2.14+0.12 2.42+0.13 88.21 +1.87 <0.001
ACTP
IPPO 5.83+£0.27 1.82 £0.10 2.15+0.15 77.62 £2.35 <0.001
PPO 412+0.21 1.23 +£0.08 1.63+0.11 59.69 +2.87 <0.001
OURS 7.86 = 0.28 391+0.15 345+0.18 9239+ 141 /
MAPPO 5.93+0.23 1.96 £0.11 2.28+0.12 80.06 £2.13 <0.001
VRCollaborate
IPPO 547+0.24 1.73 £ 0.09 2.03+0.14 68.27 £2.64 <0.001
PPO 3.89+0.19 1.15+0.07 1.52+£0.10 | 45.84+3.12 <0.001
Table 4. Runtime Performance and Statistical Analysis.
Paramecers | Values | Avemgerimard | Avengerevard | Tk compleion | ("
(VRCollaborate)
0.0001 375.63 245.18 93.85 90.12
Learning rate 0.0003 382.17 252.76 94.52 92.39
0.001 365.21 238.45 92.71 89.67
1 372.45 240.89 93.50 90.05
GCN layers 2 382.17 252.76 94.52 92.39
3 378.92 248.33 94.18 91.74
1 378.92 247.15 94.10 91.55
Attention heads 2 382.17 252.76 94.52 92.39
4 381.05 251.42 94.43 92.21
64 375.63 242.17 93.90 90.38
Hidden layer Dim 128 382.17 252.76 94.52 92.39
256 380.49 25091 94.35 92.08
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simulates a collaborative design environment
in VR. This large-scale, multiplayer online VR
game incorporates dynamic task generation, re-
al-time path planning, and resource contention
into a gaming scenario. These features test the
system's real-time capabilities and collabora-
tive scheduling abilities.

The study conducts a comparative analysis
of the average task completion time (ATCT)
across different models under varying user
numbers in two simulation scenarios. In Figure
9(a), within the VR collaborative design plat-
form simulation, when the number of users is
50, the ATCTs for PPO, IPPO, and MAPPO are
171.25 ms, 136.75 ms, and 98.24 ms, respec-
tively. The average completion time (ACT)
for the proposed model is 50.66ms. When the
number of users reached 300, the ACTs for
the four models were 452.71 ms, 347.58 ms,
294.37 ms, and 186.35 ms, respectively. In
Figure 9(b), during the multiplayer online VR
game simulation with 300 users, the ATCTs
for PPO, IPPO, and MAPPO are 996.25 ms,
923.58 ms, and 571.59 ms, respectively, while
the ACT for the proposed model is 423.62 ms.
The results display that the proposed model
maintains low latency and high stability even
under high-concurrency, dynamic task envi-
ronments. Figure 9 shows that the GCN's abil-
ity to anticipate bottlenecks and schedule tasks
proactively reduces latency. This demonstrates
how topological foresight can enhance the re-
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(a) The average completion time of tasks for different

models on VR collaborative design platform

al-time performance of distributed VR envi-
ronments.

The study further conducts a comparative anal-
ysis of the average user latency across differ-
ent models under varying numbers of subtasks
in two simulation scenarios. In Figure 10(a),
during the simulation on the VR collaborative
design platform, when the number of subtasks
is 5, the average user latency for PPO, IPPO,
MAPPO, and the proposed model is 17.25
ms, 13.86 ms, 9.82 ms, and 4.17 ms, respec-
tively. When the number of subtasks reaches
30, the latency times are 39.87 ms, 32.35 ms,
23.62 ms, and 11.82 ms, respectively. In Figure
10(b), during the multiplayer online VR game
simulation with 30 tasks, the average user la-
tency for the four models is 70.03 ms, 63.16
ms, 43.37 ms, and 26.21 ms, respectively. The
findings demonstrate that when processing jobs
in multi-user scenarios, the suggested approach
can more successfully lower user latency and
provide a more seamless user experience. The
consistent reduction in user latency across
varying subtask loads demonstrates the robust-
ness of the framework in maintaining quality of
service under dynamic workloads. This is made
possible by the heterogeneous GCN architec-
ture, which can adapt to different node types
and relationship patterns.

Additionally, the study conducts a compara-
tive analysis of the task processing success rate
across different models under varying numbers

1000

800

600

400

200

Average completion time (ms)

0 50 100 150 200 250 300
Number of users
(b) The average completion time of tasks for
different models on multiplayer online VR games

Figure 9. The ACT of tasks for different models on two simulation scenarios.
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Figure 10. The average user delay time of different models on two simulation scenarios.

of users in two simulation scenarios. In Figure
11(a), during the simulation of the VR collabo-
rative design platform, when the user's quantity
reaches 50, the task processing success rates for
PPO, IPPO, MAPPO, and the proposed mod-
el are 86.12%, 91.35%, 94.27%, and 98.26%,
respectively. When the user's quantity reaches
300, the task processing success rates for the
four models are 67.84%, 76.98%, 89.27%, and
96.89%, respectively. In Figure 11(b), during the
multiplayer online VR game simulation, when
the number of users , the task processing success
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rates for PPO, IPPO, and MAPPO are 58.36%,
67.24%, and 76.87%, respectively. The suggest-
ed model has a 93.35% task processing success
rate. The results demonstrate that the proposed
model achieves a higher task processing success
rate in multi-user environments and can more
effectively handle collaborative tasks. Figure
11 shows that the model has high task process-
ing success rates, especially under heavy user
loads. This demonstrates the model's reliability
in preserving system stability through effective
overload prevention and recovery mechanisms.
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Figure 11. Task processing success rate of different models on two simulation scenarios.
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4. Conclusion

This study established a novel, multi-user, col-
laborative TS framework by integrating MARL
with GCNs. The primary theoretical contri-
bution was the advancement of conventional
scheduling theory through the incorporation
of relational inductive biases into multi-agent
policy learning. This enabled the formalisation
of complex topological dependencies between
tasks and users within distributed VR systems.
Technically, the MARL-GCN integration was a
significant innovation. Graph attention mech-
anisms facilitate dynamic relationship weight-
ing, and structural reconstruction loss enhances
global representation learning. These two fea-
tures worked together to overcome the coordi-
nation limitations in partially observable envi-
ronments.

The proposed framework was particularly valu-
able for organisations operating under high
concurrency and resource constraints. Spe-
cifically, VR collaborative design platforms
could use this approach to keep multiple users
manipulating complex 3D models coordinat-
ed, and large-scale multiplayer online games
could use it to allocate resources dynamically
during peak user activity. The system's ability
to dynamically prioritise critical interactions
enabled efficient task allocation, even under
severe computational constraints. This made it
equally suitable for distributed training systems
and industrial digital twins, where resource
awareness was crucial.

There are several limitations that require ac-
knowledgement. First, the current validation
is conducted primarily in simulation environ-
ments, which may not fully capture real-world
network volatility and device heterogeneity.
Therefore, future work will focus on imple-
menting physical testbed deployments and ex-
tending the framework's capabilities to support
adaptive scheduling across heterogeneous edge
devices. Further research will explore the use of
transfer learning for cross-domain applications,
as well as incorporating human-in-the-loop in-
teractions to create more intuitive collaborative
VR experiences.

In conclusion, this research advances the field
of intelligent computing and distributed system
coordination by establishing a new paradigm

for graph-enhanced multi-agent learning. Inte-
grating structural reasoning with decentralised
decision-making provides theoretical insights
and practical solutions for creating responsive,
scalable, and user-aware scheduling systems
for next-generation collaborative platforms.
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