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Efficiently scheduling collaborative tasks in multi-us-
er, distributed virtual reality systems is challenging 
due to the dynamic nature of user interactions and re-
source constraints. To address this problem, a novel 
task scheduling framework integrating multi-agent 
reinforcement learning and graph convolutional net-
works is proposed. The distributed VR scheduling 
problem is formulated as a Markov game, for which 
the multi-agent proximal policy optimisation algo-
rithm serves as the foundational decision-making 
framework. Graph convolutional networks are used to 
capture the dynamic topological relationships between 
tasks and users. This enhances global perception ca-
pabilities and enables more refined collaborative de-
cision-making through graph attention mechanisms. 
Experimental results demonstrated that the proposed 
model outperformed baseline approaches in terms of 
task completion rate, system throughput, and resource 
utilisation. In simulation environments, the framework 
maintained low latency and high success rates across a 
range of VR application scenarios. This research pres-
ents a structured methodology for intelligent schedul-
ing in distributed collaborative systems, promoting the 
integration of graph-based learning and multi-agent 
coordination in complex virtual environments. This 
work makes a valuable contribution to scheduling the-
ory and practical system design, offering valuable in-
sights for the development of responsive and scalable 
VR platforms.

ACM CCS (2012) Classification: Computing method-
ologies → Artificial intelligence → Distributed artifi-
cial intelligence → Cooperation and coordination
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1.	Introduction

With the rapid advancement of artificial intelli-
gence, edge computing, and virtual reality (VR) 
technologies, multi-user collaborative tasks 
have garnered significant attention in fields 
such as remote collaborative design, multiplay-
er online gaming, and virtual training [1]. These 
applications involve numerous users simulta-
neously executing complex tasks within virtual 
environments, imposing stringent demands on 
system real-time performance, collaborative 
efficiency, and resource scheduling capabili-
ties [2]. However, traditional centralized task 
scheduling (TS) methods struggle to effectively 
handle dynamic, multi-user environments, suf-
fering from high response delays, low resource 
utilisation, and insufficient coordination effi-
ciency [3]. 
Addressing these challenges requires innova-
tions that lie at the intersection of distributed 
computing and intelligent systems. Multi-agent 
reinforcement learning (MARL) has emerged 
as a promising paradigm for enabling decen-
tralized decision-making in collaborative envi-
ronments [4]. MARL is well suited for scalable 
and adaptive coordination in distributed VR 
systems due to its ability to operate based on 
local observations without global information 
[5]. 
For instance, Johnson et al. developed a decen-
tralized MARL-based scheduling method uti-
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lizing deep Q-networks with centralized train-
ing, which effectively reduced task completion 
times compared to heuristic approaches [6]. 
Similarly, Jayanetti et al. designed a multi-agent 
deep reinforcement learning (DRL) framework 
for dynamic wireless networks. They demon-
strated that distributed decision-making could 
substantially improve the quality of the user ex-
perience [7]. Extending this, Betalo et al. pro-
posed a collaborative multi-agent DRL sched-
uling framework, achieving performance gains 
of up to 70% over competing methods [8]. In 
large-scale, distributed systems, such as satel-
lite-ground networks, Lin et al. decomposed 
the scheduling problem into long-term load bal-
ancing and short-term decisions. This approach 
achieved high throughput with minimal latency 
[9]. Applications in smart grids were advanced 
by Zhang et al., who employed a multi-step 
MARL framework for energy scheduling, en-
hancing both economic efficiency and user sat-
isfaction [10]. Despite these advances, a com-
mon limitation of existing MARL approaches 
is their inadequate modelling of structural de-
pendencies among tasks and users. The lack of 
a global relational perspective often constrains 
the decision-making process, restricting the po-
tential for fully optimized collaboration in com-
plex, networked environments.
To address the relational complexity in multi-
agent systems, graph convolutional networks 
(GCNs) have recently been integrated with 
reinforcement learning. GCNs are a power-
ful mechanism for representing and reason-
ing about graph-structured data. They enable 
agents to capture topological features and in-
terdependencies [11]. For example, Jing et al. 
integrated GCNs with MARL for scheduling in 
flexible manufacturing workshops, yielding su-
perior performance in complex scenarios [12]. 
Yang et al. used GCNs to reduce the compu-
tational complexity of DRL in time-sensitive 
networks and improve end-to-end delay perfor-
mance [13]. Liu et al. combined MARL with 
graph attention networks to achieve efficient 
communication and lower overhead [14]. Fur-
thermore, Yang et al. incorporated GCNs into a 
multi-policy DRL framework, thereby increas-
ing resource utilisation by 18%. Additionally, 
Xiao et al. proposed a two-stage GCN-assist-
ed DRL method for service chain embedding, 
which improved acceptance rates in multi-da-

tacenter networks [15-16]. Although these 
studies emphasize the benefits of graph-based 
learning, the use of GCN-enhanced MARL in 
distributed VR settings is still underdeveloped. 
Additionally, effectively fusing dynamic topo-
logical reasoning with multi-agent policy opti-
misation under real-time system constraints has 
not been sufficiently addressed.
The reviewed literature reveals several inter-
connected gaps. First, MARL-based schedulers 
often lack explicit mechanisms for modelling 
dynamic task-user topologies. Second, although 
GCNs improve relational reasoning, they have 
not been adapted to meet the high-concurren-
cy, low-latency requirements of distributed VR 
environments. Third, a comprehensive solution 
that unifies topological perception and collab-
orative scheduling under real-world VR condi-
tions is still lacking.
To bridge these gaps, a multi-user collaborative 
task scheduling (MUCTS) optimisation mod-
el that integrates MARL with GCNs has been 
proposed. This model not only improves upon 
existing baselines in terms of performance but 
also represents a computing innovation that en-
hances coordination and scalability in distrib-
uted VR architectures. The innovation of this 
study lies in: 
1.	 A novel computing framework has been de-

veloped that deeply integrates GCNs with 
the multi-agent proximal policy optimisa-
tion (MAPPO) algorithm. This integration 
allows topological dependencies between 
tasks and users to be modelled dynamical-
ly, thereby enhancing global perception in 
distributed VR environments. 

2.	 The introduction of graph attention mech-
anisms and structural reconstruction loss 
enables adaptive learning of node impor-
tance and improves feature representation 
(FR), supporting more efficient and scal-
able collaborative decision-making.

2.	Optimisation Method of MUCTS

This section constructs a VR TS model based 
on MARL. Subsequently, GCNs are introduced 
to propose a policy enhancement method based 
on heterogeneous GCNs, achieving scheduling 
optimisation for multi-user collaborative tasks.
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telligent population under policy π ∙ π represents 
the joint policy of all agents. Eπ is the expecta-
tion of policy π and state transition probabili-
ties. γ represents the discount factor.  Rt is the 
global reward at time step (TiS) t. N denotes 
the total number of agents. rt

i is the individual 
reward obtained by agent i at TiS t. Figure 1 de-
picts a schematic diagram of the Markov game 
process.
In Figure 1, multiple agents simultaneously 
perceive their own states within a distributed 
environment. They take activities and make 
judgments based on local observations, each of 
which is rewarded with feedback. To evaluate 
strategy performance, each agent must main-
tain its own policy function and value function 
[19]. Agent i's policy function is πθ(at

i|st
i), and 

its value function is Vϕ(st), parameterized by 
actor network (AN) and critic networks (CN) 
respectively. The study employs an advantage 
function (AF) to measure an action's superiority 
relative to the mean, thereby more accurately 
estimating the advantage value, as shown in 
Equation (2) [20].

1
1 1( ) ( )T t

t t t TA δ γλ δ γλ δ− +
+ −= + + +         (2)

2.1.	VR TS modelling based on MARL

Distributed VR systems face challenges in 
terms of TS that demand high concurrency, low 
latency, and high reliability. Traditional cen-
tralised scheduling methods struggle to han-
dle dynamic, partially observable, multi-user 
environments, resulting in poor resource util-
isation, high response latency, and inefficient 
coordination [17]. MARL enables locally op-
timal scheduling in the absence of global in-
formation through distributed decision-making 
and collaborative optimisation [18]. Therefore, 
this study constructs a distributed VR TS mod-
el based on MARL, aiming to achieve dynam-
ic and efficient scheduling of multi-user tasks. 
Equation (1) illustrates how the research initial-
ly models the MUCTS problem as a Markov 
game process under the MARL framework.
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In Equation (1), J(π) denotes the expected cu-
mulative discounted reward obtained by the in-

Figure 1. Schematic diagram of Markov game process.
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In Equation (2), At denotes the estimated value 
of the AF at TiS t. δt is the temporal difference 
error at TiS t. λ denotes the AF parameter. T in-
dicates the total quantity of TiSs in the trajec-
tory. The calculation of the temporal difference 
error is shown in Equation (3).

1( ) ( )t t t tr V s V sφ φδ γ += + −               (3)

In Equation (3), rt displays the immediate re-
ward at TiS t. Vϕ(st) represents the value func-
tion's estimated value for state st under param-
eter ϕ. ϕ denotes the parameters of the value 
function. Figure 2 displays the actor-critic net-
work's structural diagram.
Figure 2(a) depicts the AN, comprising an input 
layer (IL), hidden layer (HL), and output layer. 
Before the output layer creates actions, the HL 
processes the state information that is sent to 
the IL. Figure 2(b) shows the CN, whose output 
layer estimates the state value function to eval-
uate state quality and guide policy optimisation. 
To ensure training stability, the study uses the 
proximal policy optimisation (PPO) technique 
to limit the step size of policy updates [21]. The 
PPO objective function (OF) for each agent is 
shown in Equation (4).

[ ]

CLIP ( )
min( ( ) ,clip( ( ),1 ,1 ) )t t t t
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θ θ ε ε

=

− −     
(4)

In Equation (4), LCLIP(θ) denotes the pruning 
OF of the PPO. θ are the parameters of the poli-
cy network (PN). pt(θ) indicates the probability 
ratio. clip( pt(θ), 1-ε, 1-ε) signifies the pruning 
function. ε denotes the pruning hyperparameter. 
The study further trains the CN by minimizing 
the mean squared error between the predicted 
and target values of the value function, with its 
loss function shown in Equation (5).
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In Equation (5), L(ϕ) denotes the value loss 
function. Vϕ(st) and Vtarget(st) represent the pre-
dicted and target values of the value function, 
respectively. rt +1 denotes the immediate reward 
obtained at TiS t + 1. To encourage the agent 
to explore unknown state and action spaces, an 
entropy regularization term is incorporated into 
the OF, as shown in Equation (6).

ENT ( ) ( ( ))tL Et H sθθ π = ⋅                (6)

In Equation (6), LENT(θ) denotes the entropy 
regularization term. H represents the entropy 
function. πθ(∙|st) indicates the action probability 
distribution generated by policy π under state st. 
By adjusting the weights of different loss terms 
to balance the relationship among policy per-

Figure 2. Schematic diagram of the structure of actor network and critic network.
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formance, value accuracy, and exploration lev-
el, the agent's total loss is expressed as shown 
in Equation (7).

CLIP ENT
1 2( , ) ( ) ( ) ( )iL L c L c Lθ φ θ φ θ= − +       (7)

In Equation (7), Li(θ, ϕ) denotes the total loss 
function of agent i. c1 represents the value loss 
weighting hyperparameter. c2 denotes the en-
tropy regularization weighting hyperparame-
ter. Under the CT and decentralized execution 
framework, all agents share network parameters 
but execute policies independently [22]. Glob-
al optimisation is achieved by synchronously 
updating the PN and value network (VN), as 
shown in Equation (8).
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In Equation (8), θ' and ϕ' denote the shared pa-
rameters of the PN and VN, respectively. α and 

β represent the learning rates (LRs) for the PN 
and VN, respectively. ∇ϕ displays the gradi-
ent with respect to the policy parameters θ. ∇ϕ 
displays the gradient with respect to the value 
parameters ϕ. A schematic diagram of the VR 
TS framework based on MARL and the PPO 
algorithm is shown in Figure 3.
In Figure 3, the VR TS framework compris-
es multiple agents, each of which is equipped 
with an AN and a CN. Agents gather experi-
ence data through interactions with the envi-
ronment, which is then saved in a CT expe-
rience replay buffer. State information serves 
as input, while action outputs facilitate TS de-
cisions, enabling distributed coordination and 
efficient resource allocation.

2.2.	Policy Enhancement Method Based 
on GCNs

Although MARL exhibits robust local deci-
sion-making capabilities within distributed VR 
TS, it fails to consider the intricate topological 
relationships between tasks and users, leading 

Figure 3. Schematic diagram of VR TS framework based on MARL and PPO algorithm.
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to inadequate global awareness [23]. To achieve 
more refined collaborative decision-making, 
the study incorporates GCNs further, proposing 
a policy enhancement method based on hetero-
geneous GCNs. This approach captures and 
leverages the dynamic topological relationships 
between tasks and users, thereby improving the 
agents' global awareness. Within the construct-
ed heterogeneous GCN, the study enhances 
the expressive power of node representations 
through the topological structure defined by the 
adjacency matrix (AM) [24]. In the research 
graph, the node feature matrix (FM) is denoted 
as H 

(0) ∈RM×F, and the AM A ∈RM×M represents 
the connection relationships between nodes. 
Among them, M displays the quantity of nodes, 
and F is the feature dimension. To maintain nu-
merical stability, the AM undergoes normaliza-
tion processing as shown in Equation (9).

1
2

1
2A' = D   AD                        (9)

In Equation (9), A' denotes the normalized AM.   
D denotes the degree matrix. D

1
2 denotes the di-

agonal matrix. The aggregation process of node 
features is expressed in Equation (10).

H  (l+1) = σ ( A' H  (l ) W  (l ) )            (10)

In Equation (10), H  (l+1) displays the FM of 
nodes in layer l +1. W  (l ) displays the trainable 

weight matrix of layer l. σ displays the nonlin-
ear activation function. A schematic diagram of 
the aggregation of node features within the re-
gion is shown in Figure 4.
Figure 4 illustrates the feature aggregation pro-
cess in a GCN, where a value of 1 in the AM 
indicates a connection between nodes, and the 
FM represents the initial features of each node. 
Through the topology specified by the AM, the 
graph convolution operation (GCO) combines 
each node's features with those of its neigh-
bours. This study uses the GCO to aggregate 
the features of surrounding nodes and update 
the representation of the current node to effi-
ciently extract node features from the graph 
structure and facilitate information propagation 
[25]. Its output is shown in Equation (11).
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In Equation (11), hu
(l+1) denotes the FR of 

node u at layer l+1. X(u) represents the set of 
neighbouring nodes of node u. cvu denotes the 
normalization constant. hv

(l) denotes the FR of 
neighbouring node v at layer l. Considering the 
heterogeneity of nodes and relationships in re-
al-world systems, the study further introduces 
a heterogeneous GCN to distinguish different 
types of nodes and edges, as shown in Equation 
(12).

Figure 4. Schematic diagram of aggregation of node features within the region.
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In Equation (12), E denotes the set of all rela-
tion types in the graph. Xe(u) is the set of neigh-
bour nodes connected to node u via relation r. 
To dynamically learn the importance of dif-
ferent neighbour nodes, the study introduces a 
graph attention mechanism and normalizes the 
attention coefficients (ACs) using the softmax 
function, as shown in Equation (13).
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In Equation (13), buv is the AC between node  u 
and v. auv represents the normalized attention 
weight. a denotes the shared attention func-
tion. buk denotes the AC between node u and its 
neighbour node k. Through multi-layer graph 
convolutions and attention mechanisms, each 
node obtains enhanced FRs [26]. These features 
are concatenated with the agent's original ob-
servations to form the augmented state input, as 
shown in Equation (14).

( )concat( , )l
i i us s h′ =                 (14)

In Equation (14), si' denotes the augmented 
state input. hu

(l) represents the augmented FR 
of a node u processed by the l layer graph atten-
tion network. To enhance the quality of FRs in 
GCNs, this study introduces a graph structure 
reconstruction loss during training, as shown in 
Equation (15).

2( ) ( )
GCN
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l l
u v

u v X
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∈

= −∑
              

(15)

In Equation (15), LGCN denotes the value of 
the graph structure reconstruction loss func-
tion.  hu

(l) and hv
(l) represent the final FRs of 

nodes u and v after passing through the layer 
GCN. Integrating GCN outputs into MARL 
policy updates is a critical step in the proposed 
framework. GCN processes state information 
and captures dynamic topological relation-
ships between tasks and users. The enhanced 

FRs obtained from the GCN are then concat-
enated with the original state information to 
create an augmented state input for each agent. 
This augmented state input is then used by the 
actor and CNs to make decisions and evaluate 
states, respectively. Specifically, the GCN out-
puts are incorporated into the policy updates 
as follows. 

1.	 The state information for each agent is fed 
into the GCN to produce enhanced FRs. 

2.	 These enhanced FRs are then concatenated 
with the original state information to form 
the augmented state input. 

3.	 The augmented state input is used by the 
AN to select actions, and by the CN to es-
timate state values. 

4.	 The CN's estimates are used to calculate 
the AF, and the AN is updated using the 
PPO OF, which incorporates the augment-
ed state input and the calculated AF.

The computational complexity of the proposed 
MARL–GCN framework depends on the com-
plexity of the MARL and GCN components. 
The MARL component involves training mul-
tiple actors and CNs, and its complexity is pri-
marily determined by the number of agents, 
the size of the state and action spaces, and the 
number of iterations. The GCN component 
comprises GCOs and attention mechanisms. 
The complexity of this component depends on 
the number of nodes and edges in the graph, 
as well as the number of convolutional layers. 
Figure 5 illustrates the schematic diagram of 
MUCTS integrating MARL with a heteroge-
neous GCN.
In Figure 5, the MUCTS framework acquires 
state information through agent-environment 
interactions, while the experience replay buf-
fer stores samples for CT. The GCN performs 
multi-layer aggregation and pooling on node 
features to enhance global perception capabili-
ties. The actor-critic network achieves efficient, 
distributed TS optimisation through collabora-
tive updates.
An algorithmic pseudocode the MARL-GCN 
training workflow is as follows.
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Figure 5. MUCTS integrating MARL and heterogeneous GCNs.

Input: Task graph G = (V, E), Number of agents N, Training episodes E
Output: Trained actor and critic networks

1. Initialize actor networks π_i and critic networks V_i for all agents i ∈ [1, N]
2. Initialize GCN with parameters θ_G
3. Initialize experience replay buffer D
4.   for episode = 1 to E do
5.       Reset environment and observe initial state s_0
6.       for t = 1 to T do
7.           for each agent i do
8.                Extract local observation o_i^t from s_t
9.                Compute graph-enhanced state s_i^aug = [o_i^t, GCN(o_i^t; θ_G)]
10.              Sample action a_i^t ~ π_i(∙|s_i^aug)
11.          end for
12.          Execute joint action a^t = (a_1^t, ..., a_N^t)
13.          Observe reward r^t and next state s_{t+1}
14.          Store transition (s_t, a^t, r^t, s_{t+1}) in D
15.     end for
16.     for each training step do
17.          Sample mini-batch from D
18.          Update GCN using graph reconstruction loss
19.          Update actor and critic networks using PPO loss and value loss
20.     end for
21. end for

Algorithm 1. MARL-GCN Training Procedure.
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3.	Comprehensive Analysis of  
a Novel MUCTS Optimisation  
Model

Through analysis, the suggested MUCTS opti-
misation model's performance is confirmed. To 
confirm the model's practical deployability, sta-
bility, and generalization ability in a setting that 
approximates distributed VR applications in the 
real world, simulation tests are conducted.

3.1.	Performance Validation Analysis of a 
Novel MUCTS Optimisation Model

To validate the performance of the proposed 
model, experiments are conducted on two open-
source datasets: the Alibaba Cluster Trace Pro-
gram (ACTP) and VRCollaborate. The ACTP 
dataset comprises 12,548 task instances with 
diverse resource requirements. These include 
CPU-intensive rendering tasks (42%), memo-
ry-bound data synchronisation tasks (35%), and 
I/O-intensive interaction tasks (23%). User ac-
tivity follows a diurnal pattern, reaching a peak 
of 280 simultaneous users. The VRCollaborate 
dataset comprises 8,932 collaborative tasks of 
varying complexity. Task durations range from 
50 ms to 2.5 s, and resource demands span 2–16 
CPU cores with memory requirements of 4–32 
GB. The study compares the proposed model 
with existing mainstream MARL models based 

on PPO, including traditional PPO, indepen-
dent proximal policy optimisation (IPPO), and 
MAPPO. The experiment is built using Python 
3.9, PyTorch 1.13, and the Stable-Baselines3 
framework. The runtime environment is Ubun-
tu 20.04 equipped with an NVIDIA RTX 3090 
GPU. Table 1 lists the experimental parameters.
The study first conducts a comparative analysis 
of the average reward across different models 
using the ACTP and VRCollaborate datasets. 
In Figure 6(a), for the ACTP dataset, at 1200 
iterations, the average rewards for PPO, IPPO, 
and MAPPO are -227.30, 17.62, and 208.57. 
The average reward for the proposed model is 
335.24. At 2000 iterations, the average rewards 
for the four models are -212.15, 48.21, 242.36, 
and 382.17, respectively. In Figure 6(b), for the 
VRCollaborate dataset, the average rewards at 
iteration 1200 are -276.52 for PPO, -108.54 
for IPPO, 62.36 for MAPPO, and 252.76 for the 
proposed model. The findings reveal the effica-
cy of the suggested model by displaying that it 
produces better rewards on both datasets. The 
superior convergence observed in Figure 6 is 
attributed to the GCN-enhanced state represen-
tations, which give the agents structural aware-
ness of the task-user interaction patterns. This 
topological encoding allows for more efficient 
policy learning by identifying latent dependen-
cies that are inaccessible to traditional MARL 
methods.

Table 1. Experimental parameter settings.

Parameter names Parameter values Parameter names Parameter values

LR (Actor) 0.0003 Batch size 512

LR (Critic) 0.001 Experience replay buffer 
size 106

Discount factor 0.99 Number of convolutional 
layers in the graph 2

GAE parameters 0.95 HL dimension 128

PPO cutting coefficient 0.20 Iterations 2000
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41.35%, 55.64%, 62.38%, and 89.69%, respec-
tively. When the iteration count increases to 
2000, the completion rates are 45.84%, 68.27%, 
80.06%, and 92.39%, respectively. The results 
demonstrate that the proposed model achieves 
a higher task completion rate and greater sta-
bility in MUCTS. In Figure 7, the higher task 
completion rates demonstrate how the integra-
tion of graph structural priors facilitates better 
resource coordination, particularly in handling 
interdependent tasks that require synchronized 
execution across multiple users.

The study further conducts a comparative anal-
ysis of task completion rates across different 
models using two open-source datasets. In 
Figure 7(a), for the ACTP dataset, when the 
iteration count reaches 1200, the task com-
pletion rates for PPO, IPPO, MAPPO, and the 
proposed model are 50.05%, 69.24%, 85.36%, 
and 93.87%, respectively. When the iteration 
count reached 2000, the task completion rates 
increased to 59.69%, 77.62%, 88.21%, and 
94.52%, respectively. In Figure 7(b), for the 
VRCollaborate dataset, the task completion 
rates of the four models at 1200 iterations are 

Figure 6. Average rewards of different models on ACTP and VRCollaborate datasets.

Figure 7. Task completion rates of different models on ACTP and VRCollaborate datasets.
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Ablation experiments are conducted to system-
atically evaluate the contributions of each com-
ponent in the proposed MARL-GCN frame-
work. The results are shown in Table 2. In Table 
2, the complete model performs best on all 
evaluation metrics, achieving a task completion 
rate of 94.52%, an average reward of 382.17, 
a throughput of 125.86 tasks per second and 
a resource utilisation rate of 96.53%±1.08%. 
Removing the GCN component significantly 
decreases performance, with the task comple-
tion rate dropping from 91.7% to 85.36%. This 
indicates that GCN plays a critical role in im-
proving model performance. After removing 
the attention mechanism, all indicators showed 
a moderate decrease, with an average reward 
decrease of 66.75%. This suggests that the at-
tention mechanism can effectively enhance the 
quality of decisions. Although the impact of re-
moving the structural loss function is relatively 
small, it still reduces the task completion rate 
by 2.69 percentage points, which verifies the 
stabilising effect of this component on mod-
el performance. GCN components contribute 
most to performance improvement overall, fol-
lowed by attention mechanisms. The structural 
loss function mainly serves as an additional op-
timisation tool.

A comparison analysis of throughput and re-
source consumption across various models is 
carried out on two datasets to assess the effec-
tiveness of the suggested model in terms of sys-
tem efficiency and resource economy. In Figure 
8(a), the task throughputs of PPO, IPPO, and 
MAPPO on the ACTP dataset are 82.27 tasks/s, 
92.16 tasks/s, and 114.62 tasks/s, respectively. 
On the VRCollaborate dataset, their through-
puts are 68.21 tasks/s, 83.57 tasks/s, and 108.10 
tasks/s, respectively. In comparison, the pro-
posed model achieves throughputs of 125.86 
tasks/s and 116.73 tasks/s on the two datasets. In 
Figure 8(b), the resource utilisation rates of the 
four models in the ACTP dataset are 72.17%, 
81.54%, 91.02%, and 96.53%, respectively. In 
the VRCollaborate dataset, the resource utili-
sation rates are 65.84%, 75.24%, 87.65%, and 
91.87%. The results indicate that the suggested 
paradigm can improve system throughput while 
making better use of computational resources. 
The throughput improvements shown in Fig-
ure 8 are directly linked to the model's abili-
ty to prioritise critical paths in the task graph 
dynamically using attention mechanisms. This 
capability enables more intelligent load balanc-
ing and resource allocation, thereby reducing 
contention in high-concurrency scenarios.

Table 2. Ablation study results (Mean±95% CI).

Model variant Task Completion 
rate (%) Average reward Throughput 

(tasks/s)
Resource  

utilisation (%)

Full Model 
(MARL+GCN) 94.52 ± 1.23 382.17 ± 8.45 125.86 ± 2.67 96.53 ± 1.08

w/o GCN (MARL 
only) 85.36 ± 2.14 242.36 ± 12.37 114.62 ± 3.82 91.02 ± 2.15

w/o attention  
mechanism 89.27 ± 1.87 315.42 ± 9.83 119.35 ± 3.15 93.76 ± 1.64

w/o structural loss 91.83 ± 1.65 348.26 ± 8.92 122.14 ± 2.89 95.12 ± 1.37

Note: Results are reported on ACTP dataset after 2000 training iterations.
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The study compares the running times of differ-
ent models in the ACTP dataset, conducting a 
statistical analysis in the process. The results are 
shown in Table 3. On the ACTP dataset, the task 
completion rate of OURS is 94.52%±1.23%. 
This is 6.31%, 16.90%, and 34.83% higher 
than the rates for MAPPO, IPPO and PPO, re-
spectively. Statistical tests shows significant 
differences ( p < 0.001). Similar performance 
advantages are observed on the VRCollaborate 
dataset. However, this performance improve-
ment comes at the cost of increased computa-
tional requirements: the training time of the pro-
posed model is approximately 36% longer than 
that of MAPPO, and it also uses more memory. 
This reflects the trade-off between model com-
plexity and performance, showing that the pro-
posed method delivers a more significant per-
formance improvement by incurring reasonable 
additional computational cost.
A sensitivity analysis of parameters is conduct-
ed to evaluate the impact of model hyperparam-
eter settings on performance, and the results 
are shown in Table 4. The best performance is 
achieved on both the ACTP and VRCollabo-
rate datasets when the LR is set to 0.0003: av-
erage rewards are 382.17 and 252.76, respec-
tively, and task completion rates are 94.52% 
and 92.39%, respectively. Increasing the LR to 
0.001 resulted in a decrease in the average re-

wards of the two datasets to 365.21 and 238.45, 
respectively. This indicates that excessive LRs 
can affect training stability. The effect is opti-
mal when the number of GCN layers is 2. Re-
ducing or increasing this number will result in 
a slight decrease in performance. The optimal 
balance is achieved with 2 attention heads, and 
increasing to 4 heads offers limited improve-
ment. Setting the HL dimension to 128 yields 
optimal performance. At 64 dimensions, the av-
erage rewards for the two datasets decrease to 
375.63 and 242.17, respectively. Increasing to 
256 dimensions only brings marginal improve-
ment. These results indicate that the model's 
optimal performance configuration is achieved 
with a LR of 0.0003, 2 GCN layers, 2 attention 
heads, and HL dimensions of 128. The mod-
el also exhibits good robustness to parameter 
changes.

3.2.	Analysis of Simulation Application 
Results for a Novel MUCTS 
Optimisation Model

To further validate the model's performance in 
practical application scenarios, a distributed VR 
simulation platform is constructed to simulate 
two application scenarios: multi-user collabo-
rative design and large-scale multiplayer online 
games. The VR collaborative design platform 

Figure 8. Throughput and resource utilisation of different models on ACTP and VRCollaborate datasets.
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Table 3. Runtime Performance and Statistical Analysis.

Models Datasets Training  
Time (h)

Inference  
Latency (ms)

Memory  
Usage (GB)

Task  
Completion 

Rate (%)
p-value

OURS

ACTP

8.52 ± 0.32 4.23 ± 0.18 3.82 ± 0.21 94.52 ± 1.23 /

MAPPO 6.24 ± 0.25 2.14 ± 0.12 2.42 ± 0.13 88.21 ± 1.87  < 0.001

IPPO 5.83 ± 0.27 1.82 ± 0.10 2.15 ± 0.15 77.62 ± 2.35  < 0.001

PPO 4.12 ± 0.21 1.23 ± 0.08 1.63 ± 0.11 59.69 ± 2.87  < 0.001

OURS

VRCollaborate

7.86 ± 0.28 3.91 ± 0.15 3.45 ± 0.18 92.39 ± 1.41 /

MAPPO 5.93 ± 0.23 1.96 ± 0.11 2.28 ± 0.12 80.06 ± 2.13  < 0.001

IPPO 5.47 ± 0.24 1.73 ± 0.09 2.03 ± 0.14 68.27 ± 2.64  < 0.001

PPO 3.89 ± 0.19 1.15 ± 0.07 1.52 ± 0.10 45.84 ± 3.12  < 0.001

Table 4. Runtime Performance and Statistical Analysis.

Parameters Values Average reward 
(ACTP)

Average reward 
(VRCollaborate)

Task completion 
rate (ACTP)

Task completion 
rate  

(VRCollaborate)

Learning rate

0.0001 375.63 245.18 93.85 90.12

0.0003 382.17 252.76 94.52 92.39

0.001 365.21 238.45 92.71 89.67

GCN layers

1 372.45 240.89 93.50 90.05

2 382.17 252.76 94.52 92.39

3 378.92 248.33 94.18 91.74

Attention heads

1 378.92 247.15 94.10 91.55

2 382.17 252.76 94.52 92.39

4 381.05 251.42 94.43 92.21

Hidden layer Dim

64 375.63 242.17 93.90 90.38

128 382.17 252.76 94.52 92.39

256 380.49 250.91 94.35 92.08
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simulates a collaborative design environment 
in VR. This large-scale, multiplayer online VR 
game incorporates dynamic task generation, re-
al-time path planning, and resource contention 
into a gaming scenario. These features test the 
system's real-time capabilities and collabora-
tive scheduling abilities.
The study conducts a comparative analysis 
of the average task completion time (ATCT) 
across different models under varying user 
numbers in two simulation scenarios. In Figure 
9(a), within the VR collaborative design plat-
form simulation, when the number of users is 
50, the ATCTs for PPO, IPPO, and MAPPO are 
171.25 ms, 136.75 ms, and 98.24 ms, respec-
tively. The average completion time (ACT) 
for the proposed model is 50.66ms. When the 
number of users reached 300, the ACTs for 
the four models were 452.71 ms, 347.58 ms, 
294.37 ms, and 186.35 ms, respectively. In 
Figure 9(b), during the multiplayer online VR 
game simulation with 300 users, the ATCTs 
for PPO, IPPO, and MAPPO are 996.25 ms, 
923.58 ms, and 571.59 ms, respectively, while 
the ACT for the proposed model is 423.62 ms. 
The results display that the proposed model 
maintains low latency and high stability even 
under high-concurrency, dynamic task envi-
ronments. Figure 9 shows that the GCN's abil-
ity to anticipate bottlenecks and schedule tasks 
proactively reduces latency. This demonstrates 
how topological foresight can enhance the re-

al-time performance of distributed VR envi-
ronments.
The study further conducts a comparative anal-
ysis of the average user latency across differ-
ent models under varying numbers of subtasks 
in two simulation scenarios. In Figure 10(a), 
during the simulation on the VR collaborative 
design platform, when the number of subtasks 
is 5, the average user latency for PPO, IPPO, 
MAPPO, and the proposed model is 17.25 
ms, 13.86 ms, 9.82 ms, and 4.17 ms, respec-
tively. When the number of subtasks reaches 
30, the latency times are 39.87 ms, 32.35 ms, 
23.62 ms, and 11.82 ms, respectively. In Figure 
10(b), during the multiplayer online VR game 
simulation with 30 tasks, the average user la-
tency for the four models is 70.03 ms, 63.16 
ms, 43.37 ms, and 26.21 ms, respectively. The 
findings demonstrate that when processing jobs 
in multi-user scenarios, the suggested approach 
can more successfully lower user latency and 
provide a more seamless user experience. The 
consistent reduction in user latency across 
varying subtask loads demonstrates the robust-
ness of the framework in maintaining quality of 
service under dynamic workloads. This is made 
possible by the heterogeneous GCN architec-
ture, which can adapt to different node types 
and relationship patterns.
Additionally, the study conducts a compara-
tive analysis of the task processing success rate 
across different models under varying numbers 

Figure 9. The ACT of tasks for different models on two simulation scenarios.
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of users in two simulation scenarios. In Figure 
11(a), during the simulation of the VR collabo-
rative design platform, when the user's quantity 
reaches 50, the task processing success rates for 
PPO, IPPO, MAPPO, and the proposed mod-
el are 86.12%, 91.35%, 94.27%, and 98.26%, 
respectively. When the user's quantity reaches 
300, the task processing success rates for the 
four models are 67.84%, 76.98%, 89.27%, and 
96.89%, respectively. In Figure 11(b), during the 
multiplayer online VR game simulation, when 
the number of users , the task processing success 

rates for PPO, IPPO, and MAPPO are 58.36%, 
67.24%, and 76.87%, respectively. The suggest-
ed model has a 93.35% task processing success 
rate. The results demonstrate that the proposed 
model achieves a higher task processing success 
rate in multi-user environments and can more 
effectively handle collaborative tasks. Figure 
11 shows that the model has high task process-
ing success rates, especially under heavy user 
loads. This demonstrates the model's reliability 
in preserving system stability through effective 
overload prevention and recovery mechanisms.

Figure 10. The average user delay time of different models on two simulation scenarios.

Figure 11. Task processing success rate of different models on two simulation scenarios.
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4.	Conclusion

This study established a novel, multi-user, col-
laborative TS framework by integrating MARL 
with GCNs. The primary theoretical contri-
bution was the advancement of conventional 
scheduling theory through the incorporation 
of relational inductive biases into multi-agent 
policy learning. This enabled the formalisation 
of complex topological dependencies between 
tasks and users within distributed VR systems. 
Technically, the MARL-GCN integration was a 
significant innovation. Graph attention mech-
anisms facilitate dynamic relationship weight-
ing, and structural reconstruction loss enhances 
global representation learning. These two fea-
tures worked together to overcome the coordi-
nation limitations in partially observable envi-
ronments.
The proposed framework was particularly valu-
able for organisations operating under high 
concurrency and resource constraints. Spe-
cifically, VR collaborative design platforms 
could use this approach to keep multiple users 
manipulating complex 3D models coordinat-
ed, and large-scale multiplayer online games 
could use it to allocate resources dynamically 
during peak user activity. The system's ability 
to dynamically prioritise critical interactions 
enabled efficient task allocation, even under 
severe computational constraints. This made it 
equally suitable for distributed training systems 
and industrial digital twins, where resource 
awareness was crucial.
There are several limitations that require ac-
knowledgement. First, the current validation 
is conducted primarily in simulation environ-
ments, which may not fully capture real-world 
network volatility and device heterogeneity. 
Therefore, future work will focus on imple-
menting physical testbed deployments and ex-
tending the framework's capabilities to support 
adaptive scheduling across heterogeneous edge 
devices. Further research will explore the use of 
transfer learning for cross-domain applications, 
as well as incorporating human-in-the-loop in-
teractions to create more intuitive collaborative 
VR experiences.
In conclusion, this research advances the field 
of intelligent computing and distributed system 
coordination by establishing a new paradigm 

for graph-enhanced multi-agent learning. Inte-
grating structural reasoning with decentralised 
decision-making provides theoretical insights 
and practical solutions for creating responsive, 
scalable, and user-aware scheduling systems 
for next-generation collaborative platforms.
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