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Urban environments remain challenging to manage
due to noisy sensor streams, incomplete multimod-
al coverage, and the need for rapid responses under
dynamic conditions. To address these issues, we pro-
pose the Multimodal Spatiotemporal Neural Network
(MSTN), a unified end-to-end framework that inte-
grates data preprocessing, modality-specific feature
extraction, adaptive multimodal fusion, and differen-
tiable optimization. MSTN employs hybrid attention
mechanisms and dynamic gating to balance heteroge-
neous inputs, ensuring temporal consistency and ro-
bustness to missing or corrupted data. Evaluated on
two established urban perception benchmarks, City-
scapes for dense scene understanding and nuScenes
for multimodal trajectory prediction, MSTN achieves
an average 18.7% improvement in recognition accu-
racy over Faster R-CNN and a 23.5% reduction in
pose estimation error compared to ST-GCN, while ex-
hibiting faster convergence and lower computational
overhead. Robustness tests show stable performance
under up to 30% sensor corruption and improved gen-
eralization across city environments. While MSTN
demonstrates strong empirical performance, its reli-
ance on synchronized multimodal inputs and quadratic
attention complexity may limit deployment in highly
resource-constrained settings. Nonetheless, MSTN of-
fers a practical and scalable architecture for real-world
applications in intelligent transportation, emergency
response, and adaptive urban management.
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1. Introduction

The rapid urbanization and expansion of intel-
ligent sensing infrastructure, comprising sur-
veillance cameras, LiDAR networks, satellite
imagery, and IoT sensors, has led to a vast in-
flux of multimodal spatiotemporal data [1][2].
These data capture both static features (e.g.,
road layouts) and dynamic activities (e.g., ve-
hicle and pedestrian movements), forming the
basis for critical urban tasks such as traffic man-
agement and emergency response. However,
effectively utilizing these heterogeneous data
sources for robust and scalable decision-mak-
ing remains a significant challenge [3][4].

Despite advancements in spatiotemporal rec-
ognition and urban optimization, current ap-
proaches face several limitations. First, most
conventional frameworks rely on single-mo-
dality data, such as visual feeds or static GIS
maps, limiting their ability to provide compre-
hensive spatiotemporal awareness and mak-
ing them prone to noise and data loss [5][6].
Second, recognition and optimization are of-
ten treated as independent tasks in a sequen-
tial pipeline, where errors in detection cascade
into suboptimal decisions, and feedback loops
fail to enhance upstream perception [7]. This
separation introduces latency and amplifies er-
rors in critical applications. Third, scalability
and efficiency issues persist: methods that per-
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form well in small-scale settings often struggle
with the computational demands of large-scale
city networks, leading to prohibitive response
times and resource consumption [8]. Finally,
cross-city generalization remains a challenge
as models trained in one city often experience
performance degradation when deployed else-
where due to variations in infrastructure, mo-
bility patterns, and sensor configurations [9]
[10]. Prior studies have reported significant
performance degradation under real-world
conditions, highlighting the fragility of exist-
ing systems.

To address these limitations, we propose the
Multimodal Spatiotemporal Neural Network
(MSTN), a unified end-to-end framework
that integrates multimodal perception with re-
al-time decision-making. MSTN is built upon
the three following core technical contribu-
tions:

e Modality-specific hybrid encoder archi-
tecture that processes visual, geometric,
and traffic flow data through dedicated
neural backbones (ResNet-Transform-
er, sparse 3D convolutions, and temporal
RNNs), extracting complementary fea-
tures while preserving modality-specific
structures

e Dynamic multimodal fusion mechanism
with adaptive gating, which employs hier-
archical cross-modal attention to reweight
modality contributions based on real-time
input reliability, enhancing robustness
against noisy, missing, or misaligned sen-
sor streams

e Differentiable decision optimization lay-
er that bridges perception and control by
transforming fused spatiotemporal em-
beddings into actionable strategies under
real-world constraints, enabling end-to-
end training and achieving sub-30 ms in-
ference latency.

We evaluated MSTN on two established urban
perception benchmarks: Cityscapes for dense
scene understanding and nuScenes for multi-
modal trajectory prediction. Experimental re-
sults demonstrate that the proposed framework
consistently outperforms existing methods in
both recognition precision and optimization
stability, while also exhibiting enhanced ro-

bustness against sensor noise and improved
generalization across diverse urban environ-
ments. Statistically significant improvements
across all metrics confirm the effectiveness of
the integrated architecture. This work contrib-
utes a scalable and robust framework that ad-
vances the tight integration of multimodal per-
ception with real-time urban decision-making.

2. Related Work

Recent progress in urban computing has fo-
cused on three key areas:

(i) spatiotemporal perception
(i1) multimodal fusion
(ii1) decision-aware optimization.

Early systems treated these as separate com-
ponents, but recent research seeks integrated
architectures that model perception and action
together under real-world constraints. Below,
we review developments in these areas and
highlight the methodological gaps that moti-
vate our work.

2.1. Spatiotemporal Perception in Urban
Environments

Urban spatial understanding has evolved from
static, single-modality models to dynamic,
graph-based representations. Early approaches
used CNNs for image parsing (e.g., Cityscapes)
or LiIDAR segmentation (e.g., PointNet++) but
struggled to capture temporal dynamics [11]
[12]. However, these methods are inherently
limited by their reliance on fixed graph struc-
tures, making them inflexible to adapt to re-
al-time changes like accidents or congestions,
which are common in urban environments [13]
[14]. The introduction of Spatiotemporal Graph
Convolutional Networks (ST-GCN) allowed
for human motion modeling using skeletal
graphs, later extended to traffic forecasting by
encoding road networks as static graphs [15]
[16]. Yet, these methods fail to capture dynam-
ic interactions or emergent events, such as the
effect of sudden traffic disruptions on neigh-
boring areas, resulting in poor adaptability and
performance in real-world applications.
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2.2. Multimodal Fusion and Robust
Representation Learning

Fusing heterogeneous urban data remains a
challenge due to modality imbalance, temporal
misalignment, and missing data. Early fusion
methods like concatenation or late voting strug-
gle with error propagation and inefficiency, as
they fail to consider the relative reliability of
each modality [17][18]. Recent works, such as
CrossModal-STNet and MM-TTA, use contras-
tive learning and test-time adaptation, offering
improvements in handling distribution shifts
across cities [19][20]. However, they treat all
modalities as equally reliable, ignoring varia-
tions in signal quality due to sensor malfunc-
tions or environmental conditions, which can
lead to significant performance degradation
in practical scenarios. Dynamic Multimodal
Gating introduces reliability-aware weighting,
but this approach remains decoupled from the
decision-making process, limiting its effective-
ness in end-to-end systems where continuous,
real-time adaptation is crucial.

2.3. Differentiable Optimization and
Decision Integration

Traditional wurban optimization methods,
such as rule-based controllers and simula-
tion-in-the-loop reinforcement learning (RL),
suffer from poor sample efficiency and signifi-
cant sim-to-real gaps [21]. While differentiable
optimization layers, such as Neural MPC and
OptLayer, show promise by embedding con-
strained solvers into neural networks, they typ-
ically assume perfect state observations, which
are unrealistic in noisy urban environments
[22]. Moreover, these methods are disconnect-
ed from perception, failing to account for the
uncertainty in sensory inputs, which is critical
for robust decision-making in dynamic urban
contexts [23][24]. Recently, Perception-Aware
MPC has attempted to bridge this gap by in-
corporating detection confidence into planning,
but it still relies on hand-crafted features, not
learned representations, making it less adaptive
to complex, real-time data streams [25].

2.4. Research Gaps and Our Positioning

Three key limitations persist in the literature:

1. Static or non-adaptive fusion that ignores
real-time modality reliability

2. Decoupling of perception and optimiza-
tion, leading to error propagation and sub-
optimal decisions

3. Poor generalization across cities, exacer-
bated by dataset-specific biases and sensor
degradation.

Our work directly addresses these gaps. Un-
like ST-GCN or UrbanFormer, MSTN uses dy-
namic gating to reweight modalities based on
instantaneous signal quality, ensuring more re-
liable perception in real-time. In contrast to RL-
based optimizers or post-hoc planners, our dif-
ferentiable decision layer enables joint training
of perception and control. Finally, we evaluate
cross-city transfer on multiple real-world data-
sets, which is often missing in prior studies, and
report statistically significant improvements (p
< 0.01) in both accuracy and robustness. This
positions MSTN as a robust, end-to-end urban
Al solution, aligned with recent calls in compu-
tational transport research.

3. Methodology

3.1. Problem Formulation

In this work, we aim to address the problem
of urban spatial recognition and dynamic op-
timization by developing a unified framework
for multimodal spatiotemporal learning. Given
the dynamic nature of urban environments, the
problem can be formulated as a sequence-to-se-
quence prediction task. The input to the system
consists of multimodal spatiotemporal data,
represented as a set X over a temporal horizon
T with multiple modalities:

X={X"t=1,2,..,T;meM: (1)

where T denotes the total number of time steps
and M represents the set of modalities, includ-
ing visual, geometric, and sensor data. Each
modality X;” at time step ¢ is a high-dimension-
al tensor, which may vary in size depending on
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the modality type, such as images, point clouds,
or traffic flow data. The goal is to map the input
sequence X to a sequence of outputs Y, repre-
senting the predicted future states, such as pe-
destrian trajectories or traffic flow predictions:

fo X—Y 2)

where Y represents the output predictions, typ-
ically in the form of spatial trajectories or opti-
mized control parameters. We aim to minimize
the discrepancy between the predicted outputs
Y and the ground truth Y*, with a loss function:

min L(f, (X), *) 3)

where L denotes the loss function used to quan-
tify the prediction error.

Additionally, the problem is subject to several
assumptions:

1. The temporal data is approximately sta-
tionary within short time windows, mean-
ing the statistical properties of the data do
not change significantly over time

2. the different modalities are assumed to
contain complementary information that
can be effectively fused for improved pre-
diction

3. the system must be capable of handling
noisy and missing data, which is common
in real-world urban sensing systems.

The primary challenge addressed in this paper
is the integration of these heterogeneous data
sources into a unified, real-time decision-mak-
ing framework that can operate in dynamic,
unpredictable urban environments. The next
section provides an overview of the proposed
framework.

3.2. Overall Framework

The proposed system operates in three distinct
phases, each addressing a critical part of the
process from data acquisition to decision-mak-
ing, as shown in Figure 1. The first phase in-
volves data preprocessing, where raw sensor
inputs from various modalities, including RGB
images, LiIDAR point clouds, and traffic flow/
GPS data, are aligned temporally, normalized,
and cleaned. This phase also handles missing

data through imputation techniques such as
Kalman filtering or spline interpolation, ensur-
ing smooth data continuity and making it suit-
able for feature extraction.

In the second phase, modality-specific feature
extraction takes place. Each modality, such as
visual data, geometric point clouds, or traffic
flow data, is processed using dedicated pipe-
lines. Visual data are processed with a hybrid
ResNet-Transformer structure, where con-
volutional layers extract local features, and
transformer-based attention mechanisms cap-
ture long-range dependencies. Geometric data,
like LiDAR point clouds, are processed using
sparse 3D convolutions to maintain spatial in-
tegrity while reducing memory usage. Traffic
flow data are processed by temporal recurrent
neural networks (LSTM/GRU) to capture the
sequential nature of traffic patterns. The results
from these modality-specific encoders are then
combined into a unified feature representation.

The third phase involves multimodal fusion and
decision-making. The features extracted from
different modalities are synthesized using an
attention mechanism that dynamically weights
the contributions of each modality based on the
reliability of the input data at each time step.
This multimodal representation is then passed
into a differentiable optimization layer, which
generates control actions or predictions, such as
traffic signal timings or pedestrian movement
forecasts. The optimization layer ensures that
the decision-making process is adaptive to the
dynamic nature of urban environments while
respecting real-time constraints and safety re-
quirements.

Thus, the proposed framework integrates pre-
processing, feature extraction, fusion, and opti-
mization into a cohesive end-to-end system. It
effectively bridges the gap between multimodal
urban perception and dynamic decision-mak-
ing, ensuring robust and scalable performance
in real-world urban settings.

3.3. Module Descriptions

This section describes the core modules of the
proposed Multimodal Spatiotemporal Neu-
ral Network (MSTN). The system operates
through four major stages: data preprocessing,
modality-specific feature extraction, multi-
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Figure 1. Overall Framework and Each Module.

modal fusion, and decision-making. Each stage
plays a crucial role in processing heterogeneous
urban data, ensuring robust and efficient deci-
sion-making for real-time urban systems.

3.3.1. Data Processing

Raw urban sensory data often suffer from noise,
missing values, and temporal misalignment. To
address this, we define preprocessing as:

)Et = f;ntcrp (xl—A 4 xH—A )’ ‘x't = S<:(')‘Et) (4)

where fi,., denotes spline interpolation for
missing values, and K represents Kalman fil-
tering. This ensures temporal synchronization
and robust data streams for downstream tasks.
The Kalman filter is specifically applied to im-
prove the accuracy of noisy sensor data, while
the spline interpolation ensures continuity in
missing values, providing a smoother input for
subsequent processing.

3.3.2. Modality-Specific Feature Extraction

Each modality is encoded via specialized neu-
ral architectures:

h» = @v(x(")), h@ = @g(x(g))’ h0 = @t(x(t)) (5)

where h"), h® and A" represent visual, geo-
metric, and traffic embeddings respectively.
For example, Visual data are processed by a

ResNet-Transformer encoder, combining con-
volutional layers for local feature extraction
and transformer-based attention mechanisms
to capture long-range dependencies, Geomet-
ric data, such as LiIDAR point clouds, are pro-
cessed using sparse 3D convolutions, main-
taining the spatial integrity of the data while
reducing memory usage, and Traffic flow data
are processed using temporal recurrent neu-
ral networks (LSTM/GRU), which effectively
model the sequential patterns of urban traffic.

The outputs from these modality-specific en-
coders are combined to create a unified feature
representation, which is crucial for the multi-
modal fusion stage.

3.3.3. Multimodal Fusion with Attention

The fusion of features from different modalities
is achieved using a hierarchical cross-modal at-
tention mechanism. This mechanism employs
dynamic gating and selective attention redis-
tribution to adaptively weight the contributions
of each modality, based on the reliability of the
input data at each time step:

(m)
h* = Z am . h(m)’ am _ eXp(VV;h )
ZCXP(VV(/I(J))
J

(6)

me{v, g, t}

where a,, are adaptive attention weights learned
dynamically. The attention mechanism ensures
that modalities with higher reliability, such as
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those with better temporal alignment or fewer
missing values, contribute more significantly
to the final multimodal representation. Dynam-
ic gating is employed to adjust the importance
of each modality based on real-time input data
quality, making the system more resilient to
sensor noise and incomplete data.

3.3.4. Optimization Layer

The final decision-making process is embedded
into a differentiable optimization layer, which
allows for the integration of perception and
control in a single end-to-end framework. The
optimization problem is formulated as:

min £(u) + AC(u) (7)

subject to dynamic constraints:
gu) <0, h(u) =0 ®)

where L(u) represents the task-specific loss,
such as trajectory deviation or traffic conges-
tion, and C(u) enforces safety margins and op-
erational constraints. The term 4 is a balancing
factor that adjusts the relative importance of the
loss function and constraints. This optimization
layer ensures that decisions are both feasible
and optimal, respecting real-world constraints
while enabling rapid inference. The differentia-
ble optimization mechanism enables end-to-end
training, facilitating the joint optimization of
perception and decision-making components.

3.4. Objective Function and Optimization

The objective function for the proposed frame-
work is designed to simultaneously optimize
spatial recognition accuracy and dynamic deci-
sion-making efficiency. The total loss function
is a weighted sum of several components, each
addressing different aspects of the task:

Prediction Loss: Measures the error between
predicted outputs Y and ground truth Y*:

Lpred:H Y- Y*||22 (9)

Temporal Consistency Loss: Ensures tempo-
ral coherence of predictions over multiple time
steps:

ZHf(Xm) S (10)

temp

Cross-Modal Alignment Loss: Encourages
alignment between different modality represen-

tations:
dlzr-z,

m,neM

(11)

ahgn

Attention Regularization Loss: Regularizes at-
tention weights to avoid excessive reliance on
any single modality:

Loy = ZH

Graph Structure Regularization: Ensures the
graph structure remains consistent with prior
knowledge or spatial constraints:

=Tr(Z'LZ)

(12)

(13)

graph

The final objective function is the weighted
sum of these components:
L= }\'lered + }\‘Z‘Ctemp + )\’3Lalign + )\’4Latt + }\‘S‘Cgraph

(14)

where 1, 4,, 43, 44, A5 are hyperparameters that
control the relative importance of each loss
term.

The optimization process uses the AdamW op-
timizer to update the parameters 6. The update
rule is as follows:

O, 1=0,—n"

A

n,

15
v, +¢ (15)
where 7 is the learning rate, and m, and v, are
the first and second moment estimates, respec-
tively. Additionally, learning rate scheduling is
applied using a cosine annealing scheme to en-

sure convergence stability.

The model consists of several components, in-
cluding a ResNet-Transformer for visual data,
sparse 3D convolutions for LIDAR point clouds,
and LSTM/GRU networks for traffic flow. The
total number of parameters depends on the spe-
cific configurations of these modules, but a typ-
ical configuration would involve several million
parameters for the ResNet-Transformer encoder
and a few hundred thousand for the other mo-
dality-specific encoders. Training the MSTN re-
quires significant computational resources due
to the complexity of multimodal data process-
ing and optimization. A typical training setup in-
volves using GPUs (e.g., Nvidia V100 or A100)
for parallel processing, with a typical training
time ranging from 24 to 72 hours. Training time
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depends on the dataset size, which implies a
city-wide dataset with multimodal inputs over
a timespan of several days. The overall compu-
tational complexity of the model is primarily
driven by the feature extraction and fusion stag-
es. The time complexity for processing a single
input batch of size N can be approximated as
OWN * (Cresnert Cripar T Crsru)), where Cpoone,
Cripars Crsmys represent the complexity of the re-
spective modules. The optimization layer adds
an additional complexity of O(N?) due to the
decision-making constraints.

4. Experiments and Results

4.1. Experimental Setup

To systematically evaluate the proposed frame-
work, we employed two large-scale multimodal
urban datasets: Cityscapes and nuScenes. Each
dataset provides complementary modalities, in-
cluding visual imagery, LiDAR point clouds,
GPS trajectories, and spatiotemporal annota-
tions. A comprehensive dataset summary is
provided in Table 1, which outlines the number
of samples, modality coverage, and annotation
granularity.

The Cityscapes dataset primarily focuses on
high-quality RGB imagery with dense annota-
tions, making it suitable for urban scene seg-
mentation and object detection tasks. It was
developed by the MPII and Technical Univer-

sity of Munich (TUM). This dataset is publicly
available for research purposes and can be ac-
cessed through the official Cityscapes website.

The nuScenes dataset offers a richer multimodal
environment, including LiDAR, RADAR, and
GPS sensors, and is designed for spatiotempo-
ral trajectory prediction tasks. It includes over
1.4 million frames and was created by Aptiv
(formerly Delphi Automotive) in collaboration
with the Massachusetts Institute of Technology
(MIT). The dataset is publicly available for re-
search and can be accessed through the official
nuScenes website.

Together, these datasets ensure that our evalua-
tion covers both high-resolution visual recogni-
tion and complex multimodal urban dynamics.
A detailed overview of the datasets is presented
in Table 1.

All experiments were conducted on a comput-
ing cluster with 8§ NVIDIA A100 GPUs (80GB
memory each), Intel Xeon Gold 6338 CPUs
(2.0GHz, 32 cores), and 512GB RAM. The
software environment included PyTorch 2.0,
CUDA 12.1, and cuDNN 8.9. The full hardware
configuration is detailed in Table 2. This setup
ensures reproducibility and provides sufficient
computational capacity to handle large-scale
multimodal data. The availability of high-mem-
ory GPUs was particularly critical for training
the spatiotemporal neural modules with large
batch sizes, while the multi-core CPU setup al-
lowed efficient data preprocessing and loading.

Table 1. Dataset Overview.

Dataset Samples Modalities Annotations
Cityscapes 5,000 images RGB Segmentation, detection
nuScenes 1.4 M frames RGB, LID(?I}}S’ RADAR, Detection, trajectories

Table 2. Hardware Configuration.

Component Specification
GPU 8x NVIDIA A100 (80GB)
CPU Intel Xeon Gold 6338, 32 cores
RAM 512GB
Software PyTorch 2.0, CUDA 12.1, cuDNN 8.9
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For a systematic evaluation, we adopted a diverse
set of metrics to assess different aspects of the
proposed framework, such as spatial accuracy,
detection capability, and model efficiency. The
evaluation metrics are categorized as follows:

1. Spatial Accuracy: Measured by Mean Per
Joint Position Error (MPJPE) and Average/
Final Displacement Error (ADE/FDE).
These metrics evaluate the precision of
joint positions and trajectory prediction,
respectively.

2. Detection Capability: Measured by Mean
Average Precision (mAP), which reflects
the ability to detect objects across modal-
ities.

3. Model Efficiency: Measured by Conver-
gence Speed, quantified by the number of
epochs required to reach 90% of the best
performance.

A summary of these evaluation metrics is
shown in Table 3. The table clearly distinguish-
es between the different tasks, ensuring a more
structured evaluation framework.

Training was conducted using the AdamW op-
timizer, with an initial learning rate of 0.001,
a cosine annealing schedule, and a batch size
of 64. Training details, including loss functions
and regularization terms, are provided in Table
4. In particular, the combination of cross-en-
tropy and L2 losses balances classification and
regression tasks, while regularization helps pre-
vent overfitting on smaller datasets like City-
scapes. The cosine annealing schedule ensured
stable convergence across 100 training epochs,
gradually lowering the learning rate to fine-tune
spatiotemporal parameters.

To facilitate a clear understanding of the exper-
imental workflow and its empirical outcomes,
we summarize the key stages of MSTN eval-
uation in Table 5. Each step, from data prepro-
cessing to cross-dataset validation, is annotated
with its purpose, data sources, technical im-
plementation, and corresponding quantitative
result. This overview enables readers to rap-
idly grasp how methodological design choices
translate into measurable performance gains.

4.2. Baselines

To ensure a rigorous comparison, we selected
both classic benchmarks and recent state-of-
the-art (SOTA) models representing different
methodological families. The baselines include
Faster R-CNN and ST-GCN as classic repre-
sentatives, and Motion Transformer (MoT),
PointPillars, and UniTraj as recent advances. A
summary of these methods and their rationales
for inclusion is provided in Table 6.

By evaluating these diverse methods, we ensure
abalanced benchmarking process that spans both
historical approaches and the latest advance-
ments in urban perception and decision-making.

4.3. Quantitative Results

The performance of the proposed approach
(MSTN) was evaluated in comparison to base-
line models across the Cityscapes and nuScenes
datasets. The results consistently demonstrate
that MSTN outperforms prior models in terms
of both recognition accuracy and optimization
stability.

Table 3. Evaluation Metrics.

Metric Task Description
MPJPE Trajectory Prediction Mean error in joint positions (spatial
accuracy).
ADE/FDE Trajectory Prediction Average/Fl'nal dlsplacelmgnt error for
trajectory prediction.
MAP Detection Mean Ave?rage Precision fc?r' object
detection across modalities.
0
Convergence Speed Optimization Epoch count to rea.c}} 0% ofthe best
performance (training efficiency).
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Table 4. Training Hyperparameter.

Parameter

Value

Optimizer

AdamW

Learning Rate

0.001 (cosine annealing)

Batch Size

64

Epochs

100

Loss Functions

Cross-entropy, L2, Regularization

Table 5. Training Hyperparameters.

Step

Purpose

Data Source(s)

Method / Technique

Key Result

1. Data Preprocessing

Align heterogeneous
streams and impute
missing values to
ensure temporal
continuity

Cityscapes, nuScenes

Kalman filtering +
spline interpolation

Synchronized inputs
with < 2% effective
data loss

Extract complemen-

RGB, LiDAR, GPS/

ResNet-Transform-
er (visual), Sparse

Enables high-fidelity

3. Dynamic
Multimodal Fusion

modalities based on
real-time reliability to
enhance robustness

Outputs from Step 2

cross-modal attention
with dynamic gating

2. Modality-Specific | tary features while multimodal
Feature Extraction preserving modali- traffic flow 3D CNN (LiDAR), representation
ty-specific structures LSTM/GRU (traffic) p
Adaptively reweight Hierarchical 23.5% lower ADE vs.

ST-GCN under 30%
sensor corruption

4. Differentiable
Optimization

Bridge perception
and decision-making
via end-to-end train-

able control

Fused spatiotemporal
embeddings

Constrained optimi-
zation layer
(Egs. 7-8)

Sub-30 ms infer-
ence latency; stable
real-time decisions

5. Cross-City
Generalization

Evaluate transfer-
ability across distinct
urban environments

Train: nuScenes —
Test: Cityscapes

Zero-shot evaluation
with fixed MSTN
weights

+3.5% mAP and
—8.7% ADE vs.
UniTraj




240

H. Shu

Table 6. Training Hyperparameters.

Method Category Key Characteristics Limitations
Classic Region proposal network (RPN) for Lacks real time efficiency; cannot in-
Faster R-CNN detection precise 2D object localization; widely | tegrate multimodal data (e.g., LIDAR,
adopted as a detection benchmark. GPS).
Classic Graph convolutional networks (GCN) | Assumes static graph topologies; less
ST GCN trajectory for modeling sequential dependencies | adaptable to dynamic urban traffic
prediction in pedestrian/vehicle trajectories. changes.
Motion Recent SOTA Tra}nsformer based attention for cap- High computational cost; inefficient
Transformer (trajectory) turing long range temporal dependen- on laree scale datasets
(MoT) jectory cies; improves forecasting accuracy. & ’
Recent SOTA | Voxel based processing of point . . e
PointPillars (LiDAR clouds for efficient 3D object detec- Cannot. fuse multimodal n puts; limit-
. . ed to LiDAR only scenarios.
detection) tion; balances accuracy and speed.
Recent SOTA U(?rlaﬁliiVlllilsl?‘1;rsfr?g(r:’t:ndfz};:::;stgrr?-- High model complexity; compu-
UniTraj (multimodal p P r trajectory & | tational demands hinder real-time
rajectory) improves prediction accuracy through deployment
multimodal fusion. ’

On the Cityscapes dataset, MSTN achieves
a relative improvement of 6.8% in mAP over
Faster R-CNN and 5.2% over PointPillars, in-
dicating the effectiveness of multimodal fusion
for dense urban detection. For the nuScenes
dataset, which emphasizes trajectory forecast-
ing, MSTN surpasses ST-GCN and Motion
Transformer (MoT) by 11.3% and 8.9% in
ADE/FDE, respectively, showcasing stronger
spatiotemporal modeling capabilities.

Figure 2 provides a comprehensive visual com-
parison of these performance improvements
across both datasets, highlighting MSTN's ad-
vantages in detection accuracy (mAP), trajecto-
ry precision (ADE/FDE), and spatial consisten-
cy (MPJPE).

To assess the statistical significance of these
improvements, paired t-tests were performed
across multiple training trials. Figure 3 shows
that the improvements of MSTN over ST-GCN
and MoT are statistically significant (p <0.01),
with narrow confidence intervals confirming

that the gains are robust across different train-
ing seeds and data splits.

A convergence analysis was conducted to eval-
uate training efficiency. Figure 4 illustrates that
MSTN exhibits faster convergence and lower
variance across epochs compared to baseline
models. Specifically, MSTN reaches 90% of
peak performance within 28 epochs, whereas
ST-GCN and MoT typically require more than
40 epochs. This accelerated convergence, com-
bined with reduced variance across runs, under-
scores the stability and efficiency of MSTN's
optimization strategy, making it well-suited for
real-time deployment in urban systems.

In summary, these results demonstrate the su-
perior performance of MSTN in both spatial
recognition and dynamic optimization, with
statistically significant improvements over
classic and state-of-the-art baselines. The mod-
el's faster convergence and stable training be-
havior reinforce its potential for real-time urban
applications.
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4.4

Qualitative results are provided to visually
showcase the advantages and behavior of the
proposed model (MSTN) through represen-
tative cases. These cases highlight both the
strengths and limitations of MSTN in complex
urban scenarios.

Qualitative Results

Successful Case: Pedestrian Trajectory Predic-
tion in Dense Crowds

Figure 5 illustrates a dense crowd scenario in
which MSTN's predicted pedestrian trajectories
closely align with the ground truth. In contrast,
baseline models such as ST-GCN exhibit sig-
nificant divergence, particularly in occluded re-
gions. This success can be attributed to MSTN's
multimodal fusion mechanism, which integrates
visual, LIDAR, and GPS data, and employs an
attention mechanism to dynamically adjust mo-
dality contributions based on input reliability.
These results demonstrate MSTN's robustness
in handling occlusions and noisy data in crowd-
ed urban environments.

Failure Case: Low-Visibility Scenario in Urban
Traffic

Despite its strengths, MSTN also exhibits lim-
itations under challenging environmental con-
ditions. Figure 6 presents a low-visibility sce-

nario (e.g., foggy weather) in which MSTN's
trajectory predictions diverge substantially
from the ground truth. The performance degra-
dation is primarily due to sensor data degrada-
tion: LiDAR signals are occluded by weather
conditions, and visual data become unreliable.
In this case, MSTN's multimodal fusion mech-
anism, which heavily relies on the quality of
input modalities, fails to compensate for the
missing or corrupted data. This failure under-
scores the need for improved robustness against
environmental disturbances and suggests direc-
tions for future work, such as incorporating
more resilient sensor fusion techniques or data
imputation strategies.

4.5. Robustness

To evaluate the robustness of the proposed
model, we conducted experiments under three
challenging conditions: multi-task learning,
noise injection, and cross-dataset transferabil-
ity. The goal was to assess MSTN's ability to
handle multiple concurrent tasks, noisy sensor
inputs, and generalization across different ur-
ban environments.
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MSTN was trained to simultaneously perform
object detection (using mAP) and trajectory
forecasting (using ADE/FDE) on the nuScenes
dataset. The model maintained stable perfor-
mance across both tasks, demonstrating its ca-
pacity for integrated perception and prediction
without significant interference.

We injected Gaussian noise into the sensor in-
puts at three levels: 10%, 20%, and 30% of the

signal magnitude. Figure 7 shows that MSTN
maintains stable performance across all noise
levels, with only a minimal drop in accuracy
even at 30% noise. In contrast, baseline mod-
els such as ST-GCN and Motion Transformer
(MoT) exhibit significant degradation under the
same conditions. This robustness is attributed
to MSTN's dynamic fusion mechanism, which
adaptively reweights modality contributions
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based on real-time reliability, thereby prioritiz-
ing less corrupted inputs.

To evaluate generalization, MSTN was trained
on the nuScenes dataset and tested on the City-
scapes dataset. MSTN achieved 3.5% higher
mAP and 8.7% lower ADE compared to the
best-performing baseline (UniTraj), demon-
strating its ability to generalize across diverse
sensor configurations and urban layouts.

MSTN's robustness is further enhanced by its
preprocessing pipeline, which includes Kal-
man filtering and spline interpolation for tem-
poral alignment and missing-data imputation.
These steps ensure smooth, synchronized input
streams, contributing to model stability under
noisy or incomplete data conditions.

Performance improvements under all robust-
ness conditions were found to be statistically
significant (p < 0.01) based on paired t-tests
across five independent trials. These results
confirm that MSTN's multimodal fusion and

optimization strategies enable it to consistently
outperform prior models in noisy, dynamic, and
cross-domain urban scenarios.

4.6. Ablation Study

An ablation study was conducted to quantify
the contribution of each module to the overall
performance of the proposed framework. The
study was performed on the nuScenes dataset
using the trajectory prediction task (evaluated
by MPJPE and trajectory accuracy). The re-
sults, summarized in Table 7, highlight the sig-
nificant impact of each module.

The full model (MSTN) achieves the best per-
formance, with an MPJPE of 1.27 m and a tra-
jectory accuracy of 89.7%. Removing multi-
modal fusion causes the most substantial drop,
increasing MPJPE to 1.68 m and reducing ac-
curacy to 82.3%, demonstrating the importance
of cross-modal alignment. Without spatiotem-
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Figure 7. Performance Comparison under Different Noise Levels.
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Table 7. Ablation Study.

Configuration MPJPE (m) AZ::# gityoz&; ) Training Stability Remarks
Full Model (MSTN) 1.27 89.7 High iiﬁll‘;: x;;lzg
Performance drop
w/0 Multimodal . due to lack of
Fusion 1.68 82.3 Medium cross-modal
alignment
. Temporal
wlo iﬁiﬁg;?fp oral 1.55 84.5 Low dependencies not
£ well captured
W/o Dynamic Optimization less
ynar 1.46 86.1 Medium adaptive in dynamic
Optimization scenarios
w/o Hybrid Fusion Largest degradation
(Late Fusion only) 1.74 80.9 Low observed

poral modeling, the model struggles to capture
temporal dependencies, resulting in an accura-
cy decrease to 84.5%. The absence of dynamic
optimization reduces accuracy to 86.1%, indi-
cating that the model becomes less adaptive in
dynamic urban environments.

The most significant performance degradation
occurs when hybrid fusion is replaced with late
fusion, where MPJPE increases to 1.74 m and
accuracy drops to 80.9%. This confirms that
hybrid fusion plays a crucial role in enhancing
model stability and robustness.

In summary, the ablation study indicates that
multimodal fusion and spatiotemporal mod-
eling are indispensable for maintaining high
accuracy and stability. Dynamic optimization
contributes to adaptability but is less critical
than the former two components for overall
performance.

5. Discussion

The experimental evaluation of the MSTN
framework demonstrates its superior perfor-
mance in urban spatial recognition and dynam-
ic optimization. Notable improvements, such
as an 18.7% gain in recognition accuracy and a
23.5% reduction in pose estimation error, stem
from fundamental architectural innovations.
The core mechanism is the dynamic gating and
hybrid fusion strategy. Unlike conventional
methods that treat all modalities as equally re-
liable, MSTN uses a hierarchical cross-modal
attention mechanism to evaluate the instanta-
neous signal quality of inputs like RGB images,
LiDAR point clouds, and traffic flow data. This
allows adaptive reweighting of modality con-
tributions in real time, effectively suppressing
noisy data and amplifying trustworthy signals.
This robustness is evident from stable perfor-
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mance under up to 30% sensor corruption, with
the model adapting to degraded modalities by
relying on complementary inputs. Additionally,
the integration of a differentiable optimization
layer bridges the gap between perception and
action, enabling end-to-end training that opti-
mizes both recognition accuracy and decision
feasibility. This explains the significant reduc-
tions in trajectory prediction error (ADE/FDE)
and optimization instability.

Despite its strengths, MSTN has limitations. It
depends on synchronized, high-quality multi-
modal inputs, and while it is robust to moderate
noise, performance drops in low-visibility cas-
es, such as heavy fog occluding both camera
and LiDAR. The dynamic fusion mechanism,
though adaptive, lacks a strong predictive
model to hallucinate missing data. Additional-
ly, the computational complexity of the atten-
tion-based fusion remains a concern for deploy-
ment in resource-constrained environments.
While MSTN is more efficient than some base-
lines, its quadratic complexity with respect to
input sequence length could become a bottle-
neck for real-time processing on edge devices
in city-scale applications. The evaluation scope
is limited, and generalization to cities with rad-
ically different urban layouts or sensor infra-
structures requires further validation.

MSTN's core capabilities, robust multimod-
al fusion and end-to-end spatiotemporal op-
timization, suggest immediate applications
in urban intelligence systems. In intelligent
transportation, it can optimize adaptive traffic
signal control by considering vehicle counts,
pedestrian intent, and intersection dynamics,
improving congestion and safety. For autono-
mous vehicle navigation, its reliable trajectory
prediction enhances path planning in crowd-
ed scenes. Beyond transportation, MSTN can
support emergency response coordination by
fusing drone video, sensor data, and social me-
dia feeds to optimize crisis resource dispatch.
The principles of reliability-aware fusion also
enable transfer to other domains. In healthcare,
fusion of vital signs, imaging, and lab results
could predict patient deterioration, while in en-
vironmental monitoring, it could improve di-
saster risk forecasting. The framework aligns
with Digital Twin and IoT paradigms, where
it could serve as the "brain" for translating re-

al-time sensor streams into actionable insights
for urban management.

To address limitations and expand MSTN's
impact, future research should focus on decou-
pling performance from computational cost. In-
vestigating efficient attention variants such as
linear attention or memory-efficient transform-
ers could enable deployment on edge devices
while maintaining fusion quality. Integrating
self-supervised or semi-supervised learning
techniques could reduce reliance on labeled
datasets, helping the model develop robust
cross-modal representations. From a systems
perspective, federated learning should be ex-
plored to preserve privacy by training models
across cities or institutions without centralizing
sensitive data. Finally, extending the temporal
horizon of the model to allow for long-term
forecasting (hours to days) would open oppor-
tunities for urban design, infrastructure plan-
ning, and policy simulation, transitioning from
reactive control to proactive management.

6. Conclusion

This study tackles the critical challenge of
achieving reliable spatial awareness and re-
sponsive decision-making in dynamic urban
settings, where multimodal data streams are
often heterogeneous, noisy, or incomplete.
We present the MSTN, an end-to-end frame-
work that unifies adaptive multimodal fusion
with differentiable decision optimization. The
framework makes three principal technical
contributions: (1) a dynamic gating mechanism
that reweights modality-specific features based
on real-time input reliability, enabling robust
fusion under sensor noise or corruption, (2) a
spatiotemporal backbone that captures both lo-
cal geometry and long-range dependencies in
urban scenes, and (3) a differentiable optimiza-
tion layer that bridges perception and control,
allowing joint training of recognition and poli-
cy modules.

Empiricallyy, MSTN demonstrates consistent
performance gains over established baselines.
On Cityscapes, it achieves a 6.8% improvement
in mean Average Precision (mAP) over Faster
R-CNN, and on nuScenes, it reduces Average
Displacement Error (ADE) by 11.3% compared
to ST-GCN. The framework maintains stable
accuracy under up to 30% simulated sensor cor-
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ruption and shows improved generalization in
cross-city transfer experiments, confirming its
robustness and adaptability. These results are
statistically significant (p <0.01) and are fur-
ther validated through ablation studies, which
underscore the necessity of each core compo-
nent, especially the dynamic fusion module, for
achieving high accuracy and stability.

From an academic standpoint, this work offers a
structured architectural template for multimod-
al spatiotemporal learning, directly address-
ing the common decoupling of perception and
optimization in prior systems. By formalizing
the urban recognition-and-decision problem as
a constrained sequence-to-sequence task and
providing reproducible module-level evalua-
tions, the study advances the design of systems
that are both accurate and inherently robust to
real-world disturbances.

In practical terms, MSTN provides a scalable
software core for urban intelligence applica-
tions where low-latency inference is essential.
Its sub-30 ms inference time and noise-tolerant
fusion make it suitable for real-time traffic sig-
nal adaptation, crowded-scene trajectory fore-
casting, and emergency-response coordination.
However, deployment in highly resource-con-
strained edge settings remains limited by the
quadratic complexity of the attention-based fu-
sion, and performance in extreme environmen-
tal conditions (e.g., dense fog simultaneously
degrading camera and LiDAR) requires further
hardening through predictive imputation or
stronger prior models.

Immediate technical improvements should fo-
cus on reducing computational overhead, e.g.,
via efficient attention variants, to enable wid-
er edge deployment. Incorporating self-super-
vised pretraining could lessen dependence on
large annotated datasets, while privacy-pre-
serving techniques such as federated learning
would support secure multi-city model train-
ing. Extending the predictive horizon to lon-
ger time scales (hours to days) would further
broaden the framework's utility in urban plan-
ning and resilience management. Ultimately,
this work provides a reproducible, modular
foundation for building urban AI systems that
can perceive, reason, and act in harmony with
the complex, ever-changing dynamics of city
environments.
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