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Urban environments remain challenging to manage 
due to noisy sensor streams, incomplete multimod-
al coverage, and the need for rapid responses under 
dynamic conditions. To address these issues, we pro-
pose the Multimodal Spatiotemporal Neural Network 
(MSTN), a unified end-to-end framework that inte-
grates data preprocessing, modality-specific feature 
extraction, adaptive multimodal fusion, and differen-
tiable optimization. MSTN employs hybrid attention 
mechanisms and dynamic gating to balance heteroge-
neous inputs, ensuring temporal consistency and ro-
bustness to missing or corrupted data. Evaluated on 
two established urban perception benchmarks, City-
scapes for dense scene understanding and nuScenes 
for multimodal trajectory prediction, MSTN achieves 
an average 18.7% improvement in recognition accu-
racy over Faster R-CNN and a 23.5% reduction in 
pose estimation error compared to ST-GCN, while ex-
hibiting faster convergence and lower computational 
overhead. Robustness tests show stable performance 
under up to 30% sensor corruption and improved gen-
eralization across city environments. While MSTN 
demonstrates strong empirical performance, its reli-
ance on synchronized multimodal inputs and quadratic 
attention complexity may limit deployment in highly 
resource-constrained settings. Nonetheless, MSTN of-
fers a practical and scalable architecture for real-world 
applications in intelligent transportation, emergency 
response, and adaptive urban management.

ACM CCS (2012) Classification: Computing method-
ologies → Artificial intelligence → Computer vision
Information systems → Information Systems Appli-
cations → Spatial-temporal systems

Keywords: intelligent transportation systems, re-
al-time decision-making, robust optimization, sensor 
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1.	Introduction

The rapid urbanization and expansion of intel-
ligent sensing infrastructure, comprising sur-
veillance cameras, LiDAR networks, satellite 
imagery, and IoT sensors, has led to a vast in-
flux of multimodal spatiotemporal data [1][2]. 
These data capture both static features (e.g., 
road layouts) and dynamic activities (e.g., ve-
hicle and pedestrian movements), forming the 
basis for critical urban tasks such as traffic man-
agement and emergency response. However, 
effectively utilizing these heterogeneous data 
sources for robust and scalable decision-mak-
ing remains a significant challenge [3][4].
Despite advancements in spatiotemporal rec-
ognition and urban optimization, current ap-
proaches face several limitations. First, most 
conventional frameworks rely on single-mo-
dality data, such as visual feeds or static GIS 
maps, limiting their ability to provide compre-
hensive spatiotemporal awareness and mak-
ing them prone to noise and data loss [5][6]. 
Second, recognition and optimization are of-
ten treated as independent tasks in a sequen-
tial pipeline, where errors in detection cascade 
into suboptimal decisions, and feedback loops 
fail to enhance upstream perception [7]. This 
separation introduces latency and amplifies er-
rors in critical applications. Third, scalability 
and efficiency issues persist: methods that per-



232 H. Shu

form well in small-scale settings often struggle 
with the computational demands of large-scale 
city networks, leading to prohibitive response 
times and resource consumption [8]. Finally, 
cross-city generalization remains a challenge 
as models trained in one city often experience 
performance degradation when deployed else-
where due to variations in infrastructure, mo-
bility patterns, and sensor configurations [9]
[10]. Prior studies have reported significant 
performance degradation under real-world 
conditions, highlighting the fragility of exist-
ing systems.
To address these limitations, we propose the 
Multimodal Spatiotemporal Neural Network 
(MSTN), a unified end-to-end framework 
that integrates multimodal perception with re-
al-time decision-making. MSTN is built upon 
the three following core technical contribu-
tions: 

	● Modality-specific hybrid encoder archi-
tecture that processes visual, geometric, 
and traffic flow data through dedicated 
neural backbones (ResNet-Transform-
er, sparse 3D convolutions, and temporal 
RNNs), extracting complementary fea-
tures while preserving modality-specific 
structures 

	● Dynamic multimodal fusion mechanism 
with adaptive gating, which employs hier-
archical cross-modal attention to reweight 
modality contributions based on real-time 
input reliability, enhancing robustness 
against noisy, missing, or misaligned sen-
sor streams

	● Differentiable decision optimization lay-
er that bridges perception and control by 
transforming fused spatiotemporal em-
beddings into actionable strategies under 
real-world constraints, enabling end-to-
end training and achieving sub-30 ms in-
ference latency.

We evaluated MSTN on two established urban 
perception benchmarks: Cityscapes for dense 
scene understanding and nuScenes for multi-
modal trajectory prediction. Experimental re-
sults demonstrate that the proposed framework 
consistently outperforms existing methods in 
both recognition precision and optimization 
stability, while also exhibiting enhanced ro-

bustness against sensor noise and improved 
generalization across diverse urban environ-
ments. Statistically significant improvements 
across all metrics confirm the effectiveness of 
the integrated architecture. This work contrib-
utes a scalable and robust framework that ad-
vances the tight integration of multimodal per-
ception with real-time urban decision-making.

2.	Related Work

Recent progress in urban computing has fo-
cused on three key areas: 

(i)	 spatiotemporal perception
(ii)	 multimodal fusion 
(iii)	decision-aware optimization. 

Early systems treated these as separate com-
ponents, but recent research seeks integrated 
architectures that model perception and action 
together under real-world constraints. Below, 
we review developments in these areas and 
highlight the methodological gaps that moti-
vate our work.

2.1.	Spatiotemporal Perception in Urban 
Environments

Urban spatial understanding has evolved from 
static, single-modality models to dynamic, 
graph-based representations. Early approaches 
used CNNs for image parsing (e.g., Cityscapes) 
or LiDAR segmentation (e.g., PointNet++) but 
struggled to capture temporal dynamics [11]
[12]. However, these methods are inherently 
limited by their reliance on fixed graph struc-
tures, making them inflexible to adapt to re-
al-time changes like accidents or congestions, 
which are common in urban environments [13]
[14]. The introduction of Spatiotemporal Graph 
Convolutional Networks (ST-GCN) allowed 
for human motion modeling using skeletal 
graphs, later extended to traffic forecasting by 
encoding road networks as static graphs [15]
[16]. Yet, these methods fail to capture dynam-
ic interactions or emergent events, such as the 
effect of sudden traffic disruptions on neigh-
boring areas, resulting in poor adaptability and 
performance in real-world applications.
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2.4.	Research Gaps and Our Positioning

Three key limitations persist in the literature: 
1.	 Static or non-adaptive fusion that ignores 

real-time modality reliability
2.	 Decoupling of perception and optimiza-

tion, leading to error propagation and sub-
optimal decisions

3.	 Poor generalization across cities, exacer-
bated by dataset-specific biases and sensor 
degradation.

Our work directly addresses these gaps. Un-
like ST-GCN or UrbanFormer, MSTN uses dy-
namic gating to reweight modalities based on 
instantaneous signal quality, ensuring more re-
liable perception in real-time. In contrast to RL-
based optimizers or post-hoc planners, our dif-
ferentiable decision layer enables joint training 
of perception and control. Finally, we evaluate 
cross-city transfer on multiple real-world data-
sets, which is often missing in prior studies, and 
report statistically significant improvements (p 
< 0.01) in both accuracy and robustness. This 
positions MSTN as a robust, end-to-end urban 
AI solution, aligned with recent calls in compu-
tational transport research.

3.	Methodology

3.1.	Problem Formulation

In this work, we aim to address the problem 
of urban spatial recognition and dynamic op-
timization by developing a unified framework 
for multimodal spatiotemporal learning. Given 
the dynamic nature of urban environments, the 
problem can be formulated as a sequence-to-se-
quence prediction task. The input to the system 
consists of multimodal spatiotemporal data, 
represented as a set X over a temporal horizon 
T with multiple modalities:

X = {Xt
m | t = 1, 2, ..., T; m ∈M}        (1)

where T denotes the total number of time steps 
and M represents the set of modalities, includ-
ing visual, geometric, and sensor data. Each 
modality Xt

m at time step t is a high-dimension-
al tensor, which may vary in size depending on 

2.2.	Multimodal Fusion and Robust 
Representation Learning

Fusing heterogeneous urban data remains a 
challenge due to modality imbalance, temporal 
misalignment, and missing data. Early fusion 
methods like concatenation or late voting strug-
gle with error propagation and inefficiency, as 
they fail to consider the relative reliability of 
each modality [17][18]. Recent works, such as 
CrossModal-STNet and MM-TTA, use contras-
tive learning and test-time adaptation, offering 
improvements in handling distribution shifts 
across cities [19][20]. However, they treat all 
modalities as equally reliable, ignoring varia-
tions in signal quality due to sensor malfunc-
tions or environmental conditions, which can 
lead to significant performance degradation 
in practical scenarios. Dynamic Multimodal 
Gating introduces reliability-aware weighting, 
but this approach remains decoupled from the 
decision-making process, limiting its effective-
ness in end-to-end systems where continuous, 
real-time adaptation is crucial.

2.3.	Differentiable Optimization and 
Decision Integration

Traditional urban optimization methods, 
such as rule-based controllers and simula-
tion-in-the-loop reinforcement learning (RL), 
suffer from poor sample efficiency and signifi-
cant sim-to-real gaps [21]. While differentiable 
optimization layers, such as Neural MPC and 
OptLayer, show promise by embedding con-
strained solvers into neural networks, they typ-
ically assume perfect state observations, which 
are unrealistic in noisy urban environments 
[22]. Moreover, these methods are disconnect-
ed from perception, failing to account for the 
uncertainty in sensory inputs, which is critical 
for robust decision-making in dynamic urban 
contexts [23][24]. Recently, Perception-Aware 
MPC has attempted to bridge this gap by in-
corporating detection confidence into planning, 
but it still relies on hand-crafted features, not 
learned representations, making it less adaptive 
to complex, real-time data streams [25].
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the modality type, such as images, point clouds, 
or traffic flow data. The goal is to map the input 
sequence X to a sequence of outputs Y, repre-
senting the predicted future states, such as pe-
destrian trajectories or traffic flow predictions:

fθ: X → Y                          (2)

where Y represents the output predictions, typ-
ically in the form of spatial trajectories or opti-
mized control parameters. We aim to minimize 
the discrepancy between the predicted outputs 
Y and the ground truth Y*, with a loss function:

min ( ( ), *)f X Yθθ
ℒ

                     
(3)

where ℒ denotes the loss function used to quan-
tify the prediction error.
Additionally, the problem is subject to several 
assumptions: 
1.	 The temporal data is approximately sta-

tionary within short time windows, mean-
ing the statistical properties of the data do 
not change significantly over time

2.	 the different modalities are assumed to 
contain complementary information that 
can be effectively fused for improved pre-
diction

3.	 the system must be capable of handling 
noisy and missing data, which is common 
in real-world urban sensing systems.

The primary challenge addressed in this paper 
is the integration of these heterogeneous data 
sources into a unified, real-time decision-mak-
ing framework that can operate in dynamic, 
unpredictable urban environments. The next 
section provides an overview of the proposed 
framework.

3.2.	Overall Framework

The proposed system operates in three distinct 
phases, each addressing a critical part of the 
process from data acquisition to decision-mak-
ing, as shown in Figure 1. The first phase in-
volves data preprocessing, where raw sensor 
inputs from various modalities, including RGB 
images, LiDAR point clouds, and traffic flow/
GPS data, are aligned temporally, normalized, 
and cleaned. This phase also handles missing 

data through imputation techniques such as 
Kalman filtering or spline interpolation, ensur-
ing smooth data continuity and making it suit-
able for feature extraction.
In the second phase, modality-specific feature 
extraction takes place. Each modality, such as 
visual data, geometric point clouds, or traffic 
flow data, is processed using dedicated pipe-
lines. Visual data are processed with a hybrid 
ResNet-Transformer structure, where con-
volutional layers extract local features, and 
transformer-based attention mechanisms cap-
ture long-range dependencies. Geometric data, 
like LiDAR point clouds, are processed using 
sparse 3D convolutions to maintain spatial in-
tegrity while reducing memory usage. Traffic 
flow data are processed by temporal recurrent 
neural networks (LSTM/GRU) to capture the 
sequential nature of traffic patterns. The results 
from these modality-specific encoders are then 
combined into a unified feature representation.
The third phase involves multimodal fusion and 
decision-making. The features extracted from 
different modalities are synthesized using an 
attention mechanism that dynamically weights 
the contributions of each modality based on the 
reliability of the input data at each time step. 
This multimodal representation is then passed 
into a differentiable optimization layer, which 
generates control actions or predictions, such as 
traffic signal timings or pedestrian movement 
forecasts. The optimization layer ensures that 
the decision-making process is adaptive to the 
dynamic nature of urban environments while 
respecting real-time constraints and safety re-
quirements.
Thus, the proposed framework integrates pre-
processing, feature extraction, fusion, and opti-
mization into a cohesive end-to-end system. It 
effectively bridges the gap between multimodal 
urban perception and dynamic decision-mak-
ing, ensuring robust and scalable performance 
in real-world urban settings.

3.3.	Module Descriptions

This section describes the core modules of the 
proposed Multimodal Spatiotemporal Neu-
ral Network (MSTN). The system operates 
through four major stages: data preprocessing, 
modality-specific feature extraction, multi-



235Towards Robust Urban Spatial Recognition with Dynamic Optimization...

modal fusion, and decision-making. Each stage 
plays a crucial role in processing heterogeneous 
urban data, ensuring robust and efficient deci-
sion-making for real-time urban systems.

3.3.1.	Data Processing

Raw urban sensory data often suffer from noise, 
missing values, and temporal misalignment. To 
address this, we define preprocessing as:

interp ( , ), ( )t t t t tx f x x x' x−∆ +∆= = K           (4)

where finterp denotes spline interpolation for 
missing values, and K represents Kalman fil-
tering. This ensures temporal synchronization 
and robust data streams for downstream tasks. 
The Kalman filter is specifically applied to im-
prove the accuracy of noisy sensor data, while 
the spline interpolation ensures continuity in 
missing values, providing a smoother input for 
subsequent processing.

3.3.2.	Modality-Specific Feature Extraction

Each modality is encoded via specialized neu-
ral architectures:

h(v) = Φv(x(v)), h(g) = Φg(x(g)), h(t) = Φt(x(t))     (5)

where h(v), h(g) and h(t) represent visual, geo-
metric, and traffic embeddings respectively. 
For example, Visual data are processed by a 

ResNet-Transformer encoder, combining con-
volutional layers for local feature extraction 
and transformer-based attention mechanisms 
to capture long-range dependencies, Geomet-
ric data, such as LiDAR point clouds, are pro-
cessed using sparse 3D convolutions, main-
taining the spatial integrity of the data while 
reducing memory usage, and Traffic flow data 
are processed using temporal recurrent neu-
ral networks (LSTM/GRU), which effectively 
model the sequential patterns of urban traffic.
The outputs from these modality-specific en-
coders are combined to create a unified feature 
representation, which is crucial for the multi-
modal fusion stage.

3.3.3.	Multimodal Fusion with Attention

The fusion of features from different modalities 
is achieved using a hierarchical cross-modal at-
tention mechanism. This mechanism employs 
dynamic gating and selective attention redis-
tribution to adaptively weight the contributions 
of each modality, based on the reliability of the 
input data at each time step:

{ }

( )
( )

( )
, ,

exp( )
* ,

exp( )

m
qm

m m j
m v g t q

j

W h
h h

W h
α α

∈

= ⋅ =∑ ∑
     

(6)

where αm are adaptive attention weights learned 
dynamically. The attention mechanism ensures 
that modalities with higher reliability, such as 

Figure 1. Overall Framework and Each Module.
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those with better temporal alignment or fewer 
missing values, contribute more significantly 
to the final multimodal representation. Dynam-
ic gating is employed to adjust the importance 
of each modality based on real-time input data 
quality, making the system more resilient to 
sensor noise and incomplete data.

3.3.4.	Optimization Layer

The final decision-making process is embedded 
into a differentiable optimization layer, which 
allows for the integration of perception and 
control in a single end-to-end framework. The 
optimization problem is formulated as:

min ( ) ( )
u

u C uλ+ℒ
                   

(7)

subject to dynamic constraints:
g(u) ≤ 0, h(u) = 0                  (8)

where ℒ(u) represents the task-specific loss, 
such as trajectory deviation or traffic conges-
tion, and C(u) enforces safety margins and op-
erational constraints. The term λ is a balancing 
factor that adjusts the relative importance of the 
loss function and constraints. This optimization 
layer ensures that decisions are both feasible 
and optimal, respecting real-world constraints 
while enabling rapid inference. The differentia-
ble optimization mechanism enables end-to-end 
training, facilitating the joint optimization of 
perception and decision-making components.

3.4.	Objective Function and Optimization

The objective function for the proposed frame-
work is designed to simultaneously optimize 
spatial recognition accuracy and dynamic deci-
sion-making efficiency. The total loss function 
is a weighted sum of several components, each 
addressing different aspects of the task:
Prediction Loss: Measures the error between 
predicted outputs Y and ground truth Y*:

ℒpred = || Y - Y* ||22                   (9)

Temporal Consistency Loss: Ensures tempo-
ral coherence of predictions over multiple time 
steps:

ℒtemp = 
1

2
1 2

1
|| ( ) ( ) ||

T

t t
t

f X f X
−

+
=

−∑           (10)

Cross-Modal Alignment Loss: Encourages 
alignment between different modality represen-
tations:

ℒalign = 1
,

|| ||m n

m n M
Z Z

∈

−∑              (11)

Attention Regularization Loss: Regularizes at-
tention weights to avoid excessive reliance on 
any single modality:

ℒatt = ( )i
i

H α∑                     (12)

Graph Structure Regularization: Ensures the 
graph structure remains consistent with prior 
knowledge or spatial constraints:

ℒgraph = Tr(Z
⊥
LZ )                 (13)

The final objective function is the weighted 
sum of these components:

ℒ = λ1ℒpred + λ2ℒtemp + λ3ℒalign + λ4ℒatt + λ5ℒgraph  
(14)

where λ1, λ2, λ3, λ4, λ5 are hyperparameters that 
control the relative importance of each loss 
term.
The optimization process uses the AdamW op-
timizer to update the parameters θ. The update 
rule is as follows:

θt +1 = θt - η ∙ 
ˆ

ˆ
t

t

m
v ε+

             (15)

where η is the learning rate, and mt and vt are 
the first and second moment estimates, respec-
tively. Additionally, learning rate scheduling is 
applied using a cosine annealing scheme to en-
sure convergence stability.
The model consists of several components, in-
cluding a ResNet-Transformer for visual data, 
sparse 3D convolutions for LiDAR point clouds, 
and LSTM/GRU networks for traffic flow. The 
total number of parameters depends on the spe-
cific configurations of these modules, but a typ-
ical configuration would involve several million 
parameters for the ResNet-Transformer encoder 
and a few hundred thousand for the other mo-
dality-specific encoders. Training the MSTN re-
quires significant computational resources due 
to the complexity of multimodal data process-
ing and optimization. A typical training setup in-
volves using GPUs (e.g., Nvidia V100 or A100) 
for parallel processing, with a typical training 
time ranging from 24 to 72 hours. Training time 
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depends on the dataset size, which implies a 
city-wide dataset with multimodal inputs over 
a timespan of several days. The overall compu-
tational complexity of the model is primarily 
driven by the feature extraction and fusion stag-
es. The time complexity for processing a single 
input batch of size N can be approximated as 
O(N ∙ (CResNet + CLiDAR + CLSTM)), where CResNet, 
CLiDAR, CLSTM represent the complexity of the re-
spective modules. The optimization layer adds 
an additional complexity of O(N 

2) due to the 
decision-making constraints.

4.	Experiments and Results

4.1.	Experimental Setup

To systematically evaluate the proposed frame-
work, we employed two large-scale multimodal 
urban datasets: Cityscapes and nuScenes. Each 
dataset provides complementary modalities, in-
cluding visual imagery, LiDAR point clouds, 
GPS trajectories, and spatiotemporal annota-
tions. A comprehensive dataset summary is 
provided in Table 1, which outlines the number 
of samples, modality coverage, and annotation 
granularity.
The Cityscapes dataset primarily focuses on 
high-quality RGB imagery with dense annota-
tions, making it suitable for urban scene seg-
mentation and object detection tasks. It was 
developed by the MPII and Technical Univer-

sity of Munich (TUM). This dataset is publicly 
available for research purposes and can be ac-
cessed through the official Cityscapes website.
The nuScenes dataset offers a richer multimodal 
environment, including LiDAR, RADAR, and 
GPS sensors, and is designed for spatiotempo-
ral trajectory prediction tasks. It includes over 
1.4 million frames and was created by Aptiv 
(formerly Delphi Automotive) in collaboration 
with the Massachusetts Institute of Technology 
(MIT). The dataset is publicly available for re-
search and can be accessed through the official 
nuScenes website.
Together, these datasets ensure that our evalua-
tion covers both high-resolution visual recogni-
tion and complex multimodal urban dynamics. 
A detailed overview of the datasets is presented 
in Table 1.
All experiments were conducted on a comput-
ing cluster with 8 NVIDIA A100 GPUs (80GB 
memory each), Intel Xeon Gold 6338 CPUs 
(2.0GHz, 32 cores), and 512GB RAM. The 
software environment included PyTorch 2.0, 
CUDA 12.1, and cuDNN 8.9. The full hardware 
configuration is detailed in Table 2. This setup 
ensures reproducibility and provides sufficient 
computational capacity to handle large-scale 
multimodal data. The availability of high-mem-
ory GPUs was particularly critical for training 
the spatiotemporal neural modules with large 
batch sizes, while the multi-core CPU setup al-
lowed efficient data preprocessing and loading.

Table 1. Dataset Overview.

Dataset Samples Modalities Annotations

Cityscapes 5,000 images RGB Segmentation, detection

nuScenes 1.4 M frames RGB, LiDAR, RADAR, 
GPS Detection, trajectories

Table 2. Hardware Configuration.

Component Specification

GPU 8× NVIDIA A100 (80GB)

CPU Intel Xeon Gold 6338, 32 cores

RAM 512GB

Software PyTorch 2.0, CUDA 12.1, cuDNN 8.9
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For a systematic evaluation, we adopted a diverse 
set of metrics to assess different aspects of the 
proposed framework, such as spatial accuracy, 
detection capability, and model efficiency. The 
evaluation metrics are categorized as follows:
1.	 Spatial Accuracy: Measured by Mean Per 

Joint Position Error (MPJPE) and Average/
Final Displacement Error (ADE/FDE). 
These metrics evaluate the precision of 
joint positions and trajectory prediction, 
respectively.

2.	 Detection Capability: Measured by Mean 
Average Precision (mAP), which reflects 
the ability to detect objects across modal-
ities.

3.	 Model Efficiency: Measured by Conver-
gence Speed, quantified by the number of 
epochs required to reach 90% of the best 
performance.

A summary of these evaluation metrics is 
shown in Table 3. The table clearly distinguish-
es between the different tasks, ensuring a more 
structured evaluation framework.
Training was conducted using the AdamW op-
timizer, with an initial learning rate of 0.001, 
a cosine annealing schedule, and a batch size 
of 64. Training details, including loss functions 
and regularization terms, are provided in Table 
4. In particular, the combination of cross-en-
tropy and L2 losses balances classification and 
regression tasks, while regularization helps pre-
vent overfitting on smaller datasets like City-
scapes. The cosine annealing schedule ensured 
stable convergence across 100 training epochs, 
gradually lowering the learning rate to fine-tune 
spatiotemporal parameters.

To facilitate a clear understanding of the exper-
imental workflow and its empirical outcomes, 
we summarize the key stages of MSTN eval-
uation in Table 5. Each step, from data prepro-
cessing to cross-dataset validation, is annotated 
with its purpose, data sources, technical im-
plementation, and corresponding quantitative 
result. This overview enables readers to rap-
idly grasp how methodological design choices 
translate into measurable performance gains.

4.2.	Baselines

To ensure a rigorous comparison, we selected 
both classic benchmarks and recent state-of-
the-art (SOTA) models representing different 
methodological families. The baselines include 
Faster R-CNN and ST-GCN as classic repre-
sentatives, and Motion Transformer (MoT), 
PointPillars, and UniTraj as recent advances. A 
summary of these methods and their rationales 
for inclusion is provided in Table 6.
By evaluating these diverse methods, we ensure 
a balanced benchmarking process that spans both 
historical approaches and the latest advance-
ments in urban perception and decision‑making.

4.3.	Quantitative Results

The performance of the proposed approach 
(MSTN) was evaluated in comparison to base-
line models across the Cityscapes and nuScenes 
datasets. The results consistently demonstrate 
that MSTN outperforms prior models in terms 
of both recognition accuracy and optimization 
stability.

Table 3. Evaluation Metrics.

Metric Task Description

MPJPE Trajectory Prediction Mean error in joint positions (spatial 
accuracy).

ADE/FDE Trajectory Prediction Average/Final displacement error for 
trajectory prediction.

mAP Detection Mean Average Precision for object 
detection across modalities.

Convergence Speed Optimization Epoch count to reach 90% of the best 
performance (training efficiency).
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Table 4. Training Hyperparameter.

Parameter Value

Optimizer AdamW

Learning Rate 0.001 (cosine annealing)

Batch Size 64

Epochs 100

Loss Functions Cross-entropy, L2, Regularization

Table 5. Training Hyperparameters.

Step Purpose Data Source(s) Method / Technique Key Result

1. Data Preprocessing

Align heterogeneous 
streams and impute 
missing values to 
ensure temporal 

continuity

Cityscapes, nuScenes Kalman filtering + 
spline interpolation

Synchronized inputs 
with < 2% effective 

data loss

2. Modality-Specific 
Feature Extraction

Extract complemen-
tary features while 
preserving modali-

ty-specific structures

RGB, LiDAR, GPS/
traffic flow

ResNet-Transform-
er (visual), Sparse 

3D CNN (LiDAR), 
LSTM/GRU (traffic)

Enables high-fidelity 
multimodal  

representation

3. Dynamic  
Multimodal Fusion

Adaptively reweight 
modalities based on 

real-time reliability to 
enhance robustness

Outputs from Step 2
Hierarchical 

cross-modal attention 
with dynamic gating

23.5% lower ADE vs. 
ST-GCN under 30% 

sensor corruption

4. Differentiable 
Optimization

Bridge perception 
and decision-making 
via end-to-end train-

able control

Fused spatiotemporal 
embeddings

Constrained optimi-
zation layer  
(Eqs. 7–8)

Sub-30 ms infer-
ence latency; stable 
real-time decisions

5. Cross-City  
Generalization

Evaluate transfer-
ability across distinct 
urban environments

Train: nuScenes → 
Test: Cityscapes

Zero-shot evaluation 
with fixed MSTN 

weights

+3.5% mAP and 
-8.7% ADE vs. 

UniTraj
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that the gains are robust across different train-
ing seeds and data splits.
A convergence analysis was conducted to eval-
uate training efficiency. Figure 4 illustrates that 
MSTN exhibits faster convergence and lower 
variance across epochs compared to baseline 
models. Specifically, MSTN reaches 90% of 
peak performance within 28 epochs, whereas 
ST-GCN and MoT typically require more than 
40 epochs. This accelerated convergence, com-
bined with reduced variance across runs, under-
scores the stability and efficiency of MSTN's 
optimization strategy, making it well-suited for 
real-time deployment in urban systems.
In summary, these results demonstrate the su-
perior performance of MSTN in both spatial 
recognition and dynamic optimization, with 
statistically significant improvements over 
classic and state-of-the-art baselines. The mod-
el's faster convergence and stable training be-
havior reinforce its potential for real-time urban 
applications.

On the Cityscapes dataset, MSTN achieves 
a relative improvement of 6.8% in mAP over 
Faster R-CNN and 5.2% over PointPillars, in-
dicating the effectiveness of multimodal fusion 
for dense urban detection. For the nuScenes 
dataset, which emphasizes trajectory forecast-
ing, MSTN surpasses ST-GCN and Motion 
Transformer (MoT) by 11.3% and 8.9% in 
ADE/FDE, respectively, showcasing stronger 
spatiotemporal modeling capabilities.
Figure 2 provides a comprehensive visual com-
parison of these performance improvements 
across both datasets, highlighting MSTN's ad-
vantages in detection accuracy (mAP), trajecto-
ry precision (ADE/FDE), and spatial consisten-
cy (MPJPE).
To assess the statistical significance of these 
improvements, paired t-tests were performed 
across multiple training trials. Figure 3 shows 
that the improvements of MSTN over ST-GCN 
and MoT are statistically significant (p < 0.01), 
with narrow confidence intervals confirming 

Table 6. Training Hyperparameters.

Method Category Key Characteristics Limitations

Faster R-CNN Classic  
detection

Region proposal network (RPN) for 
precise 2D object localization; widely 
adopted as a detection benchmark.

Lacks real time efficiency; cannot in-
tegrate multimodal data (e.g., LiDAR, 
GPS).

ST GCN
Classic  

trajectory  
prediction

Graph convolutional networks (GCN) 
for modeling sequential dependencies 
in pedestrian/vehicle trajectories.

Assumes static graph topologies; less 
adaptable to dynamic urban traffic 
changes.

Motion  
Transformer 

(MoT)

Recent SOTA 
(trajectory)

Transformer based attention for cap-
turing long range temporal dependen-
cies; improves forecasting accuracy.

High computational cost; inefficient 
on large scale datasets.

PointPillars
Recent SOTA 

(LiDAR  
detection)

Voxel based processing of point 
clouds for efficient 3D object detec-
tion; balances accuracy and speed.

Cannot fuse multimodal inputs; limit-
ed to LiDAR only scenarios.

UniTraj
Recent SOTA 
(multimodal 
trajectory)

Unifies visual, sensor, and spatiotem-
poral inputs for trajectory forecasting; 
improves prediction accuracy through 
multimodal fusion.

High model complexity; compu-
tational demands hinder real-time 
deployment.
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Figure 2. MSTN achieves superior performance over baseline models 
in both urban detection (Cityscapes, mAP↑) and trajectory prediction 

(nuScenes, ADE/FDE↓, MPJPE↓).

Figure 3. Statistical Significance of Performance Gains on nuScenes.
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4.4	 Qualitative Results
Qualitative results are provided to visually 
showcase the advantages and behavior of the 
proposed model (MSTN) through represen-
tative cases. These cases highlight both the 
strengths and limitations of MSTN in complex 
urban scenarios.
Successful Case: Pedestrian Trajectory Predic-
tion in Dense Crowds
Figure 5 illustrates a dense crowd scenario in 
which MSTN's predicted pedestrian trajectories 
closely align with the ground truth. In contrast, 
baseline models such as ST-GCN exhibit sig-
nificant divergence, particularly in occluded re-
gions. This success can be attributed to MSTN's 
multimodal fusion mechanism, which integrates 
visual, LiDAR, and GPS data, and employs an 
attention mechanism to dynamically adjust mo-
dality contributions based on input reliability. 
These results demonstrate MSTN's robustness 
in handling occlusions and noisy data in crowd-
ed urban environments.
Failure Case: Low-Visibility Scenario in Urban 
Traffic
Despite its strengths, MSTN also exhibits lim-
itations under challenging environmental con-
ditions. Figure 6 presents a low-visibility sce-

nario (e.g., foggy weather) in which MSTN's 
trajectory predictions diverge substantially 
from the ground truth. The performance degra-
dation is primarily due to sensor data degrada-
tion: LiDAR signals are occluded by weather 
conditions, and visual data become unreliable. 
In this case, MSTN's multimodal fusion mech-
anism, which heavily relies on the quality of 
input modalities, fails to compensate for the 
missing or corrupted data. This failure under-
scores the need for improved robustness against 
environmental disturbances and suggests direc-
tions for future work, such as incorporating 
more resilient sensor fusion techniques or data 
imputation strategies.

4.5.	Robustness

To evaluate the robustness of the proposed 
model, we conducted experiments under three 
challenging conditions: multi-task learning, 
noise injection, and cross-dataset transferabil-
ity. The goal was to assess MSTN's ability to 
handle multiple concurrent tasks, noisy sensor 
inputs, and generalization across different ur-
ban environments.

Figure 4. Convergence Analysis of MSTN vs Baseline Models.
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MSTN was trained to simultaneously perform 
object detection (using mAP) and trajectory 
forecasting (using ADE/FDE) on the nuScenes 
dataset. The model maintained stable perfor-
mance across both tasks, demonstrating its ca-
pacity for integrated perception and prediction 
without significant interference.
We injected Gaussian noise into the sensor in-
puts at three levels: 10%, 20%, and 30% of the 

signal magnitude. Figure 7 shows that MSTN 
maintains stable performance across all noise 
levels, with only a minimal drop in accuracy 
even at 30% noise. In contrast, baseline mod-
els such as ST-GCN and Motion Transformer 
(MoT) exhibit significant degradation under the 
same conditions. This robustness is attributed 
to MSTN's dynamic fusion mechanism, which 
adaptively reweights modality contributions 

Figure 5. Qualitative Trajectory Prediction in Dense Crowd.

Figure 6. Failure Case: Low-Visibility Scenario in Urban Traffic.
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based on real-time reliability, thereby prioritiz-
ing less corrupted inputs.
To evaluate generalization, MSTN was trained 
on the nuScenes dataset and tested on the City-
scapes dataset. MSTN achieved 3.5% higher 
mAP and 8.7% lower ADE compared to the 
best-performing baseline (UniTraj), demon-
strating its ability to generalize across diverse 
sensor configurations and urban layouts.
MSTN's robustness is further enhanced by its 
preprocessing pipeline, which includes Kal-
man filtering and spline interpolation for tem-
poral alignment and missing-data imputation. 
These steps ensure smooth, synchronized input 
streams, contributing to model stability under 
noisy or incomplete data conditions.
Performance improvements under all robust-
ness conditions were found to be statistically 
significant ( p < 0.01) based on paired t-tests 
across five independent trials. These results 
confirm that MSTN's multimodal fusion and 

optimization strategies enable it to consistently 
outperform prior models in noisy, dynamic, and 
cross-domain urban scenarios.

4.6.	Ablation Study

An ablation study was conducted to quantify 
the contribution of each module to the overall 
performance of the proposed framework. The 
study was performed on the nuScenes dataset 
using the trajectory prediction task (evaluated 
by MPJPE and trajectory accuracy). The re-
sults, summarized in Table 7, highlight the sig-
nificant impact of each module.
The full model (MSTN) achieves the best per-
formance, with an MPJPE of 1.27 m and a tra-
jectory accuracy of 89.7%. Removing multi-
modal fusion causes the most substantial drop, 
increasing MPJPE to 1.68 m and reducing ac-
curacy to 82.3%, demonstrating the importance 
of cross-modal alignment. Without spatiotem-

Figure 7. Performance Comparison under Different Noise Levels.
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poral modeling, the model struggles to capture 
temporal dependencies, resulting in an accura-
cy decrease to 84.5%. The absence of dynamic 
optimization reduces accuracy to 86.1%, indi-
cating that the model becomes less adaptive in 
dynamic urban environments.
The most significant performance degradation 
occurs when hybrid fusion is replaced with late 
fusion, where MPJPE increases to 1.74 m and 
accuracy drops to 80.9%. This confirms that 
hybrid fusion plays a crucial role in enhancing 
model stability and robustness.
In summary, the ablation study indicates that 
multimodal fusion and spatiotemporal mod-
eling are indispensable for maintaining high 
accuracy and stability. Dynamic optimization 
contributes to adaptability but is less critical 
than the former two components for overall 
performance.

5.	Discussion

The experimental evaluation of the MSTN 
framework demonstrates its superior perfor-
mance in urban spatial recognition and dynam-
ic optimization. Notable improvements, such 
as an 18.7% gain in recognition accuracy and a 
23.5% reduction in pose estimation error, stem 
from fundamental architectural innovations. 
The core mechanism is the dynamic gating and 
hybrid fusion strategy. Unlike conventional 
methods that treat all modalities as equally re-
liable, MSTN uses a hierarchical cross-modal 
attention mechanism to evaluate the instanta-
neous signal quality of inputs like RGB images, 
LiDAR point clouds, and traffic flow data. This 
allows adaptive reweighting of modality con-
tributions in real time, effectively suppressing 
noisy data and amplifying trustworthy signals. 
This robustness is evident from stable perfor-

Table 7. Ablation Study.

Configuration MPJPE (m) Trajectory  
Accuracy (%) Training Stability Remarks

Full Model (MSTN) 1.27 89.7 High Baseline with all 
modules enabled

w/o Multimodal 
Fusion 1.68 82.3 Medium

Performance drop 
due to lack of 
cross-modal  
alignment

w/o Spatiotemporal 
Modeling 1.55 84.5 Low

Temporal  
dependencies not 

well captured

w/o Dynamic  
Optimization 1.46 86.1 Medium

Optimization less 
adaptive in dynamic 

scenarios

w/o Hybrid Fusion 
(Late Fusion only) 1.74 80.9 Low Largest degradation 

observed
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mance under up to 30% sensor corruption, with 
the model adapting to degraded modalities by 
relying on complementary inputs. Additionally, 
the integration of a differentiable optimization 
layer bridges the gap between perception and 
action, enabling end-to-end training that opti-
mizes both recognition accuracy and decision 
feasibility. This explains the significant reduc-
tions in trajectory prediction error (ADE/FDE) 
and optimization instability.
Despite its strengths, MSTN has limitations. It 
depends on synchronized, high-quality multi-
modal inputs, and while it is robust to moderate 
noise, performance drops in low-visibility cas-
es, such as heavy fog occluding both camera 
and LiDAR. The dynamic fusion mechanism, 
though adaptive, lacks a strong predictive 
model to hallucinate missing data. Additional-
ly, the computational complexity of the atten-
tion-based fusion remains a concern for deploy-
ment in resource-constrained environments. 
While MSTN is more efficient than some base-
lines, its quadratic complexity with respect to 
input sequence length could become a bottle-
neck for real-time processing on edge devices 
in city-scale applications. The evaluation scope 
is limited, and generalization to cities with rad-
ically different urban layouts or sensor infra-
structures requires further validation.
MSTN's core capabilities, robust multimod-
al fusion and end-to-end spatiotemporal op-
timization, suggest immediate applications 
in urban intelligence systems. In intelligent 
transportation, it can optimize adaptive traffic 
signal control by considering vehicle counts, 
pedestrian intent, and intersection dynamics, 
improving congestion and safety. For autono-
mous vehicle navigation, its reliable trajectory 
prediction enhances path planning in crowd-
ed scenes. Beyond transportation, MSTN can 
support emergency response coordination by 
fusing drone video, sensor data, and social me-
dia feeds to optimize crisis resource dispatch. 
The principles of reliability-aware fusion also 
enable transfer to other domains. In healthcare, 
fusion of vital signs, imaging, and lab results 
could predict patient deterioration, while in en-
vironmental monitoring, it could improve di-
saster risk forecasting. The framework aligns 
with Digital Twin and IoT paradigms, where 
it could serve as the ''brain'' for translating re-

al-time sensor streams into actionable insights 
for urban management.
To address limitations and expand MSTN's 
impact, future research should focus on decou-
pling performance from computational cost. In-
vestigating efficient attention variants such as 
linear attention or memory-efficient transform-
ers could enable deployment on edge devices 
while maintaining fusion quality. Integrating 
self-supervised or semi-supervised learning 
techniques could reduce reliance on labeled 
datasets, helping the model develop robust 
cross-modal representations. From a systems 
perspective, federated learning should be ex-
plored to preserve privacy by training models 
across cities or institutions without centralizing 
sensitive data. Finally, extending the temporal 
horizon of the model to allow for long-term 
forecasting (hours to days) would open oppor-
tunities for urban design, infrastructure plan-
ning, and policy simulation, transitioning from 
reactive control to proactive management.

6.	Conclusion
This study tackles the critical challenge of 
achieving reliable spatial awareness and re-
sponsive decision-making in dynamic urban 
settings, where multimodal data streams are 
often heterogeneous, noisy, or incomplete. 
We present the MSTN, an end-to-end frame-
work that unifies adaptive multimodal fusion 
with differentiable decision optimization. The 
framework makes three principal technical 
contributions: (1) a dynamic gating mechanism 
that reweights modality-specific features based 
on real-time input reliability, enabling robust 
fusion under sensor noise or corruption, (2) a 
spatiotemporal backbone that captures both lo-
cal geometry and long-range dependencies in 
urban scenes, and (3) a differentiable optimiza-
tion layer that bridges perception and control, 
allowing joint training of recognition and poli-
cy modules.
Empirically, MSTN demonstrates consistent 
performance gains over established baselines. 
On Cityscapes, it achieves a 6.8% improvement 
in mean Average Precision (mAP) over Faster 
R‑CNN, and on nuScenes, it reduces Average 
Displacement Error (ADE) by 11.3% compared 
to ST‑GCN. The framework maintains stable 
accuracy under up to 30% simulated sensor cor-
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ruption and shows improved generalization in 
cross‑city transfer experiments, confirming its 
robustness and adaptability. These results are 
statistically significant (p < 0.01) and are fur-
ther validated through ablation studies, which 
underscore the necessity of each core compo-
nent, especially the dynamic fusion module, for 
achieving high accuracy and stability.
From an academic standpoint, this work offers a 
structured architectural template for multimod-
al spatiotemporal learning, directly address-
ing the common decoupling of perception and 
optimization in prior systems. By formalizing 
the urban recognition‑and‑decision problem as 
a constrained sequence‑to‑sequence task and 
providing reproducible module‑level evalua-
tions, the study advances the design of systems 
that are both accurate and inherently robust to 
real‑world disturbances.
In practical terms, MSTN provides a scalable 
software core for urban intelligence applica-
tions where low‑latency inference is essential. 
Its sub‑30 ms inference time and noise‑tolerant 
fusion make it suitable for real‑time traffic sig-
nal adaptation, crowded‑scene trajectory fore-
casting, and emergency‑response coordination. 
However, deployment in highly resource‑con-
strained edge settings remains limited by the 
quadratic complexity of the attention‑based fu-
sion, and performance in extreme environmen-
tal conditions (e.g., dense fog simultaneously 
degrading camera and LiDAR) requires further 
hardening through predictive imputation or 
stronger prior models.
Immediate technical improvements should fo-
cus on reducing computational overhead, e.g., 
via efficient attention variants, to enable wid-
er edge deployment. Incorporating self‑super-
vised pretraining could lessen dependence on 
large annotated datasets, while privacy‑pre-
serving techniques such as federated learning 
would support secure multi‑city model train-
ing. Extending the predictive horizon to lon-
ger time scales (hours to days) would further 
broaden the framework's utility in urban plan-
ning and resilience management. Ultimately, 
this work provides a reproducible, modular 
foundation for building urban AI systems that 
can perceive, reason, and act in harmony with 
the complex, ever‑changing dynamics of city 
environments.
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