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To improve performance scalability of concurrent data
structures, one solution is to relax their sequential se-
mantics. While a variety of specification approaches
focus on characterizing the relaxed semantics, cli-
ent-side reasoning using the current methodologies
is difficult. We employ nondeterministic abstract data
types (NADTSs) for the first time to specify the relaxed
concurrent data structures, and as instantiations of our
specification approach, we propose new correctness
criteria of out-of-order queues and stacks. We further
prove the relaxation equivalence of the out-of-order
dequeue and enqueue operations. Our specification
approach is intuitive and generic, and can provide cli-
ents with explicit interfaces. As a demonstration of our
approach, we specify and verify the k-segment queue.
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1. Introduction

With the continuous development of multi-
core processors and systems, it has become in-
creasingly important to design and implement
high-concurrency data structures in order to ef-
ficiently utilize these resources [1, 2]. Correct-
ness conditions for concurrent data structures
usually equire that each execution of a concur-
rent data structure is equivalent to a sequential
execution of its specification model (as its se-
quential semantics). This equivalent relation-
ship is formally captured by consistency condi-
tions, such as linearizability [3].

The sequential semantics of concurrent data
structures inevitably lead to memory contention

in parallel environments, thus limiting scalabil-
ity [4—6]. One solution is to relax the sequential
semantics of concurrent data structures [7, 8].
For example, a relaxed semantics of a standard
"FIFO" queue allows each dequeue method to
remove any of the k elements nearest to the
head instead of just the head, and allows each
enqueue method to insert an element into the
position which is at most k positions away from
the tail. In sequential environments, this relaxed
semantics offers no performance improvement
for the implementations of queues. However,
in parallel environments, such relaxed seman-
tics can reduce data contention. For example,
multiple concurrent dequeue (enqueue) oper-
ations, which originally contend for access to
a single head element (the tail position), now
compete for the first k elements (the last k posi-
tions). Thus, relaxing the sequential semantics
facilitates the design and implementation of
higher-performance concurrent data structures
[9-13]. Recently, numerous implementations
of these relaxed data structures (also called
relaxed concurrent data structures) have been
proposed.

The existing work in [7-8] provides quantita-
tive approaches to formally describe such re-
laxed semantics. Relaxing the data structure
corresponds to defining a bounded distance
away from the standard sequential specifica-
tion. For example, Henzinger et al. formalized
and generalized the notion of relaxations, and
characterized two generic instances: out-of-or-
der and stuttering relaxations. However, some
relaxation mechanisms of concurrent data
structures, such as local-thread relaxation, are
difficult to quantify. Furthermore, these speci-



220

J. Pengand T. Wen

fication methods do not provide users with ex-
plicit specification interfaces, preventing users
from directly leveraging these specifications to
reason about client programs.

Nondeterministic abstract data types (NADTs)
allow operations to have multiple possible out-
comes for the same input parameters. In this pa-
per, we extend existing methodologies for ADT
implementation in sequential environments,
and use NADTs to depict random behavior of
relaxed concurrent data structures. We employe
NADTs for the first time to characterize the re-
laxed semantics of concurrent data structures,
such as out-of-order and local-thread relax-
ations. We further prove that the out-of-order
relaxations of dequeue and enqueue operations
have the same impact on causing "error bound".
The out-of-order stacks do not possess analo-
gous properties. Based on the above discovery,
we propose new correctness criterions of out-
of-order queues and stacks. As a demonstra-
tion of our approach, we specify and verify the
k-segment queue. Our specification approach
is intuitive and generic, and can provide clients
with explicit interfaces. Clients do not need to
know the implementation details of concurrent
data structures and can use the NADTs interfac-
es to reason about their programs.

The main contributions of this paper are:

1. present the specification framework based
on NADTs for relaxed concurrent data
structures

2. prove the relaxation equivalence of the
out-of-order dequeue and enqueue opera-
tions

3. specify and verify the k-segment queue.

The structure of this paper is as follows. In Sec-
tion 2, we recall the definition of linearizability.
In Section 3, we formalize nondeterministic ab-
stract data types, and illustrate the specification
framework on two generic instances, out-of-or-
der and local-thread relaxations. In Section 4,
we prove that the relaxation equivalence of the
out-of-order dequeue and enqueue operations
and show that the out-of-order pop and push op-
erations do not hold the analogous property. In
Section 5, we present new correctness criteria
for out-of-order queues and stacks. In Section
6, we specify and verify the k-segment queue.

Finally, we discuss related work and conclude
in Section 7 and 8.

2. Linearizability

In this section, we introduce basic notations
and review the definition of linearizability [3].
We refer to an execution of a method as an
operation. We denote an execution as a finite
sequence of totally ordered atomic events. We
represent the calling of a method by an invo-
cation event, and the return of a method by a
response event. An execution of a method starts
with the invocation event, executes its internal
atomic events until the final response event.

A history of a concurrent data structure is a se-
quence of its invocation and response events
generated in an execution. An invocation event
matches a response event if they belong to the
same operation. A history is sequential if every
invocation event, except possibly the last, is
immediately followed by its matching response
event. A sequential history of a concurrent data
structure is legal if its corresponding sequential
execution satisfies the sequential specification
of the concurrent data structure.

A history is complete if every invocation event
has a matching response event. An invoca-
tion event is pending in a history if there is no
matching response event to it. For an incom-
plete history H, a completion of H is a com-
plete history gained by adding some matching
response events to the end of H and removing
some pending invocation events within H. Let
Compl(H) be the set of all completions of the
history H. For any two operations op, and op,,
we say that op, precedes op, in a history, if the
response event of op, precedes the invocation
event of op,.

A history H of a concurrent data structure is
linearizable with respect to its sequential spec-
ification if there exists a complete history C €
Compl(H) and a legal sequential history S such
that (1) S is a permutation of C; (2) for any two
operations op,, op,, if in C, op, precedes op,,
then in S, op, also precedes op,. S is called a
linearization of H. A concurrent data structure
is linearizable with respect to its sequential
specification if every history of the concurrent
data structure is linearizable with respect to the
sequential specification.
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3. Characterizing Relaxations Using
NADTs

In this section, we formalize nondeterministic
abstract data types (NADTs). We use NADTs as
the specification models of relaxed concurrent
data structures and illustrate the specification
framework on two generic instances, out-of-or-
der and local-thread relaxations.

3.1. Nondeterministic Abstract Data Types

We use the model-based way to define nonde-
terministic abstract data types (NADTs), where
a NADT is considered as a set of abstract val-
ues together with a set of atomic methods; the
methods are specified by defining how they af-
fect the abstract values. Behaviors of the meth-
ods in the NADTs are nondeterministic, i.e., A
method may return different results each time it
is called under a specific pair of state and input.

Definition 1. A nondeterministic abstract data
type is a tuple,(4State, o, Aop, Input, Output),
where AState is a set of states; o € AState is the
initial state; Aop is a set of methods; Input is
a set of input values; Output is a set of output
values; each method op € Aop is a mapping op:
AState % Input + P(AState * Output).

For example, op(o,, in) = {(o,, ret)), ..., (0,
ret,)} denotes that the result of applying the op-
eration (or function) op to an input in and a state
o, 1s the set {(ay, ret,), ..., (g,, ret,)}.

Let (o, in)op(c’, ret) denote that the sequential
execution of op started in a state o with an input
in terminates in a state ¢’ with an output ret. Let
dom(op) denote the domain of the method op.
(o, in)op(a’, ret) 1s a legal execution if (o, in)
e dom(op) and (', ret) € op(o, in). A sequential
execution (ay, i1)op (01, 01)-.. (G, 15 1,)0P(0,,
0,) 1s legal if (o,_,, i;) €dom(op,) and (o,, 0,)
eop; (0,1, 1;), foreach 1 <i<n.

3.2. Out-of-order Relaxation

The out-of-order relaxation allows relaxed op-
erations to deviate from the sequential order.
For example, an out-of-order queue could allow
each enqueue operation to insert an element into
any of the positions which are at most k; away
from the tail, and each dequeue operation to re-

move any of the first &, elements instead of just
the head. The nondeterministic abstract queue,
denoted (k,, k,)-queue, is used to characterize
the relaxed semantics and is defined formally
as follows.

enqueue(s,e) =

{(slnensz, null)|EIS,, S,. s,AS2 =s /\|S1| < kl} (1)

dequeue(s, &) = (2)
(s, empty), |s|=0

{(s’, e)|3s,, s,.5, 5, =8NS, es, =S/\|S2|Sk2},

s|>0

Null and ¢ denote that the enqueue and dequeue
methods have no return and input values, re-
spectively. When k&, = 0 and &, = 0, both S, and
S, are empty sequences. Thus (0, 0)-queue is a
standard "FIFO" queue.

We further relax the semantics of dequeue op-
erations and allow a dequeue operation to re-
turn empty even when the queue is not empty.
Formally, the relaxed dequeue method is speci-
fied as follows. When the current size k; of the
queue is very small, the clients may accept the
value empty.

dequeue(s, &) =
{(s', e)|3s,, s,. Slﬁs2 =s'As, AeAsz =S/\|s2|£k2} 3)
U (s, empty)| |s| <k,

In a similar way as for queue, we can define
an out-of-order stack. The out-of-order relaxed
stack allows each push method to insert an el-
ement at most k1 away from the top, and a pop
method to remove an element at most k, away
from the top. The nondeterministic abstract
stack, denoted (k,, k,)-stack, is used to charac-
terize the relaxed semantics and is defined for-
mally as follows.

push(s,e) =
{(slﬁeﬁsz, null)|3s,, s,. slﬁs2 = S/\|S2|Sk1} 4)
pop(s,&)=0 5)
(s, empty), s| =0
{(s’, e)|3s,, s,. s;s2 = s’/\slAeAs2 =S/\|s2|£k2}, s| >0
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3.3. Local-thread Relaxation

Local-linearizability (called local-thread relax-
ation) is a relaxation mechanism that is applica-
ble to container-type concurrent data structures
like pools, queues, and stacks. For a local-lin-
earizable queue, the induced history of a thread
T is a projection of a history to the enqueue-op-
erations of 7" combined with all dequeue-oper-
ations that dequeue elements enqueued by 7.
The local-linearizability only requires that each
thread-induced history is linearizable. For ex-
ample, a local-linearizable concurrent queue
only requires that elements inserted by a single
thread satisfy the FIFO semantics, rather than
enforcing this ordering for all elements in the
entire queue.

We assume that the elements enqueued onto the
queue are unique. Let s[¢ denote the maximal
subsequence of s consisting of the elements en-
queued by the thread ¢. let s—e denote the sub-
sequence of s by deleting the element e. First(s)
denote the first element of the sequence s. The
sequential semantics of a local-linearizable
queue is specified by the following the nonde-
terministic abstract queue.

enqueue(s,e), =

(6)

{(sl heASZ, null)|3s,, s,. s, Asz =sAS,[t= null}

dequeue(s, &) =
{(s —e, e)|Ithread t. e = First(sl't)}

(7)
Each enqueue operation enqueue(s, e), of a
thread ¢ inserts an element into the tail of the
sequence which consists of the elements en-
queued by ¢. Each dequeue operation randomly
selects a thread and removes the head element
of the thread's sequence (i.e., s[7). Thus, the
nondeterministic abstract queue guarantees that
the elements enqueued by a single thread are
dequeued in FIFO order.

4. Equivalence of Operations

In this section, we will show that the relax-
ations of enqueue and dequeue operations have
an equivalent impact on causing "error bound",
and push and pop operations do not hold the
analogous property.

4.1. Relaxation Equivalence of
Out-of-order Enqueue and
Dequeue Operations

The following lemma shows that each dequeue
operation of the (k,, k,)-queue removes at least
the (k, + k, + 1)-th earliest-inserted element.

Lemma 1. For a legal sequential execution of
a (k,, k,)-queue, each dequeue operation can re-
move anyone of the k; + k, + 1 oldest elements
in the current queue and cannot any element
which is enqueued later than the (k; + k, + 1)-th
earliest-inserted element in the current queue.

The proof is written in a hierarchically struc-
tured style.

1. The first dequeue operation of the execution
can remove anyone of the k; + k, + 1 oldest el-
ements in the current queue.

Proof. Assume an element e which is inserted
by the x-th enqueue operation before the first
dequeue operation. If x < k;, the number of el-
ements in the queue is less than k; when e is
inserted into the queue. By the relaxation factor
k, of enqueue operations, e can be inserted into
the head of the queue. Thus, the first dequeue
operation can remove e. If b, <x <k, + k,+ 1,
then the number of elements in the queue is
less than or equals to k; + k, when e is inserted
into the queue. By the relaxation factor k; of
enqueue operations, e can be inserted into the
position which is k; away from the tail of the
queue. Because the size of the queue is less than
or equals to k, + k, + 1, the element e's distance
from the head will not exceed k,. By the relax-
ation factor k, of dequeue operations, the first
dequeue operation can also remove e. If k; + k,
+ 1 < x, the element e's distance from the head
must exceed k,. In this case, the first dequeue
operation cannot remove the element.

2. All possible states of the queue after the first
dequeue operation are the states after the exe-
cution of the rest of enqueue operations in the
original order.

Proof. Assume the element removed by the first
dequeue operation is e; and the state before the
enqueue operation (which inserted the element
e;) is 0. Assume the element e, is inserted first
after the element e, is inserted. The element e,
can insert the position which is k; away from
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the tail or the head of the queue (if the length of
the queue is smaller than k).

The element e, can be inserted into any position
behind e,. Thus, all possible states after e, are
removed equals the possible states after e, is in-
serted from the state a.

3. Q.E.D.

Proof. By 1 and 2, we can establish the theo-
rem.

Remark. For the (k;, k,)-queue and the (&3, ky)-
queue, if k| + k, = k3 + k4, then the most recent
element which their dequeue operations can
remove is the (k; + k, + 1)-th (or (k3 + &k, + 1)-
th) earliest-inserted element. For example, the
dequeue operations in both (k, 0)-queue and
(0, k)-queue remove at least the (k + 1)-th ear-
liest-inserted element. Thus, the relaxations of
dequeue and enqueue operations have an equiv-
alent impact on causing "error bound" (a bound
on the ranking of the dequeued elements based
on the enqueue order, not the bound on the dis-
tance of a dequeued element from the head).

The following theorem further shows that if &,
+ ky = ky + k,, then the (k,, k,)-queue and the
(k3, k4)-queue are two equivalent specification
models w.r.t. linearizability.

Theorem 1. For any two abstract nondetermin-
istic queues (k;, k,)-queue and (k;, k,)-queue
with k; + k, = ks + kg, if a relaxed concurrent
queue is linearizable w.r.t. the (k,, k,)-queue,
then it is also linearizable w.r.t. the (k;, ky)-
queue, and vice versa.

Proof. By the Lemma 1, if a sequential history
is legal w.r.t the (k;, k,)-queue, it is also legal
w.r.t the (3, k4)-queue, and vice versa. Because
the concurrent queue is linearizable w.r.t the (k,,
k,)-queue, for any history H of the concurrent
queue, there exists a legal sequential history S
of the (k,, k,)-queue such that S is a lineariza-
tion of H. S is also legal w.r.t. the (&3, k,)-queue.
Thus, the history H is also linearizable w.r.t. the
(k3, k4)-queue.

For example, consider the following sequen-
tial history, where we directly use the operation
to replace its invocation and response events;
enqueue(x) denotes an enqueue operation with

an input parameter x; dequeue(y) denotes a de-
queue operation with a return value y.

enqueue(a); enqueue(b);
enqueue(c); dequeue(c)

The sequential history is legal w.r.t. the
(2, 0)-queue. Because the relaxation factor of
the enqueue method is 2, ¢ can be inserted into
the head of the queue. Thus, a possible state
is bac before the dequeue operation begins to
execute. Obviously, the dequeue operation can
remove the head element c. The sequential his-
tory is also legal w.r.t. (0, 2)-queue. Because
the relaxation factor of the enqueue operation
is 0, the state is cha (c is the tail element) after
c is inserted. Because the relaxation factor of
the dequeue operation is, the enqueue operation
can remove the tail element c. y similar analy-
sis, we can show the sequential history is also
legal w.r.t. the (1, 1)-queue.

4.2. Non-equivalence of Out-of-order Push
and Pop Operations

In this subsection, we show that the analogues
of Lemmal and Theorem 1 do not hold for out-
of-order stacks. The oldest element which a pop
operation of the (k,, k,)-stack can pop is not the
(k, + ky + 1)-th latest element. In fact, if the re-
laxation factor of push operations &k, > 0, a pop
operation of the (k,, k,)-stack can pop the oldest
element in the stack. For example, consider the
following sequential execution:

push(a); push(b); push(c); push(d); pop()

For the (1, 1)-stack, the pop operation can pop
anyone of the elements a, b, ¢, d. For example,
if the elements b, ¢, d are not inserted at the
top of the stack (by the relaxation factor 1 of
push operations), the element a can remain on
top of the stack, and the state of the stack after
the push(d) operation is bcda (a is on top). Ob-
viously, the pop operation can pop element a.

(k, ky)-stack and (k;, k,)-stack are not two
equivalent specification models under the lin-
earizability correctness criterion, even if k; +
k, = ks + k,. Consider the above execution. For
the (0, 2)-stack, the state after the push(d) op-
eration is abcd (d is on top, by the relaxation
factor 0 of push operations). The pop operation
can pop one of the elements b, ¢, d, but cannot
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pop the element a (by the relaxation factor 2
of pop operations). Thus, the (1, 1)-stack is not
equivalent to (0, 2)-stack under linearizability
correctness criterion.

5. Correctness

We adopt nondeterministic abstract data types as
the specification models for relaxed concurrent
data structures and employ linearizability as the
correctness criterion for these data structures.
If a sequential history is legal w.r.t. a nondeter-
ministic abstract type, then it is also legal w.r.t.
a more nondeterministic version of the abstract
type. Thus, if a concurrent implementation is
linearizable w.r.t. a nondeterministic abstract
type then it is also linearizable w.r.t. the more
nondeterministic abstract type. For example, if
a relaxed concurrent stack is linearizable w.r.t.
the (1, 1)-stack, then it is also linearizable w.r.t.
the (2, 3)-stack. Obviously, the former is a more
precise specification for the relaxed concurrent
stack. To obtain a precise specification based on
NADTs, an intuitive method is to specify the
relaxation bound of the relaxed operations. The
following definition requires that for a relaxed
concurrent implementation of the (k;, k,)-stack,
k, and k, are the maximal relaxation factors of
push and pop methods of the implementation,
respectively.

Definition 2. A relaxed concurrent stack is an
implementation of the ((k;, k,)-stack if it is lin-
earizable w.r.t. the (k,, k,)-stack and for any x
< k, or y < ky, it is not linearizable w.r.t. the
(x, y)-stack.

By Theorem 1, if a relaxed concurrent queue
is linearizable w.r.t (k;, k,)-queue and k; + k,
= ky + k, (for two positive integers k3, k4), then
it is also linearizable w.r.t (k3, k4)-queue. Thus,
unlike relaxed concurrent stacks, there do not
exist the maximal relaxation factors of enqueue
and dequeue operations to specify relaxed con-
current queues.

For a standard queue, an enqueue operation in-
serts elements at the tail of the queue, while a
dequeue operation removes the elements at the
head. Under FIFO semantics, the dequeue op-
eration always deletes the oldest element in the
queue. For the relaxed concurrent queues, cli-
ents probably do not care where the elements

are inserted, but the precision of the dequeue
operations-how old elements they can remove
at least. The following definition requires that
for an implementation of the (k, k,)-queue,
each dequeue operation removes at least the (k,
+ k, + 1)-th earliest-inserted element.

Definition 3. A relaxed concurrent queue is an
implementation of the (k,, k,)-queue if it is lin-
earizable w.r.t. the (k;, k,)-queue and for any
two positive integers x, y. if x + y <k, + k,, then
it is not linearizable w.r.t. the (x, y)-queue.

Similarly, for the relaxed concurrent stacks, cli-
ents are likely most concerned about how re-
cent elements the pop operations can remove
at least. Unlike the relaxed concurrent queues,
if the relaxation factor of the push method is
more than 1, the pop operation can pop the old-
est element in the stack (as mentioned in Sec-
tion 4). Thus, if clients require that each pop
operation removes at least the £-th most recent
element (some positive integer k), then relax-
ation factors of push methods should be 0, i.e.,
the relaxed concurrent stacks should be an im-
plementation of the (0, k—1)-stack.

6. Specifying and Verifying the
K-segment Relaxed Queue

The pseudo code of the k-segment relaxed
queue [8] is depicted in Figure 1. The queue
maintains a linked list. Each node (also called
segment) has a value field array, holding an ar-
ray of length &, and a next field next, linking
nodes in the list. Using a dummy node ensures
that Head and Tail are always non-null. Head
always points to the dummy node. Every slot of
the array is initialized with a value null, signal-
ing no element present.

An enqueue operation tries to insert an element
in the array of the last segment. Each element
has two fields, the actual value va/ and a Bool-
ean marker del, which indicates if it has been
dequeued.

The methods init, try _add LastSegment and
try remove_first segment implement the op-
erations of segments atomically. try_add Last-
Segment (lastSegment) creates and adds a new
last segment only if the current last segment is
the argument lastSegment. The method try re-
move_first segment (firstSegment) removes
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the first segment only if the current first seg-
ment is the argument firstSegment.

If the queue is not empty, the enqueue method
iterates over the tail segment in random order
(line 26) to search for an empty slot; When it
finds an empty slot it performs a CAS operation
attempting to insert the new element into the
empty slot (line 31). If no empty slot is found
in the current tail segment (implying that the
segment is full), then it tries to add a new tail
segment to the list (line 33) and then retries. If
the queue is empty, it also attempts to add a new
tail segment to the list (line 35) and then retries.

If the queue is empty (line 39), the dequeue
method returns empty (line 40). Otherwise, the
dequeue method iterates over the array of the
first segment in random order (line 41). If the
item is null in the current slot, the flag hadNull-
Value is set to true, and then starts the next iter-
ation (line 45). Otherwise, the method performs
a CAS operation on its marker field in order to
delete it (line 46), and it returns the value of
the item if the deletion is successful (line 47).
If no item is deleted after completing the itera-
tion, and there was an empty cell in the current
segment (line 48), the dequeue method returns
empty (line 49). If there is not any empty slot in
the current segment (implying that all items of
the current segment have already been deleted),
then it attempts to remove this segment from
the linked list (line 50) and retries.

The specification model of the relaxed queue is
defined as follows.

enqueue(s,e) = (s e, null) (8)

dequeue(s, &) = 9
{(S’, e)|3s,, s,. slAs2 = s’/\slﬁeAs2 =S/\|s2|Sk —1}
U (s, emply)| |s| <k-1

We now prove that the k-segment queue is cor-
rect w.r.t. the above specification model. In the
specification model, the relaxed factors of the
enqueue and queue methods are 0 and A1, re-
spectively. Thus, we will prove that each de-
queue operation of the k-segment queue at least
removes the kth oldest element in the current
queue, and if a dequeue operation returns emp-
ty, then the number of elements in the queue is
at most k—1.

Proposition 1. The k-segment relaxed queue is
a correct implementation of the above specifi-
cation model (0, k—1)-queue.

Proof. Without loss of generality, we assume
that the values enqueued onto the queue are
unique. The linearization point of an enqueue
operation is the successful CAS action of line
29 (successful insertion). The linearization
point of a non-empty dequeue operation is the
successful CAS action of line 46 (successful re-
moval). The linearization point of the dequeue
operation which returns empty in line 40 is the
reading action of line 37 in the lastiteration. At
this point, the queue is empty. The dequeue op-
eration which returns empty in line 49 is relaxed
(i.e., it may return empty in the not-empty state).
The linearization point of the dequeue operation
is the action of line 41 in the last iteration.

We will prove that at this point, the number of
elements in the queue is at most k—1. According
to the linearization points, an element x is en-
queued earlier than an element y (i.e., x is older
than y) if the linearization point of x's corre-
sponding enqueue operation is earlier than the
one of )'s corresponding enqueue operation.
The correctness argument is based on the fol-
lowing facts.

1. Each enqueue operation only enqueues an
item into the queue; An item is enqueued
exactly once.

This is because each enqueue operation has a
unique action (at line 29) which modifies an
empty slot to contain an item, and every item is
unique by our assumption.

2. An item is logically deleted at most once.
Each dequeue operation only logically de-
letes an item.

This is because each dequeue operation has a
unique action (at line 29) which modifies the
field del of an item to true. Once the field of an
item is modified, no other actions will modify
it again.
3. An item inserted by an enqueue operation
is in a reachable segment from Head if it is
not deleted by a dequeue operation.

Tail always is reachable from Head. There is no
cycle in this linked list. Every element is insert-
ed into the tail segment at its linearization point.
A segment is removed from the list only if ev-
ery element of the segment has been removed.
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global Head, Tail;
void init()

Array array = new Array(k);
array.fill(T);
Node dummySegment = new Node(array);

Head = Tail = dummySegment;

try_add_LastSegment (lastSegment)

Array newArray = new Array(k);
newArray.fill (null);

Node newSegment = new Node(newArray);
if (lastSegment.next == null)

if (CAS(lastSegment.next, null, newSegment)
CAS(Tail, lastSegment, newSegment);

try_remove_first_segment (firstSegment)
head_old = Head;
if (head_old.next == firstSegment)
CAS(Head, head_old, firstSegment)

void enq(value)
Item newltem = new Item(value, false);
while true:
Node lastSegment = Tail;

if lastSegment != Head:
for i in shuffle([1,...,k]):
if (lastSegment.array[i] != null)

continue;

if (CAS(lastSegment.array[index], null, newlItem))

return;
try_add_LastSegment(lastSegment);
else
try_add_LastSegment(lastSegment);

value deq( )
while true:
Node firstSegment = Head.next;
boolean hadNullValue = false;

if firstSegment == null:
return empty;

for i in shuffle([1,...,k]):
item = firstSegment.arrayl[i];
if item == null:

hadNullValue = true;
continue;
if CAS(item.del, false, true):
return item.val;
if hadNullValue:
return empty;
try_remove_first_segment(firstSegment);

Figure 1. The k-segment relaxed queue.
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4. The dequeue operation always deletes at
least the kth oldest element of the linked
list at its linearization point.

Every element is enqueued into the tail seg-
ment at its corresponding linearization point,
and a new tail segment is added only if every
slot of the old tail segment has been inserted
an element. Thus, the elements of preceding
segments are enqueued earlier than the ones of
subsequent segments in the list. The dequeue
operation always deletes an element of the sec-
ond segment randomly (the first segment is a
dummy segment). Thus, the dequeue operation
always deletes at least the kth oldest element of
the queue at its linearization point.

5. The dequeue method which returns empty
in line 49 is relaxed. The number of ele-
ments in the queue is at most k—1 before
its last iteration. During and after the last
iteration, the number of the elements may
be more than k.

Because hadNullvalue is true after the last itera-
tion of the empty dequeue operation, the second
segment has empty slots before its last iteration.
Thus, the second segment is the only segment
except the dummy segment and the queue has
at most k—1 elements before the dequeue oper-
ation executes. Empty slots may have been in-
serted into items and a new segment may have
been added after empty slots had been scanned
by the dequeue operation. Thus, during and af-
ter the last iteration, the number of elements in
the queue may be more than £.

7. Related Work

The exploration of relaxed concurrent data
structures has garnered significant attention due
to their potential for enhanced scalability and
performance in multi-threaded environments.
A substantial number of instances of relaxed
concurrent data structures have been designed
and implemented [15—18]. There are two main
ways to specify relaxed concurrent data struc-
tures formally: relaxing linearizability and re-
laxing their sequential specification. Talmage
et al. [19] explored the relationship between
them, showed that in many cases they can yield
equivalent sets of allowed concurrent behav-
iors.

The works on relaxing linearizability [14,
20-22] proposed weaker consistency condi-
tions than linearizability, such as local-linear-
izability, interval-linearizability, intermediate
value linearizability, visibility relaxation. For
example, Rinberg et al. [20] proposed interme-
diate value linearizability, that relaxes linear-
izability to allow read operations to return any
value that is bounded between two return val-
ues that are legal under linearizability. Castafie-
da et al. [21] proposed interval-linearizability
that relaxes linearizability to allow every oper-
ation takes effect "continuously" in an interval
of time, instead of instantaneously at a single
point. These weaker consistency conditions are
able to precisely specify the relaxed behavior
of concurrent data structures. However, they
do not provide users with explicit specification
interfaces, and it is unclear how to use them to
reason about client-side programs.

Our work is closely related to works on relax-
ing the sequential semantics of concurrent data
structures, such as the quantitative framework
for relaxation in [7], and quasi-linearizability
in [8]. Henzinger et al. proposed a quantitative
framework to formally specify relaxed sequen-
tial specification. The relaxed semantics is in-
troduced by defining semantical distances from
the deterministic sequential specification. For
instance, the k-relaxed sequential specification
contains all "wrong" executions within distance
k from the original specification. Quasi-linear-
izability also defines quantitative relaxations
through a distance function from valid sequen-
tial executions. The quantitative relaxation of
quasi-linearizability is syntactic and less ex-
pressive than the quantitative framework of [7].
Henzinger et al. apply the quantitative frame-
work on two simple yet generic relaxation
mechanisms: out-of-order and stuttering relax-
ation. However, with regard to the quantitative
frameworks, some relaxation mechanisms are
difficult to quantify. For a relaxed concurrent
queue which employs thread-local relaxation,
only the elements which are enqueued by the
same thread satisfies the "FIFO" semantics
(as mentioned in section 3). It is impossible
to assign a meaningful quantitative value (the
maximal distance from the head of a dequeued
element) for this type of queue. Unlike the
quantitative framework, our method uses NA-
DTs to specify the relaxed semantics directly.
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8. Conclusion

In this work, we present the specification frame-
work based on NADTs for relaxed semantics of
concurrent data structures. Our specification
methodology enables clients to use NADTs in-
terfaces to reason about their programs, not to
need to know the implementation details of re-
laxed concurrent data structures. To the best of
our knowledge, we are the first to use NADTs
for characterizing relaxed semantics of relaxed
concurrent data structures.

Our correctness criterion based on linearizabili-
ty can ensure observational refinement [23] and
the relaxation bound. A relaxed concurrent data
structure can be viewed as an implementation of
a NADT. Like in the sequential environments,
data abstraction in the concurrent environments
should also ensure observational equivalence.
In the future, we will present a new correctness
criterion for relating a NADT and its concurrent
implementation, which can ensure observation-
al equivalence.
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