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To improve performance scalability of concurrent data 
structures, one solution is to relax their sequential se-
mantics. While a variety of specification approaches 
focus on characterizing the relaxed semantics, cli-
ent-side reasoning using the current methodologies 
is difficult. We employ nondeterministic abstract data 
types (NADTs) for the first time to specify the relaxed 
concurrent data structures, and as instantiations of our 
specification approach, we propose new correctness 
criteria of out-of-order queues and stacks. We further 
prove the relaxation equivalence of the out-of-order 
dequeue and enqueue operations. Our specification 
approach is intuitive and generic, and can provide cli-
ents with explicit interfaces. As a demonstration of our 
approach, we specify and verify the k-segment queue.
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1.	Introduction

With the continuous development of multi-
core processors and systems, it has become in-
creasingly important to design and implement 
high-concurrency data structures in order to ef-
ficiently utilize these resources [1, 2]. Correct-
ness conditions for concurrent data structures 
usually equire that each execution of a concur-
rent data structure is equivalent to a sequential 
execution of its specification model (as its se-
quential semantics). This equivalent relation-
ship is formally captured by consistency condi-
tions, such as linearizability [3].
The sequential semantics of concurrent data 
structures inevitably lead to memory contention 

in parallel environments, thus limiting scalabil-
ity [4-6]. One solution is to relax the sequential 
semantics of concurrent data structures [7, 8]. 
For example, a relaxed semantics of a standard 
''FIFO'' queue allows each dequeue method to 
remove any of the k elements nearest to the 
head instead of just the head, and allows each 
enqueue method to insert an element into the 
position which is at most k positions away from 
the tail. In sequential environments, this relaxed 
semantics offers no performance improvement 
for the implementations of queues. However, 
in parallel environments, such relaxed seman-
tics can reduce data contention. For example, 
multiple concurrent dequeue (enqueue) oper-
ations, which originally contend for access to 
a single head element (the tail position), now 
compete for the first k elements (the last k posi-
tions). Thus, relaxing the sequential semantics 
facilitates the design and implementation of 
higher-performance concurrent data structures 
[9-13]. Recently, numerous implementations 
of these relaxed data structures (also called 
relaxed concurrent data structures) have been 
proposed. 
The existing work in [7-8] provides quantita-
tive approaches to formally describe such re-
laxed semantics. Relaxing the data structure 
corresponds to defining a bounded distance 
away from the standard sequential specifica-
tion. For example, Henzinger et al. formalized 
and generalized the notion of relaxations, and 
characterized two generic instances: out-of-or-
der and stuttering relaxations. However, some 
relaxation mechanisms of concurrent data 
structures, such as local-thread relaxation, are 
difficult to quantify. Furthermore, these speci-
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fication methods do not provide users with ex-
plicit specification interfaces, preventing users 
from directly leveraging these specifications to 
reason about client programs.
Nondeterministic abstract data types (NADTs) 
allow operations to have multiple possible out-
comes for the same input parameters. In this pa-
per, we extend existing methodologies for ADT 
implementation in sequential environments, 
and use NADTs to depict random  behavior of 
relaxed concurrent data structures. We employe 
NADTs for the first time to characterize the re-
laxed semantics of concurrent data structures, 
such as out-of-order and local-thread relax-
ations. We further prove that the  out-of-order 
relaxations of dequeue and enqueue operations 
have the same impact on causing ''error bound''. 
The out-of-order stacks do not possess analo-
gous properties. Based on the above discovery, 
we propose new correctness criterions of out-
of-order queues and stacks. As a demonstra-
tion of our approach, we specify and verify the 
k-segment queue. Our specification approach 
is intuitive and generic, and can provide clients 
with explicit interfaces. Clients do not need to 
know the implementation details of concurrent 
data structures and can use the NADTs interfac-
es to reason about their programs.
The main contributions of this paper are: 
1.	 present the specification framework based 

on NADTs for relaxed concurrent data 
structures 

2.	 prove the relaxation equivalence of the 
out-of-order dequeue and enqueue opera-
tions

3.	 specify and verify the k-segment queue.
The structure of this paper is as follows. In Sec-
tion 2, we recall the definition of linearizability. 
In Section 3, we formalize nondeterministic ab-
stract data types, and illustrate the specification 
framework on two generic instances, out-of-or-
der and local-thread relaxations. In Section 4, 
we prove that the relaxation equivalence of the 
out-of-order dequeue and enqueue operations 
and show that the out-of-order pop and push op-
erations do not hold the analogous property.  In 
Section 5, we present new correctness criteria 
for out-of-order queues and stacks. In Section 
6, we specify and verify the k-segment queue. 

Finally, we discuss related work and conclude 
in Section 7 and 8. 

2.	Linearizability

In this section, we introduce basic notations 
and review the definition of linearizability [3]. 
We refer to an execution of a method as an 
operation. We denote an execution as a finite 
sequence of totally ordered atomic events. We 
represent the calling of a method by an invo-
cation event, and the return of a method by a 
response event. An execution of a method starts 
with the invocation event, executes its internal 
atomic events until the final response event.
A history of a concurrent data structure is a se-
quence of its invocation and response events 
generated in an execution. An invocation event 
matches a response event if they belong to the 
same operation. A history is sequential if every 
invocation event, except possibly the last, is 
immediately followed by its matching response 
event. A sequential history of a concurrent data 
structure is legal if its corresponding sequential 
execution satisfies the sequential specification 
of the concurrent  data structure.
A history is complete if every invocation event 
has a matching response event. An invoca-
tion event is pending in a history if there is no 
matching response event to it. For an incom-
plete history H, a completion of H is a com-
plete history gained by adding some matching 
response events to the end of H and removing 
some pending invocation events within H. Let  
Compl(H) be the set of all completions of the 
history H. For any two operations op1 and op2,   
we say that op1 precedes op2 in a history, if the 
response event of op1 precedes the invocation 
event of op2.
A history H of a concurrent data structure is 
linearizable with respect to its sequential spec-
ification if there exists a complete history C ∈ 
Compl(H) and a legal sequential history S such 
that (1) S is a permutation of C; (2) for any two 
operations op1, op2, if in C, op1 precedes op2, 
then in S, op1 also precedes op2. S is called a 
linearization of H. A concurrent data structure 
is linearizable with respect to its sequential 
specification if every history of the concurrent 
data structure is linearizable with respect to the 
sequential specification.
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move any of the first k2 elements instead of just 
the head. The nondeterministic abstract queue, 
denoted (k1, k2)-queue, is used to characterize 
the relaxed semantics and is defined formally 
as follows.
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Null and ε denote that the enqueue and dequeue 
methods have no return and input values, re-
spectively. When k1 = 0 and k2 = 0, both S1 and 
S2 are empty sequences. Thus (0, 0)-queue is a 
standard ''FIFO'' queue.
We further relax the semantics of dequeue op-
erations and allow a dequeue operation to re-
turn empty even when the queue is not empty.  
Formally, the relaxed dequeue method is speci-
fied as follows. When the current size k3 of the 
queue is very small, the clients may accept the 
value empty.
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In a similar way as for queue, we can define 
an out-of-order stack. The out-of-order relaxed 
stack allows each push method to insert an el-
ement at most k1 away from the top, and a pop 
method to remove an element at most k2 away 
from the top. The nondeterministic abstract 
stack, denoted (k1, k2)-stack, is used to charac-
terize the relaxed semantics and is defined for-
mally as follows.
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3.	Characterizing Relaxations Using 
NADTs

In this section, we formalize  nondeterministic 
abstract data types (NADTs). We use NADTs as 
the specification models of relaxed concurrent 
data structures and illustrate the specification 
framework on two generic instances, out-of-or-
der and local-thread relaxations.

3.1.	Nondeterministic Abstract Data Types

We use the model-based way to define nonde-
terministic abstract data types (NADTs), where 
a NADT is considered as a set of abstract val-
ues together with a set of atomic methods; the 
methods are specified by defining how they af-
fect the abstract values. Behaviors of the meth-
ods in the NADTs are nondeterministic, i.e., A 
method may return different results each time it 
is called under a specific pair of state and input.
Definition 1. A nondeterministic abstract data 
type is a tuple,(AState, σ, Aop, Input, Output), 
where AState is a set of states; σ ∈ AState is the 
initial state; Aop is a set of methods; Input is 
a set of input values; Output is a set of output 
values; each method op ∈ Aop is a mapping op: 
AState × Input → P(AState × Output).
For example, op(σ0, in) = {(σ1, ret1), ..., (σn, 
retn)} denotes that the result of applying the op-
eration (or function) op to an input in and a state 
σ0 is the set {(σ1, ret1), ..., (σn, retn)}.
Let (σ, in)op(σ', ret) denote that the sequential 
execution of op started in a state σ with an input 
in terminates in a state σ' with an output ret. Let 
dom(op) denote the domain of the method op. 
(σ, in)op(σ', ret) is a legal execution if (σ, in) 
∈dom(op) and (σ', ret) ∈op(σ, in). A sequential 
execution (σ0, i1)op1(σ1, o1)... (σn-1, in)opn(σn, 
on) is legal if (σi-1, ii) ∈dom(opi) and (σi, oi) 
∈opi (σi-1, ii), for each 1 ≤ i ≤ n.

3.2.	Out-of-order Relaxation

The out-of-order relaxation allows relaxed op-
erations to deviate from the sequential order. 
For example, an out-of-order queue could allow 
each enqueue operation to insert an element into 
any of the positions which are at most k1 away 
from the tail, and each dequeue operation to re-



222 J. Peng and T. Wen

3.3.	Local-thread Relaxation

Local-linearizability (called local-thread relax-
ation) is a relaxation mechanism that is applica-
ble to container-type concurrent data structures 
like pools, queues, and stacks. For a local-lin-
earizable queue, the induced history of a thread 
T is a projection of a history to the enqueue-op-
erations of T combined with all dequeue-oper-
ations that dequeue elements enqueued by T. 
The local-linearizability only requires that each 
thread-induced history is linearizable. For ex-
ample, a local-linearizable concurrent queue 
only requires that elements inserted by a single 
thread satisfy the FIFO semantics, rather than 
enforcing this ordering for all elements in the 
entire queue.
We assume that the elements enqueued onto the 
queue are unique. Let  s ˥    t denote the maximal 
subsequence of s consisting of the elements en-
queued by the thread t. let s-e denote the sub-
sequence of s by deleting the element e. First(s) 
denote the first element of the sequence s. The 
sequential semantics of a local-linearizable 
queue is specified by the following the nonde-
terministic abstract queue.
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Each enqueue operation enqueue(s, e)t of a 
thread t inserts an element into the tail of the 
sequence which consists of  the elements en-
queued by t. Each dequeue operation randomly 
selects a thread and removes the head element 
of the thread's sequence (i.e., s ˥    t). Thus, the 
nondeterministic abstract queue guarantees that 
the elements enqueued by a single thread are 
dequeued in FIFO order.

4.	Equivalence of Operations

In this section, we will show that the relax-
ations of enqueue and dequeue operations have 
an equivalent impact on causing ''error bound'', 
and push and pop operations do not hold the 
analogous property.

4.1.	Relaxation Equivalence of  
Out-of-order Enqueue and  
Dequeue Operations 

The following lemma shows that each dequeue 
operation of the (k1, k2)-queue removes at least 
the (k1 + k2 + 1)-th earliest-inserted element.
Lemma 1. For a legal sequential execution of 
a (k1, k2)-queue, each dequeue operation can re-
move anyone of the k1 + k2 + 1 oldest elements 
in the current queue and cannot any element 
which is enqueued later than the (k1 + k2 + 1)-th 
earliest-inserted element in the current queue.
The proof is written in a hierarchically struc-
tured style.
1. The first dequeue operation of the execution 
can remove anyone of the k1 + k2 + 1 oldest el-
ements in the current queue.
Proof. Assume an element e which is inserted 
by the x-th enqueue operation before the first 
dequeue operation. If x ≤ k1, the number of el-
ements in the queue is less than k1 when e is 
inserted into the queue. By the relaxation factor 
k1 of enqueue operations, e can be inserted into 
the head of the queue. Thus, the first dequeue 
operation can remove e. If k2 < x ≤ k1 + k2 + 1, 
then the number of elements in the queue is 
less than or equals to k1 + k2 when e is inserted 
into the queue. By the relaxation factor k1 of 
enqueue operations, e can be inserted into the 
position which is k1 away from the tail of the 
queue. Because the size of the queue is less than 
or equals to k1 + k2 + 1, the element e's distance 
from the head will not exceed k2. By the relax-
ation factor k2 of dequeue operations, the first 
dequeue operation can also remove e. If k1 +  k2 
+ 1 < x, the element e's distance from the head   
must exceed k2. In this case, the first dequeue 
operation cannot remove the element.
2. All possible states of the queue after the first 
dequeue operation are the states after the exe-
cution of the rest of enqueue operations in the 
original order.
Proof. Assume the element removed by the first 
dequeue operation is e1 and the state before the 
enqueue operation (which inserted the element 
e1) is σ. Assume the element e2 is inserted first 
after the element e1 is inserted. The element e1 
can insert the position which is k1 away from 
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the tail or the head of the queue (if the length of 
the queue is smaller than k1).
The element e2 can be inserted into any position 
behind e1. Thus, all possible states after e1 are 
removed equals the possible states after e2 is in-
serted from the state σ.

3.	 Q.E.D.

Proof. By 1 and 2, we can establish the theo-
rem.
Remark. For the (k1, k2)-queue and the (k3, k4)-
queue, if k1 + k2 = k3 + k4, then the most recent 
element which their dequeue operations can 
remove is the (k1 + k2 + 1)-th (or (k3 + k4 + 1)-
th) earliest-inserted element. For example, the 
dequeue operations in both (k, 0)-queue and 
(0, k)-queue remove at least the (k + 1)-th ear-
liest-inserted element. Thus, the relaxations of 
dequeue and enqueue operations have an equiv-
alent impact on causing ''error bound'' (a bound 
on the ranking of the dequeued elements based 
on the enqueue order, not the bound on the dis-
tance of a dequeued element from the head).
The following theorem further shows that if k1 
+ k2 = k3 + k4, then the (k1, k2)-queue and the 
(k3, k4)-queue are two equivalent specification 
models w.r.t. linearizability.
Theorem 1. For any two abstract nondetermin-
istic queues (k1, k2)-queue and (k3, k4)-queue 
with k1 + k2 = k3 + k4, if a relaxed concurrent  
queue is linearizable w.r.t. the (k1, k2)-queue,  
then it is also linearizable w.r.t. the (k3, k4)-
queue, and vice versa.
Proof. By the Lemma 1, if a sequential history 
is legal w.r.t the (k1, k2)-queue, it is also legal 
w.r.t the (k3, k4)-queue, and vice versa. Because  
the concurrent queue is linearizable w.r.t the (k1, 
k2)-queue, for any history H of the concurrent 
queue, there exists a legal sequential history S 
of the (k1, k2)-queue such that S is a lineariza-
tion of H. S is also legal w.r.t. the (k3, k4)-queue. 
Thus, the history H is also linearizable w.r.t. the 
(k3, k4)-queue.
For example, consider the following sequen-
tial history, where we directly use the operation 
to replace its invocation and response events; 
enqueue(x) denotes an enqueue operation with 

an input parameter x; dequeue(y) denotes a de-
queue operation with a return value y.

enqueue(a); enqueue(b);  
enqueue(c); dequeue(c)

The sequential history is legal w.r.t. the 
(2, 0)-queue. Because the relaxation factor of 
the enqueue method is 2, c can be inserted into 
the head of the queue. Thus, a possible state 
is bac before the dequeue operation begins to 
execute. Obviously, the dequeue operation can 
remove the head element c. The sequential his-
tory is also legal w.r.t. (0, 2)-queue. Because 
the relaxation factor of the enqueue operation 
is 0, the state is cba (c is the tail element) after 
c is inserted. Because the relaxation factor of 
the dequeue operation is, the enqueue operation 
can remove the tail element c. y similar analy-
sis, we can show the sequential history is also 
legal w.r.t. the (1, 1)-queue.

4.2.	Non-equivalence of Out-of-order Push 
and Pop Operations 

In this subsection, we show that the analogues 
of Lemma1 and Theorem 1 do not hold for out-
of-order stacks. The oldest element which a pop 
operation of the (k1, k2)-stack can pop is not the 
(k1 + k2 + 1)-th latest element. In fact, if the re-
laxation factor of push operations k1 > 0, a pop 
operation of the (k1, k2)-stack can pop the oldest 
element in the stack. For example, consider the 
following sequential execution:

push(a); push(b); push(c); push(d); pop( )

For the (1, 1)-stack, the pop operation can pop 
anyone of the elements a, b, c, d. For example, 
if the elements b, c, d are not inserted at the 
top of the stack (by the relaxation factor 1 of 
push operations), the element a can remain on 
top of the stack, and the state of the stack after 
the push(d) operation is bcda (a is on top). Ob-
viously, the pop operation can pop element a.
(k1, k2)-stack and (k3, k4)-stack are not two 
equivalent specification models under the lin-
earizability correctness criterion, even if k1 + 
k2 = k3 + k4. Consider the above execution. For 
the (0, 2)-stack, the state after the push(d) op-
eration is abcd (d is on top, by the relaxation 
factor 0 of push operations). The pop operation 
can pop one of the elements b, c, d, but cannot 
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pop the element a (by the relaxation factor 2 
of pop operations). Thus, the (1, 1)-stack is not 
equivalent to (0, 2)-stack under linearizability 
correctness criterion.

5.	Correctness

We adopt nondeterministic abstract data types as 
the specification models for relaxed concurrent 
data structures and employ linearizability as the 
correctness criterion for these data structures. 
If a sequential history is legal w.r.t. a nondeter-
ministic abstract type, then it is also legal w.r.t. 
a more nondeterministic version of the abstract 
type. Thus, if a concurrent implementation is 
linearizable w.r.t. a nondeterministic abstract 
type then it is also linearizable w.r.t. the more 
nondeterministic abstract type. For example, if 
a relaxed concurrent stack is linearizable  w.r.t. 
the (1, 1)-stack, then it is also linearizable  w.r.t.  
the (2, 3)-stack. Obviously, the former is a more 
precise specification for the relaxed concurrent 
stack. To obtain a precise specification based on 
NADTs, an intuitive method is to specify the  
relaxation bound of the relaxed operations. The 
following definition requires that for a relaxed 
concurrent implementation of the (k1, k2)-stack, 
k1 and k2 are the maximal relaxation factors of 
push and pop methods of the implementation, 
respectively.
Definition 2. A relaxed concurrent stack is an 
implementation of the ((k1, k2)-stack if it is lin-
earizable w.r.t. the (k1, k2)-stack and for any x 
< k1 or y < k2, it is not linearizable w.r.t. the 
(x, y)-stack.
By Theorem 1, if a relaxed concurrent queue 
is linearizable w.r.t (k1, k2)-queue and k1 + k2 
= k3 + k4 (for two positive integers k3, k4), then 
it is also linearizable w.r.t (k3, k4)-queue. Thus, 
unlike relaxed concurrent stacks, there do not 
exist the maximal relaxation factors of enqueue 
and dequeue operations to specify relaxed con-
current queues.
For a standard queue, an enqueue operation in-
serts elements at the tail of the queue, while a 
dequeue operation removes the elements at the 
head. Under FIFO semantics, the dequeue op-
eration always deletes the oldest element in the 
queue. For the relaxed concurrent queues, cli-
ents probably do not care where the elements 

are inserted, but the precision of the dequeue 
operations-how old elements they can remove 
at least. The following definition  requires that 
for an implementation of the (k1, k2)-queue, 
each dequeue operation removes at least the (k1 
+ k2 + 1)-th earliest-inserted element.
Definition 3. A relaxed concurrent queue is an 
implementation of the (k1, k2)-queue if it is lin-
earizable w.r.t. the (k1, k2)-queue and for any 
two positive integers x, y. if x + y < k1 + k2, then 
it is not linearizable w.r.t. the (x, y)-queue.
Similarly, for the relaxed concurrent stacks, cli-
ents are likely most concerned about how re-
cent elements the pop operations can remove 
at least. Unlike the relaxed concurrent  queues, 
if the relaxation factor of the push method is 
more than 1, the pop operation can pop the old-
est element in the stack (as mentioned in Sec-
tion 4). Thus, if clients require that each pop 
operation removes at least the k-th most recent 
element (some positive integer k), then relax-
ation factors of push methods should be 0, i.e., 
the relaxed concurrent stacks should be an im-
plementation of the (0, k-1)-stack.

6.	Specifying and Verifying the  
K-segment Relaxed Queue

The pseudo code of the k-segment relaxed 
queue [8] is depicted in Figure 1. The queue 
maintains a linked list. Each node (also called 
segment) has a value field array, holding an ar-
ray of length k, and a next field next, linking 
nodes in the list. Using a dummy node ensures 
that Head and Tail are always non-null. Head 
always points to the dummy node. Every slot of 
the array is initialized with a value null, signal-
ing no element present.
An enqueue operation tries to insert an element 
in the array of the last segment. Each element 
has two fields, the actual value val and a Bool-
ean marker del, which indicates if it has been 
dequeued.
The methods init, try_add_LastSegment and 
try_remove_first_segment implement the op-
erations of segments atomically. try_add_Last-
Segment (lastSegment) creates and adds a new 
last segment only if the current last segment is 
the argument lastSegment. The method try_re-
move_first_segment (firstSegment) removes 
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the first segment only if the current first seg-
ment is the argument firstSegment.
If the queue is not empty, the enqueue method 
iterates over the tail segment in random order 
(line 26) to search for an empty slot; When it 
finds an empty slot it performs a CAS operation 
attempting to insert the new element into the 
empty slot (line 31). If no empty slot is found 
in the current tail segment (implying that the 
segment is full), then it tries to add a new tail 
segment to the list (line 33) and then retries. If 
the queue is empty, it also attempts to add a new 
tail segment to the list (line 35) and then retries.
If the queue is empty (line 39), the dequeue 
method returns empty (line 40). Otherwise, the 
dequeue method iterates over the array of the 
first segment in random order (line 41). If the 
item is null in the current slot, the flag hadNull-
Value is set to true, and then starts the next iter-
ation (line 45). Otherwise, the method performs 
a CAS operation on its marker field in order to 
delete it (line 46), and it returns the value of 
the item if the deletion is successful (line 47). 
If no item is deleted after completing the itera-
tion, and there was an empty cell in the current 
segment (line 48), the dequeue method returns 
empty (line 49). If there is not any empty slot in 
the current segment (implying that all items of 
the current segment have already been deleted), 
then it attempts to remove this segment from 
the linked list (line 50) and retries.
The specification model of the relaxed queue is 
defined as follows.
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We now prove that the k-segment queue is cor-
rect w.r.t. the above specification model. In the 
specification model, the relaxed factors of the 
enqueue and queue methods are 0 and k-1, re-
spectively. Thus, we will prove that each de-
queue operation of the k-segment queue at least 
removes the kth oldest element in the current 
queue, and if a dequeue operation returns emp-
ty, then the number of elements in the queue is 
at most k-1.

Proposition 1. The k-segment relaxed queue is 
a correct implementation of the above specifi-
cation model (0, k-1)-queue.
Proof. Without loss of generality, we assume 
that the values enqueued onto the queue are 
unique. The linearization point of an enqueue 
operation is the successful CAS action of line 
29 (successful insertion). The linearization 
point of a non-empty dequeue operation is the 
successful CAS action of line 46 (successful re-
moval). The linearization point of the dequeue 
operation which returns empty in line 40 is the 
reading action of line 37 in the lastiteration. At 
this point, the queue is empty. The dequeue op-
eration which returns empty in line 49 is relaxed 
(i.e., it may return empty in the not-empty state). 
The linearization point of the dequeue operation 
is the action of line 41 in the last iteration.
We will prove that at this point, the number of 
elements in the queue is at most k-1. According 
to the linearization points, an element x is en-
queued earlier than an element y (i.e., x is older 
than y) if the linearization point of x's  corre-
sponding enqueue operation is earlier than the 
one of y's corresponding enqueue operation. 
The correctness argument is based on the fol-
lowing facts.
1.	 Each enqueue operation only enqueues an 

item into the queue; An item is enqueued   
exactly once. 

This is because each enqueue operation has a 
unique action (at line 29) which modifies an 
empty slot to contain an item, and every item is 
unique by our assumption.
2.	 An item is logically deleted at most once. 

Each dequeue operation only logically de-
letes an item.

This is because each dequeue operation has a 
unique action (at line 29) which modifies the  
field del of an item to  true. Once the field of an 
item is modified, no other actions will modify 
it again.
3.	 An item inserted by an enqueue operation 

is in a reachable segment from Head if it is 
not deleted by a dequeue operation.

Tail always is reachable from Head. There is no 
cycle in this linked list. Every element is insert-
ed into the tail segment at its linearization point. 
A segment is removed from the list only if ev-
ery element of the segment has been removed.
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Figure 1. The k-segment relaxed queue.
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4.	 The dequeue operation always deletes at 
least the kth oldest element of the linked 
list at its linearization point.

Every element is enqueued into the tail seg-
ment at its corresponding linearization point, 
and a new tail segment is added only if every 
slot of the old tail segment has been inserted 
an element. Thus, the elements of preceding 
segments are enqueued earlier than the ones of 
subsequent segments in the list. The dequeue 
operation always deletes an element of the sec-
ond segment randomly (the first segment is a 
dummy segment). Thus, the dequeue operation 
always deletes at least the kth oldest element of 
the queue at its linearization point.
5.	 The dequeue method which returns empty 

in line 49 is relaxed. The number of ele-
ments in the queue is at most k-1 before 
its last iteration. During and after the last 
iteration, the number of the elements may 
be more than k.

Because hadNullvalue is true after the last itera-
tion of the empty dequeue operation, the second 
segment has empty slots before its last iteration. 
Thus, the second segment is the only segment 
except the dummy segment and the queue has 
at most k-1 elements before the dequeue oper-
ation executes. Empty slots may have been in-
serted into items  and a new segment may have 
been added after empty slots had been scanned 
by the dequeue operation. Thus, during and af-
ter the last iteration, the number of elements in 
the queue may be more than k.

7.	Related Work

The exploration of relaxed concurrent data 
structures has garnered significant attention due 
to their potential for enhanced scalability and 
performance in multi-threaded environments. 
A substantial number of instances of relaxed 
concurrent data structures have been designed 
and implemented [15-18]. There are two main 
ways to specify relaxed  concurrent data struc-
tures formally: relaxing linearizability and re-
laxing their sequential specification. Talmage 
et al. [19] explored the relationship between 
them, showed that in many cases they can yield 
equivalent sets of allowed concurrent behav-
iors.

The works on relaxing linearizability [14, 
20-22] proposed weaker consistency condi-
tions than linearizability, such as local-linear-
izability, interval-linearizability, intermediate 
value linearizability, visibility relaxation. For 
example, Rinberg et al. [20] proposed interme-
diate value linearizability, that relaxes linear-
izability to allow read operations to return any 
value that is bounded between two return val-
ues that are legal under linearizability. Castañe-
da et al. [21] proposed interval-linearizability 
that relaxes linearizability to allow every oper-
ation takes effect ''continuously'' in an interval 
of time, instead of instantaneously at a single 
point. These weaker consistency conditions are 
able to precisely specify the relaxed behavior 
of concurrent data structures. However, they  
do not provide users with explicit specification 
interfaces, and it is unclear how to use them to 
reason about client-side programs.
Our work is closely related to works on relax-
ing the sequential semantics of concurrent data 
structures, such as the quantitative framework 
for relaxation in [7], and quasi-linearizability 
in [8]. Henzinger et al. proposed a quantitative 
framework to formally specify relaxed sequen-
tial specification. The relaxed semantics is in-
troduced by defining semantical distances from 
the deterministic sequential specification. For 
instance, the k-relaxed sequential specification 
contains all ''wrong'' executions within distance 
k from the original specification. Quasi-linear-
izability also defines quantitative relaxations 
through a distance function from valid sequen-
tial executions. The quantitative relaxation of 
quasi-linearizability is syntactic and less ex-
pressive than the quantitative framework of [7]. 
Henzinger et al. apply the quantitative frame-
work on two simple yet generic relaxation 
mechanisms: out-of-order and stuttering relax-
ation. However, with regard to the quantitative 
frameworks, some relaxation mechanisms are 
difficult to quantify. For a relaxed concurrent 
queue which employs thread-local relaxation, 
only the elements which are enqueued by the 
same thread satisfies the ''FIFO'' semantics 
(as mentioned in section 3).  It is impossible 
to assign a meaningful quantitative value (the 
maximal distance from the head of a dequeued 
element) for this type of queue. Unlike the 
quantitative framework, our method uses NA-
DTs  to specify the relaxed semantics directly.
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[3]	 M. P. Herlihy and J. M. Wing, ''Linearizability: 
A correctness condition for concurrent objects'', 
ACM Transactions on Programming Languages 
and Systems (TOPLAS), vol. 12, no. 3, pp. 463-
492, 1990. 
https://doi.org/10.1145/78969.78972

[4]	 H. Attiya et al.,  ''Laws of Order: Expensive Syn-
chronization in Concurrent Algorithms Cannot be 
Eliminated'', ACM SIGPLAN Notices, vol. 46, no. 
1, pp.  487-498, 2011. 
https://doi.org/10.1145/1925844.1926442

[5]	 J. Wang et al.,  ''Improved Time Bounds for 
Linearizable Implementations of Abstract Data 
Types'', in Proceedings of the 2014 IEEE 28th In-
ternational Parallel and Distributed Processing 
Symposium, IEEE Computer Society, 2014, pp. 
691-701. 
https://doi.org/10.1109/IPDPS.2014.77

[6]	 E. Talmage and J. L. Welch, ''Improving Average 
Performance by Relaxing Distributed Data Struc-
tures'', in Proceedings of the 28th International 
Symposium on Distributed Computing, 2014, pp. 
691-701. 
https://doi.org/10.1109/IPDPS.2014.77

[7]	 T. A. Henzinger et al., ''Quantitative Relaxation 
of Concurrent Data Structures'', in Proceedings 
of the 40th annual ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, 
2013 pp. 317-328. 
https://doi.org/10.1145/2429069.2429109

[8]	 Y. Afek et al.,  ''Quasi-linearizability: Relaxed 
Consistency for Improved Concurrency'', in Proc. 
of the Conference on Principles of Distributed 
Systems (OPODIS), 2010, pp. 395-410. 
https://doi.org/10.1007/978-3-642-17653-1_29

[9]	 K. von Geijer et al.,  ''Balanced Allocations over 
Efficient Queues: A Fast Relaxed FIFO Queue'', 
in Proceedings of the 30th ACM SIGPLAN Annu-
al Symposium on Principles and Practice of Par-
allel Programming, 2025, pp. 382-395. 
https: // doi.org /10.1145/ 3710848.3710892

[10]	A. Castañeda and M. Piña, ''Read/write Fence-
free Work-stealing with Multiplicity'', Journal 
of Parallel and Distributed Computing, vol. 186, 
no. 104816, 2024. 
https://doi.org/10.1016/j.jpdc.2023.104816

[11]	J. Ko, ''A Lock-free Binary Trie'', IEEE 44th In-
ternational Conference on Distributed Comput-
ing Systems (ICDCS), pp. 163-174, 2024.
https://doi.org/10.1109/ICDCS 60910.2024.00024

[12]	A. Rukundo and A. Atalar, ''Monotonically Re-
laxing Concurrent Data-Structure Semantics for 
Increasing Performance: An Efficient 2D Design 
Framework'', 33rd International Symposium on 
Distributed Computing, pp. 31:1-31:15, 2019. 
https://doi.org/10.4230/LIPIcs.DISC.2019.31

8.	Conclusion

In this work, we present the specification frame-
work based on NADTs for relaxed semantics of 
concurrent data structures. Our specification 
methodology enables clients to use NADTs in-
terfaces to reason about their programs, not to 
need to know the implementation details of re-
laxed concurrent data structures. To the best of 
our knowledge, we are the first to use NADTs 
for characterizing relaxed semantics of relaxed 
concurrent data structures.
Our correctness criterion based on linearizabili-
ty can ensure observational refinement [23] and 
the relaxation bound. A relaxed concurrent data 
structure can be viewed as an implementation of 
a NADT.  Like in the sequential environments, 
data abstraction in the concurrent environments 
should also ensure observational equivalence. 
In the future, we will present a new correctness 
criterion for relating a NADT and its concurrent 
implementation, which can ensure observation-
al equivalence.
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