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Accurate prediction of product lifecycle stages is 
crucial for enhancing inventory turnover and strate-
gic planning in the tobacco industry. This paper pro-
poses an intelligent prediction model that integrates 
Convolutional Neural Networks (CNN) and Gated 
Recurrent Units (GRU), further optimized by an Im-
proved Grey Wolf Optimizer (IGWO). The model 
fuses multi-source enterprise data—including sales 
trends, IoT logistics information, environmental 
conditions, and inventory records—to dynamically 
forecast lifecycle stages and remaining durations. 
The dataset comprises 180,000 labeled samples col-
lected from real-world tobacco enterprise operations, 
encompassing multi-source variables such as sales 
volume, inventory changes, logistics routes, and 
environmental feedback. Experimental evaluations 
based on this dataset demonstrate that the proposed 
IGWO-CNN-GRU model achieves a Mean Squared 
Error (MSE) of 2.13, a Mean Absolute Error (MAE) 
of 1.17, and an R² of 0.932, significantly outper-
forming baseline models. In practical deployment 
simulations, the prediction deviation is limited to ±5 
days, improving allocation efficiency and reducing 
inventory risks. The approach provides a robust and 
adaptable solution for full-lifecycle management in 
tobacco supply chains, offering practical value for 
intelligent production and market deployment strat-
egies.
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1.	Introduction

With the accelerated layout of the tobacco in-
dustry within the framework of the ''industrial 
Internet plus+'' and digital transformation strat-
egy, full life cycle management has gradually 
become the key means for enterprises to im-
prove production efficiency, reduce inventory 
risk and develop precision marketing strategies 
[1, 2]. In the context of increasingly diverse 
product types and personalized consumer be-
havior, achieving dynamic identification and 
trend prediction of tobacco products from the 
introduction stage, growth stage, maturity stage 
to decline stage is of great significance for en-
terprise intelligent supply chain regulation and 
market decision-making [3, 4]. At present, 
some tobacco companies have made attempts 
to build time series forecasting systems. These 
systems are based on sales and inventory data. 
However, these methods come with several 
limitations. Firstly, they often rely on single-di-
mensional data. Secondly, they lack the ability 
to handle complex local fluctuations and long-
term dependencies. Moreover, in actual opera-
tions, the market data has multiple sources, is 
heterogeneous, and has inconsistent schedules. 
As a result, these methods find it difficult to 
adapt to market changes. Especially after the 
deployment of IoT sensing devices covering 
warehousing, transportation, sales and other 
links in enterprises, the large amount of re-
al-time information collected has not been ef-
fectively integrated into the prediction model, 
which restricts its comprehensive characteriza-
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tion and accurate prediction of lifecycle laws 
[5, 6]. For instance, traditional models such 
as Autoregressive Integrated Moving Average 
(ARIMA) and rule-based inventory prediction 
systems are widely used. Similarly, classical 
Long Short-Term Memory (LSTM) based fore-
casting frameworks, while capable of handling 
sequential data, are generally designed around 
single-variable inputs such as sales history and 
fail to account for heterogeneous signals from 
logistics delays or warehouse conditions. These 
models also struggle to align asynchronous 
inputs – such as real-time IoT feedback with 
static product metadata, leading to inaccurate 
predictions during abrupt lifecycle transitions. 
Based on this, in this work, a Hybrid Neural 
Network (HNN) is developed to improve the 
predictive ability of tobacco product lifecycle. 
This model integrates Convolutional Neural 
Networks and Gated Recurrent Units (CNN-
GRU) to form a multidimensional prediction 
structure of ''local trends + long-term memory''. 
Meanwhile, the Improved Grey Wolf Optimiz-
er (IGWO) algorithm is introduced to achieve 
global adaptive tuning of hyper-parameters in 
the CNN-GRU. Finally, a CNN-GRU optimi-
zation based on IGWO (IGWO-CNN-GRU) is 
proposed. The innovation of the research lies 
in systematically introducing multi-source het-
erogeneous information collected by enterprise 
IoT into lifecycle modeling, breaking through 
the traditional method's reliance on a single 
sales sequence. Additionally, a lifecycle stage 
label construction method based on Dynamic 
Time Warping (DTW) is designed to achieve 
stage alignment and asynchronous evolution-
ary modeling in supervised learning. In addi-
tion, the study introduces IGWO for dynamic 
hyper-parameter optimization of CNN-GRU 
structure, integrating adaptive weights and 
elite retention mechanism, which helps to im-
prove the stability and global search ability of 
the model. The research findings provide a sol-
id theoretical foundation and a set of well-de-
fined algorithmic tools for the tobacco indus-
try. These resources are particularly applicable 
in key business contexts, including intelligent 
production, precision delivery, and inventory 
optimization. Given their systematic design 
and empirical validation, the findings exhibit 
significant potential for widespread application 
and dissemination within the industry.

2. Literature Review

In recent years, HNN models have become 
an important direction in product lifecycle 
prediction research due to their advantages in 
complex time series modeling and high-di-
mensional feature fusion. Wen et al. proposed 
a multi-feature fusion model that combines 
LSTM with an improved artificial bee colony 
algorithm, successfully improving the general-
ization ability of text classification tasks. This 
study demonstrated the feasibility of collabora-
tive design between neural networks and intel-
ligent optimization algorithms in multi-source 
data modeling [7]. Similarly, Liu et al. built a 
hybrid structure based on CNN and LSTM for 
financial crisis prediction tasks, and the results 
showed that the model exhibited superiority in 
extracting local features and temporal depen-
dencies [8]. Liu et al. introduced an intelligent 
scheduling optimization method based on deep 
learning for production scheduling optimiza-
tion problems, which utilized deep networks to 
learn dynamic laws in the production process 
and improve resource utilization efficiency 
[9]. Raska et al. proposed a hybrid modeling 
scheme for manufacturing process optimiza-
tion by combining adaptive neural networks 
with discrete event simulation, which demon-
strated good adaptability and optimization 
potential in practical industrial cases [10]. In 
addition to the study of neural network struc-
tures, data acquisition and processing strate-
gies in lifecycle prediction are also receiving 
increasing attention. Gligor et al. constructed 
a co-simulation model for an enhanced smart 
grid system, integrating physical and infor-
mation system data, effectively enhancing the 
system's responsiveness to multi-source infor-
mation. This approach provided a technical ref-
erence for studying the introduction of IoT data 
for lifecycle modeling [11].
The application of optimization algorithms in 
deep models has also been a research hotspot 
in recent years. Li et al. designed an ultra-short 
term load forecasting model that integrated ex-
treme gradient boosting algorithm and bidirec-
tional GRU, and achieved accurate fitting of 
complex time-series data through combinatorial 
optimization [12]. Meanwhile, Montoya et al. 
proposed a mathematical optimization strategy 
for energy constrained IoT smart city scenarios 
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3. Research Methodology

3.1.	Life Cycle Feature Extraction 
and Modeling Based on Tobacco 
Enterprise IoT Operation Data

A multidimensional feature extraction frame-
work based on IoT operational data has been 
developed to address the issues of complex 
data sources and significant temporal features 
in product lifecycle prediction in the tobacco 
industry [15, 16]. Based on the perception de-
vices deployed by enterprises in warehousing, 
transportation, sales and other links, multi-
source information including sales sequences, 
inventory changes, logistics paths, environ-
mental parameters and consumer feedback is 
collected, and data preprocessing is completed 
through timestamp alignment, format conver-
sion and noise removal [17–19]. The over-
all framework diagram of feature extraction 
and lifecycle label construction is shown in 
Figure 1.
Figure 1 shows the lifecycle feature extraction 
and label construction process based on tobac-
co enterprise IoT operation data. This process 
covers the production, circulation, and con-
sumption stages, collecting key data such as 
sales sequences, inventory changes, logistics 
paths, environmental parameters, and consum-
er feedback. After preprocessing, five core in-
dicators are extracted, namely sales volatility, 
inventory turnover rate, lifecycle similarity 
score, environmental interference factor, and 
circulation path complexity. Finally, they cor-
respond to the lifecycle labeling system and 
construct supervised learning samples. To fur-
ther reveal the core feature extraction logic, the 
intermediate ''feature engineering'' step was 
structured and refined, as shown in Figure 2.
Figure 2 shows the construction path of five 
core features in lifecycle modeling. Sales vol-
atility reflects the magnitude of sales chang-
es of a product within a sliding window and 
is used to identify market activity and stage 
turning signals. Inventory turnover frequency 
measures the number of inventory changes per 
unit time and evaluates the efficiency of chan-
nel sales. The similarity of lifecycle stages is 

to coordinate priority services and resource al-
location, which reflected the optimization mod-
eling capability for practical needs [13]. Within 
the domain of recommendation systems, Yu et 
al. introduced a news recommendation model 
for multimedia online education scenarios by 
combining graph neural networks and bat op-
timization algorithms. The performance im-
provement effect of the fusion optimization al-
gorithm on the model was verified in complex 
multi-modal environments [14].
However, while these hybrid neural network 
frameworks demonstrate potential in gener-
al sequence modeling or classification tasks, 
they face several limitations when applied to 
complex lifecycle prediction scenarios. For ex-
ample, Wen et al. [7] designed a multi-feature 
fusion model using LSTM and an improved ar-
tificial bee colony algorithm, which performed 
well in text classification. However, their ap-
proach mainly targets static text features and 
lacks temporal sensitivity to evolving business 
rhythms, making it unsuitable for real-time life-
cycle monitoring in fast-moving supply chains. 
Similarly, Liu et al. [8] proposed a CNN-LSTM 
hybrid for financial crisis prediction. Although 
effective in fusing spatial and temporal pat-
terns, their model relied heavily on pre-struc-
tured financial indicators and did not consider 
multi-source data dynamics like IoT logistics 
or inventory feedback. Neither study account-
ed for the asynchronous and non-stationary na-
ture of product lifecycle signals in the tobacco 
industry, where external disruptions (e.g., pol-
icy shifts, regional weather, or channel delays) 
often lead to irregular and nonlinear transitions 
between lifecycle stages.
In summary, existing research provides a rich 
theoretical foundation and technical path in the 
construction of HNN structures, multi-source 
information fusion, optimization algorithm 
design, and application practice. However, in 
the task of modeling the product lifecycle in 
the tobacco industry, how to integrate IoT data 
to build robust and business adaptable deep 
learning models is still an urgent direction for 
further exploration. To this end, a CNN-GRU 
HNN model based on IGWO optimization was 
developed, which integrates multi-source life-
cycle feature information to improve the pre-
diction accuracy of product lifecycle stages 
and remaining time.
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calculated using the DTW algorithm to deter-
mine the degree of matching between the ac-
tual sales sequence and the standard template, 
which is used to identify the position of lifecy-
cle stages [20, 21]. Environmental interference 
factors are integrated with temperature and 
humidity fluctuations, transportation duration, 
and regional characteristics to characterize the 
impact of external conditions on the rhythm of 
the lifecycle. The complexity of logistics paths 
is based on extracting node hierarchy and tran-
sit frequency from the distribution network 
graph to measure the stability of channel struc-
ture. The above features are normalized and 
put into a deep model, which is trained with 
lifecycle labels to augment the model's capa-
bility to identify stage features and transition 
trends. DTW is a sequence alignment method 
that can effectively handle nonlinear offset 
problems [22, 23]. Assuming the actual sales 
sequence is A = {a1, a2, ..., an} and the standard 
lifecycle template sequence is B = {b1, b2, ..., 
bm}, a distance matrix is constructed as shown 
in equation (1).

D(i, j) = ai - bj
2                     (1)

In equation (1), || || represents the Euclidean dis-
tance, which is used to measure the sales differ-
ence between two time points. D is the distance 
matrix for n × m. Based on this, a cumulative 
distance matrix γ(i, j) is defined, and its recur-
sive relationship is shown in equation (2).

( 1, )
( , ) ( , ) min ( , 1)

( 1, 1)

i j
i j D i j i j

i j

γ
γ γ

γ

−
= + −
 − −

        (2)

The final distance of DTW is shown in equation 
(3).

( , ) ( , )DTW A B n mγ=                 (3)

To further visualize the construction process 
of similarity scores for lifecycle stages, this 
study takes historical sales data of typical to-
bacco products as an example to draw the dy-
namic alignment process between actual sales 
sequences and standard lifecycle templates, as 
shown in Figure 3.
Figure 3 shows the dynamic alignment process 
between the lifecycle template and the actual 
sales sequence. The blue curve in the figure rep-
resents the standard lifecycle template, which 
reflects the sales evolution process of a typical 
product from the introduction period, growth 

Figure 1. Flow chart of feature extraction and label construction based on IoT data in lifecycle modeling.
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period, maturity period to decline period. The 
red curve represents the sales time series of a 
certain tobacco product in the actual market, 
with obvious nonlinear fluctuation characteris-
tics. The gray line between the two curves rep-
resents the optimal alignment path calculated 
by DTW, which is the shortest cumulative path 
selected from the two-dimensional distance 
matrix. This alignment path offers a potential 
solution to the inconsistency between sales se-
quences and lifecycle templates concerning cy-
cle length and stage rhythm, as it enables local 
stretching or compression along the timeline. 
DTW distance needs to be repeatedly calculat-
ed on a large number of samples and standard-
ized to the [0,1] interval for training supervised 
labels, which improves the model's capability 
to identify critical points in the lifecycle.

Figure 3. Schematic diagram of dynamic alignment 
between lifecycle template and actual sales curve.

Figure 2. Structure diagram of feature engineering strategy in lifecycle modeling (Source from: 
https://www.svgrepo.com/svg/469752/send-alt

https://www.svgrepo.com/svg/388820/trending-down
https://www.svgrepo.com/svg/450189/inventory

https://www.svgrepo.com/svg/530162/credit-report
https://www.svgrepo.com/svg/321922/bullet-impacts

https://www.svgrepo.com/svg/164330/logistics-truck-outline
https://www.svgrepo.com/svg/118188/cycle).

https://www.svgrepo.com/svg/469752/send-alt
https://www.svgrepo.com/svg/388820/trending-down
https://www.svgrepo.com/svg/450189/inventory
https://www.svgrepo.com/svg/530162/credit-report
https://www.svgrepo.com/svg/321922/bullet-impacts
https://www.svgrepo.com/svg/164330/logistics-truck-outline
https://www.svgrepo.com/svg/118188/cycle
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3.2.	Construction of CNN-GRU for Life 
Cycle Prediction

The multi-source feature extraction system con-
structed above can effectively reflect the sales 
characteristics and environmental status of to-
bacco products at different stages of their life-
cycle. However, due to the strong local pattern 
changes and long-term temporal dependencies 
in the original data, traditional time series re-
gression models are difficult to balance feature 
space expression ability and temporal modeling 
depth, resulting in limited predictive perfor-
mance [24–26]. Based on this, an HNN mod-
el integrating CNN and GRU is designed for 
product lifecycle state recognition and remain-
ing time prediction. The structure diagram of 
the proposed CNN-GRU is shown in Figure 4.
Figure 4 shows the structure of the CNN-GRU 
architecture. The input is a feature sequence 
with multiple time steps, each step contain-
ing heterogeneous information from multiple 
sources such as sales, inventory, logistics, and 
environment. The convolution and pooling 
module extracts temporal variation patterns 
in local windows, identifies trends and abrupt 
changes in lifecycle evolution, and uses pooling 
operations for dimensionality reduction and ro-
bustness enhancement. The extracted local fea-
tures are fed into a multi-layer GRU structure to 
model long-term dependencies, and the remain-
ing lifecycle time or stage classification results 
are output through a fully connected layer [27, 
28]. To further improve the predictive perfor-
mance of the model, IGWO is introduced for 
hyperparameter tuning. Global search capabili-
ty is enhanced by introducing dynamic weights 
and adaptive update strategies. Compared to 

GWO's linear descent method, IGWO adopts 
a nonlinear descent mechanism that balances 
exploratory optimization in the early stages 
with convergence stability in the later stages. 
GWO is a global optimization method based 
on swarm intelligence, which simulates track-
ing, encirclement, and attack behavior of grey 
wolves during hunting. Compared to traditional 
GWO algorithms, IGWO introduces nonlinear 
convergence factors, adaptive inertia weights, 
and fitness weighting mechanisms. This al-
gorithm can achieve a better balance between 
global search and local convergence, which 
helps to improve the efficiency and stability of 
parameter tuning in high-dimensional complex 
problems. The IGWO algorithm is suitable for 
search tasks in deep neural networks with mul-
tiple parameters and non-convex loss functions 
and can avoid getting stuck in local optima [29]. 
The formula for updating the dynamic conver-
gence factor is shown in equation (4).

2

( ) 2 1 ta t
T

  = ⋅ −     
                  (4)

In equation (4), a(t) represents the convergence 
control factor of the generation, t represents the 
max iteration count, and T represents the cur-
rent iteration count. IGWO introduces inertia 
weights to update individual positions, as pre-
sented in equation (5).

( )1 2 3

( 1) ( )
1
3

X t w X t

X A D X A D X A Dα α β β δ δ

+ = ⋅ +

− ⋅ + − ⋅ + − ⋅

 

  

    
(5)

In equation (5), X


(t) represents the current posi-
tion of the gray wolf individual, X



α, X


β, and X


δ  
represent the three best fitness solutions in the 

Figure 4. Structure diagram of the CNN-GRU architecture.
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population, and ω represents the inertia weight. 
Ak and Ck are the behavior regulation vectors, 
and the calculation is shown in equation (6).

1

2

2 ( ) ( )
2 , 1, 2, 3

k k

k k

A a t r a t
C r k

= ⋅ ⋅ −
 = ⋅ =

                (6)

In equation (6), r1k and r2k are two independent, 
uniformly distributed, random numbers. To 
highlight the influence of outstanding individu-
als, IGWO introduces a fitness based weighting 
mechanism to replace the traditional average 
update method. The adaptive weight coefficient 
fusion mechanism is presented in equation (7).

1 2 3( 1)X t X' X' X'α β δω ω ω+ = ⋅ + ⋅ + ⋅
   

       (7)

In equation (7), ωi is the weight adaptively al-
located based on the current individual fitness.  
X


'α, X


'β, and X


'δ  are the guidance positions af-
ter weighted fusion. To maintain the global op-
timal solution from being covered by random 
disturbances and ensure convergence stability, 
IGWO uses an elite preservation mechanism to 
prevent the loss of optimal solutions, as shown 
in equation (8).

* ( 1)

( 1), Fitness( ( 1)) Fitness( * ( ))
* ( ), Fitness( ( 1)) Fitness( * ( ))

X t

X t X t X t
X t X t X t

+ =

 + + <


+ ≥



  

  

   

(8)

In equation (8), X


*(t) represents the optimal 
solution of the current record, and X



*(t + 1) rep-
resents the updated new position of the current 
iteration individual. The IGWO optimization 
process diagram is shown in Figure 5.
Figure 5 shows the complete process of IGWO 
for hyper-parameter optimization of CNN-

GRU. Firstly, the algorithm initializes the pop-
ulation, with each individual corresponding to 
a set of CNN-GRU configurations. It evaluates 
the predictive performance of each individu-
al through the fitness function and selects the 
three best solutions currently available. The 
algorithm adjusts the search coefficients based 
on adaptive strategies and integrates informa-
tion from three optimal solutions to update the 
population position. It trains and evaluates the 
model corresponding to the new location again 
and updates the current global optimal solu-
tion. The algorithm proceeds through iterative 
steps until the specified termination criterion 
is satisfied and finally outputs the optimal hy-
per-parameter combination. Based on the above 
theory, an IGWO-CNN-GRU prediction mod-
el is constructed, and the overall framework is 
shown in Figure 6.
Figure 6 indicates the overall process frame-
work of the IGWO-CNN-GRU, which includes 
four modules: feature extraction and label con-
struction, CNN-GRU, IGWO optimization, 
and result output. The model relies on sensor 
networks to collect key data in real-time from 
storage, transportation, sales, and other links, 
and generates lifecycle labels using the DTW 
algorithm. The convolutional layer extracts 
local temporal features, the GRU layer mod-
els long-term dependencies, and the fully con-
nected layer outputs prediction results. The 
IGWO module optimizes model hyper-param-
eters through dynamic convergence factors 
and adaptive weighting mechanisms. The final 
output includes the prediction of remaining life 
cycle time and stage classification, which are 
used for precise production and strategy formu-
lation, respectively.

Figure 5. IGWO optimization process diagram.
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4.	Results and Discussion

4.1.	Performance Evaluation of Models in 
Predicting the Life Cycle of Typical 
Tobacco Products

To confirm the validity of the proposed IGWO-
CNN-GRU in product lifecycle prediction, com-
parative experiments and ablation experiments 
were designed, covering both model accuracy 
and business adaptability. The experimental 
hardware configuration included: Intel Core i9-
13900K, NVIDIA RTX 4090, 128 GB memory, 
and 2 TB SSD. The software environment was 
Ubuntu 22.04 and the programming language 
was Python 3.10. The dataset was sourced from 
the operational data of tobacco companies from 
2020 to 2024, covering a total of 180000 sam-

ples of 12 types of products, including key vari-
ables such as sales volume, inventory, logistics 
routes, and environmental feedback. Table 1 
summarizes the dataset used for training and 
validation of the proposed model.
Table 1 includes 180,000 labeled samples from 
five major product groups collected between 
January 2020 and December 2024. Fine cig-
arettes and mid-to-high-end brands exhibit 
smoother and stable sales trajectories, whereas 
economy products show high variability, of-
fering a rich testbed for temporal fluctuation 
modeling. Regional custom series and experi-
mental batches introduce heterogeneity in vol-
ume, distribution channels, and environmental 
exposure. This diversity ensures that the model 
is evaluated under a wide range of lifecycle be-
haviors and business scenarios.

Figure 6. Framework diagram of IGWO-CNN-GRU prediction model.
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Data preprocessing included time alignment, 
missing padding, and minimum maximum 
normalization, and data augmentation was 
achieved through sliding windows, noise injec-
tion, and trend perturbations. The comparative 
models included: LSTM, Convolutional Bi-di-
rectional LSTM (CNN-BiLSTM), GRU, Light 
Gradient Boosting Machine (LightGBM), and 
Temporal Convolutional Network (TCN). The 
evaluation indicators included Mean Squared 
Error (MSE), Mean Absolute Error (MAE), 
Coefficient of Determination (R2), lifecycle 
stage classification accuracy, and boundary 
recognition bias. The model adopted Adam 
optimizer for training, with an initial learning 

rate of 0.001, batch size of 32, and 100 training 
rounds. The performance evaluation of various 
models in predicting the lifecycle of typical to-
bacco products is presented in Table 2.
According to Table 2, the IGWO-CNN-GRU 
performed the best in the remaining life cycle 
prediction task, with an MSE of 2.13, MAE 
of 1.17, and R2 of 0.932. All three indicators 
were superior to other comparison models. In 
contrast, the MSE and MAE of CNN-BiLSTM 
were 2.76 and 1.45, respectively, with an R2 

of 0.884. The MSE of LSTM and GRU were 
3.01 and 2.88, respectively, indicating a rela-
tively high overall error. In addition, compared 

Table 1. Dataset overview and distribution.

Product Category Number of Samples Time Span Avg. Monthly Records

Fine Cigarettes 48 200 2020.01–2024.12 960

Mid-to-High-End Brands 44 300 2020.03–2024.12 910

Economy Products 55 500 2020.06–2024.12 1150

Regional Custom Series 19 700 2021.01–2024.10 410

Experimental Batches 12 300 2022.05–2024.12 /

Total 180 000 2020.01–2024.12 /

Table 2. Performance evaluation of different models in typical tobacco product lifecycle prediction.

Model MSE MAE R2

IGWO-CNN-GRU 2.13 1.17 0.932

CNN-BiLSTM 2.76 1.45 0.884

GRU 2.88 1.39 0.875

LSTM 3.01 1.51 0.861

TCN 2.95 1.42 0.868

LightGBM 3.34 1.63 0.839
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tion is shown in Figure 7. All comparative and 
ablation experiments were conducted using a 
5-fold cross validation design to ensure consis-
tent distribution of training and testing samples 
and reduce the impact of random fluctuations 
on the results. For each comparison, test sam-
ples were randomly selected but the product 
type distribution was kept consistent to control 
the variance of the sample structure. The mean 
and variance of the error shown in Figure 7 were 
plotted based on the average results of five ex-
periments, and the stability and improvement of 
the model performance before and after optimi-
zation were verified through standard deviation 
analysis.
According to Figure 7 (a), the average MSE of 
the IGWO-CNN-GRU in 5 experiments was 
2.16. The MSEs of the original CNN-GRU were 
2.62, 2.70, 2.55, 2.68, and 2.60, respectively, 
with higher overall values and an average of 
2.63. After IGWO optimization, the MSE of the 

to the suboptimal model CNN-BiLSTM, IG-
WO-CNN-GRU showed a decrease of 18.6% 
in MSE and 21.4% in MAE, while R2 improved 
by nearly 4.8 percentage points, verifying its 
advantages in lifecycle modeling tasks. Exper-
imental data showed that traditional models 
such as LSTM and GRU, although capable of 
time series modeling, had limitations in multi-
source heterogeneous feature expression and 
stage transition capture, resulting in limited 
fitting performance. TCN and LightGBM had 
poor stability in multi-stage data, with R² values 
of only 0.868 and 0.839, respectively. IGWO-
CNN-GRU extracted local temporal features 
through the CNN module, modeled long-term 
dependencies through the GRU module, and in-
troduced the IGWO algorithm to achieve global 
optimization of hyper-parameters, achieving a 
balance between modeling accuracy and gen-
eralization ability, which was superior to other 
mainstream methods. The comparison of model 
performance before and after IGWO optimiza-

Figure 7. Comparison of model performance before and after IGWO optimization.
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model decreased by about 17.9%, showing bet-
ter fitting accuracy for the remaining life cycle 
time. From Figure 7 (b), in terms of MAE, the 
error values of the IGWO-CNN-GRU were all 
below 1.3, with an average of 1.19. In contrast, 
the average MAE value of the CNN-GRU was 
1.49, with an overall decrease of about 20.1%, 
indicating that the optimized model general-
ly had smaller absolute errors under different 
samples, and was more stable and practical. As 
shown in Figure 7 (c), in terms of R2, the R2 
value of the IGWO-CNN-GRU consistently 
remained above 0.92, with an average of 0.93, 
indicating that the model had strong explanato-
ry power for lifecycle trends. The average R2 
value of the CNN-GRU was 0.89, which was 
about 4.7% lower than the optimized model. 
Experimental data showed that IGWO optimi-
zation effectively enhanced the model's capa-
bility to fit lifecycle evolution. Lifecycle pre-
diction performance of the IGWO-CNN-GRU 
on various product types is shown in Figure 8.

As shown in Figure 8 (a), with the increase of 
sample size, the overall average prediction de-
viation decreased. Among them, the prediction 
deviation of ''fine cigarettes'' dropped to 3.2 
days at 150 batches, which was better than the 
4.7 days of ''economy cigarettes'', indicating 
that the model fitted the product lifecycle with 
obvious features more accurately. As shown 
in Figure 8 (b), the accuracy of lifecycle stage 
classification significantly improved with the 
increase of sample size. The accuracy of ''fine 
cigarettes'' and ''mid to high end cigarettes'' 
reached 96.2% and 94.8%, respectively, at 150 
batches, which was significantly higher than 
the 88.1% of ''economy cigarettes'', verifying 
that the model had stronger recognition ability 
on high-end products. From Figure 8 (c), the 
deviation in identifying lifecycle boundaries 
showed a stable downward trend, with the low-
est error for fine cigarette boundaries at 3 days, 
reflecting the robustness of the model in locat-
ing lifecycle nodes. Based on the differences in 

Figure 8. The life cycle prediction performance of IGWO-CNN-GRU on various product types.
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predictive performance among different prod-
uct types, the experimental results showed that 
the accuracy of IGWO CNN-GRU in predict-
ing the lifecycle of high-end fine cigarettes was 
higher than that of economical products. This 
difference was mainly due to the clearer sales 
rhythm and lower volatility of high-end prod-
ucts in the market, as well as more patterned 
lifecycle characteristics, which facilitated mod-
el learning and extraction. In addition, high-
end products were usually accompanied by 
more complete logistics tracking and channel 
feedback data, providing richer input features 
for the model. Meanwhile, economic products 
were more susceptible to short-term behavioral 
interference such as promotions and regional 
advertising, leading to increased volatility in 
model predictions. The overall results indicated 
that the IGWO-CNN-GRU had high accuracy 
and strong generalization ability in product life-
cycle prediction and could effectively support 
intelligent decision-making for multiple types 
of products.
To verify the statistical significance of model 
performance differences, paired sample t-test 

and confidence interval analysis were intro-
duced in the comparative experiments of vari-
ous models. The differences in MSE and MAE 
between IGWO CNN-GRU and CNN-BiL-
STM in 5 repeated experiments were tested for 
significance at the 0.01 level ( p-values were all 
less than 0.005), indicating that the proposed 
model had statistical significance in improv-
ing life cycle prediction error. Additionally, the 
increase in R2 was also within the 95% confi-
dence interval, verifying the stability of the dif-
ferences in model fitting ability. The impact of 
environmental fluctuations and hyperparameter 
sensitivity on lifecycle prediction is shown in 
Table 3.
According to Table 3, when the temperature ex-
ceeds 28 °C and the humidity fluctuation am-
plitude exceeds ± 10%, the prediction error sig-
nificantly increases (MAE increases from 1.12 
days to 1.53 days), and the DTW score decreas-
es by up to 13.5%, indicating that environmen-
tal instability can lead to misalignment of life 
cycle stages and should be used as a key feature 
for modeling. At the same time, hyperparame-
ter sensitivity analysis shows that learning rate, 

Table 3. Effects of environmental fluctuations and hyperparameter sensitivity on lifecycle prediction.

ID Condition MAE (Days) DTW Deviation (%) Note

1 22.3°C, ±5% Humidity (Stable) 1.12 / Baseline group

2 28.7°C, ±12% Humidity 1.48 Decreased by 11.3 Sales declined early

3 25.0°C, ±18% Humidity 1.53 Decreased by 13.5 Lifecycle stage confusion

4 LR = 0.001, GRU = 2, Kernel = 5 
(Default) 1.29 / Baseline config

5 LR = 0.0001, GRU = 2, Kernel = 5 1.47 Decreased by 7.6 Convergence too slow

6 LR = 0.001, GRU = 4, Kernel = 7 
(Optimized by IGWO) 1.17 Increase by 3.2 Best result via IGWO
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GRU layers, and convolution kernel size have 
the most significant impact on model perfor-
mance. The parameter combination optimized 
by IGWO (LR=0.001, GRU=4 layers, convo-
lution kernel=7) reduced MAE to 1.17 days 
and improved DTW score by 3.2%, verifying 
the rationality of the selected parameters and 
the effectiveness of the intelligent optimization 
strategy.

4.2.	Application Analysis of Models in 
Tobacco Industry's Deployment 
Strategy and Inventory Optimization

To verify the actual value of the lifecycle pre-
diction model in regulating the pace of deploy-
ment and inventory allocation, experiments 
were conducted to compare the performance 
of CNN-GRU, IGWO-CNN-GRU, and LSTM 
models from three dimensions: inventory al-
location response time, inventory utilization 
rate, and inventory prediction accuracy. The 
system evaluated their actual effectiveness in 
supporting enterprise intelligent supply chain 
management. The comparative experimental 
results of inventory and allocation strategies in 
the tobacco industry are shown in Figure 9.
From Figure 9 (a), in terms of inventory trans-
fer response time, the average response time of 
IGWO-CNN-GRU was 7.4 hours, which was 
significantly shorter compared to CNN-GRU 
and LSTM, and the efficiency of transfer de-
cision-making was higher. From Figure 9 (b), 
in terms of inventory utilization, the IGWO-
CNN-GRU had an average of 92.8%, which 
was higher than CNN-GRU's 88.4% and 
LSTM's 86.5%, indicating that its predictive 
driven inventory turnover ability was stron-
ger. From Figure 9 (c), in terms of predicting 
inventory accuracy, the IGWO-CNN-GRU 
had an average accuracy of 93.2% of the four 
samples, which was better than CNN-GRU 
and LSTM, demonstrating stronger inventory 
trend prediction ability. Figure 9 illustrates the 
superior responsiveness and accuracy of IG-
WO-CNN-GRU in inventory transfer and uti-
lization scenarios. The performance gain can 
be largely attributed to the inclusion of logis-
tics path complexity and environmental factors 

in the feature space. For example, in products 
distributed through multi-node regional net-
works, the incorporation of transit frequency 
and route stability allowed the model to better 
anticipate supply delays, reducing transfer re-
sponse time by over 15% compared to CNN-
GRU. Traditional LSTM-based models, lack-
ing this multidimensional feature awareness, 
responded with higher delay and underutili-
zation. Furthermore, hyperparameter optimi-
zation via IGWO improved learning rate and 
depth configuration, enabling the model to 
generalize across regions with different chan-
nel structures, which is critical in tobacco lo-
gistics characterized by seasonal demand shifts 
and administrative constraints. The compari-
son results of inventory fluctuation indicators 
are shown in Figure 10.
From Figure 10 (a), in terms of monthly in-
ventory volatility, the volatility of IGWO-
CNN-GRU was 9.6%, which was lower than 
CNN-GRU's 15.8% and CNN-BiLSTM's 
13.8%. According to Figure 10 (b), in terms 
of inventory backlog days, CNN-GRU was 
11.5 days and CNN-BiLSTM was 9.2 days. 
IGWO-CNN-GRU had a backlog of 6.8 days, 
which was significantly reduced compared to 
the comparison model. According to Figure 10 
(c), in terms of out-of-stock rate, the out-of-
stock rate using IGWO-CNN-GRU was 2.6%, 
while the out-of-stock rate using CNN-GRU 
was 4.9%, and the out-of-stock rate using 
CNN-BiLSTM was 3.8%. Experimental data 
revealed that the IGWO-CNN-GRU outper-
formed traditional CNN-GRU and CNN-BiL-
STM models in inventory fluctuation control. 
Its lower fluctuation performance and fre-
quency of change represented higher supply 
chain stability and inventory control efficien-
cy, suitable for scenarios with multi-category 
and cyclical sales characteristics in the tobac-
co industry. IGWO CNN-GRU combines the 
ability of CNN to detect sudden sales changes 
with GRU's sequence memory to identify early 
signs of product transition to the decline stage, 
enabling proactive inventory adjustments. Due 
to weak stage boundary recognition, the com-
parative model was unable to respond with 
similar accuracy. For example, CNN BiLSTM 
tends to exceed its maturity period, resulting 
in excess inventory. Feature analysis revealed 
that excluding inventory turnover and lifecy-
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cle similarity scores led to a 17.3% increase in 
stockout events, emphasizing the importance 
of these features in stabilizing supply and 
demand consistency. The IGWO adjustment 
process can also prevent overfitting of domi-
nant product types, ensuring consistent perfor-
mance in large quantities and niche markets. 
The comparison results of optimization indi-
cators for advertising strategies are presented 
in Table 4.
According to Table 4, the model exhibited 
good strategic adaptability and predictive per-
formance in five typical advertising scenari-
os. In terms of average advertising error, the 
core commercial districts of first tier cities and 
the concentrated areas of universities had the 
smallest errors, at 3.5 days and 3.6 days re-
spectively, indicating that the model had high-

er time prediction accuracy in high-frequen-
cy consumption and fast-paced scenarios. In 
terms of channel coverage, the coverage rate 
of transportation hubs in third tier cities was 
the highest, at 93.1%, indicating that the model 
had a stronger ability to regulate complex cir-
culation paths than other regions. The matching 
degree of sales rhythm was higher than 85% in 
all regions, with transportation hubs and uni-
versity areas exceeding 88%, indicating that 
the model could effectively coordinate market 
rhythm to adjust the delivery rhythm. In terms 
of the decrease in unsold rates, transportation 
hubs in third-tier cities also performed the best, 
with a decrease of 24.3%. The overall results 
confirmed the model's dual optimization abili-
ty for advertising efficiency and unsold risk in 
dynamic markets.

Figure 9. Experimental results of inventory and allocation strategies comparison in the tobacco industry.
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Figure 10. Comparison results of inventory fluctuation indicators.

Table 4. Comparison results of optimization indicators for advertising strategies.

Placement scenario
Average  

advertising error 
(days)

Channel  
advertising  

coverage rate (%)

Sales rhythm 
matching degree 

(%)
Decrease in  

unsold rate (%)

Core business districts in  
first tier cities 3.5 91.2 87.4 22.1

Residential concentration 
areas in second tier cities 4.2 88.5 85.9 19.8

Transportation hub in third  
tier cities 3.8 93.1 89.2 24.3

Remote county market 4.0 89.7 86.7 20.5

Concentrated areas of  
universities 3.6 90.6 88.1 21.7
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5. Conclusion

In the context of promoting intelligent manage-
ment in the tobacco industry, accurately pre-
dicting the product lifecycle has become the 
key to improving inventory turnover efficiency 
and formulating refined deployment strategies. 
Aiming at the shortcomings of existing methods 
in multi-source heterogeneous data fusion and 
time series modeling, an HNN model integrat-
ing CNN and GRU was proposed, and IGWO 
was introduced for hyper-parameter optimiza-
tion. The experiment outcomes revealed that the 
model possessed notable superiority in predict-
ing the remaining time of the lifecycle. IGWO 
improved the fitting ability and stability of the 
CNN-GRU, with an average MSE reduction of 
17.9% and a MAE reduction of 20.1% in mul-
tiple rounds of experiments. In tests of differ-
ent product types, the accuracy of classifying 
the lifecycle of ''fine cigarettes'' was 96.2%, 
and the error in identifying lifecycle boundaries 
was controlled within 3 days, verifying the high 
recognition ability of the model for lifecycle 
turning points. In terms of application experi-
ments, the IGWO-CNN-GRU outperformed the 
comparison model in regard to inventory allo-
cation response time of 7.4 hours, inventory uti-
lization rate of 92.8%, and predicted inventory 
accuracy of 93.2%. The experiment outcomes 
revealed that the IGWO-CNN-GRU performed 
excellently in predicting the remaining time of 
the lifecycle. Compared with mainstream mod-
els such as GRU, LSTM, and CNN-BiLSTM, 
the IGWO-CNN-GRU showed significant 
improvements in prediction error and fitting 
degree, indicating that the model could more 
accurately reflect the evolutionary trend of to-
bacco products at various stages of the lifecy-
cle. However, current research still has certain 
limitations. The construction of lifecycle labels 
depended on the alignment of sales rhythm and 
stage templates, which introduced temporal con-
sistency fluctuations—particularly for products 
with strong seasonality, sporadic sales spikes, or 
abrupt marketing interventions. In such cases, 
lifecycle label deviation may occur, leading to 
potential misclassification. For instance, limit-
ed-edition promotional products released during 
festivals often show short-lived sales bursts that 
differ significantly from standard stage curves. 
Additionally, the model was trained on tobacco 
industry-specific datasets, and its generalization 

capability to cross-industry or highly diversi-
fied inventory structures has not been system-
atically validated. Broader evaluation is needed 
across various enterprise profiles and supply 
chain conditions. Another key limitation arises 
in cold-start scenarios, where newly launched 
products lack historical data. In these cases, the 
model's performance deteriorates due to insuffi-
cient pattern references.
Future work will explore metadata-driven ini-
tialization, semi-supervised learning using 
product embeddings, and adaptive clustering 
to mitigate early-stage prediction gaps. More-
over, the research will further introduce graph 
neural networks to capture structural correla-
tions among products, distribution channels, 
and region-based consumption behaviors. This 
approach may improve lifecycle inference un-
der sparse or noisy input conditions. In terms 
of practical implementation, several challenges 
must also be addressed. Real-time deployment 
within tobacco enterprise systems may be af-
fected by data latency, particularly in IoT in-
tegration across fragmented platforms or under 
low-bandwidth logistics infrastructure. Sensor 
data loss, asynchronous updates, or irregular 
reporting from warehousing and transportation 
nodes could lead to partial feature drop-out, 
undermining model accuracy. Additionally, de-
spite the model's lightweight neural structure, 
computational limitations at edge nodes, such 
as in production-line controllers or warehouse 
gateways, may restrict inference speed or paral-
lel deployment. Future work will consider mod-
el compression, quantization, and edge-device 
optimization, ensuring efficient inference with 
limited hardware resources.
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