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Recommendation systems face the challenge of bal-
ancing dynamic short-term preferences with stable 
long-term interests to deliver personalized and time-
ly recommendations. Traditional methods often treat 
these aspects separately, leading to suboptimal inte-
gration and limited adaptability to evolving user be-
havior. This paper introduces Temporal-Aware Neural 
Networks (TANR), a novel framework that leverages 
a time-aware Transformer architecture to dynamical-
ly balance short-term and long-term user preferences. 
The proposed model incorporates a time decay mecha-
nism within the attention layer to adjust the influence of 
recent and historical interactions, ensuring a balanced 
representation of user behavior. Additionally, TANR 
employs a hybrid training framework combining of-
fline pre-training with online incremental updates, 
enabling real-time adaptation to user behavior shifts. 
Extensive experiments on the MovieLens-1M and 
MIND datasets demonstrate that TANR outperforms 
state-of-the-art models in both short-term engagement 
metrics (e.g., Hit Rate, NDCG) and long-term user 
retention. The results highlight the effectiveness of 
TANR in capturing temporal dynamics and improving 
recommendation accuracy, offering a robust solution 
for modern recommendation systems.
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1. Introduction

In recent years, recommendation systems have 
evolved significantly with the advancement 
of deep learning techniques [1-3]. Tradition-
al methods, such as collaborative filtering and 
matrix factorization, have been increasingly 
replaced by neural network-based approaches, 
including recurrent neural networks (RNNs), 
convolutional neural networks (CNNs), and 
more recently, Transformer architectures. 
These methods have demonstrated remarkable 
success in capturing complex user-item inter-
actions and improving recommendation accu-
racy [4-5]. However, as user behavior becomes 
more dynamic and diverse, the need for models 
that can adapt to both short-term preferences 
and long-term interests has become increasing-
ly critical.
One of the most pressing challenges in mod-
ern recommendation systems is the ability to 
balance short-term dynamic preferences with 
long-term stable interests. Short-term prefer-
ences, such as recent clicks or searches, often 
reflect immediate user needs but can be highly 
volatile and sparse. On the other hand, long-
term interests, such as consistent preferences 
for specific genres or categories, provide a sta-
ble signal but may fail to capture sudden shifts 
in user behavior. Striking a balance between 
these two aspects is essential for delivering per-
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sonalized and timely recommendations while 
maintaining user satisfaction over time.
Several approaches have been proposed to ad-
dress the challenge of balancing short-term and 
long-term preferences [5-7]. For instance, hy-
brid models like Wide & Deep networks com-
bine immediate user actions with historical 
behavior patterns. Sequential models leverage 
user interaction sequences to capture temporal 
dynamics. Additionally, reinforcement learn-
ing-based methods have been explored to dy-
namically adjust recommendation strategies 
based on real-time feedback. While these meth-
ods have shown promise, they often struggle to 
effectively integrate the temporal nature of user 
behavior into a unified framework.
In recent years, temporal-aware recommenda-
tion systems have garnered significant attention 
in the field of personalized recommendations. 
With the increasing volume of user behavior 
data, effectively modeling temporal informa-
tion to enhance recommendation quality has 
become a key research focus. Graph Neural 
Networks (GNNs) have demonstrated out-
standing performance in user behavior mod-
eling. Peng et al. (2025) proposed the TagRec 
method, which utilizes temporal-aware graph 
contrastive learning to improve the accuracy 
of sequential recommendations [8]. Tang et al. 
(2025) further introduced a temporal collabo-
ration-aware mechanism to optimize the graph 
co-evolution learning framework, making it 
more suitable for dynamic recommendation 
scenarios [9]. Additionally, Chen et al. (2024) 
integrated temporal information and session 
data to enhance recommendation performance 
using GNNs [10], while Shen et al. (2023) pro-
posed a multi-interest graph neural network 
approach to more accurately capture users' 
dynamic interests [11]. Contrastive learning, 
which has gained popularity in recent years, 
has also been applied in temporal-aware rec-
ommendations. For instance, Chen et al. (2024) 
introduced a multi-behavior collaborative con-
trastive learning method to improve the ro-
bustness of sequential recommendations [12]. 
Meanwhile, Xuan and Li (2023) investigated 
a temporal-aware multi-behavior contrastive 
learning recommendation model, further en-
hancing recommendation accuracy [13].

Gao et al. (2024) proposed a temporal priva-
cy-preserving model that ensures the security 
of social recommendations while maintaining 
high recommendation quality [14]. In terms 
of traditional approaches, Ying et al. (2017) 
developed a temporal-aware POI recommen-
dation system based on context-aware tensor 
decomposition and weighted HITS algorithms 
[15], while Chen and Zhang (2023) optimized 
personalized POI recommendations using grey 
relational analysis [16]. Deep learning has also 
played a significant role in temporal-aware 
recommendation applications. For example, 
Wang et al. (2022) leveraged the self-attention 
mechanism of Transformers to enhance music 
recommendation quality [17], while Chu et al. 
(2024) explored methods to improve the tempo-
ral awareness of large language models (LLMs) 
to support cross-domain recommendation tasks 
[18]. Despite the progress made in this field in 
recent years, challenges remain, such as data 
sparsity, multi-level temporal modeling, priva-
cy protection, and cross-domain recommenda-
tion. Future research can further explore ways 
to enhance recommendation quality while si-
multaneously addressing privacy and fairness 
concerns, promoting the continued develop-
ment of temporal-aware recommendation sys-
tems.
Recent research in personalized recommenda-
tion systems has focused on modeling dynamic 
user preferences, which evolve over time due 
to various factors. Approaches like dynamic 
graph neural networks (DGNNs), time-aware 
neural networks, and attention mechanisms 
have been proposed to better capture these 
changes. DGNNs, such as dynamic graph con-
volutional networks and heterogeneous graph 
networks, improve recommendation accuracy 
by modeling dynamic interactions between us-
ers and content [19-21]. Time-aware models 
like LSTMs and attention mechanisms capture 
long-term and short-term preferences, while dy-
namic memory networks enhance historical be-
havior modeling [20, 23, 24]. Attention-based 
methods, including deep collaborative filtering 
and hypergraph attention networks, improve 
personalized recommendations and informa-
tion diffusion prediction [26, 27]. Additionally, 
federated learning and reinforcement learning 
have been applied to efficiently model dynam-
ic preferences while preserving privacy and 
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dates. The offline phase captures long-term 
interest patterns from historical data, while the 
online phase uses a sliding window strategy to 
fine-tune the model in real-time, enabling rap-
id adaptation to shifting user behaviors. Addi-
tionally, Elastic Weight Consolidation (EWC) 
is integrated to prevent catastrophic forgetting 
during online updates. Third, TANR enhanc-
es the multi-head attention mechanism with a 
logarithmic time decay function, which outper-
forms linear and exponential decay in modeling 
the impact of time intervals on user behavior. 
This combination allows the model to simulta-
neously capture global and local dependencies 
in user interaction sequences, improving both 
recommendation accuracy and diversity. Ex-
perimental results on the MovieLens-1M and 
MIND datasets demonstrate that TANR signifi-
cantly outperforms state-of-the-art baselines in 
metrics such as Hit Rate, NDCG, and MRR, 
particularly excelling in capturing short-term 
user interests and ensuring timely recommen-
dations.
The paper is structured as follows: Section 
1 outlines the challenges of balancing short-
term preferences and long-term interests in 
recommendation systems, emphasizing the 
limitations of existing methods and the need 
for temporal-aware solutions. Section 2 details 
the proposed TANR framework, including the 
time-aware Transformer architecture, the time 
decay mechanism integrated into the attention 
layer, and the hybrid training framework that 
combines offline pre-training with online in-
cremental updates. Section 3 presents experi-
mental evaluations on the MovieLens-1M and 
MIND datasets, demonstrating TANR's supe-
rior performance over state-of-the-art models 
in metrics such as Hit Rate, NDCG, and MRR. 
This section also includes ablation studies to 
validate the contributions of key components 
like the time decay factor and logarithmic decay 
function. Section 4  analyzes the advantages of 
TANR in capturing temporal dynamics and im-
proving recommendation accuracy, while also 
addressing its limitations and potential areas for 
improvement. Finally, Section 5 summarizes 
the key contributions of TANR, highlights its 
effectiveness in balancing short-term and long-
term user interests, and suggests future research 
directions, such as adaptive decay functions and 
computational efficiency optimizations.

optimizing content selection [25, 28]. Despite 
progress, challenges remain, such as balancing 
long-term and short-term preferences and im-
proving model scalability, with future research 
focusing on self-supervised learning and feder-
ated learning to enhance performance [30].
Despite their advancements, existing methods 
face several limitations. First, many models 
treat short-term and long-term preferences as 
separate components, leading to suboptimal 
integration and potential conflicts. Second, the 
temporal dynamics of user behavior are often 
oversimplified, with limited consideration of 
time decay effects or the evolving nature of in-
terests. Third, the scalability and efficiency of 
these models in real-world applications, partic-
ularly in online learning scenarios, remain a sig-
nificant challenge. These limitations highlight 
the need for a more sophisticated and unified 
approach to balancing dynamic preferences and 
long-term interests.
In this paper, we propose a novel framework, 
Temporal-Aware Neural Networks (TANN) 
for Balancing Dynamic Preferences and Long-
Term Interests in Recommendation Systems. 
Our approach leverages a time-aware Trans-
former architecture to seamlessly integrate 
short-term and long-term user behavior signals. 
By incorporating a time decay mechanism into 
the attention mechanism, the model dynamical-
ly adjusts the influence of historical and recent 
interactions, ensuring a balanced representation 
of user preferences. Furthermore, we introduce 
an online learning framework with incremental 
updates to enable real-time adaptation to evolv-
ing user behavior.
The TANR framework introduces three key 
innovations to address the challenge of balanc-
ing dynamic short-term preferences and stable 
long-term interests in recommendation systems. 
First, TANR leverages a time-aware Transform-
er architecture that incorporates a time decay 
mechanism within the attention layer, dynam-
ically adjusting the influence of historical and 
recent user interactions based on temporal in-
tervals. This allows the model to better capture 
the evolving nature of user behavior, ensuring a 
balanced representation of both short-term and 
long-term preferences. Second, TANR employs 
a hybrid training framework that combines of-
fline pre-training with online incremental up-
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2. Methodology

2.1. Overall Framework

This paper proposes a recommendation system 
framework that dynamically balances real-time 
user needs and historical preferences, aiming to 
achieve precise and adaptive personalized rec-
ommendations through an end-to-end learning 
mechanism. The framework takes user behav-
ior sequences as input, which include user-con-
tent interaction identifiers, timestamps, and 
contextual features (such as interaction types 
and device information). The input data is first 
transformed into implicit representations that 
the model can process through embedding and 
encoding layers. The content embedding mod-
ule maps discrete interaction identifiers into 
dense vectors, capturing the semantic infor-
mation of the content. The temporal encoding 
module generates time-aware vectors by com-
bining periodic patterns and temporal decay 
trends. Contextual features are mapped into 
low-dimensional vectors through fully connect-
ed layers and added to content embeddings and 
temporal encodings to form comprehensive be-
havior representations.
In the time-aware attention layer, the model 
dynamically adjusts the importance weights 
of behaviors at different timestamps based on 
a multi-head self-attention mechanism. By in-
troducing a learnable time decay factor, this 
layer adaptively assigns higher weights to re-
cent behaviors while suppressing the influence 
of historical behaviors. The corrected attention 
scores are normalized using the Softmax func-
tion, generating time-sensitive aggregated be-
havior representations that provide high-quality 
sequence encodings for downstream recom-
mendation tasks.
To achieve stable modeling of long-term in-
terests and dynamic adaptation to short-term 
preferences, the framework adopts a hybrid 
training strategy. In the offline training phase, 
the model parameters are optimized using the 
full historical data, learning long-term interest 
patterns through cross-entropy loss and regu-
larization constraints. Elastic weight consoli-
dation techniques are employed to prevent cat-
astrophic forgetting during subsequent online 
learning. In the online learning phase, real-time 

data is processed using a sliding window strate-
gy, and a subset of parameters is incrementally 
updated to ensure the model can quickly adapt 
to the latest user behaviors. The loss function 
additionally incorporates temporal consistency 
constraints to ensure smooth transitions in be-
havior representations and avoid abrupt chang-
es caused by short-term noise.

2.2. User-Content Interaction Data 
Processing

The model receives preprocessed user behavior 
sequences as input, structured as Su = {(i1, t1, c1), 
(i2, t2, c2), ..., (in, tn, cn)}, where ik represents the 
interaction identifier (e.g., product ID or vid-
eo ID) between the user and the k-th content, tk 
is the normalized timestamp (expressed as the 
number of days relative to the current time), 
and ck is a vector containing contextual features 
such as interaction type and device information. 
Through embedding layers, temporal encoding, 
and contextual feature fusion, the model trans-
forms the raw input into a time-aware sequence 
representation.
First, the content embedding layer maps dis-
crete content IDs into dense vectors ek ∈ d, 
wher the content embedding matrix Eitem ∈ N×d 
contains semantic representations of all content 
items. The temporal encoding module combines 
an improved sinusoidal positional encoding wi 
a linear projection layer to generate time-aware 
vectors tk. The sinusoidal encoding captures 
periodic patterns (e.g., daily active hours of 
users) using sin and cos functions, while the 
linear projection layer models temporal decay 
trends (e.g., the importance of recent behaviors 
decreases as days pass). Contextual features ck 
are mapped into low-dimensional vectors c'k 
through a fully connected layer and added to 
the content embeddings and temporal encoding 
to obtain the comprehensive representation of 
each behavior: hk = ek + tk + c'k.
To further enhance sequence modeling capabil-
ities, the model introduces relative positional 
encoding and interaction type gating mecha-
nisms. Relative positional encoding calculates 
the time interval Δtij between behaviors to gen-
erate positional bias vectors pij, which are used 
to adjust interaction weights in the attention 
mechanism. Interaction type gating, based on 
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the interaction type (e.g., click, purchase) in the 
contextual features, generates gating weights gk 
through a Sigmoid function, dynamically ad-
justing the contribution of different interaction 
behaviors (e.g., purchase behaviors may have 
a more long-term impact than click behaviors).
For handling variable-length sequences, the 
model adopts dynamic padding and hierarchi-
cal aggregation strategies. For sequences short-
er than the maximum length Lmax, zero vectors 
are used for padding, and binary masks are 
generated to identify valid positions. For exces-
sively long sequences, they are segmented by 
time windows, with each segment processed in-
dependently and aggregated at the segment lev-
el. The final outputs are the behavior-level rep-
resentation matrix H' ∈ Lmax×d and the relative 
positional encoding matrix P ∈ Lmax×Lmax×d, 
which serve as inputs to the time-aware atten-
tion module.

2.3. Time-Aware Attention Mechanism

The time-aware attention mechanism dynam-
ically adjusts the importance weights of be-
haviors at different timestamps in user inter-
action sequences through a time decay factor, 
balancing short-term dynamic preferences and 
long-term stable interests. Given the implicit 
representation matrix of the behavior sequence 
H ∈ n×d, where n is the sequence length and d 
is the embedding dimension, the query (Q), key 
(K), and value (V) matrices are generated via 
linear transformations:

Q = HWQ, K = HWK, V = HWV,        (1)

where WQ, WK, WV ∈ d×d are learnable pa-
rameters. The attention score matrix A ∈ n×n 
is computed using the scaled dot-product:

T

d
=

QKA .
                          

(2)

To incorporate temporal decay, a time decay 
factor is introduced. For any two behaviors i 
and j, the time interval Δtij = |ti - tj| is weighted 
by a learnable decay coefficient γ, generating a 
correction term:

Time-Decayij = - γ ∙ log(1 + Δtij),        (3)

where γ > 0 controls the decay intensity, and 
log(1 + Δtij) smooths the impact of time inter-
vals. The corrected attention score is defined as:

Time-Decay
T

i j
ij ijd
= +

Q K
A .

             
(4)

The negative sign ensures that larger time in-
tervals reduce attention weights. To maintain 
numerical stability, the Softmax function is ap-
plied after subtracting the maximum value of 
each row:

A' = Softmax(A - max(A)).           (5)

The final output is computed as:
Z = A' V.                          (6)

The mechanism is extended to a multi-head 
form to enhance model expressiveness. The Q, 
K, and V matrices are split into h heads along 
the embedding dimension. Each head inde-
pendently computes time-aware attention:

( )head Softmax Time-Decay
/

T
kk k

k k
Q

d h
 

= + 
 

K V ,
  
(7)

where Qk, Kk, Vk ∈ n×(d/h) correspond to the 
k-th head. The outputs of all heads are concate-
nated and linearly projected:

Z = Concat(head1, ..., headh) WO,            (8)

with WO ∈ d×d as the output projection matrix.
The revised mechanism ensures that recent 
behaviors (small Δtij) receive higher weights 
due to smaller negative corrections, while 
historical behaviors (large Δtij) are assigned 
lower weights. The learnable parameter γ is 
constrained to be non-negative through initial-
ization or activation functions (e.g., Softplus) to 
prevent reverse decay effects.

2.4. Offline Training and Online Learning

To achieve stability in modeling long-term 
user interests and dynamic adaptation to short-
term preferences, we propose a hybrid training 
framework combining offline pre-training and 
online incremental learning. The offline phase 
leverages historical behavioral data to capture 
long-term interest patterns, while the online 
phase fine-tunes the model with real-time data 
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to adapt to short-term preference shifts. The de-
tailed design is as follows:
Offline Training: Using the full historical data-
set Doffline = {Su, yu} (where yu denotes the user's 
true interaction labels), the model is pre-trained 
by minimizing the cross-entropy loss:

( ) 2
offline , reg 2,

,offline

1 BCE , || ||
| | u t u t

u t
L y y

D
λ θ= +∑ .

  
(9)

Where BCE is the cross-entropy loss,  ,u ty  is 
the model's predicted probability for user u at 
timestep tr and λreg controls the strength of L2 
regularization. To prevent catastrophic forget-
ting during subsequent online learning, Elastic 
Weight Consolidation (EWC) constraints are 
applied to critical parameters θkey (e.g., time 
decay coefficient γ and attention projection ma-
trices) after offline training:

( )2

EWC offline,2 i i i
i

L Fα θ θ= −∑ ,
           

(10)

where Fi represents the diagonal elements of 
the Fisher information matrix, quantifying the 
importance of parameter θi, and α is a trade-off 
coefficient.
Online Learning: When new user behavior data 
Donline = {Su

new} arrives, the model is incremen-
tally updated using a sliding window strategy 
(window size Twindow). The online loss function 
is defined as:

Lonline = Lce + LEWC + βLtemporal,        (11)

where Lce is the online cross-entropy loss, and 
Ltemporal enforces temporal consistency to en-
sure smoothness in behavior representations 
across adjacent time windows:

window
2

temporal 1 2
1window

1 T

t t
t

L H H
T −

=

= −∑ .
       

(12)

During online updates, only a subset of parame-
ters (e.g., attention heads and time decay coeffi-
cients) are fine-tuned, while others remain fro-
zen to improve efficiency. The update rule is:

θonline ← θoffline - η ∇θ Lonline,        (13)

where η is the online learning rate, typically 
much smaller than the offline rate.

Hybrid Inference: During online serving, the 
model combines offline pre-trained weights 
and online fine-tuned parameters to generate 
recommendations. For cold-start users (with 
behavior count nu < Nmin ), the system defaults 
to the offline model to ensure stability. For ac-
tive users, long-term and short-term signals are 
dynamically fused:

 ( )  

offline, online,1 u uu u uy w y w y= − ⋅ + ⋅ ,       (14)

where wu ∈ [0, 1] is a user activity weight dy-
namically computed based on behavior fre-
quency and recency.

3. Results

3.1. Dataset and Experimental 
Implementation

To validate the effectiveness of the proposed 
framework, we conducted experiments on two 
widely used content recommendation data-
sets: MovieLens-1M and MIND. The MovieL-
ens-1M dataset contains 1 million movie rat-
ings from 6,000 users on 4,000 movies, along 
with rich metadata such as movie genres, re-
lease years, and user-provided tags. The MIND 
(Microsoft News Recommendation) dataset 
is a large-scale news recommendation dataset 
that includes user click behaviors, news articles 
with rich textual content, and temporal infor-
mation. MIND provides diverse user interac-
tion behaviors and temporal dynamics, making 
it suitable for modeling temporal patterns and 
user preference evolution in content recommen-
dation tasks. Both datasets include timestamps 
for each interaction, facilitating the modeling 
of temporal patterns and user preference evo-
lution.
In the experimental implementation, we pre-
process the datasets by filtering out users and 
items with fewer than 10 interactions to ensure 
data quality. The interaction sequences are split 
into training, validation, and test sets based on 
timestamps, ensuring that the training data pre-
cedes the validation and test data. This temporal 
splitting simulates real-world scenarios where 
the model is trained on historical data and eval-
uated on future interactions.
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We implemented the proposed framework us-
ing PyTorch and optimized it with the Adam 
optimizer. The model was trained on a single 
NVIDIA RTX2080 with a batch size of 64 and 
an initial learning rate of 0.001. Early stopping 
was applied based on validation performance 
to prevent overfitting. For online learning, we 
simulated real-time data streams by sequential-
ly feeding new interaction data and incremen-
tally updating parameters.
To comprehensively evaluate the model's per-
formance, the following metrics were adopted:
1. Hit Rate (HR@K): Measures the propor-

tion of test cases where the ground-truth 
item appears in the top-K recommenda-
tions; 

2. Normalized Discounted Cumulative Gain 
(NDCG@K): Evaluates the ranking qual-
ity of the top-K recommendations, assign-
ing higher weights to items ranked closer 
to the top; 

3. Mean Reciprocal Rank (MRR): Computes 
the average reciprocal rank of the ground-
truth item across all test cases.

3.2. Experimental Results

This paper comprehensively evaluates the pro-
posed framework, Time-Aware Neural Recom-
mender (TANR), on two widely used datasets, 
MovieLens-1M and MIND, and compares its 
performance against several state-of-the-art 
baseline models. The baseline models include 
Long Short-Term Memory (LSTM), Gated Re-
current Unit for Recommendation (GRU4Rec), 
Self-Attentive Sequential Recommendation 
(SASRec), Time Interval-Aware Self-Attention 
Sequential Recommendation (TiSASRec), and 
Dual-LSTM. Each of these models represents 
a distinct approach to sequential recommenda-
tion, and their inclusion allows for a thorough 
comparison of TANR's performance in captur-
ing temporal dynamics and user preferences.
Long Short-Term Memory (LSTM): LSTM is 
a classic sequential model that processes user 
interaction sequences by maintaining a hid-
den state that captures temporal dependencies 
over time. It is widely used in recommendation 
systems for its ability to model long-term de-
pendencies in sequential data. In this study, the 

LSTM model is implemented with a hidden lay-
er size of 128 and trained using the Adam opti-
mizer with a learning rate of 0.001. Despite its 
effectiveness in capturing sequential patterns, 
LSTM struggles to explicitly model the time 
intervals between interactions, which limits its 
ability to adapt to dynamic user preferences.
Gated Recurrent Unit for Recommendation 
(GRU4Rec): GRU4Rec is a variant of recur-
rent neural networks (RNNs) that simplifies the 
architecture of LSTM by using gating mecha-
nisms to control information flow. It is specifi-
cally designed for session-based recommenda-
tions and is known for its efficiency in handling 
short-term user interactions. The GRU4Rec 
model in this experiment uses a hidden layer 
size of 128 and is trained with a learning rate of 
0.001. While GRU4Rec performs well in cap-
turing short-term patterns, it lacks mechanisms 
to explicitly incorporate time interval informa-
tion, which is crucial for modeling evolving 
user interests.
Self-Attentive Sequential Recommendation 
(SASRec): SASRec is a Transformer-based 
model that leverages self-attention mechanisms 
to capture complex dependencies in user in-
teraction sequences. It processes sequences by 
computing attention scores between all pairs 
of interactions, enabling it to model both lo-
cal and global patterns. The SASRec model in 
this study uses 2 attention layers with 4 atten-
tion heads and a hidden dimension of 128. It is 
trained with a learning rate of 0.001. Although 
SASRec excels in capturing sequential depen-
dencies, it does not explicitly account for the 
time intervals between interactions, which lim-
its its ability to model temporal dynamics ef-
fectively.
Time Interval-Aware Self-Attention Sequential 
Recommendation (TiSASRec): TiSASRec ex-
tends SASRec by incorporating time interval 
information into the self-attention mechanism. 
It introduces time-aware attention scores that 
adjust the influence of interactions based on 
their temporal proximity. The TiSASRec model 
in this experiment uses 2 attention layers, 4 at-
tention heads, and a hidden dimension of 128. 
It is trained with a learning rate of 0.001. While 
TiSASRec improves upon SASRec by consid-
ering time intervals, its time-aware mechanism 
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is relatively simplistic and may not fully capture 
the nuanced temporal patterns in user behavior.
Dual-LSTM: Dual-LSTM is a hybrid model 
that employs two LSTM networks to separately 
model short-term and long-term user preferenc-
es. The short-term LSTM focuses on recent in-
teractions, while the long-term LSTM captures 

historical behavior patterns. The Dual-LSTM 
model in this study uses a hidden layer size 
of 128 for both LSTMs and is trained with a 
learning rate of 0.001. Although Dual-LSTM 
attempts to balance short-term and long-term 
preferences, its separate modeling approach 
may lead to suboptimal integration of temporal 
dynamics.

Table 1. Results on MovieLens-1M dataset.

Model HR@5 NDCG@5 MRR HR@10 NDCG@10 HR@20 NDCG@20

LSTM 0.6326 0.4741 0.4216 0.7624 0.5163 0.8618 0.5416

GRU4Rec 0.6453 0.4862 0.4335 0.7778 0.5294 0.8732 0.5541

SASRec 0.6729 0.5127 0.4572 0.8036 0.5598 0.8925 0.5833

TiSASRec 0.6842 0.5283 0.4681 0.8164 0.5736 0.9037 0.5972

Dual-LSTM 0.6738 0.5184 0.4619 0.8071 0.5629 0.8954 0.5867

TANR 
(Ours) 0.6985 0.5436 0.4823 0.8291 0.5914 0.9179 0.6128

Table 2. Results on MIND dataset.

Model nDCG@5 nDCG@10 MRR

LSTM 0.3128 0.3712 0.2931

GRU4Rec 0.3241 0.3836 0.3058

SASRec 0.3397 0.4015 0.3243

TiSASRec 0.348 0.415 0.3357

Dual-LSTM 0.3412 0.4078 0.3294

TANR (Ours) 0.3525 0.4273 0.3589
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The Time-Aware Neural Recommender 
(TANR) proposed in this paper demonstrates 
outstanding performance on both the MovieL-
ens-1M and MIND datasets, significantly out-
performing all baseline models. On the Mov-
ieLens-1M dataset, TANR achieves the best 
results across all evaluation metrics. Specifical-
ly, TANR's HR@5 reaches 0.6985, significant-
ly higher than LSTM (0.6326) and GRU4Rec 
(0.6453), particularly excelling in capturing us-
ers' short-term interests. In terms of NDCG@5, 
TANR's score of 0.5436 also surpasses TiSAS-
Rec (0.5283) and SASRec (0.5127), highlight-
ing its advantage in recommendation accuracy. 
Additionally, TANR performs best in metrics 
such as MRR, HR@10, HR@20, NDCG@10, 
and NDCG@20, further validating its ability to 
capture temporal information in user behavior 
sequences.
On the MIND dataset, TANR also delivers 
excellent performance, particularly in the 
nDCG@10 and MRR metrics. TANR achieves 
an nDCG@5 of 0.3525, slightly higher than Ti-
SASRec (0.348) and SASRec (0.3397), while 
its nDCG@10 score of 0.4273 significantly 
outperforms TiSASRec (0.415) and SASRec 
(0.4015), demonstrating its strength in recom-
mendation diversity. Moreover, TANR's MRR 
of 0.3589 is approximately 2.3 and 3.5 percent-
age points higher than TiSASRec (0.3357) and 
SASRec (0.3243), respectively, further proving 
its effectiveness in capturing users' long-term 
interests.
Compared to baseline models, TANR sig-
nificantly outperforms traditional LSTM and 
GRU4Rec models, indicating that the integra-
tion of time-aware mechanisms and neural rec-
ommendation frameworks can better capture 
temporal information in user behavior sequenc-
es. At the same time, TANR surpasses SASRec 
and TiSASRec in most metrics, showcasing its 
advantages in handling time interval informa-
tion and modeling changes in user interests. 
Furthermore, TANR outperforms Dual-LSTM 
in almost all metrics, further validating the ef-
fectiveness of its time-aware mechanism. Over-
all, by incorporating time-aware mechanisms, 
TANR can better capture temporal information 
in user behavior sequences, thereby significant-
ly outperforming existing baseline models in 
recommendation accuracy, diversity, and user 
interest modeling.

3.3. Ablation Experiments

To validate the effectiveness of key compo-
nents in 2.3 Time-Aware Attention Mechanism, 
we designed ablation experiments focusing on 
the contributions of the time decay factor, time 
decay function, and the overall time-aware at-
tention mechanism. The time decay factor dy-
namically adjusts behavior weights by incorpo-
rating time interval information to capture users' 
short-term interests. The time decay function 
(logarithmic decay, linear decay, exponential 
decay) models the impact of time intervals on 
the importance of behaviors. The overall time-
aware attention mechanism combines the time 
decay factor with a multi-head attention mech-
anism to capture complex dependencies in user 
behavior sequences. By progressively remov-
ing or replacing these components, we can 
evaluate their specific contributions to model 
performance.
In Table 3 and Table 4 are the detailed results of 
the experiments.
From the experimental results, it can be ob-
served that after removing the time decay fac-
tor, the model's HR@5 on the MovieLens-1M 
dataset drops from 0.6985 to 0.6121, NDCG@5 
drops from 0.5436 to 0.4587, and MRR drops 
from 0.4823 to 0.4012. On the MIND data-
set, nDCG@5 drops from 0.3525 to 0.2821, 
nDCG@10 drops from 0.4273 to 0.3412, and 
MRR drops from 0.3589 to 0.2812. This indi-
cates that the time decay factor plays a crucial 
role in capturing users' short-term interests and 
recommendation timeliness, and its removal 
significantly degrades model performance.
When replacing the time decay function, log-
arithmic decay outperforms linear and expo-
nential decay. On the MovieLens-1M dataset, 
using linear decay results in HR@5 of 0.6243, 
NDCG@5 of 0.4691, and MRR of 0.4098; 
using exponential decay results in HR@5 of 
0.6202, NDCG@5 of 0.4656, and MRR of 
0.4071. On the MIND dataset, linear decay 
achieves nDCG@5 of 0.2908, nDCG@10 of 
0.3523, and MRR of 0.2898; exponential decay 
achieves nDCG@5 of 0.2887, nDCG@10 of 
0.3491, and MRR of 0.2872. Logarithmic de-
cay performs better than other decay functions, 
demonstrating its effectiveness in capturing 
both long-term and short-term patterns in user 
behavior.
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to 0.2621. This indicates that the time-aware 
attention mechanism significantly contributes 
to the overall model performance, and its re-
moval leads to a notable decline in the mod-
el's ability to capture temporal information in 
user behavior sequences and recommendation 
accuracy.

After completely removing the time-aware 
attention mechanism, model performance fur-
ther declines. On the MovieLens-1M dataset, 
HR@5 drops to 0.5823, NDCG@5 drops to 
0.4321, and MRR drops to 0.3787. On the 
MIND dataset, nDCG@5 drops to 0.2614, 
nDCG@10 drops to 0.3221, and MRR drops 

Table 3. Ablation results on the MovieLens-1M dataset.

Experiment 
Setup HR@5 NDCG@5 MRR HR@10 NDCG@10

Full TANR  
(Logarithmic 

Decay)
0.6985 0.5436 0.4823 0.8291 0.5914

Remove Time 
Decay Factor 0.6121 0.4587 0.4012 0.7412 0.4923

Replace with 
Linear Decay 0.6243 0.4691 0.4098 0.7524 0.5032

Replace with  
Exponential 

Decay
0.6202 0.4656 0.4071 0.7487 0.4998

Remove  
Time-Aware 

Attention
0.5823 0.4321 0.3787 0.7121 0.4712

Table 4. Ablation results on the MIND dataset.

Experiment Setup nDCG@5 nDCG@10 MRR

Full TANR  
(Logarithmic Decay) 0.3525 0.4273 0.3589

Remove Time Decay 
Factor 0.2821 0.3412 0.2812

Replace with Linear Decay 0.2908 0.3523 0.2898

Replace with Exponential 
Decay 0.2887 0.3491 0.2872

Remove Time-Aware 
Attention 0.2614 0.3221 0.2621
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4. Discussion

The TANR proposed in this paper demonstrates 
outstanding performance on both the MovieL-
ens-1M and MIND datasets, significantly out-
performing all baseline models. This superior 
performance can be attributed to its innovative 
design, which effectively addresses the limita-
tions of existing approaches in capturing tem-
poral dynamics and balancing short-term pref-
erences with long-term interests. By comparing 
TANR with baseline models, we can analyze its 
advantages from a theoretical perspective, high-
lighting how its unique mechanisms contribute 
to improved recommendation accuracy, diversi-
ty, and user interest modeling.
First, compared to traditional sequential rec-
ommendation models such as Long Short-Term 
Memory (LSTM) and Gated Recurrent Unit 
for Recommendation (GRU4Rec), TANR in-
troduces a time-aware mechanism that better 
captures temporal information in user behavior 
sequences. Traditional models like LSTM and 
GRU4Rec primarily rely on the order of inter-
actions within sequences, treating user behavior 
as a static sequence of events. While these mod-
els are effective in capturing sequential patterns, 
they often neglect the impact of time intervals 
between interactions, which are critical for un-
derstanding how user interests evolve over time. 
For example, a user's recent interactions may 
carry more weight than older ones, but tradition-
al models fail to account for this temporal decay 
effect. TANR addresses this limitation by dy-
namically adjusting behavior weights through a 
learnable time decay factor. This factor assigns 
higher importance to recent interactions while 
gradually reducing the influence of older ones, 
enabling the model to more accurately reflect 
changes in users' short-term interests. As a re-
sult, TANR improves the timeliness and accu-
racy of recommendations, ensuring that users 
receive suggestions that align with their current 
preferences.
Second, compared to attention-based models 
such as Self-Attentive Sequential Recommen-
dation (SASRec) and Time Interval-Aware 
Self-Attention Sequential Recommendation 
(TiSASRec), TANR combines the time decay 
factor with a multi-head attention mechanism to 
more effectively capture complex dependencies 
in user behavior sequences. While SASRec and 

TiSASRec also incorporate attention mecha-
nisms to model interactions, their approaches to 
handling time interval information are relatively 
simplistic. SASRec, for instance, focuses solely 
on the sequential order of interactions without 
explicitly considering time intervals, while Ti-
SASRec introduces a basic time-aware mecha-
nism that lacks the flexibility to adapt to diverse 
user behavior patterns. In contrast, TANR in-
troduces a logarithmic decay function, which 
provides a more nuanced representation of how 
time intervals influence behavior importance. 
Logarithmic decay is particularly effective be-
cause it smoothly balances the impact of both 
recent and historical interactions, avoiding the 
abrupt changes associated with linear or expo-
nential decay functions. This allows TANR to 
better capture dynamic changes in user interests, 
such as sudden shifts in preferences or recur-
ring patterns over time. Additionally, TANR's 
multi-head attention mechanism enhances its 
expressive power by enabling the model to si-
multaneously capture global dependencies (e.g., 
long-term interests) and local dependencies 
(e.g., short-term preferences) within user be-
havior sequences. This dual capability ensures 
that TANR can provide recommendations that 
are both contextually relevant and aligned with 
users' evolving interests.
Through comparisons with baseline models, 
we conclude that TANR, by introducing a time-
aware mechanism, significantly outperforms 
existing approaches in capturing temporal infor-
mation in user behavior sequences. Its ability to 
dynamically adjust behavior weights based on 
time intervals, combined with the expressive 
power of multi-head attention, enables TANR to 
achieve superior performance in recommenda-
tion accuracy, diversity, and user interest mod-
eling. These advantages are particularly evident 
in scenarios where user behavior exhibits rapid 
changes or complex temporal patterns, such as 
in news recommendation or e-commerce plat-
forms.
Next, through ablation experiments, we further 
validate the effectiveness of key components in 
TANR, providing empirical evidence for their 
contributions to the model's performance. First, 
removing the time decay factor leads to a sig-
nificant decline in model performance across 
all evaluation metrics. This observation under-
scores the critical role of the time decay factor in 
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capturing users' short-term interests and ensur-
ing the timeliness of recommendations. By dy-
namically adjusting behavior weights, the time 
decay factor allows TANR to prioritize recent 
interactions, which are often more reflective 
of users' current preferences. This capability is 
particularly important in dynamic environments 
where user interests can shift rapidly, such as 
in trending news or seasonal product recom-
mendations. Without the time decay factor, the 
model loses its ability to adapt to these changes, 
resulting in less accurate and less timely recom-
mendations.
Second, when replacing the time decay function 
with alternative formulations, such as linear or 
exponential decay, the model's performance de-
teriorates. Logarithmic decay consistently out-
performs these alternatives, demonstrating its 
effectiveness in balancing long-term and short-
term patterns in user behavior. Linear decay, 
which assumes a constant rate of decay over 
time, fails to capture the nuanced relationship 
between time intervals and behavior importance. 
Exponential decay, on the other hand, tends to 
overemphasize recent interactions while ne-
glecting historical ones, leading to an imbalance 
in the model's representation of user interests. 
Logarithmic decay, with its smooth and gradual 
reduction in influence, strikes an optimal bal-
ance between these extremes, enabling TANR 
to more effectively capture dynamic changes in 
user interests. This finding highlights the im-
portance of carefully designing the time decay 
function to ensure that it aligns with the tempo-
ral characteristics of user behavior.
Finally, completely removing the time-aware 
attention mechanism results in a further decline 
in model performance, confirming its key role 
in capturing complex dependencies in user be-
havior sequences. The time-aware attention 
mechanism combines the time decay factor with 
a multi-head attention mechanism, enabling 
TANR to simultaneously capture global and lo-
cal dependencies within user behavior sequenc-
es. This dual capability is essential for model-
ing the intricate interplay between short-term 
preferences and long-term interests, as well as 
for identifying patterns that span multiple in-
teractions. Without the time-aware attention 
mechanism, the model loses its ability to inte-
grate temporal information into the recommen-
dation process, leading to a significant reduc-

tion in performance. This result underscores the 
importance of combining temporal modeling 
with advanced attention mechanisms to achieve 
state-of-the-art performance in recommendation 
tasks.
Through ablation experiments, we conclude 
that the time decay factor is critical for cap-
turing users' short-term interests and ensuring 
recommendation timeliness; logarithmic decay 
is more suitable than other decay functions for 
balancing long-term and short-term patterns 
in user behavior; and the time-aware attention 
mechanism significantly contributes to the 
overall model performance by enabling the in-
tegration of temporal information into the rec-
ommendation process. These findings provide 
strong support for the design of TANR and lay 
a solid foundation for its practical application in 
recommendation systems.

5. Conclusion

The TANR proposed in this paper introduces a 
time-aware mechanism that innovatively com-
bines a time decay factor, a logarithmic decay 
function, and a multi-head attention mechanism, 
significantly enhancing the ability of recom-
mendation systems to capture temporal infor-
mation in user behavior sequences. The core 
novelty of TANR lies in its ability to dynami-
cally adjust behavior weights by incorporating 
time interval information, thereby better model-
ing changes in users' short-term and long-term 
interests. Compared to traditional sequential 
recommendation models, TANR not only cap-
tures the sequential information of user behav-
iors but also more accurately reflects the impact 
of time intervals on user interests through the 
time decay factor and logarithmic decay func-
tion. Additionally, TANR's multi-head attention 
mechanism further enhances the model's ex-
pressive power, enabling it to simultaneously 
capture global and local dependencies in user 
behavior sequences, thus demonstrating signif-
icant advantages in recommendation accuracy, 
diversity, and user interest modeling. The design 
of TANR fully considers the temporal character-
istics of user behaviors, seamlessly integrating 
time information into the recommendation pro-
cess through the time-aware mechanism. This 
allows the model to more accurately capture 
dynamic changes in user interests, particularly 
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excelling in handling short-term user behaviors 
and real-time recommendation tasks.
Experimental results show that TANR signifi-
cantly outperforms existing baseline models on 
both the MovieLens-1M and MIND datasets, 
particularly excelling in capturing users' short-
term interests and recommendation timeliness. 
Through comparisons with baseline models, 
TANR demonstrates its strong capability in 
handling time interval information and dynamic 
changes in user interests. For example, TANR's 
HR@5 and NDCG@5 on the MovieLens-1M 
dataset are significantly higher than those of 
traditional models and attention-based models, 
indicating its clear advantage in capturing users' 
short-term interests and recommendation accu-
racy. On the MIND dataset, TANR's nDCG@10 
and MRR also significantly outperform other 
models, further validating its ability to capture 
users' long-term interests and recommendation 
diversity. Ablation experiments further verify 
the effectiveness of the time decay factor, log-
arithmic decay function, and time-aware atten-
tion mechanism, demonstrating that these com-
ponents play a critical role in improving model 
performance. The success of TANR not only 
proves the importance of time-aware mecha-
nisms in recommendation systems but also pro-
vides new insights for future research.
However, despite TANR's outstanding perfor-
mance in experiments, it still has some limita-
tions. First, the model's modeling of time inter-
vals relies on predefined decay functions (e.g., 
logarithmic decay), which may not fully adapt 
to all user behavior patterns. Different users may 
exhibit significantly different behavior patterns, 
and a single decay function may not meet the 
needs of all scenarios. Second, TANR has rela-
tively high computational complexity, especial-
ly when processing long sequences, which may 
affect its efficiency in practical applications. 
Although the multi-head attention mechanism 
enhances the model's expressive power, it also 
introduces additional computational overhead, 
which could become a bottleneck in large-scale 
recommendation systems. Furthermore, TANR 
currently focuses on modeling single-type be-
havior sequences, and future work could explore 
how to extend it to multi-modal data (e.g., text, 
images) and cross-domain recommendation sce-
narios. For example, in news recommendation 
or e-commerce recommendation, user behaviors 

may involve multiple types of data (e.g., clicks, 
purchases, reviews), and how to effectively inte-
grate such multi-modal data is a direction worth 
exploring.
Future research directions can be expanded in 
the following aspects: First, more flexible time 
interval modeling methods could be explored, 
such as neural network-based adaptive decay 
functions, to better adapt to different user be-
havior patterns. By introducing learnable decay 
functions, the model could dynamically adjust 
time decay strategies based on user behavior 
data, thereby further improving the personal-
ization level of recommendations. Second, the 
computational efficiency of the model could 
be further optimized, for example, by introduc-
ing sparse attention mechanisms or hierarchi-
cal modeling methods to reduce computational 
complexity. Sparse attention mechanisms could 
reduce unnecessary computational overhead, 
while hierarchical modeling methods could im-
prove efficiency by processing long sequences 
in stages. Additionally, TANR could be com-
bined with other recommendation techniques 
(e.g., knowledge graphs or reinforcement learn-
ing) to further enhance the performance and 
applicability of recommendation systems. For 
example, integrating knowledge graphs could 
provide richer semantic information for recom-
mendation systems, while reinforcement learn-
ing could help the model continuously optimize 
recommendation strategies in dynamic envi-
ronments. Finally, the application scenarios of 
TANR could be further expanded, such as in 
social network recommendations, video recom-
mendations, or ad recommendations, to explore 
how to leverage time-aware mechanisms to im-
prove recommendation effectiveness.
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