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This paper presents a novel real-time fire detection 
framework tailored for IoT devices by integrating 
the fine-tuned YOLOv10 model with the Accelerator 
module. Trained on the FireSmokeDataset (Robo-
flow) and an additional dataset we collected via 
Roboflow, the system covers fire, smoke, and dis-
tracting objects. Optimized for resource-constrained 
edge devices, the framework demonstrates excep-
tional performance, achieving high mean average 
precision (mAP) for fire and smoke detection, with 
metrics exceeding 84% and a maximum mAP50 
of over 91%. We target deployments in residential 
homes, industrial facilities, and forest monitoring sta-
tions. A key contribution of the proposed framework 
is the construction of a diverse dataset encompass-
ing fire, smoke, and distracting objects - an element 
often overlooked in existing fire detection datasets. 
Additionally, fine-tuning the YOLOv10 model com-
ponents in conjunction with hardware acceleration 
ensures both prediction accuracy and improved in-
ference response performance. Comprehensive eval-
uations confirm the system's robustness, scalability, 
and practicality under various operating conditions. 
Through experimental analysis, the YOLOv10-S 
(small) model stands out for its balance between effi-
ciency and resource usage, making it a suitable choice 
for low-cost real-time applications with resource 
constraints. By utilizing the Coral Accelerator, the 
proposed framework reduces inference time by 58% 
compared to CPU-based implementations, achieving 
a latency of just 1.7 seconds per frame. The system's 
lightweight design ensures reliable deployment in re-
mote areas with limited computational resources and 
unstable network connectivity, maintaining high ac-
curacy while minimizing false alarms.

ACM CCS (2012) Classification: Computing method-
ologies → Artificial intelligence → Computer vision  
→ Computer vision tasks → Scene anomaly detection
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1.	Introduction

Fire-related incidents are a global challenge, 
causing annual economic losses estimated 
at billions of dollars and tragically claiming 
thousands of lives. For example, the National 
Fire Protection Association (NFPA) reported 
over 1.39 million fires in the United States in 
2023 [1]. These fires resulted in an estimated 
3,670 civilian fire deaths and 13,350 report-
ed civilian fire injuries. The property damage 
caused by these fires was estimated at $23 bil-
lion. On average, a fire department responds 
to a fire somewhere in the US every 23 sec-
onds. A home structure fire was reported every 
95 seconds, a home fire death occurred every 
three hours, and a home fire injury occurred 
every 52 minutes. More than one-third of the 
fires (470,000—or 34 percent) occurred in or 
on structures. Most fire losses were caused by 
these structural fires, accounting for 3,070 ci-
vilian fire deaths (84 percent), 11,790 civilian 
fire injuries (88 percent), and $14.7 billion in 
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direct property damage (83 percent). Similarly, 
according to the latest report [2] dated Decem-
ber 29, 2024, a total of 62,132 wildfires were 
recorded across the United States, burning a 
total area of 8,865,833.1 acres. The most se-
verely affected states included California, with 
8,307 fires burning 1,080,127.8 acres; Texas, 
with 4,598 fires affecting 1,313,832 acres; and 
Oregon, with 2,213 fires burning 1,799,831.7 
acres. These statistics highlight the severity of 
wildfires across the United States in 2024 and 
underscore the urgent need for effective early 
fire detection systems.
Traditional fire detection methods, such as 
smoke detectors or conventional camera-based 
systems, often fail to respond quickly and accu-
rately in critical situations. Recent studies have 
demonstrated that IoT-based devices, combined 
with artificial intelligence technologies, can 
enable real-time fire detection with higher ef-
ficiency. For instance, Magalhães et al. [3] ex-
plored the trade-off between latency and cost 
when deploying YOLO on Raspberry Pi and 
cloud servers. The study revealed that although 
Raspberry Pi-based configurations offer low 
costs, they fail to meet real-time requirements 
due to limitations in data processing. PG-YO-
LO [4] focused on optimizing YOLOv5 for 
edge devices by reducing the model size by nine 
times. While this solution improved computa-
tional efficiency, it achieved only average in-
ference speed, which is insufficient for rapid re-
sponse in fast-spreading fire scenarios. Ahmed 
Saleem Mahdi [5] developed a system using 
YOLOv5 for wildfire detection in edge com-
puting environments, achieving 98% accuracy 
but facing challenges in deployment costs and 
a lack of diversity in the dataset, making it un-
suitable for real-world scenarios. Similarly, the 
research by Talaat et al. [6] utilizing YOLOv8 
achieved an accuracy rate of 97.1% but heavily 
relied on cloud processing, leading to latency 
issues when deployed in edge environments. 
Additionally, their dataset contained only fire 
and smoke images, lacking noisy images, and 
thus failed to represent real-world conditions 
comprehensively. These studies indicate that 
while significant progress has been made in fire 
detection, current solutions still face limitations 
in ensuring real-time performance in diverse 
and resource-constrained environments. This 
underscores the urgent need for more optimized 

solutions that ensure both high accuracy and re-
al-time detection capabilities.
Recently, some studies have also proposed us-
ing Jetson Nano to accelerate wildfire detec-
tion systems [7], [8], [9], [10]. However, this 
device is relatively expensive and less flexible 
compared to combining IoT devices with a wid-
er variety of models that are more affordable. 
Additionally, a simpler acceleration module en-
ables easier connectivity and adjustments when 
configuration changes are needed for specific 
requirements.
The development of IoT and AI technologies of-
fers transformative solutions to these challeng-
es. Integrating intelligent algorithms with edge 
computing devices enables real-time process-
ing and decision-making at the source, reduc-
ing dependency on centralized systems. In this 
context, we propose a novel real-time fire de-
tection framework that combines the fine-tuned 
YOLOv10 model [11] with the Coral Acceler-
ator [12], specifically designed for IoT appli-
cations. This approach addresses critical points 
such as latency and accuracy while maintaining 
a lightweight design suitable for deployment in 
constrained environments. By incorporating a 
diverse dataset of both fire and smoke images 
and fine-tuning the YOLOv10 small model (a 
fast yet robust model ensuring high prediction 
accuracy) supported by hardware acceleration 
devices, the proposed system ensures not only 
high accuracy but also the ability to deploy ef-
fectively in resource-constrained environments, 
such as remote areas or fire-prone hazardous 
zones. By leveraging the power of deep learn-
ing algorithms combined with advanced edge 
computing devices, our solution minimizes la-
tency while enhancing fire detection capabili-
ties in real-world conditions.
The remainder of the paper is organized as 
follows. In Section 2, we discuss modern fire 
detection methods concerning accuracy and 
real-time assurance. Section 3 presents the de-
tails of the architecture and system workflow. 
Section 4 presents the method of constructing 
the fire and smoke dataset and the development 
process. Section 5 presents the results and dis-
cussion. Finally, conclusions are provided in 
Section 6.
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them from fully representing real-world envi-
ronments.
S. Saponara et al. proposed deploying YOLOv2 
on Jetson Nano and Raspberry Pi cameras in 
[7]. This solution enables remote monitoring 
in smart infrastructure. The system provides 
real-time fire alerts and is suitable for applica-
tions in smart cities and transportation. Howev-
er, while YOLOv2 is a robust model, it has been 
surpassed by newer versions such as YOLOv8 
and YOLOv10 in terms of accuracy and speed. 
Using an older model reduces the system's abil-
ity to accurately detect fire and smoke objects, 
particularly under complex conditions such 
as low light or noisy environments. Chenglin 
Guo et al. proposed a system based on Nvid-
ia Jetson Nano and YOLOv5s, accelerated us-
ing TensorRT and DeepStream for real-time 
fire detection [8]. The use of edge computing 
combined with the Azure IoT platform helped 
reduce latency and enhance detection efficien-
cy. However, the lack of a diverse and com-
prehensive data source reduced performance 
in complex real-world scenarios, such as harsh 
weather conditions, crowded environments, or 
the presence of multiple unrelated heat sources. 
These limitations hinder its feasibility for wide-
spread deployment. In [9] the authors propose 
a real-time wildfire detection method using un-
manned aerial vehicles (UAVs) equipped with 
Jetson Nano. Due to the computational and bat-
tery constraints of UAVs, this study employs 
TensorRT (NVIDIA's inference acceleration li-
brary) along with techniques such as Quantiza-
tion Aware Training (QAT), Automatic Mixed 
Precision (AMP), and Post-Training Quantiza-
tion (PTQ) to improve recognition speed. While 
optimization methods like QAT, AMP, and PTQ 
enhance inference speed, they also reduce mod-
el accuracy, especially in classifying fire images 
with complex noise. Additionally, Jetson Nano 
consumes a significant amount of power when 
running deep learning models, which shortens 
the UAV's flight time. Similarly, in [10] the au-
thors present a deep learning-based surveillance 
system for wildfire detection and monitoring 
using UAV. The system utilizes a UAV-mount-
ed camera to capture images and applies deep 
learning algorithms for early fire detection. The 
YOLOv8 and YOLOv5 models are compared 
in terms of fire detection performance, while a 
CNN-RCNN network is developed to classify 

2. Related Works

Numerous fire detection and monitoring solu-
tions have been extensively researched in recent 
years, with significant contributions focused on 
improving detection accuracy, computational 
efficiency, and deployability in real-world en-
vironments.
D. Mamadaliev et al. proposed an improved 
smoke and fire detection method based on the 
YOLOv8n model, incorporating significant ar-
chitectural changes to enhance accuracy and 
efficiency [13]. The replacement of the CIoU 
loss function with WIoUv3 improved the mod-
el's focus on critical regions through a dynamic 
attention mechanism. Additionally, replacing 
the C2f module with residual blocks enhanced 
feature extraction capabilities, reduced training 
and inference time, and streamlined the overall 
process. The authors also proposed integrating 
GELAN blocks into the neck of YOLOv8n, fur-
ther improving training efficiency. This meth-
od achieved outstanding results compared to 
other state-of-the-art algorithms, with a mean 
average precision mAP50 of 79.4% and im-
proved performance metrics such as precision 
and recall. However, despite the performance 
improvements, the use of complex blocks and 
model transformations required higher compu-
tational resources, limiting their applicability in 
systems with constrained hardware. Moreover, 
the accuracy was affected by an insufficient 
training dataset that lacked diversity and did not 
represent various real-world conditions, such as 
diverse environments and different types of fire 
and smoke objects.
Ahmed Saleem Mahdi developed an early wild-
fire detection system using YOLOv5 in an edge 
computing environment [5]. While achieving 
a detection accuracy of 98%, their reliance 
on Jetson Nano devices limited scalability for 
cost-sensitive deployments. Talaat et al. pro-
posed a Smart Fire Detection System (SFDS) 
leveraging YOLOv8 for real-time detection in 
smart cities [6]. Their method achieved a high 
accuracy rate of 97.1%, but it heavily relied on 
cloud-based processing, leading to significant 
latency in edge-based environments. Addition-
ally, the datasets used in both studies lacked di-
versity, containing only fire and smoke images 
and omitting noisy images, which prevented 



160 T. T. Huynh, D. T. Huynh, D. T. Phu and A. H. Nguyen

images as containing fire or not. This system is 
integrated with NVIDIA Jetson Nano hardware 
for real-time data processing and transmission 
of fire location information to a ground mon-
itoring station, improving response time and 
timely intervention. However, the weight of 
the Jetson Nano reduces the UAV's flexibility 
and flight duration, limiting the system's opera-
tional range. Furthermore, the object detection 
accuracy of the YOLOv5 and YOLOv8 mod-
els reaches only 89%, which is lower than the 
image classification accuracy of 96%. This in-
dicates that the ability to precisely identify the 
fire's location has not yet reached a high level.
Dong et al. introduced PG-YOLO [4], a com-
pressed YOLOv5 variant specifically designed 
for edge devices, reducing the model size by 9 
times while maintaining an accuracy of 93.4%. 
This approach highlights the potential of light-
weight solutions but sacrifices some flexibili-
ty for general-purpose object detection. The 
study utilized the safety-helmet-wearing data-
set, making it more suitable for helmet detec-
tion than fire detection. Liang et al. proposed 
the MEC-YOLO model [14], which combines a 
cloud-edge-end architecture with YOLO for ve-
hicle detection tasks. This approach improved 
detection speed to 93% but primarily focused 
on vehicle applications rather than fire detec-
tion, which involves noisier data and presents 
greater challenges for achieving high accuracy.
In [15], Weichao et al. proposed an efficient and 
lightweight flame detection model, EFA-YO-
LO, featuring two key modules: EAConv (Ef-
ficient Attention Convolution) and EADown 
(Efficient Attention Downsampling) to enhance 
fire detection performance with superior infer-
ence speed. Compared to popular YOLO models 
such as YOLOv5 and YOLOv10, EFA-YOLO 
reduced model parameters by 94.6% and accel-
erated inference speed by 88 times, demonstrat-
ing significant potential for IoT applications. 
Firdaus et al. introduced a solution integrating 
YOLOv8 with IoT and multi-functional sensors 
such as DHT22 and MQ-2 for an early fire de-
tection system [16]. The system achieved high 
accuracy (mAP50=0.97) and provided alerts 
via platforms like Blynk and Telegram, high-
lighting the effectiveness of combining AI and 
IoT for fire detection. However, this study used 
a dataset limited to flames and fire, lacking 
smoke and other noisy images, which restricts 

the practical applicability of the solution. In 
[17], St Banerjee et al. deployed YOLOv5 on 
unmanned ground vehicles (UGV) combined 
with AWS IoT Core for real-time fire detection 
and alerts. The system also integrated live vid-
eo streaming and email notifications, showcas-
ing a seamless blend of AI, IoT, and robotics. 
However, the proposal had limitations, includ-
ing high prediction times due to YOLOv5's 
nature and reliance on third-party cloud plat-
forms, which impacted real-time capabilities 
and increased deployment costs.

Table 1 presents a summary of the key char-
acteristics contributed by recent publications to 
the research problem that we aim to address in 
this study.

3. System Architecture

The proposed real-time fire detection system, 
as shown in Figure 1, utilizes a fine-tuned 
YOLOv10 deep learning model and is deployed 
on a Raspberry Pi integrated with a Camera 
Module for real-time image capture and a Cor-
al Accelerator to enhance the model's inference 
speed, ensuring fast and efficient data process-
ing. Upon detecting fire-related signs such as 
flames or smoke, the Raspberry Pi sends the 
event to Firebase, including Realtime Database 
for event storage, Authentication for access 
control, and Storage for image management. 
Simultaneously, a notification is instantly sent 
to the mobile application via Firebase Cloud 
Messaging. Users can access detailed event in-
formation through the app, including captured 
images and timestamps. The core layer of the 
system includes:

	● Raspberry Pi – Acts as the central proces-
sor, receiving data from the Camera Mod-
ule, running the YOLO model, and send-
ing alerts via Firebase. If necessary, it can 
also activate an alarm system.

	● Camera Module – Captures real-time im-
ages and connects to the Raspberry Pi via 
CSI (Camera Serial Interface), ensuring 
fast and accurate data transmission.
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	● Coral Accelerator – A hardware accelera-
tor connected via USB, assisting the Rasp-
berry Pi in processing the YOLO model, 
reducing the load on the main processor, 
and speeding up fire detection.

	● Fine-tuned YOLOv10 model – Detects 
fire-related signs such as flames and smoke, 
ensuring fast and accurate detection.

The remaining two layers of the system include:
	● Frontend – A user-friendly interface 

that displays alert information, manages 

devices, and tracks events. The application 
enables remote monitoring and ensures 
timely responses.

	● Middleware – A data storage and manage-
ment infrastructure that continuously up-
dates events and ensures seamless commu-
nication between the Raspberry Pi and the 
mobile application. Firebase also provides 
flexible scalability, ensuring the system 
operates stably over time.

Table 1. Comparative summary of existing fire detection methods.

Proposal Dataset Model/ Method mAP50 (%) Inference time 
(ms)

Edge device/  
Environment

Magalhães et al. [3] Custom  
(only fire, smoke) YOLO N/A High Raspberry Pi and 

Cloud

PG-YOLO [4] safety-helmet-dataset PG-YOLO (cus-
tom) 93.4 N/A N/A  

(personalized)

Saleem M.A. [5] Custom wildfire YOLOv5 98.0 ~100 ms Jetson Nano

Talaat et al. [6] flame + smoke YOLOv8 97.1 High Cloud-based

Saponara et al. [7] N/A YOLOv2 N/A N/A Jetson Nano/RPi

Chenglin et al. [8] Custom  
(not details)

YOLOv5s +  
TensorRT + 
DeepStream

N/A
significantly 

reduced but not 
quantified

Jetson Nano 
(UAV)

Shamta and Demir 
[9]

Custom UAV wildfire 
images

YOLO + QAT/
AMP/PTQ

reduced  
accuracy improved Jetson Nano 

(UAV)

Mamadaliev et al.  
(ESFD-YOLOv8n) 

[13]

Custom  
(flame/smoke) YOLOv8n 79.4 N/A GPU

Liang & Zhang 
(MEC-YOLO) [14]

Vehicle detection 
dataset

YOLO  
(cloud-edge-end) 93 N/A Cloud-Edge-End

Weichao et al. 
(EFA-YOLO) [15]

Custom  
(flame/smoke) EFA-YOLO N/A

faster than 
YOLOv5/
YOLOv10

IoT devices

Firdaus et al. [16] Custom  
(only flame/fire)

YOLOv8 + 
DHT22 and 

MQ-2 sensors
97 N/A IoT devices 

(Blynk, Telegram)

Banerjee et al. [17] N/A YOLOv5 + AWS 
IoT Core N/A High Unmanned Ground 

Vehicle
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Firebase realtime database and Cloud messag-
ing are utilized as the backend for the following 
reasons: 
1.	 Ease of integration: Firebase provides free 

SDKs that are easy to integrate with both 
Android and Raspberry Pi, reducing devel-
opment time; 

2.	 Low-latency notifications: Firebase Cloud 
Messaging supports sending push notifica-
tions to multiple mobile devices instantly 
without requiring a custom server setup; 

3.	 Cost: Firebase Realtime database is free up 
to a certain read/write threshold. 

However, the limitations include dependency 
on the Internet, lack of Quality-of-Service sup-
port in Firebase Realtime database compared 
to some advanced protocols, and the potential 
spike in Cloud messaging costs when scaling 

to hundreds of devices. In future work, we plan 
to explore MQTT (for environments with un-
stable Internet connectivity) or AWS IoT Core 
(for large-scale deployments with enterprise 
support). For now, Firebase meets our require-
ments for rapid development and prototyping.
The system workflow, as illustrated in Figure 2, 
outlines the operational steps in the real-time 
fire detection system. The process begins by up-
dating the timer to adjust the intervals between 
tasks. The system then captures and processes 
images for fire detection. If a fire is detected, the 
system sends a notification and activates a timer 
to handle and upload the event. The workflow 
includes steps for managing the detection cycle, 
minimizing data flow when no fire is detected, 
and ensuring efficient event data transmission. 
Additionally, it involves handling transitions 
between detection and non-detection modes to 
maintain the system's operational efficiency.

Figure 1. Real-time fire detection system.
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The workflow details are as follows:
1.	 Updating Timers (Update TIMERS): The 

system updates the timers to establish pre-
defined intervals between tasks, ensuring 
continuous, smooth operations and effi-
cient responses to real-time fire scenarios.

2.	 State Management: Local states (e.g., 
Detect/Upload TIMER Activated, FIRE 
Detected/Detecting, Send LIMITED) are 
utilized to manage tasks effectively, en-
suring execution only when necessary and 
preventing unnecessary continuous opera-
tions.

3.	 Non-Detection Mode (OFF Mode): The 
system transitions to a non-detection mode 
to reduce data flow and overall load, op-
timizing performance and conserving re-
sources when no fire events are detected.

4.	 Activating the Camera Module: The sys-
tem activates the Camera Module to con-
tinuously capture real-time data, ensuring 
timely image acquisition for accurate fire 
detection.

5.	 Processing Captured Images (Process IM-
AGE): Images captured by the camera 
are processed using YOLOv10 to detect 
fire-related signs such as flames or smoke, 
enabling swift and accurate identification 
of potential fire hazards.

6.	 Sending Notifications (Send NOTIFICA-
TION): Notifications are sent to the mo-
bile application interface, ensuring users 
are promptly informed and can take nec-
essary actions.

7.	 Uploading Event Data (Send EVENT 
Data): Event data is sent to Firebase for se-
cure storage and further analysis, ensuring 
reliable data management and supporting 
effective tracking of fire-related events.

4.	Methodology

4.1.	Dataset Preparation

For object detection tasks, the dataset plays a 
crucial role and must adhere to certain rules 
to meet the standards of the YOLO model 
framework. The training dataset is carefully 
constructed and curated to encompass a wide 
range of scenarios, including clear fire inci-
dents, smoke without apparent flames, and con-
founding factors such as strong lighting, vibrant 
colors, or reflections. The labeling process was 
conducted with a focus on consistency and the 
meticulous identification of relevant character-
istics. To enhance the model's robustness, data 
augmentation techniques [18] such as rotation, 

Figure 2. System operation workflow.
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zooming, noise addition, and more were sys-
tematically applied. In this study, we create a 
unified comprehensive dataset by combining 
two component datasets: one is a reference 
dataset (FireSmokeDataset) which is publicly 
available at [19], and our supplementary data-
set (FIRE_DETECTION) can be downloaded 
from [20]. The goal is to ensure that the mod-
el can accurately and efficiently detect and re-
spond to fire incidents across various environ-
mental contexts, which is essential for practical 
applications.
Each image in the dataset belongs to one or more 
categories (fire, smoke, other) as described in 
Table 2. The reference dataset contains a to-
tal of 34,410 images with 48,718 annotations, 
categorized into three groups: fire, smoke, and 
other. The ''Fire'' group includes 14,725 images 
with 22,605 annotations, averaging 1.5 annota-
tions per image. These images depict flames in 
various shapes, colors, sizes, and brightness lev-
els, enabling the model to effectively detect fire 
signs. The ''Smoke'' group consists of 16,038 
images with 19,378 annotations, averaging 
1.2 annotations per image. These images show 
smoke in diverse shapes, colors, sizes, and den-
sities, allowing the model to detect fire signs 
even before flames appear. The ''Other'' group 
contains 3,647 images with 6,735 annotations, 
averaging 1.8 annotations per image. These in-
clude environmental confounding factors such 
as light and reflections, helping the model dis-
tinguish between actual fire signs and unrelated 

light sources. This dataset has an average image 
size of 0.92 megapixels, ranging from 0.03 to 
62.10 megapixels, with a median resolution of 
1280x720 pixels, ensuring a diverse range of 
scenarios and high-quality annotations.
Figure 3 shows several annotated images illus-
trating the three categories (fire, smoke, oth-
er). The image on the left is labeled as ''fire'' 
(bounding boxes around the flames), the middle 
image is labeled as ''smoke'' (bounding boxes 
around the smoke region), and the image on the 
right is labeled as ''other'' (bright light or reflec-
tive objects).
In addition to utilizing the publicly shared data-
set [19], we expanded the dataset by incorporat-
ing our supplementary dataset that we collect-
ed ourselves [20], comprising 5,000 additional 
images. In Table 3, we summarize the distri-
bution of images in the dataset based on area 
type and label categories. The dataset consists 
of 5,000 images, including 3,295 indoor images 
and 1,705 outdoor images. All images comprise 
5,882 objects labeled as ''fire'' and ''smoke''. 
Among them, 4,857 objects are labeled with the 
''fire'' class (3,243 indoor and 1,614 outdoor), 
and 1,025 objects are labeled with the ''smoke'' 
class (767 indoor and 258 outdoor). Our sup-
plementary dataset is structured to represent di-
verse scenarios to enhance the performance and 
robustness of fire and smoke detection mod-
els. This dataset has an average image size of 
0.41 megapixels, with a median resolution of 

Table 2. Structure of the reference dataset.

Category Number of 
images

Number of  
annotations

(Avg per image)
Description

Fire 14,725 22,605 (1.5) Flames in various shapes, colors, sizes and brightness, 
helping the model in detecting fire signs.

Smoke 16,038 19,378 (1.2)
Smokes in various shapes, colors, sizes, and densities, 
aiding the model in early detection of fire signs, even in 
the absence of flames.

Other 3,647 6,735 (1.8)
The images include environmental confounding factors, 
helping model distinguish between actual fire signs and 
unrelated light sources.
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640 x 640 pixels. At training phase, we made 
specific adjustments to seamlessly integrate 
two datasets, create a unified comprehensive 
dataset that enhances the model's ability to gen-
eralize across various environments.
Notably, our combined dataset comprises ap-
proximately 65% indoor images and 35% out-
door images. This imbalance may introduce 
bias during training, causing the model to favor 
detecting fire/smoke patterns in indoor environ-
ments. In outdoor applications (e.g., forest mon-
itoring), challenging conditions such as harsher 
lighting and complex backgrounds (e.g., veg-
etation, direct sunlight) may reduce detection 
accuracy. To mitigate this, we applied specific 
augmentation techniques during training - such 
as adding noise, simulating smoke blurring, and 
reducing brightness - to mimic outdoor condi-
tions. However, we acknowledge that a larger 
and more diverse outdoor dataset (e.g., forest 
scenes, outdoor industrial zones) would signifi-
cantly improve generalization. Expanding the 

outdoor dataset is part of our future develop-
ment direction.
Each image annotation includes a label rep-
resenting a specific object within the context 
of the detection task (e.g., ''fire,'' ''smoke,'' or 
''other'' for confounding factors), along with a 
bounding box that identifies the area containing 
the object. The bounding box is typically repre-
sented as a normalized rectangle to ensure con-
sistency across images of varying sizes. These 
two main components are detailed through five 
key fields, as presented in Table 4.
The ''class_index'' is an integer representing the 
index of the object class in the configuration 
file, corresponding to the bounding box in the 
image. This field is used to identify the type of 
object being detected. The ''x_coordinate'' is a 
floating-point value in the range [0, 1], indi-
cating the horizontal position of the bounding 
box's center relative to the image width, where 
0 represents the left edge and 1 represents the 
right edge. This normalization ensures the mod-

(b) Smoke sample.(a) Fire sample. (c) ''Other'' sample.

Figure 3. Annotated image samples from each category.

Table 3. The images are supplemented to the dataset from public sources.

Scenario Images
Objects

Fire Smoke

Indoor 3,295 3,243 767

Outdoor 1,705 1,614 258

Total 5,000 4,857 1,025
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preprocessing to enrich the dataset, enabling 
the model to generalize better and improve its 
ability to recognize fire signs across different 
environments and conditions.

4.2.	Model Optimization

The overall architecture of YOLOv10 [11] 
consists of three main blocks: the Backbone, 
responsible for feature extraction; the Neck, 
which synthesizes features; and the Head, 
which performs fire detection. Derived from 
[21], we optimize the training model by modi-
fying the internal components of each block to 
reduce computational complexity while balanc-
ing accuracy and detection time summarized in 
Table 5.
In the Backbone, we utilize the Cross Stage Par-
tial Network (CSPNet) to reduce computational 
complexity by dividing the base layer into two 
parts. One part is passed through a ResBlock 
with bottleneck, improving gradient flow be-
fore performing partial transition. Additionally, 
to minimize computational costs and maximize 
the retention of important information in each 
image, we divide the image processing into 
two stages: spatial downsampling and depth 
enhancement. During the downsampling stage, 
we replace Partial Self Attention in YOLOv10 
with Self Extraction Attention, a lightweight 
and computationally efficient mechanism de-
signed to enhance neural network performance 
by focusing on important features in the data. 
This improves feature discrimination at the 
channel level without incurring significant 

el can process images of different sizes consis-
tently. The ''y_coordinate'' is a floating-point 
value in the range [0, 1], indicating the vertical 
position of the bounding box's center relative 
to the image height, where 0 represents the top 
edge and 1 represents the bottom edge. The nor-
malization of both x and y coordinates allows 
the model to handle images with varying aspect 
ratios effectively. The ''width'' is a floating-point 
value in the range [0, 1], representing the rela-
tive width of the bounding box within the im-
age, where 0 indicates no width and 1 indicates 
the entire width of the image. The ''height'' is a 
floating-point value in the range [0, 1], repre-
senting the relative height of the bounding box 
within the image, where 0 indicates no height 
and 1 indicates the entire height of the image. 
The normalization of width and height ensures 
that the bounding box dimensions are repre-
sented consistently, regardless of the actual size 
of the image. This normalization approach en-
ables the model to effectively process images 
at varying resolutions, ensuring consistent and 
accurate object detection across different image 
sizes.
It is evident that the training dataset consists of 
carefully selected images tailored for detect-
ing fire signs and designed to meet the stan-
dards of the YOLO model family, specifically 
YOLOv10. The use of three labels (fire, smoke, 
and other) helps minimize false alarms, enhanc-
ing the model's practical applicability. To ensure 
stable performance, various data augmentation 
techniques such as rotation, cropping, blurring, 
brightness changes, and adding environmental 
noise (rain, smoke, fog) were applied during 

Table 4. Annotation details for object labels and bounding box information.

Field Possible value Description

Label <class_index> integer The index of the label in the dataset configuration file

Bounding box

<x_coordinate> [0,1] The relative coordinate on the x-axis of the center point

<y_coordinate> [0,1] The relative coordinate on the y-axis of the center point

<width> [0,1] The relative width of the bounding box in the image

<height> [0,1] The relative height of the bounding box in the image



167A Lightweight Real-time Fire Detection Framework for IoT Devices...

costs. In the Neck, to enhance the synthesis of 
input features from different resolution levels, 
we introduce shortcut connections into the Path 
Aggregation Network (PAN). This optimizes 
the flow of information from lower to higher 
layers, improving multi-scale feature represen-
tation. In the Head, to reduce computational 
costs during prediction, we replace Non-Max-
imum Suppression (NMS) with two labeling 
methods: OneToMany and OneToOne. The 
OneToMany network is used during training, 
the OneToOne network is used during testing. 
This modification reduces the model's depen-
dence on post-processing algorithms and en-
hances real-time performance.
Furthermore, as highlighted in [21], the Adam 
optimizer often leads to models that perform 
well on the training set but fail to generalize 
well on the test set, especially when dealing 
with highly diverse data. In contrast, Stochastic 
Gradient Descent with Momentum (SGDM), 
although slower in convergence, is better at 
finding global minima, leading to improved 
generalization on new data. In preliminary ex-
periments, when using the Adam optimizer, the 
mAP@50–95 on the validation set reached ap-
proximately 0.56 after 50 epochs but then de-
clined due to overfitting. In contrast, SGDM, 
although converging more slowly (early stop-

ping occurred around epoch 77), achieved a 
final mAP@50–95 of 0.588, an improvement 
of about 3% compared to Adam. This indicates 
better generalization, particularly on diverse 
'other' and 'smoke' images. Thus, to enhance ac-
curacy while ensuring real-time fire detection 
performance, we replace the Adam optimizer 
with SGDM in this study.
The training environment is set up on Google 
Colab, running on a Linux-based system with 
a Tesla T4 GPU (15,102 MB), providing high 
computational power for demanding tasks. The 
environment utilizes Python 3.10.12 along with 
the Ultralytics 8.3.39 and PyTorch 2.5.1 librar-
ies. This combination of tools ensures efficient 
execution and optimization of the fine-tuned 
YOLOv10 model. This algorithm consists of 
the following key steps: First, the data (fire and 
smoke prepared earlier) is downloaded and ex-
tracted from Roboflow [18]. Then, the training 
process runs with fine-tuned parameters such as 
the number of epochs, image size, batch size, 
and GPU utilization options. During training, 
metrics such as loss and mAP are monitored to 
evaluate performance. Once training is com-
plete, the model is evaluated on the validation 
set and tested for predictions on sample images. 
Finally, the trained model is saved in a suitable 
format for deployment.

Table 5. Architectural modifications from YOLOv10 baseline.

Component YOLOv10 baseline YOLOv10-S (modified) Advantage

Backbone Partial Self Attention Self Extraction Attention
Reduce computational cost, 
improve performance at the 

channel level

Neck PAN PAN + shortcut  
connections

Enhance multi-scale  
information flow

Head Non-Maximum  
Suppression (NMS)

OneToMany (training) + 
OneToOne (testing)

Eliminate dependency on 
NMS, reduce  

post-processing time

Optimizer Adam SGDM (Momentum)
Improve generalization  

capability,  
prevent overfitting

Augmentation rotation, zoom, noise... rotation, zoom, noise, blur, 
brightness, fog, rain...

Simulate diverse conditions 
and reduce bias
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The fine-tuning process of YOLOv10-S is di-
vided into three main parts as follows: (1) 
Data splitting: the dataset was split with 8:1:1 
ratio for training, validation, and testing, re-
spectively. Specifically, from a total of 39,410 
images in the reference dataset plus 5,000 ad-
ditional images, 35,528 images were used for 
training, 4,426 for validation, and 4,456 were 
reserved for final evaluation (test set); (2) Hy-
perparameters: initial learning rate (LR): 0.01 
using SGDM, scheduler: cosine annealing with 
a warm-up for the first 3 epochs, then gradually 
reduced following the cosine rule to a final LR 
of 0.0001 by epoch 100, batch size: 32 imag-
es, weight decay: 0.0005, momentum: 0.937, 
maximum number of epochs: 100, with early 
stopping if the validation loss does not improve 
after 5 consecutive epochs; (3) Training pro-
cedure: the YOLOv10-S model was initialized 
with pre-trained weights on the COCO dataset. 
The first two layers (backbone) were frozen 
during the first 10 epochs to stabilize feature 
extraction, after which the entire network was 
unfrozen and training continued for an addi-
tional 90 epochs. The following metrics were 
monitored after each epoch: train/val losses 
(box_loss, cls_loss, dfl_loss), precision, recall, 
mAP@50, and mAP@50–95. The entire train-
ing process on a Tesla T4 GPU took approxi-
mately 4 hours and 30 minutes (270 minutes) 

until early stopping at epoch 77. During train-
ing, GPU utilization ranged between 85–90%.
Figure 4 illustrates the training and validation 
metrics of the YOLOv10-S model over 100 ep-
ochs, with a batch size of 32, using the SGDM 
optimization algorithm. The training loss 
curves for box loss (train/box_loss), classifica-
tion loss (train/cls_loss), and distribution focal 
loss (train/dfl_loss) show significant improve-
ments over time, reflecting the model's ability 
to minimize errors during learning. The valida-
tion losses for box loss (val/box_loss), classi-
fication loss (val/cls_loss), and distribution fo-
cal loss (val/dfl_loss) also gradually decrease, 
albeit with some fluctuations, indicating the 
model's capacity to generalize. The precision 
and recall metrics steadily increased, exceed-
ing 0.75 by the end of training, demonstrating 
the model's success in detecting fire incidents. 
The Mean Average Precision (mAP) values, 
including mAP50 and mAP50-95, indicate 
strong performance. In particular, mAP50 con-
tinues to improve consistently, suggesting that 
the model's detection capabilities enhance with 
each epoch. The training process stops early 
at epoch 77 due to meeting the Early Stop-
ping criteria, as no significant improvement 
in validation loss is observed over the last five 
epochs. This prevents overfitting and ensures 

Figure 4. Training result with the fine-tuned YOLOv10-S.
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efficiency in training. These results demon-
strate that the YOLOv10-S model is learning 
effectively and shows strong potential for fire 
detection tasks.

4.3.	Deployment Process

The process of converting the model to the Ten-
sorFlow Edge TPU format is designed to accel-
erate and optimize machine learning tasks, mak-
ing it particularly suitable for applications with 
constraints on power, computational resources, 
and connectivity. Edge TPU, a hardware accel-
erator developed by Google, is specifically built 
to enhance the performance of TensorFlow Lite 
models on edge devices. Figure 5 illustrates the 
implementation of this conversion process.
The process of converting to the Edge TPU 
TFLite format is essentially an optimization 
process, compiled through the Edge TPU Com-
piler into the TensorFlow Lite format. PyTorch 
Script is the standard format of the PyTorch 
framework, generated during the training of 
the YOLO model using the Ultralytics library. 
Open Neural Network Exchange (ONNX) is an 
open standard format that facilitates model con-
version between different frameworks. Protocol 
Buffers is the standard format for the Tensor-
Flow framework, serving as the core platform 
optimized for deploying deep learning models. 
TensorFlow Lite (TFLite) is a lightweight ver-
sion of TensorFlow, optimized for deployment 

on mobile and embedded devices. TensorFlow 
Lite Edge TPU is the TensorFlow Lite version 
compiled to run on Edge TPU specialized hard-
ware.
During conversion to Edge TPU format using 
the Edge TPU Compiler, all operations, includ-
ing custom layers, were successfully compiled 
in 99% of the cases. Only 1% of the layers 
(very large sockets) required fallback to INT8, 
but this had no significant impact. Specifically, 
out of a total of 175 layers, only 2 layers were 
converted using INT8 fallback (1.14%), result-
ing in a 98.86% full conversion success rate to 
Edge TPU.
The Edge TPU operates exclusively with mod-
els that have been quantized. Quantization re-
duces the model size and increases its speed 
without significantly affecting accuracy. This 
is particularly ideal for edge devices with lim-
ited computational resources, enabling faster 
application response times by reducing laten-
cy and processing data locally without relying 
on cloud technologies. Furthermore, local data 
processing enhances privacy and security, as 
data is not transmitted to remote servers. The 
final model, after training and testing, is con-
verted into the TensorFlow Lite Edge TPU for-
mat. Python-based tools such as Ultralytics and 
PyCoral facilitate seamless deployment on Cor-
al Accelerator. This configuration ensures re-
al-time performance on low-power IoT devices.

Figure 5. Edge TPU model compilation process.
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The IoT device processing workflow is imple-
mented as described in Algorithm 1. This al-
gorithm utilizes a Camera Module to provide 
real-time frames and YOLOv10-S to detect the 
status of the frame (fire or no fire). Firebase is 
used to store detection statuses and frames when 
necessary, while a mobile application receives 
notifications upon fire detection. The algorithm 
outputs include sending fire notifications to the 
mobile application and uploading frames to 
Firebase. The core logic involves classifying 
frame status using YOLOv10-S, managing a 
counter to avoid unnecessary repeated actions, 
updating the detection status in Firebase, and 
handling notifications along with storing a lim-
ited number of frames. Once the specified num-
ber of frames is uploaded, the detection status 
and counter are reset to maintain efficiency. 

Algorithm 1 is evaluated for performance on 
Raspberry Pi 4 and Coral USB Accelerator, 
based on the following main functions (1) get_
frame: approximately 30 ms/frame (camera 
capture); (2) YOLOv10-S.detect(FRAME): ap-
proximately 1.7 s/frame (with TPU) or around 
4.0 s/frame (with CPU); (3) Firebase.update: 
approximately 100ms/call (with 250MB/s In-
ternet speed); (4) Firebase.store_frame: approx-
imately 150 ms/frame (including compression 
and upload). When Detecting_State is false, 
the total time per cycle is approximately 1.83 
seconds per frame, consisting of 30 ms (cap-
ture), 1.7 s (TPU inference), and 100 ms (Fire-
base update). When Detecting_State is true 
(upload ≤ 3), an additional 150 ms per frame 
is added for uploading, resulting in a total of 
approximately 1.98 s/frame.

Input: captured frames, refined YOLOv10-S model for frame detection, states in firebase
Output: notification/confirmation of fire detection, frames uploaded to firebase
Step 1.   FRAME ← get frame from camera module  //capture frame
Step 2.   STATE ← YOLOv10.detect(FRAME)  //detect state of frame
Step 3.   if Detection_Timer is not active then //check detection timer
                   if STATE = True or STATE ≠ Previous_Frame_State then
                       Activate Detection_Timer
                       Previous_Frame_State ← STATE
                       Firebase.update(''Detect_State'', STATE)
                       if STATE = True then
                            Detecting_State ← True
                            Timestamp ← Current_Time
                            Mobile_App.notify(''Fire detected!'')
                       end if
                   end if
              end if
Step 4.   if Detecting_State = True then   //handle uploading when detecting state is true
                  if Upload_Quantity < 3 then
                      if Upload_Timer is not active then
                           Activate Upload_Timer
                           Firebase.store_frame(FRAME)
                           Upload_Quantity ← Upload_Quantity + 1
                      end if
                 else
                     Detecting_State ← False
                     Timestamp ← NULL
                     Upload_Quantity ← 0
                 end if
              end if

Algorithm 1. Pseudo code of the Early Fire Detection.
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The mobile application processing workflow 
for early fire warnings in monitored areas is 
implemented as described in Algorithm 2. This 
algorithm uses Firebase to receive fire detec-
tion statuses (Safe or Danger), notifications, 
and data uploaded from the IoT device in case 
of a fire. The outputs include displaying the 
''Safe Layout'' interface when no fire is detected 
and the ''Danger Layout'' when a fire is detect-
ed, along with data such as frames, timestamps, 
and related information presented on the mo-
bile application. The core logic of the algo-
rithm involves listening to real-time detection 
statuses from Firebase, dynamically switching 
the interface based on the detection status, and 
displaying detailed data when a fire is detect-
ed. The algorithm ensures timely fire alerts and 
provides essential information to the user. Al-
gorithm 2 is evaluated for performance based 
on the following main functions (1) Firebase.
listen: approximately 50 ms; (2) Layout update: 
approximately 10ms; (3) Firebase.load(CAP-
TURED_DATA): approximately 150ms (de-
pending on image size).

5.	Results and Discussion

5.1.	 Performance Metrics

The experimental results we conducted to eval-
uate the metrics comparing the S version with 
other versions of YOLOv10 are presented in Ta-
ble 6. The format conversion time and memory 
usage of YOLOv10 models increase progres-

sively from the N version to the X version. This 
indicates that larger and more complex models 
require more resources, with significantly in-
creased processing time and memory usage to 
ensure stable conversion and operation. This 
increase is observed regardless of whether the 
model is deployed to operate on a CPU or an 
Edge TPU. For all versions of the YOLOv10 
model, memory usage in the TPU format is sig-
nificantly smaller compared to the CPU format. 
This highlights that the optimized model format 
for Edge TPU incorporates special optimiza-
tion techniques to ensure efficient operation on 
Edge hardware. Consequently, the TPU-format 
model not only consumes less memory space 
but also enhances the model's processing per-
formance.
Based on the data from Table 6, compared to 
YOLOv10-N, the S version shows a significant 
improvement in mAP50-95, increasing from 
39.5% to 46.8% (+7.3%), reflecting a notice-
able boost in detection performance. Param-
eters (Params) increase from 2.3 M to 7.2 M, 
while still maintaining a moderate size, mak-
ing it suitable for high-efficiency applications 
without being overly resource-intensive. Laten-
cy increases slightly from 1.84 ms to 2.49 ms, 
which remains acceptable for real-time appli-
cations. Conversion time and memory usage 
also increase but stay within reasonable lim-
its, ensuring a balance between performance 
and resource requirements. When compared 
to YOLOv10-M, the S version is significantly 
lighter in terms of Params (7.2 M vs. 15.4 M), 
nearly halving the size, which saves resources 
in constrained environments. Conversion time 

Input: detect state from firebase, notifications from firebase
Output: updated mobile layout (Safe or Danger), captured data displayed on mobile
Step 1.   DETECT_STATE ← Firebase.listen(''Detect_State'') //detect state from firebase
Step 2.   if DETECT_STATE = False then // handle state changes
                   Mobile_App.update_layout(''Safe Layout'') // update to safe layout
Step 3.   else
              NOTIFICATION ← Firebase.receive_notification(''Fire Alert'')  // update layout
              Mobile_App.update_layout(''Danger Layout'')
              CAPTURED_DATA ← Firebase.load(''Captured_Data'') // display captured data
              Mobile_App.display_data(CAPTURED_DATA)
              end if

Algorithm 2. Pseudo code of the Real-time Fire Alert.
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is also lower at 495.9 s compared to 872.2 s, 
making it more suitable for systems that do 
not require handling large-scale data simulta-
neously. While the mAP50-95 of YOLOv10-S 
is slightly lower than YOLOv10-M (46.8% vs. 
51.3%), this difference is acceptable for ap-
plications that require a balance between per-
formance and resource utilization. Compared 
to YOLOv10-L and YOLOv10-X (the largest 
version), YOLOv10-S requires significantly 
fewer resources. It has Params of 7.2M, which 
is 3.4 times smaller than YOLOv10-L and 
more than 4 times smaller than YOLOv10-X. 
Memory usage on CPU is 15.8 MB compared 
to 49.9 MB and 61.4 MB for YOLOv10-L and 
YOLOv10-X, respectively, representing a re-
duction of nearly fourfold. Similarly, Memory 
(Edge TPU) is only 9.66 MB, about one-third 
of YOLOv10-X. With a latency of 2.49 ms, 
YOLOv10-S is much faster than YOLOv10-L 
(7.28 ms) and YOLOv10-X (10.7 ms), making 
it more suitable for real-time applications.
Consequence, YOLOv10-S strikes an excellent 
balance between performance (mAP50-95) and 
resource usage. Its low latency makes it ideal 
for real-time applications, while its moderate 
resource consumption makes it suitable for IoT 
devices or resource-constrained environments. 
For higher performance needs, YOLOv10-M 
or larger versions can be considered. How-
ever, for applications that prioritize a balance 
between performance and resource efficiency, 
YOLOv10-S is the most suitable choice.

Table 6. The comparison metrics between the S version and other versions of YOLOv10.

YOLOv10 
version Params (M) mAP50-95 

(%) Latency (ms) Conversion 
time (s)

Memory  
(MB, CPU)

Memory  
(MB, Edge TPU)

N 2.3 39.5 1.84 313.8 5.58 3.32

S 7.2 46.8 2.49 495.9 15.8 9.66

M 15.4 51.3 4.74 872.2 32 17.8

L 24.4 53.4 7.28 1,436.1 49.9 26.3

X 29.5 54.4 10.7 1933 61.4 32.1

Table 7 shows that Edge TPU significantly im-
proves inference time for YOLOv10 models 
compared to CPU. For both CPU and Edge TPU, 
the inference time of the model consistently in-
creases from YOLOv10-N to YOLOv10-X, re-
flecting the inherent complexity and size of the 
models. Edge TPU consistently delivers signifi-
cantly lower inference time than CPU across all 
model versions. The difference becomes more 
pronounced as the model complexity increas-
es, highlighting the superior processing perfor-
mance of Edge TPU. Lightweight versions like 
YOLOv10-N and YOLOv10-S have very low 
inference time on both CPU and Edge TPU, 
making them ideal choices for applications re-
quiring real-time recognition.
The inference speed of YOLOv10-S is signifi-
cantly faster than larger versions (M, B, L, X). 
On both CPU and TPU, the S version is fast-
er by 124% - 489% (CPU) and 132% - 480% 
(TPU), respectively. For instance, compared 
to the L (Large) version, YOLOv10-S is up to 
348% faster on CPU and 351% faster on TPU. 
This makes the S version well-suited for tasks 
requiring high speed while maintaining good 
accuracy, such as object detection on mobile 
devices, IoT systems, or real-time applications. 
Additionally, on TPU, YOLOv10-S achieves an 
inference time of just 1716.16 ms, which is fast 
enough to handle multiple simultaneous tasks 
without increasing latency. YOLOv10-S is 
slower than the N version on both CPU (147% 
slower) and TPU (144% slower) due to its in-
creased complexity compared to YOLOv10-N. 
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Despite being slower, YOLOv10-S is rated 
higher in terms of detection capability and 
accuracy (as shown in Table 6). This makes 
YOLOv10-S a more balanced choice between 
inference speed and accuracy.
Table 8 presents the accuracy results of the 
YOLOv10-S model in detecting different 
classes, with metrics such as precision, recall, 
mAP50, and mAP50-95 evaluated for each cat-
egory. Overall, the model achieves an average 
precision of 80.9% and recall of 76.1% across 
all classes, indicating a good balance between 
correctly identifying fire-related objects and 
minimizing false alarms. The ''fire'' catego-
ry exhibits particularly high precision (84.8%) 
and recall (84.1%), corresponding F1 score is 
84.4%, reflecting the model's strong capability 

in detecting fire incidents. The ''smoke'' category 
also performs well, with precision of 85.7% and 
recall of 82.0%, and the corresponding F1 score 
is 83.8%, demonstrating effective smoke detec-
tion. However, the ''other'' category shows low-
er values for both precision (72.1%) and recall 
(62.3%), corresponding F1 score is 66.8%, sug-
gesting room for improvement in distinguish-
ing non-fire-related objects. The mAP50 values 
further reinforce these observations, with the 
''fire'' (91.1%) and ''smoke'' (89.6%) categories 
showing robust performance, while the ''other'' 
category has a lower mAP50 of 68.2%. These 
results highlight that the YOLOv10-S model is 
highly effective in detecting fire and smoke but 
may require additional adjustments to improve 
accuracy in classifying non-fire-related objects.

Table 7. The inference speed of the S version compared to other versions on CPU and Edge TPU.

YOLOv10 Version CPU (ms) Edge TPU (ms)
Speed improvement 

of the S version 
vs other versions 

(CPU) (%)

Speed improvement 
of the S version vs 

other versions  
(Edge TPU) (%)

N 1,189.32 703.59 147% slower 144% slower

S 2,938.97 1,716.16 - -

M 6,598.81 3,980.39 124% faster 132% faster

B 10,531.06 6,041.29 259% faster 252% faster

L 13,149.98 7,737.84 348% faster 351% faster

X 17,297.36 9,954.26 489% faster 480% faster

Table 8. Accuracy of the YOLOv10-S model in detecting different classes.

Category Precision (%) Recall (%) F1 score (%) mAP50 (%) mAP50–95 (%)

all 80.9 76.1 78.4 83.0 58.8

fire 84.8 84.1 84.4 91.1 66.6

smoke 85.7 82.0 83.8 89.6 64.0

other 72.1 62.3 66.8 68.2 45.9
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The confusion matrix, measured on the test set 
of 4,456 images, is presented in Table 9, where 
each value represents the percentage of pre-
dicted images relative to the actual number of 
images in that class. The results show (1) For 
the ''fire'' class: only 8% were misclassified as 
''other'' and 1% as ''smoke''; (2) For the ''smoke'' 
class: only 3% were misclassified as ''fire'' and 
7% as ''other''; (3) For the ''other'' (interference) 
class: the false alarm rate - i.e., ''other'' images 
misclassified as ''fire'' - reached 21%, and 10% 
were misclassified as ''smoke''. This reflects 
that while misclassification is low for ''fire'' and 
''smoke,'' the model still struggles with the ''oth-
er'' class, which remains frequently confused 
with the other two.
Reasons for high misclassification rate of the 
''other'' class into ''fire'' or ''smoke'' include 
(1) Class imbalance: the supplemented data-
set contains only around 3,647 ''other'' images, 
compared to approximately 14,725 ''fire'' and 
16,038 ''smoke'' images, limiting the model's 
ability to learn distinct features for ''other''; (2) 
Color/brightness similarity: many ''other'' imag-
es share similar hue/gamma values with flames 
(e.g., halogen lights, bright sunlight), causing 
the Self Extraction Attention mechanism to 
sometimes fail in distinguishing them; (3) An-
notation quality: some ''other'' bounding boxes 
are too large and include background areas, 
introducing noise during training. To improve 

this, in future work, we plan to include harder 
negative annotations and increase the diversi-
ty of ''other'' images (e.g., light bulbs, artificial 
flames, cosplay fire) to reduce the false alarm 
rate.
Table 10 presents the inference performance of 
the YOLOv10-S model, comparing configura-
tions using CPU and TPU. When using a CPU, 
the model requires 15.7 MB of memory and 
takes 4,043.1ms per inference, indicating rela-
tively slow processing time on standard hard-
ware. In contrast, the Edge TPU configuration 
significantly improves performance, reducing 
inference time to 1,698.1ms and memory usage 
to 9.28 MB, demonstrating the superior benefits 
of hardware acceleration for faster and more ef-
ficient fire detection. These results highlight the 
potential for deploying the model on embedded 
systems with Edge TPU support, enabling re-
al-time and efficient fire detection.
Additionally, to evaluate the impact of quanti-
zation on the accuracy of the proposed model, 
we compared the mAP before and after quanti-
zation based on the YOLOv10-S version. De-
tails are shown in Table 11 (with INT8 values 
measured on the Edge TPU). All evaluations 
are conducted on the same validation set. The 
mAP degradation is not more than 2.5%, indi-
cating that quantization has minimal impact on 
accuracy.

Table 9. Confusion matrix for the test set of 4,456 images.

Predict (%)

Actual

Fire Smoke Other

Fire 91.0 1.0 8.0

Smoke 3.0 90.0 7.0

Other 21.0 10.0 69.0
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Table 10. Efficiency of the YOLOv10-S model in detecting different classes.

Memory (MB) Inference Time (ms)

CPU 15.7 4,043.1

Edge TPU 9.28 1,698.1

Table 11. mAP comparison before vs. after quantization (YOLOv10-S).

Category mAP50 
(float32) (%)

mAP50 (int8 
TPU) (%) Δ@50 (%) mAP50-95 

(float32) (%)
mAP50-95 (int8 

TPU) (%) Δ@90 (%)

all 83.0 82.0 -1.2 58.8 57.3 -2.5

fire 91.1 90.3 -0.9 66.6 65.5 -1.7

smoke 89.6 88.8 -0.9 64.0 63.3 -1.1

other 68.2 67.0 -1.8 45.9 44.5 -3.0

5.2.	Deployment Results

Figure 6 illustrates the real-world deployment 
results of the real-time fire warning system on 
IoT devices accessed via a smartphone. The 
system operates by using a Camera Module to 
capture real-time frames from the environment, 
which are then sent to a Raspberry Pi for pro-
cessing. The YOLO model is employed to an-
alyze and detect fire signs. If a fire is detected, 
the status information and frame data are updat-
ed to Firebase. The mobile application access-
es Firebase to synchronize data, display status 
and notify users. When no fire is detected, the 
app interface shows a ''Safe Zone'' status with 
a green icon, indicating a safe area. Converse-
ly, if a fire is detected, the interface switches 
to ''Danger Zone'', displaying a ''Fire Alert'' 
notification along with the detected image and 
timestamp. The system also sends emergency 
notifications to users through the mobile app, 

providing timely warnings. The final outcome 
is a real-time fire detection system that deliv-
ers detailed information and enables users to 
act quickly in case of incidents or potential fire 
hazards.
The integration of YOLOv10 with the Cor-
al Accelerator addresses critical challenges in 
IoT-based fire detection systems. Key contribu-
tions include reduced latency, improved accura-
cy, and compatibility with resource-constrained 
devices. The modular design of the system en-
sures adaptability to various operational envi-
ronments, from residential safety to large-scale 
industrial monitoring. Challenges such as de-
tection under low-visibility conditions (e.g., 
dense smoke or dim lighting) remain and pres-
ent opportunities for future research. Incorpo-
rating additional sensor data (e.g., thermal im-
aging or gas sensors) could further enhance the 
accuracy and reliability of detection.
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5.3.	Effectiveness of Combining Coral 
Accelerator with Raspberry Pi

In early fire detection systems, computational 
performance and power consumption are two 
critical factors that determine the effectiveness 
of real-world deployment. Table 12 presents a 
comparison of key criteria between the Coral 
Accelerator combined with Raspberry Pi and 
Jetson Nano.
In terms of power consumption, the Coral Ac-
celerator (Edge TPU) consumes only about 2W, 
while the Raspberry Pi 4 consumes between 
3-7W. The total system consumption remains 
below 10W, making it suitable for battery or 

solar-powered operation, optimizing operation-
al costs and mobility. In contrast, Jetson Nano 
consumes 5-10 W in power-saving mode and 
up to 15 W when handling heavy tasks, requir-
ing a more stable power source. This limits its 
deployment on mobile devices or in remote ar-
eas where the power supply is unstable. When 
deploying outdoor IoT systems, such as for-
est monitoring or large-scale surveillance, the 
Coral Accelerator combined with Raspberry Pi 
offers a significant advantage due to its abili-
ty to operate continuously with limited power 
resources. In terms of AI processing perfor-
mance, although Jetson Nano has a more pow-
erful GPU, the Coral Accelerator (Edge TPU) 

Figure 6. Real-time fire detection system on IoT device.
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has an advantage in specialized tasks such as 
real-time image recognition, thanks to its high 
efficiency with TensorFlow Lite. The Coral 
Accelerator can achieve 4 TOPS, specializ-
ing in image recognition and object detection 
with low latency. Jetson Nano's GPU supports 
multiple AI models, but its real-world perfor-
mance is only 0.5-1.3 TOPS when running 
on the Maxwell GPU. In early fire detection, 
where detecting smoke and fire from camera 
images is crucial, the Coral Edge TPU is better 
optimized for TensorFlow Lite, enabling fast-
er recognition and immediate alerts, reducing 
the risk of delays. In terms of cost, the Coral 
Accelerator and Raspberry Pi setup costs ap-
proximately $60-$100 (including Raspberry 
Pi 4 and Coral USB Accelerator), while Jetson 
Nano costs $99-$150, excluding a higher-pow-
er adapter and additional accessories. Using 
Coral combined with Raspberry Pi helps reduce 
deployment costs for large-scale systems, espe-
cially when installing dozens or hundreds of 
monitoring points. In terms of deployment, the 
Coral Edge TPU can connect to the Raspberry 
Pi via USB or PCIe, making it easy to integrate 
into existing systems. In contrast, Jetson Nano 
requires a more complex setup and a stronger 
power supply, which can be challenging for 
IoT deployments in remote areas. Additionally, 
temperature, humidity, and gas sensor modules 
on Raspberry Pi can be easily integrated with 
Coral, providing multi-source data to improve 
fire detection accuracy.
Thus, when comparing Coral Accelerator com-
bined with Raspberry Pi and Jetson Nano for 
early fire detection applications, Coral Acceler-
ator offers several key advantages: Lower pow-

er consumption, making it ideal for continuous 
IoT operation; Specialized AI acceleration, 
enabling faster smoke/fire recognition with 
TensorFlow Lite; Lower cost, facilitating large-
scale deployments with an optimized budget; 
Greater flexibility for IoT sensor integration, 
allowing easy scalability and upgrades. There-
fore, if an AI-embedded fire detection system is 
required, the Coral Edge TPU combined with 
Raspberry Pi is a better solution in terms of per-
formance, power efficiency, and cost-effective-
ness compared to Jetson Nano.
We used several other tools to evaluate the 
performance of combining the Coral Acceler-
ator with the Raspberry Pi. Specifically, we (1) 
use the top/htop tools, recording every 5 sec-
onds, to measure the average CPU utilization 
during continuous inference of 60 frames (on 
CPU only) and inference of 60 frames (using 
Coral); (2) measure the memory used by the 
Python inference process at steady state after 
running for 1 minute; (3) utilize edgetpu_moni-
tor –graph=false –interval=1 to record readings 
every second. After 5 minutes, we compute the 
average and deviation to assess the Coral tem-
perature; (4) used vcgencmd measure_temp, 
recording every 10 seconds during inference, to 
determine the Pi SoC Temperature; and utilize 
a watt-meter connected to the power supply for 
the Raspberry Pi and Coral, taking 5 consecu-
tive measurements and averaging them to cal-
culate the power consumption.
The measured results are shown in Table 13. 
When running YOLOv10-S solely on the 
Raspberry Pi 4's CPU, the average CPU usage 
reached 85 ± 5% and the RAM usage was about 

Table 12. The combination of Coral Accelerator with Raspberry Pi vs. Jetson Nano.

Criteria Jetson Nano
Coral Accelerator with Raspberry Pi

Coral Accelerator Raspberry Pi

Power Consumption 5-10W 2W 3-7W

AI Performance 0.5-1.3 TOP 4 TOPS -

Cost 99-150 USD 60-100 USD

Deployment Complex Simple
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2200 ± 50 MB, causing the SoC temperature 
to rise to 65 ± 4°C, which could lead to throt-
tling if run for extended periods. The overall 
power consumption of the system was approxi-
mately 7.8 ± 0.2 W. In contrast, when using the 
combination with the Coral USB Accelerator, 
the average CPU usage was only 45 ± 5%, the 
RAM usage was about 1900 ± 60MB, the Coral 
Accelerator temperature was 58 ± 3°C, and the 
Raspberry Pi SoC temperature was 57 ± 2°C, 
with the overall system power consumption 
measured at approximately 9.1 ± 0.3 W.

5.4	 Comparison with Models Optimized 
for Edge Devices

To evaluate the advantages of YOLOv10-S 
when deployed on the Coral Accelerator, we 
collected reference metrics from recent stud-
ies on models optimized for edge devices, in-

cluding PG-YOLO [4], EFA-YOLO [15], and 
YOLOv8n (implemented on Edge TPU). The 
benchmark data includes mAP@50–95, la-
tency on Edge TPU, memory usage, and false 
positive rate (FPS). From Table 14, it can be 
observed that YOLOv10-S achieves a compa-
rable mAP@50–95 to YOLOv8n (46.8% vs. 
47.0%) but has a larger number of parameters 
(7.2 M vs. 4.2 M), resulting in a slightly higher 
inference time (1,698 ms vs. 1,650 ms). How-
ever, YOLOv10-S has the lowest false positive 
rate (4.7%), attributed to a diverse dataset and 
thorough fine-tuning. Although PG-YOLO and 
EFA-YOLO have smaller model sizes, they 
exhibit longer inference times and 2.3–5.6% 
lower mAP@50–95 compared to YOLOv10-S. 
These results indicate that YOLOv10-S offers a 
well-balanced trade-off between accuracy and 
latency when deployed on the Coral Acceler-
ator.

Table 13. Resource utilization for YOLOv10-S on Raspberry Pi 4 and Coral USB Accelerator.

Parameter Unit CPU alone With Coral TPU

CPU utilization (avg) %CPU 85 ± 5% 45 ± 4%

RAM usage (avg) MB 2,200 ± 50 1,900 ± 60

Coral Accelerator  
Temperature °C N/A 58 ± 3°C

Raspberry Pi SoC  
Temperature °C 65 ± 4°C 57 ± 2°C

Power consumption  
(whole system) W 7.8 ± 0.2 9.1 ± 0.3

Table 14. Comparison of YOLOv10-S with other edge-optimized models.

Model Params (M) mAP50-95 (%) Inference Time 
(ms) Memory (MB) False Positive 

Rate (%)

PG-YOLO [4] 3.6 41.2 1,950 10.5 6.3

EFA-YOLO [15] 1.8 44.5 1,720 9.8 5.8

YOLOv8n (TPU) 4.2 47.0 1,650 9.5 5.2

YOLOv10-S 7.2 46.8 1,698 9.28 4.7
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6. Conclusion

This study introduces a lightweight and efficient 
framework for real-time fire detection, integrat-
ing the fine-tuned YOLOv10 small model with 
the accelerator module, specifically optimized 
for IoT devices. The system not only address-
es critical challenges such as latency, accuracy, 
and deployment in resource-constrained envi-
ronments but also ensures reliable operation 
even under limited network connectivity. Its 
compact design, edge processing capabilities, 
and reduction in false alarms enhance the sys-
tem's practicality for fire monitoring in residen-
tial, industrial, and natural environments. Ex-
perimental results demonstrate that deploying 
YOLOv10-S with the Coral Accelerator sig-
nificantly outperforms CPU-based solutions, 
achieving inference speed four times faster and 
reducing power consumption by approximately 
30%. These improvements not only affirm the 
feasibility of the proposed framework but also 
make it an ideal choice for energy-constrained 
geographic regions. The full source code in-
cluding setup instructions for Raspberry Pi and 
Coral Accelerator is publicly available at [22].
This research lays a strong foundation for low-
cost real-time fire detection systems on IoT 
platforms, promising to enhance early detection 
capabilities, reduce response times, and miti-
gate damages. These advancements contribute 
to a safer environment through intelligent edge-
based monitoring solutions. However, some 
limitations remain to be addressed. Detection 
under challenging conditions, such as dense 
smoke or low light, could be improved by inte-
grating multimodal data sources, such as ther-
mal imaging or gas sensors. Future efforts will 
focus on enhancing adaptability, scalability, 
and system performance to ensure effectiveness 
across a wide range of challenging scenarios. 
Additionally, upcoming research will explore 
the application of advanced network compres-
sion and structured pruning techniques, and 
more importantly, the use of quantization-aware 
pruning on YOLOv10-S to reduce the model 
size to below 3 MB, lower the inference time 
to under 1 s/frame, while still maintaining 
mAP@50 more than 80%. We also aim to com-
bine knowledge distillation from YOLOv10-M 
with dynamic channel pruning to preserve high 
accuracy on ultra-low-power edge devices.
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