CIT. Journal of Computing and Information Technology, Vol. 33, No. 3, September 2025, 157-181 157

doi: 10.20532/cit.2025.1005973

A Lightweight Real-time Fire
Detection Framework for IoT Devices
Utilizing Fine-tuned YOLOv10 and

Accelerator Module

Trong Thua Huynh'!, De Thu Huynh?, Du Thang Phu' and Anh Hao Nguyen'

"Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam
2The Saigon International University, Ho Chi Minh City, Vietnam

This paper presents a novel real-time fire detection
framework tailored for IoT devices by integrating
the fine-tuned YOLOvV10 model with the Accelerator
module. Trained on the FireSmokeDataset (Robo-
flow) and an additional dataset we collected via
Roboflow, the system covers fire, smoke, and dis-
tracting objects. Optimized for resource-constrained
edge devices, the framework demonstrates excep-
tional performance, achieving high mean average
precision (mAP) for fire and smoke detection, with
metrics exceeding 84% and a maximum mAPS50
of over 91%. We target deployments in residential
homes, industrial facilities, and forest monitoring sta-
tions. A key contribution of the proposed framework
is the construction of a diverse dataset encompass-
ing fire, smoke, and distracting objects — an element
often overlooked in existing fire detection datasets.
Additionally, fine-tuning the YOLOvV10 model com-
ponents in conjunction with hardware acceleration
ensures both prediction accuracy and improved in-
ference response performance. Comprehensive eval-
uations confirm the system's robustness, scalability,
and practicality under various operating conditions.
Through experimental analysis, the YOLOv10-S
(small) model stands out for its balance between effi-
ciency and resource usage, making it a suitable choice
for low-cost real-time applications with resource
constraints. By utilizing the Coral Accelerator, the
proposed framework reduces inference time by 58%
compared to CPU-based implementations, achieving
a latency of just 1.7 seconds per frame. The system's
lightweight design ensures reliable deployment in re-
mote areas with limited computational resources and
unstable network connectivity, maintaining high ac-
curacy while minimizing false alarms.

ACM CCS (2012) Classification: Computing method-
ologies — Artificial intelligence — Computer vision
— Computer vision tasks — Scene anomaly detection

Keywords: accuracy, inference time, coral accelerator,
edge computing, resource-constrained environments

1. Introduction

Fire-related incidents are a global challenge,
causing annual economic losses estimated
at billions of dollars and tragically claiming
thousands of lives. For example, the National
Fire Protection Association (NFPA) reported
over 1.39 million fires in the United States in
2023 [1]. These fires resulted in an estimated
3,670 civilian fire deaths and 13,350 report-
ed civilian fire injuries. The property damage
caused by these fires was estimated at $23 bil-
lion. On average, a fire department responds
to a fire somewhere in the US every 23 sec-
onds. A home structure fire was reported every
95 seconds, a home fire death occurred every
three hours, and a home fire injury occurred
every 52 minutes. More than one-third of the
fires (470,000—or 34 percent) occurred in or
on structures. Most fire losses were caused by
these structural fires, accounting for 3,070 ci-
vilian fire deaths (84 percent), 11,790 civilian
fire injuries (88 percent), and $14.7 billion in



158

T. T. Huynh, D. T. Huynh, D. T. Phu and A. H. Nguyen

direct property damage (83 percent). Similarly,
according to the latest report [2] dated Decem-
ber 29, 2024, a total of 62,132 wildfires were
recorded across the United States, burning a
total area of 8,865,833.1 acres. The most se-
verely affected states included California, with
8,307 fires burning 1,080,127.8 acres; Texas,
with 4,598 fires affecting 1,313,832 acres; and
Oregon, with 2,213 fires burning 1,799,831.7
acres. These statistics highlight the severity of
wildfires across the United States in 2024 and
underscore the urgent need for effective early
fire detection systems.

Traditional fire detection methods, such as
smoke detectors or conventional camera-based
systems, often fail to respond quickly and accu-
rately in critical situations. Recent studies have
demonstrated that IoT-based devices, combined
with artificial intelligence technologies, can
enable real-time fire detection with higher ef-
ficiency. For instance, Magalhaes et al. [3] ex-
plored the trade-off between latency and cost
when deploying YOLO on Raspberry Pi and
cloud servers. The study revealed that although
Raspberry Pi-based configurations offer low
costs, they fail to meet real-time requirements
due to limitations in data processing. PG-YO-
LO [4] focused on optimizing YOLOVS for
edge devices by reducing the model size by nine
times. While this solution improved computa-
tional efficiency, it achieved only average in-
ference speed, which is insufficient for rapid re-
sponse in fast-spreading fire scenarios. Ahmed
Saleem Mahdi [5] developed a system using
YOLOVS for wildfire detection in edge com-
puting environments, achieving 98% accuracy
but facing challenges in deployment costs and
a lack of diversity in the dataset, making it un-
suitable for real-world scenarios. Similarly, the
research by Talaat et al. [6] utilizing YOLOvV8
achieved an accuracy rate of 97.1% but heavily
relied on cloud processing, leading to latency
issues when deployed in edge environments.
Additionally, their dataset contained only fire
and smoke images, lacking noisy images, and
thus failed to represent real-world conditions
comprehensively. These studies indicate that
while significant progress has been made in fire
detection, current solutions still face limitations
in ensuring real-time performance in diverse
and resource-constrained environments. This
underscores the urgent need for more optimized

solutions that ensure both high accuracy and re-
al-time detection capabilities.

Recently, some studies have also proposed us-
ing Jetson Nano to accelerate wildfire detec-
tion systems [7], [8], [9], [10]. However, this
device is relatively expensive and less flexible
compared to combining IoT devices with a wid-
er variety of models that are more affordable.
Additionally, a simpler acceleration module en-
ables easier connectivity and adjustments when
configuration changes are needed for specific
requirements.

The development of IoT and Al technologies of-
fers transformative solutions to these challeng-
es. Integrating intelligent algorithms with edge
computing devices enables real-time process-
ing and decision-making at the source, reduc-
ing dependency on centralized systems. In this
context, we propose a novel real-time fire de-
tection framework that combines the fine-tuned
YOLOVI10 model [11] with the Coral Acceler-
ator [12], specifically designed for IoT appli-
cations. This approach addresses critical points
such as latency and accuracy while maintaining
a lightweight design suitable for deployment in
constrained environments. By incorporating a
diverse dataset of both fire and smoke images
and fine-tuning the YOLOvVI10 small model (a
fast yet robust model ensuring high prediction
accuracy) supported by hardware acceleration
devices, the proposed system ensures not only
high accuracy but also the ability to deploy ef-
fectively in resource-constrained environments,
such as remote areas or fire-prone hazardous
zones. By leveraging the power of deep learn-
ing algorithms combined with advanced edge
computing devices, our solution minimizes la-
tency while enhancing fire detection capabili-
ties in real-world conditions.

The remainder of the paper is organized as
follows. In Section 2, we discuss modern fire
detection methods concerning accuracy and
real-time assurance. Section 3 presents the de-
tails of the architecture and system workflow.
Section 4 presents the method of constructing
the fire and smoke dataset and the development
process. Section 5 presents the results and dis-
cussion. Finally, conclusions are provided in
Section 6.



A Lightweight Real-time Fire Detection Framework for loT Devices... 159

2. Related Works

Numerous fire detection and monitoring solu-
tions have been extensively researched in recent
years, with significant contributions focused on
improving detection accuracy, computational
efficiency, and deployability in real-world en-
vironments.

D. Mamadaliev et al. proposed an improved
smoke and fire detection method based on the
YOLOvV8n model, incorporating significant ar-
chitectural changes to enhance accuracy and
efficiency [13]. The replacement of the CloU
loss function with WloUv3 improved the mod-
el's focus on critical regions through a dynamic
attention mechanism. Additionally, replacing
the C2f module with residual blocks enhanced
feature extraction capabilities, reduced training
and inference time, and streamlined the overall
process. The authors also proposed integrating
GELAN blocks into the neck of YOLOvS8n, fur-
ther improving training efficiency. This meth-
od achieved outstanding results compared to
other state-of-the-art algorithms, with a mean
average precision mAP50 of 79.4% and im-
proved performance metrics such as precision
and recall. However, despite the performance
improvements, the use of complex blocks and
model transformations required higher compu-
tational resources, limiting their applicability in
systems with constrained hardware. Moreover,
the accuracy was affected by an insufficient
training dataset that lacked diversity and did not
represent various real-world conditions, such as
diverse environments and different types of fire
and smoke objects.

Ahmed Saleem Mahdi developed an early wild-
fire detection system using YOLOVS in an edge
computing environment [5]. While achieving
a detection accuracy of 98%, their reliance
on Jetson Nano devices limited scalability for
cost-sensitive deployments. Talaat et al. pro-
posed a Smart Fire Detection System (SFDS)
leveraging YOLOVS for real-time detection in
smart cities [6]. Their method achieved a high
accuracy rate of 97.1%, but it heavily relied on
cloud-based processing, leading to significant
latency in edge-based environments. Addition-
ally, the datasets used in both studies lacked di-
versity, containing only fire and smoke images
and omitting noisy images, which prevented

them from fully representing real-world envi-
ronments.

S. Saponara et al. proposed deploying YOLOv2
on Jetson Nano and Raspberry Pi cameras in
[7]. This solution enables remote monitoring
in smart infrastructure. The system provides
real-time fire alerts and is suitable for applica-
tions in smart cities and transportation. Howev-
er, while YOLOV2 is a robust model, it has been
surpassed by newer versions such as YOLOVS
and YOLOVI0 in terms of accuracy and speed.
Using an older model reduces the system's abil-
ity to accurately detect fire and smoke objects,
particularly under complex conditions such
as low light or noisy environments. Chenglin
Guo et al. proposed a system based on Nvid-
ia Jetson Nano and YOLOVSs, accelerated us-
ing TensorRT and DeepStream for real-time
fire detection [8]. The use of edge computing
combined with the Azure 10T platform helped
reduce latency and enhance detection efficien-
cy. However, the lack of a diverse and com-
prehensive data source reduced performance
in complex real-world scenarios, such as harsh
weather conditions, crowded environments, or
the presence of multiple unrelated heat sources.
These limitations hinder its feasibility for wide-
spread deployment. In [9] the authors propose
a real-time wildfire detection method using un-
manned aerial vehicles (UAVs) equipped with
Jetson Nano. Due to the computational and bat-
tery constraints of UAVs, this study employs
TensorRT (NVIDIA's inference acceleration li-
brary) along with techniques such as Quantiza-
tion Aware Training (QAT), Automatic Mixed
Precision (AMP), and Post-Training Quantiza-
tion (PTQ) to improve recognition speed. While
optimization methods like QAT, AMP, and PTQ
enhance inference speed, they also reduce mod-
el accuracy, especially in classifying fire images
with complex noise. Additionally, Jetson Nano
consumes a significant amount of power when
running deep learning models, which shortens
the UAV's flight time. Similarly, in [10] the au-
thors present a deep learning-based surveillance
system for wildfire detection and monitoring
using UAV. The system utilizes a UAV-mount-
ed camera to capture images and applies deep
learning algorithms for early fire detection. The
YOLOvS8 and YOLOvVS5 models are compared
in terms of fire detection performance, while a
CNN-RCNN network is developed to classify



160

T. T. Huynh, D. T. Huynh, D. T. Phu and A. H. Nguyen

images as containing fire or not. This system is
integrated with NVIDIA Jetson Nano hardware
for real-time data processing and transmission
of fire location information to a ground mon-
itoring station, improving response time and
timely intervention. However, the weight of
the Jetson Nano reduces the UAV's flexibility
and flight duration, limiting the system's opera-
tional range. Furthermore, the object detection
accuracy of the YOLOvS and YOLOvV8 mod-
els reaches only 89%, which is lower than the
image classification accuracy of 96%. This in-
dicates that the ability to precisely identify the
fire's location has not yet reached a high level.

Dong et al. introduced PG-YOLO [4], a com-
pressed YOLOVS variant specifically designed
for edge devices, reducing the model size by 9
times while maintaining an accuracy of 93.4%.
This approach highlights the potential of light-
weight solutions but sacrifices some flexibili-
ty for general-purpose object detection. The
study utilized the safety-helmet-wearing data-
set, making it more suitable for helmet detec-
tion than fire detection. Liang et al. proposed
the MEC-YOLO model [14], which combines a
cloud-edge-end architecture with YOLO for ve-
hicle detection tasks. This approach improved
detection speed to 93% but primarily focused
on vehicle applications rather than fire detec-
tion, which involves noisier data and presents
greater challenges for achieving high accuracy.

In [15], Weichao et al. proposed an efficient and
lightweight flame detection model, EFA-YO-
LO, featuring two key modules: EAConv (Ef-
ficient Attention Convolution) and EADown
(Efficient Attention Downsampling) to enhance
fire detection performance with superior infer-
ence speed. Compared to popular YOLO models
such as YOLOvVS5 and YOLOv10, EFA-YOLO
reduced model parameters by 94.6% and accel-
erated inference speed by 88 times, demonstrat-
ing significant potential for IoT applications.
Firdaus et al. introduced a solution integrating
YOLOV8 with IoT and multi-functional sensors
such as DHT22 and MQ-2 for an early fire de-
tection system [16]. The system achieved high
accuracy (mAP50=0.97) and provided alerts
via platforms like Blynk and Telegram, high-
lighting the effectiveness of combining Al and
IoT for fire detection. However, this study used
a dataset limited to flames and fire, lacking
smoke and other noisy images, which restricts

the practical applicability of the solution. In
[17], St Banerjee et al. deployed YOLOVS on
unmanned ground vehicles (UGV) combined
with AWS IoT Core for real-time fire detection
and alerts. The system also integrated live vid-
eo streaming and email notifications, showcas-
ing a seamless blend of Al, IoT, and robotics.
However, the proposal had limitations, includ-
ing high prediction times due to YOLOVS's
nature and reliance on third-party cloud plat-
forms, which impacted real-time capabilities
and increased deployment costs.

Table 1 presents a summary of the key char-
acteristics contributed by recent publications to
the research problem that we aim to address in
this study.

3. System Architecture

The proposed real-time fire detection system,
as shown in Figure 1, utilizes a fine-tuned
YOLOvV10 deep learning model and is deployed
on a Raspberry Pi integrated with a Camera
Module for real-time image capture and a Cor-
al Accelerator to enhance the model's inference
speed, ensuring fast and efficient data process-
ing. Upon detecting fire-related signs such as
flames or smoke, the Raspberry Pi sends the
event to Firebase, including Realtime Database
for event storage, Authentication for access
control, and Storage for image management.
Simultaneously, a notification is instantly sent
to the mobile application via Firebase Cloud
Messaging. Users can access detailed event in-
formation through the app, including captured
images and timestamps. The core layer of the
system includes:

e Raspberry Pi — Acts as the central proces-
sor, receiving data from the Camera Mod-
ule, running the YOLO model, and send-
ing alerts via Firebase. If necessary, it can
also activate an alarm system.

e Camera Module — Captures real-time im-
ages and connects to the Raspberry Pi via
CSI (Camera Serial Interface), ensuring
fast and accurate data transmission.



A Lightweight Real-time Fire Detection Framework for loT Devices... 161

Table 1. Comparative summary of existing fire detection methods.

Proposal Dataset Model/ Method | mAPS50 (%) Inference time Edg.e device/
(ms) Environment
~ Custom . Raspberry Pi and
Magalhaes et al. [3] (only fire, smoke) YOLO N/A High Cloud
PG-YOLO [4] safety-helmet-dataset PG-YOLO (cus- 93.4 N/A N/A.
tom) (personalized)
Saleem M.A. [5] Custom wildfire YOLOvV5 98.0 ~100 ms Jetson Nano
Talaat et al. [6] flame + smoke YOLOvVS8 97.1 High Cloud-based
Saponara et al. [7] N/A YOLOV2 N/A N/A Jetson Nano/RPi
YOLOvS5s + significantly
Chenglin et al. [8] (noctu(i::(t):ills) TensorRT + N/A reduced but not Jetigrzgimo
DeepStream quantified
Shamta and Demir || Custom UAV wildfire | YOLO + QAT/ reduced improved Jetson Nano
[9] images AMP/PTQ accuracy P (UAV)
Mamadaliev et al. Custom
(ESFD-YOLOVS8n) YOLOvVS8n 79.4 N/A GPU
[13] (flame/smoke)
Liang & Zhang Vehicle detection YOLO
(MEC-YOLO) [14] dataset (cloud-edge-end) 93 N/A Cloud-Edge-End
. faster than
Weichao et al. Custom .
EFA-YOLO N/A YOLOvS/ IoT devices
(EFA-YOLO) [15] (flame/smoke) YOLOV10
YOLOVS + .
Firdaus etal. [16] | ngtr‘r’g fire DHT22 and 97 N/A (Bll‘i ‘gfersam)
y MQ-2 sensors yne, g
. YOLOVS + AWS . Unmanned Ground
Banerjee et al. [17] N/A IoT Core N/A High Vehicle

e (oral Accelerator — A hardware accelera-
tor connected via USB, assisting the Rasp-
berry Pi in processing the YOLO model,
reducing the load on the main processor,
and speeding up fire detection.

e Fine-tuned YOLOvVIO model — Detects
fire-related signs such as flames and smoke,
ensuring fast and accurate detection.

The remaining two layers of the system include:

e Frontend — A user-friendly interface
that displays alert information, manages

devices, and tracks events. The application
enables remote monitoring and ensures
timely responses.

Middleware — A data storage and manage-
ment infrastructure that continuously up-
dates events and ensures seamless commu-
nication between the Raspberry Pi and the
mobile application. Firebase also provides
flexible scalability, ensuring the system
operates stably over time.



162

T. T. Huynh, D. T. Huynh, D. T. Phu and A. H. Nguyen

Firebase realtime database and Cloud messag-
ing are utilized as the backend for the following
reasons:

1. Ease of integration: Firebase provides free
SDKs that are easy to integrate with both
Android and Raspberry Pi, reducing devel-
opment time;

2. Low-latency notifications: Firebase Cloud
Messaging supports sending push notifica-
tions to multiple mobile devices instantly
without requiring a custom server setup;

3. Cost: Firebase Realtime database is free up
to a certain read/write threshold.

However, the limitations include dependency
on the Internet, lack of Quality-of-Service sup-
port in Firebase Realtime database compared
to some advanced protocols, and the potential
spike in Cloud messaging costs when scaling

to hundreds of devices. In future work, we plan
to explore MQTT (for environments with un-
stable Internet connectivity) or AWS IoT Core
(for large-scale deployments with enterprise
support). For now, Firebase meets our require-
ments for rapid development and prototyping.

The system workflow, as illustrated in Figure 2,
outlines the operational steps in the real-time
fire detection system. The process begins by up-
dating the timer to adjust the intervals between
tasks. The system then captures and processes
images for fire detection. If a fire is detected, the
system sends a notification and activates a timer
to handle and upload the event. The workflow
includes steps for managing the detection cycle,
minimizing data flow when no fire is detected,
and ensuring efficient event data transmission.
Additionally, it involves handling transitions
between detection and non-detection modes to
maintain the system's operational efficiency.

Core Layer

Middleware Layer Frontend Layer

Notification

- . Cloud

Fine-tuned
YOLOvV10 Model

Raspberry Pi

Messaging
E
10
Firebase Mobile App

Data Management

Camera Module

s

~'. Realtime
-g Database
-

[ Authentication
-

<D

— St

—a N

Figure 1. Real-time fire detection system.



A Lightweight Real-time Fire Detection Framework for loT Devices...

163

i\

[ Update TIMERS H

Capture and Proces
IMAGE

Send
NOTIFICATION

Upload TIMER
Activated

Yes

Detection loop

FIRE Detected

Yes

}——[ Send EVENT Data OFF Mode
/

Detect TIMER
Activated

FIRE Detecting

Event handling

Figure 2. System operation workflow.

The workflow details are as follows:

1.

Updating Timers (Update TIMERS): The
system updates the timers to establish pre-
defined intervals between tasks, ensuring
continuous, smooth operations and effi-
cient responses to real-time fire scenarios.

State Management: Local states (e.g.,
Detect/Upload TIMER Activated, FIRE
Detected/Detecting, Send LIMITED) are
utilized to manage tasks effectively, en-
suring execution only when necessary and
preventing unnecessary continuous opera-
tions.

. Non-Detection Mode (OFF Mode): The

system transitions to a non-detection mode
to reduce data flow and overall load, op-
timizing performance and conserving re-
sources when no fire events are detected.

Activating the Camera Module: The sys-
tem activates the Camera Module to con-
tinuously capture real-time data, ensuring
timely image acquisition for accurate fire
detection.

Processing Captured Images (Process IM-
AGE): Images captured by the camera
are processed using YOLOvVIO to detect
fire-related signs such as flames or smoke,
enabling swift and accurate identification
of potential fire hazards.

6. Sending Notifications (Send NOTIFICA-
TION): Notifications are sent to the mo-
bile application interface, ensuring users
are promptly informed and can take nec-
essary actions.

7. Uploading Event Data (Send EVENT
Data): Event data is sent to Firebase for se-
cure storage and further analysis, ensuring
reliable data management and supporting
effective tracking of fire-related events.

4. Methodology

4.1. Dataset Preparation

For object detection tasks, the dataset plays a
crucial role and must adhere to certain rules
to meet the standards of the YOLO model
framework. The training dataset is carefully
constructed and curated to encompass a wide
range of scenarios, including clear fire inci-
dents, smoke without apparent flames, and con-
founding factors such as strong lighting, vibrant
colors, or reflections. The labeling process was
conducted with a focus on consistency and the
meticulous identification of relevant character-
istics. To enhance the model's robustness, data
augmentation techniques [18] such as rotation,



164

T. T. Huynh, D. T. Huynh, D. T. Phu and A. H. Nguyen

zooming, noise addition, and more were sys-
tematically applied. In this study, we create a
unified comprehensive dataset by combining
two component datasets: one is a reference
dataset (FireSmokeDataset) which is publicly
available at [19], and our supplementary data-
set (FIRE_DETECTION) can be downloaded
from [20]. The goal is to ensure that the mod-
el can accurately and efficiently detect and re-
spond to fire incidents across various environ-
mental contexts, which is essential for practical
applications.

Each image in the dataset belongs to one or more
categories (fire, smoke, other) as described in
Table 2. The reference dataset contains a to-
tal of 34,410 images with 48,718 annotations,
categorized into three groups: fire, smoke, and
other. The "Fire" group includes 14,725 images
with 22,605 annotations, averaging 1.5 annota-
tions per image. These images depict flames in
various shapes, colors, sizes, and brightness lev-
els, enabling the model to effectively detect fire
signs. The "Smoke" group consists of 16,038
images with 19,378 annotations, averaging
1.2 annotations per image. These images show
smoke in diverse shapes, colors, sizes, and den-
sities, allowing the model to detect fire signs
even before flames appear. The "Other" group
contains 3,647 images with 6,735 annotations,
averaging 1.8 annotations per image. These in-
clude environmental confounding factors such
as light and reflections, helping the model dis-
tinguish between actual fire signs and unrelated

light sources. This dataset has an average image
size of 0.92 megapixels, ranging from 0.03 to
62.10 megapixels, with a median resolution of
1280x720 pixels, ensuring a diverse range of
scenarios and high-quality annotations.

Figure 3 shows several annotated images illus-
trating the three categories (fire, smoke, oth-
er). The image on the left is labeled as "fire"
(bounding boxes around the flames), the middle
image is labeled as "smoke" (bounding boxes
around the smoke region), and the image on the
right is labeled as "other" (bright light or reflec-
tive objects).

In addition to utilizing the publicly shared data-
set [19], we expanded the dataset by incorporat-
ing our supplementary dataset that we collect-
ed ourselves [20], comprising 5,000 additional
images. In Table 3, we summarize the distri-
bution of images in the dataset based on area
type and label categories. The dataset consists
of 5,000 images, including 3,295 indoor images
and 1,705 outdoor images. All images comprise
5,882 objects labeled as "fire" and "smoke".
Among them, 4,857 objects are labeled with the
"fire" class (3,243 indoor and 1,614 outdoor),
and 1,025 objects are labeled with the "smoke"
class (767 indoor and 258 outdoor). Our sup-
plementary dataset is structured to represent di-
verse scenarios to enhance the performance and
robustness of fire and smoke detection mod-
els. This dataset has an average image size of
0.41 megapixels, with a median resolution of

Table 2. Structure of the reference dataset.

Number of Number of
Category . annotations Description
images .
(Avg per image)
. Flames in various shapes, colors, sizes and brightness,
Fire 14,725 22,605 (1.5) helping the model in detecting fire signs.

Smokes in various shapes, colors, sizes, and densities,

Smoke 16,038 19,378 (1.2) aiding the model in early detection of fire signs, even in
the absence of flames.
The images include environmental confounding factors,

Other 3,647 6,735 (1.8) helping model distinguish between actual fire signs and
unrelated light sources.




A Lightweight Real-time Fire Detection Framework for loT Devices... 165

(a) Fire sample.

(b) Smoke sample.

(c) "Other" sample.

Figure 3. Annotated image samples from each category.

Table 3. The images are supplemented to the dataset from public sources.

Objects
Scenario Images
Fire Smoke
Indoor 3,295 3,243 767
Outdoor 1,705 1,614 258
Total 5,000 4,857 1,025

640 x 640 pixels. At training phase, we made
specific adjustments to seamlessly integrate
two datasets, create a unified comprehensive
dataset that enhances the model's ability to gen-
eralize across various environments.

Notably, our combined dataset comprises ap-
proximately 65% indoor images and 35% out-
door images. This imbalance may introduce
bias during training, causing the model to favor
detecting fire/smoke patterns in indoor environ-
ments. In outdoor applications (e.g., forest mon-
itoring), challenging conditions such as harsher
lighting and complex backgrounds (e.g., veg-
etation, direct sunlight) may reduce detection
accuracy. To mitigate this, we applied specific
augmentation techniques during training - such
as adding noise, simulating smoke blurring, and
reducing brightness - to mimic outdoor condi-
tions. However, we acknowledge that a larger
and more diverse outdoor dataset (e.g., forest
scenes, outdoor industrial zones) would signifi-
cantly improve generalization. Expanding the

outdoor dataset is part of our future develop-
ment direction.

Each image annotation includes a label rep-
resenting a specific object within the context
of the detection task (e.g., "fire," "smoke," or
"other" for confounding factors), along with a
bounding box that identifies the area containing
the object. The bounding box is typically repre-
sented as a normalized rectangle to ensure con-
sistency across images of varying sizes. These
two main components are detailed through five
key fields, as presented in Table 4.

The "class_index" is an integer representing the
index of the object class in the configuration
file, corresponding to the bounding box in the
image. This field is used to identify the type of
object being detected. The "x_coordinate" is a
floating-point value in the range [0, 1], indi-
cating the horizontal position of the bounding
box's center relative to the image width, where
0 represents the left edge and 1 represents the
right edge. This normalization ensures the mod-



166

T. T. Huynh, D. T. Huynh, D. T. Phu and A. H. Nguyen

el can process images of different sizes consis-
tently. The "y coordinate" is a floating-point
value in the range [0, 1], indicating the vertical
position of the bounding box's center relative
to the image height, where 0 represents the top
edge and 1 represents the bottom edge. The nor-
malization of both x and y coordinates allows
the model to handle images with varying aspect
ratios effectively. The "width" is a floating-point
value in the range [0, 1], representing the rela-
tive width of the bounding box within the im-
age, where 0 indicates no width and 1 indicates
the entire width of the image. The "height" is a
floating-point value in the range [0, 1], repre-
senting the relative height of the bounding box
within the image, where 0 indicates no height
and 1 indicates the entire height of the image.
The normalization of width and height ensures
that the bounding box dimensions are repre-
sented consistently, regardless of the actual size
of the image. This normalization approach en-
ables the model to effectively process images
at varying resolutions, ensuring consistent and
accurate object detection across different image
sizes.

It is evident that the training dataset consists of
carefully selected images tailored for detect-
ing fire signs and designed to meet the stan-
dards of the YOLO model family, specifically
YOLOVI10. The use of three labels (fire, smoke,
and other) helps minimize false alarms, enhanc-
ing the model's practical applicability. To ensure
stable performance, various data augmentation
techniques such as rotation, cropping, blurring,
brightness changes, and adding environmental
noise (rain, smoke, fog) were applied during

preprocessing to enrich the dataset, enabling
the model to generalize better and improve its
ability to recognize fire signs across different
environments and conditions.

4.2. Model Optimization

The overall architecture of YOLOv10 [11]
consists of three main blocks: the Backbone,
responsible for feature extraction; the Neck,
which synthesizes features; and the Head,
which performs fire detection. Derived from
[21], we optimize the training model by modi-
fying the internal components of each block to
reduce computational complexity while balanc-
ing accuracy and detection time summarized in
Table 5.

In the Backbone, we utilize the Cross Stage Par-
tial Network (CSPNet) to reduce computational
complexity by dividing the base layer into two
parts. One part is passed through a ResBlock
with bottleneck, improving gradient flow be-
fore performing partial transition. Additionally,
to minimize computational costs and maximize
the retention of important information in each
image, we divide the image processing into
two stages: spatial downsampling and depth
enhancement. During the downsampling stage,
we replace Partial Self Attention in YOLOvVI10
with Self Extraction Attention, a lightweight
and computationally efficient mechanism de-
signed to enhance neural network performance
by focusing on important features in the data.
This improves feature discrimination at the
channel level without incurring significant

Table 4. Annotation details for object labels and bounding box information.

Field Possible value

Description

Label <class_index> integer

The index of the label in the dataset configuration file

<x_coordinate> [0,1]

The relative coordinate on the x-axis of the center point

<y_coordinate> [0,1]

The relative coordinate on the y-axis of the center point

Bounding box

<width> [0,1]

The relative width of the bounding box in the image

<height> [0,1]

The relative height of the bounding box in the image




A Lightweight Real-time Fire Detection Framework for loT Devices...

167

Table 5. Architectural modifications from YOLOv10 baseline.

Component YOLOV10 baseline YOLOV10-S (modified) Advantage
Reduce computational cost,
Backbone Partial Self Attention Self Extraction Attention |improve performance at the
channel level
+ i-
Neck PAN PAN shgrtcut Ephance rr}ultl scale
connections information flow
Non-Maximum OneToMany (training) + Eliminate dependency on
Head . . NMS, reduce
Suppression (NMS) OneToOne (testing) ..
post-processing time
Improve generalization
Optimizer Adam SGDM (Momentum) capability,
prevent overfitting
. . . rotation, zoom, noise, blur, | Simulate diverse conditions
Augmentation rotation, zoom, noise... . . .
brightness, fog, rain... and reduce bias

costs. In the Neck, to enhance the synthesis of
input features from different resolution levels,
we introduce shortcut connections into the Path
Aggregation Network (PAN). This optimizes
the flow of information from lower to higher
layers, improving multi-scale feature represen-
tation. In the Head, to reduce computational
costs during prediction, we replace Non-Max-
imum Suppression (NMS) with two labeling
methods: OneToMany and OneToOne. The
OneToMany network is used during training,
the OneToOne network is used during testing.
This modification reduces the model's depen-
dence on post-processing algorithms and en-
hances real-time performance.

Furthermore, as highlighted in [21], the Adam
optimizer often leads to models that perform
well on the training set but fail to generalize
well on the test set, especially when dealing
with highly diverse data. In contrast, Stochastic
Gradient Descent with Momentum (SGDM),
although slower in convergence, is better at
finding global minima, leading to improved
generalization on new data. In preliminary ex-
periments, when using the Adam optimizer, the
mAP@50-95 on the validation set reached ap-
proximately 0.56 after 50 epochs but then de-
clined due to overfitting. In contrast, SGDM,
although converging more slowly (early stop-

ping occurred around epoch 77), achieved a
final mAP@50-95 of 0.588, an improvement
of about 3% compared to Adam. This indicates
better generalization, particularly on diverse
'other' and 'smoke' images. Thus, to enhance ac-
curacy while ensuring real-time fire detection
performance, we replace the Adam optimizer
with SGDM in this study.

The training environment is set up on Google
Colab, running on a Linux-based system with
a Tesla T4 GPU (15,102 MB), providing high
computational power for demanding tasks. The
environment utilizes Python 3.10.12 along with
the Ultralytics 8.3.39 and PyTorch 2.5.1 librar-
ies. This combination of tools ensures efficient
execution and optimization of the fine-tuned
YOLOvV10 model. This algorithm consists of
the following key steps: First, the data (fire and
smoke prepared earlier) is downloaded and ex-
tracted from Roboflow [18]. Then, the training
process runs with fine-tuned parameters such as
the number of epochs, image size, batch size,
and GPU utilization options. During training,
metrics such as loss and mAP are monitored to
evaluate performance. Once training is com-
plete, the model is evaluated on the validation
set and tested for predictions on sample images.
Finally, the trained model is saved in a suitable
format for deployment.



168

T. T. Huynh, D. T. Huynh, D. T. Phu and A. H. Nguyen

The fine-tuning process of YOLOvV10-S is di-
vided into three main parts as follows: (1)
Data splitting: the dataset was split with 8:1:1
ratio for training, validation, and testing, re-
spectively. Specifically, from a total of 39,410
images in the reference dataset plus 5,000 ad-
ditional images, 35,528 images were used for
training, 4,426 for validation, and 4,456 were
reserved for final evaluation (test set); (2) Hy-
perparameters: initial learning rate (LR): 0.01
using SGDM, scheduler: cosine annealing with
a warm-up for the first 3 epochs, then gradually
reduced following the cosine rule to a final LR
of 0.0001 by epoch 100, batch size: 32 imag-
es, weight decay: 0.0005, momentum: 0.937,
maximum number of epochs: 100, with early
stopping if the validation loss does not improve
after 5 consecutive epochs; (3) Training pro-
cedure: the YOLOvV10-S model was initialized
with pre-trained weights on the COCO dataset.
The first two layers (backbone) were frozen
during the first 10 epochs to stabilize feature
extraction, after which the entire network was
unfrozen and training continued for an addi-
tional 90 epochs. The following metrics were
monitored after each epoch: train/val losses
(box_loss, cls_loss, dfl _loss), precision, recall,
mAP@50, and mAP@50-95. The entire train-
ing process on a Tesla T4 GPU took approxi-
mately 4 hours and 30 minutes (270 minutes)

train/box_loss train/cls_loss

train/dfl_loss

until early stopping at epoch 77. During train-
ing, GPU utilization ranged between 85-90%.

Figure 4 illustrates the training and validation
metrics of the YOLOvV10-S model over 100 ep-
ochs, with a batch size of 32, using the SGDM
optimization algorithm. The training loss
curves for box loss (train/box_loss), classifica-
tion loss (train/cls_loss), and distribution focal
loss (train/dfl_loss) show significant improve-
ments over time, reflecting the model's ability
to minimize errors during learning. The valida-
tion losses for box loss (val/box _loss), classi-
fication loss (val/cls_loss), and distribution fo-
cal loss (val/dfl_loss) also gradually decrease,
albeit with some fluctuations, indicating the
model's capacity to generalize. The precision
and recall metrics steadily increased, exceed-
ing 0.75 by the end of training, demonstrating
the model's success in detecting fire incidents.
The Mean Average Precision (mAP) values,
including mAP50 and mAP50-95, indicate
strong performance. In particular, mAP50 con-
tinues to improve consistently, suggesting that
the model's detection capabilities enhance with
each epoch. The training process stops early
at epoch 77 due to meeting the Early Stop-
ping criteria, as no significant improvement
in validation loss is observed over the last five
epochs. This prevents overfitting and ensures

Precision (B) Recall (B)

—o— results —o— results
smooth smooth

10

30 28

26 4

15 4 24

—— results
smooth

—o— results
smooth

08 a7s

a7

[

—o— results as0 4

i smooth

val/box_loss val/cls_loss

val/dfl_loss

@ » o 2 P P ® o » © @ P
mAPS0 (B) mAP50-95 (B)

—o— results —o— results
smooth 40 smooth

264 25 28

24
264

22

06
—o— results

smooth o8

as 4
a7

as
[

a3
s

—o— results s —&— results
4 smooth smooth

60 80 0 20 40 @ £l 0 20 0 & 80

Figure 4. Training result with the fine-tuned YOLOv10-S.



A Lightweight Real-time Fire Detection Framework for loT Devices...

169

efficiency in training. These results demon-
strate that the YOLOV10-S model is learning
effectively and shows strong potential for fire
detection tasks.

4.3. Deployment Process

The process of converting the model to the Ten-
sorFlow Edge TPU format is designed to accel-
erate and optimize machine learning tasks, mak-
ing it particularly suitable for applications with
constraints on power, computational resources,
and connectivity. Edge TPU, a hardware accel-
erator developed by Google, is specifically built
to enhance the performance of TensorFlow Lite
models on edge devices. Figure 5 illustrates the
implementation of this conversion process.

The process of converting to the Edge TPU
TFLite format is essentially an optimization
process, compiled through the Edge TPU Com-
piler into the TensorFlow Lite format. PyTorch
Script is the standard format of the PyTorch
framework, generated during the training of
the YOLO model using the Ultralytics library.
Open Neural Network Exchange (ONNX) is an
open standard format that facilitates model con-
version between different frameworks. Protocol
Buffers is the standard format for the Tensor-
Flow framework, serving as the core platform
optimized for deploying deep learning models.
TensorFlow Lite (TFLite) is a lightweight ver-
sion of TensorFlow, optimized for deployment

on mobile and embedded devices. TensorFlow
Lite Edge TPU is the TensorFlow Lite version
compiled to run on Edge TPU specialized hard-
ware.

During conversion to Edge TPU format using
the Edge TPU Compiler, all operations, includ-
ing custom layers, were successfully compiled
in 99% of the cases. Only 1% of the layers
(very large sockets) required fallback to INTS,
but this had no significant impact. Specifically,
out of a total of 175 layers, only 2 layers were
converted using INTS8 fallback (1.14%), result-
ing in a 98.86% full conversion success rate to
Edge TPU.

The Edge TPU operates exclusively with mod-
els that have been quantized. Quantization re-
duces the model size and increases its speed
without significantly affecting accuracy. This
is particularly ideal for edge devices with lim-
ited computational resources, enabling faster
application response times by reducing laten-
cy and processing data locally without relying
on cloud technologies. Furthermore, local data
processing enhances privacy and security, as
data is not transmitted to remote servers. The
final model, after training and testing, is con-
verted into the TensorFlow Lite Edge TPU for-
mat. Python-based tools such as Ultralytics and
PyCoral facilitate seamless deployment on Cor-
al Accelerator. This configuration ensures re-
al-time performance on low-power IoT devices.

Pretrained \\

( Fine-tuned ]

Train Export Pytorch Script
YOLO Model J L YOLO Model J ptfile
Open Neural Network
Convert Convert
Exchange
L .onnx file J
Frozen Graph \} Quantize ( TensorFlow Lite ] Compile

pb file J

L tlite file J

Figure 5. Edge TPU model compilation process.



170

T. T. Huynh, D. T. Huynh, D. T. Phu and A. H. Nguyen

Algorithm 1. Pseudo code of the Early Fire Detection.

Input: captured frames, refined YOLOv10-S model for frame detection, states in firebase
Output: notification/confirmation of fire detection, frames uploaded to firebase
Step 1. FRAME « get frame from camera module //capture frame
Step 2. STATE « YOLOv10.detect(FRAME) //detect state of frame
Step 3. if Detection_Timer is not active then //check detection timer
if STATE = True or STATE # Previous Frame State then

Activate Detection_Timer
Previous Frame State «— STATE
Firebase.update("Detect _State", STATE)
if STATE = True then
Detecting_State «— True
Timestamp «— Current_Time
Mobile App.notify("Fire detected!")
end if
end if
end if

Step 4. if Detecting_State = True then //handle uploading when detecting state is true

if Upload Quantity <3 then
if Upload Timer is not active then

Activate Upload_Timer
Firebase.store _frame(FRAME)

Upload_Quantity «— Upload Quantity + 1

end if
else
Detecting_State «<— False
Timestamp <— NULL
Upload Quantity < 0
end if
end if

The IoT device processing workflow is imple-
mented as described in Algorithm 1. This al-
gorithm utilizes a Camera Module to provide
real-time frames and YOLOV10-S to detect the
status of the frame (fire or no fire). Firebase is
used to store detection statuses and frames when
necessary, while a mobile application receives
notifications upon fire detection. The algorithm
outputs include sending fire notifications to the
mobile application and uploading frames to
Firebase. The core logic involves classifying
frame status using YOLOv10-S, managing a
counter to avoid unnecessary repeated actions,
updating the detection status in Firebase, and
handling notifications along with storing a lim-
ited number of frames. Once the specified num-
ber of frames is uploaded, the detection status
and counter are reset to maintain efficiency.

Algorithm 1 is evaluated for performance on
Raspberry Pi 4 and Coral USB Accelerator,
based on the following main functions (1) get
frame: approximately 30 ms/frame (camera
capture); (2) YOLOv10-S.detect(FRAME): ap-
proximately 1.7 s/frame (with TPU) or around
4.0 s/frame (with CPU); (3) Firebase.update:
approximately 100ms/call (with 250MB/s In-
ternet speed); (4) Firebase.store frame: approx-
imately 150 ms/frame (including compression
and upload). When Detecting_State is false,
the total time per cycle is approximately 1.83
seconds per frame, consisting of 30 ms (cap-
ture), 1.7 s (TPU inference), and 100 ms (Fire-
base update). When Detecting State is true
(upload < 3), an additional 150 ms per frame
is added for uploading, resulting in a total of
approximately 1.98 s/frame.



A Lightweight Real-time Fire Detection Framework for loT Devices... 171

Algorithm 2. Pseudo code of the Real-time Fire Alert.

Input: detect state from firebase, notifications from firebase

Output: updated mobile layout (Safe or Danger), captured data displayed on mobile
Step 1. DETECT STATE « Firebase.listen("Detect_State") //detect state from firebase
Step 2. if DETECT STATE = False then // handle state changes

Mobile App.update layout("Safe Layout") / update to safe layout

Step 3. else

NOTIFICATION « Firebase.receive notification("Fire Alert") // update layout

Mobile App.update layout("Danger Layout")

CAPTURED_DATA « Firebase.load("Captured Data") // display captured data

Mobile App.display data(CAPTURED DATA)

end if

The mobile application processing workflow
for early fire warnings in monitored areas is
implemented as described in Algorithm 2. This
algorithm uses Firebase to receive fire detec-
tion statuses (Safe or Danger), notifications,
and data uploaded from the IoT device in case
of a fire. The outputs include displaying the
"Safe Layout" interface when no fire is detected
and the "Danger Layout" when a fire is detect-
ed, along with data such as frames, timestamps,
and related information presented on the mo-
bile application. The core logic of the algo-
rithm involves listening to real-time detection
statuses from Firebase, dynamically switching
the interface based on the detection status, and
displaying detailed data when a fire is detect-
ed. The algorithm ensures timely fire alerts and
provides essential information to the user. Al-
gorithm 2 is evaluated for performance based
on the following main functions (1) Firebase.
listen: approximately 50 ms; (2) Layout update:
approximately 10ms; (3) Firebase.load(CAP-
TURED DATA): approximately 150ms (de-
pending on image size).

5. Results and Discussion

5.1. Performance Metrics

The experimental results we conducted to eval-
uate the metrics comparing the S version with
other versions of YOLOV10 are presented in Ta-
ble 6. The format conversion time and memory
usage of YOLOvV10 models increase progres-

sively from the N version to the X version. This
indicates that larger and more complex models
require more resources, with significantly in-
creased processing time and memory usage to
ensure stable conversion and operation. This
increase is observed regardless of whether the
model is deployed to operate on a CPU or an
Edge TPU. For all versions of the YOLOv10
model, memory usage in the TPU format is sig-
nificantly smaller compared to the CPU format.
This highlights that the optimized model format
for Edge TPU incorporates special optimiza-
tion techniques to ensure efficient operation on
Edge hardware. Consequently, the TPU-format
model not only consumes less memory space
but also enhances the model's processing per-
formance.

Based on the data from Table 6, compared to
YOLOV10-N, the S version shows a significant
improvement in mAP50-95, increasing from
39.5% to 46.8% (+7.3%), reflecting a notice-
able boost in detection performance. Param-
eters (Params) increase from 2.3 M to 7.2 M,
while still maintaining a moderate size, mak-
ing it suitable for high-efficiency applications
without being overly resource-intensive. Laten-
cy increases slightly from 1.84 ms to 2.49 ms,
which remains acceptable for real-time appli-
cations. Conversion time and memory usage
also increase but stay within reasonable lim-
its, ensuring a balance between performance
and resource requirements. When compared
to YOLOvV10-M, the S version is significantly
lighter in terms of Params (7.2 M vs. 15.4 M),
nearly halving the size, which saves resources
in constrained environments. Conversion time



172

T. T. Huynh, D. T. Huynh, D. T. Phu and A. H. Nguyen

is also lower at 495.9 s compared to 872.2 s,
making it more suitable for systems that do
not require handling large-scale data simulta-
neously. While the mAP50-95 of YOLOv10-S
is slightly lower than YOLOv10-M (46.8% vs.
51.3%), this difference is acceptable for ap-
plications that require a balance between per-
formance and resource utilization. Compared
to YOLOvV10-L and YOLOV10-X (the largest
version), YOLOvVI0-S requires significantly
fewer resources. It has Params of 7.2M, which
is 3.4 times smaller than YOLOvIO0-L and
more than 4 times smaller than YOLOv10-X.
Memory usage on CPU is 15.8 MB compared
to 49.9 MB and 61.4 MB for YOLOv10-L and
YOLOvV10-X, respectively, representing a re-
duction of nearly fourfold. Similarly, Memory
(Edge TPU) is only 9.66 MB, about one-third
of YOLOvV10-X. With a latency of 2.49 ms,
YOLOV10-S is much faster than YOLOv10-L
(7.28 ms) and YOLOV10-X (10.7 ms), making
it more suitable for real-time applications.

Consequence, YOLOvV10-S strikes an excellent
balance between performance (mAP50-95) and
resource usage. Its low latency makes it ideal
for real-time applications, while its moderate
resource consumption makes it suitable for [oT
devices or resource-constrained environments.
For higher performance needs, YOLOv10-M
or larger versions can be considered. How-
ever, for applications that prioritize a balance
between performance and resource efficiency,
YOLOVI10-S is the most suitable choice.

Table 7 shows that Edge TPU significantly im-
proves inference time for YOLOv10 models
compared to CPU. For both CPU and Edge TPU,
the inference time of the model consistently in-
creases from YOLOvV10-N to YOLOv10-X, re-
flecting the inherent complexity and size of the
models. Edge TPU consistently delivers signifi-
cantly lower inference time than CPU across all
model versions. The difference becomes more
pronounced as the model complexity increas-
es, highlighting the superior processing perfor-
mance of Edge TPU. Lightweight versions like
YOLOV10-N and YOLOV10-S have very low
inference time on both CPU and Edge TPU,
making them ideal choices for applications re-
quiring real-time recognition.

The inference speed of YOLOV10-S is signifi-
cantly faster than larger versions (M, B, L, X).
On both CPU and TPU, the S version is fast-
er by 124% — 489% (CPU) and 132% — 480%
(TPU), respectively. For instance, compared
to the L (Large) version, YOLOvVI10-S is up to
348% faster on CPU and 351% faster on TPU.
This makes the S version well-suited for tasks
requiring high speed while maintaining good
accuracy, such as object detection on mobile
devices, IoT systems, or real-time applications.
Additionally, on TPU, YOLOvV10-S achieves an
inference time of just 1716.16 ms, which is fast
enough to handle multiple simultaneous tasks
without increasing latency. YOLOvV10-S is
slower than the N version on both CPU (147%
slower) and TPU (144% slower) due to its in-
creased complexity compared to YOLOv10-N.

Table 6. The comparison metrics between the S version and other versions of YOLOv10.

YOLQVIO Params (M) mAP050-95 Latency (ms) Copversion Memory Memory
version (%) time (s) (MB, CPU) | (MB, Edge TPU)
N 23 39.5 1.84 313.8 5.58 3.32
S 7.2 46.8 2.49 495.9 15.8 9.66
M 15.4 51.3 4.74 872.2 32 17.8
L 24.4 534 7.28 1,436.1 49.9 26.3
X 29.5 54.4 10.7 1933 61.4 32.1




A Lightweight Real-time Fire Detection Framework for loT Devices...

173

Table 7. The inference speed of the S version compared to other versions on CPU and Edge TPU.

Speed improvement | Speed improvement
YOLOV10 Version CPU (ms) Edge TPU (ms) of the S version | of the S version vs
vs other versions other versions
(CPU) (%) (Edge TPU) (%)
N 1,189.32 703.59 147% slower 144% slower
S 2,938.97 1,716.16 - -
M 6,598.81 3,980.39 124% faster 132% faster
B 10,531.06 6,041.29 259% faster 252% faster
L 13,149.98 7,737.84 348% faster 351% faster
X 17,297.36 9,954.26 489% faster 480% faster

Despite being slower, YOLOvI10-S is rated
higher in terms of detection capability and
accuracy (as shown in Table 6). This makes
YOLOV10-S a more balanced choice between
inference speed and accuracy.

Table 8 presents the accuracy results of the
YOLOvVIO-S model in detecting different
classes, with metrics such as precision, recall,
mAP50, and mAP50-95 evaluated for each cat-
egory. Overall, the model achieves an average
precision of 80.9% and recall of 76.1% across
all classes, indicating a good balance between
correctly identifying fire-related objects and
minimizing false alarms. The "fire" catego-
ry exhibits particularly high precision (84.8%)
and recall (84.1%), corresponding F1 score is
84.4%, reflecting the model's strong capability

in detecting fire incidents. The "smoke" category
also performs well, with precision of 85.7% and
recall of 82.0%, and the corresponding F1 score
is 83.8%, demonstrating effective smoke detec-
tion. However, the "other" category shows low-
er values for both precision (72.1%) and recall
(62.3%), corresponding F1 score is 66.8%, sug-
gesting room for improvement in distinguish-
ing non-fire-related objects. The mAP50 values
further reinforce these observations, with the
"fire" (91.1%) and "smoke" (89.6%) categories
showing robust performance, while the "other"
category has a lower mAP50 of 68.2%. These
results highlight that the YOLOv10-S model is
highly effective in detecting fire and smoke but
may require additional adjustments to improve
accuracy in classifying non-fire-related objects.

Table 8. Accuracy of the YOLOv10-S model in detecting different classes.

Category Precision (%) Recall (%) F1 score (%) mAPS0 (%) mAPS0-95 (%)
all 80.9 76.1 78.4 83.0 58.8
fire 84.8 84.1 84.4 91.1 66.6
smoke 85.7 82.0 83.8 89.6 64.0
other 72.1 62.3 66.8 68.2 45.9




174

T. T. Huynh, D. T. Huynh, D. T. Phu and A. H. Nguyen

The confusion matrix, measured on the test set
of 4,456 images, is presented in Table 9, where
each value represents the percentage of pre-
dicted images relative to the actual number of
images in that class. The results show (1) For
the "fire" class: only 8% were misclassified as
"other" and 1% as "smoke"; (2) For the "smoke"
class: only 3% were misclassified as "fire" and
7% as "other"; (3) For the "other" (interference)
class: the false alarm rate - i.e., "other" images
misclassified as "fire" - reached 21%, and 10%
were misclassified as "smoke". This reflects
that while misclassification is low for "fire" and
"smoke," the model still struggles with the "oth-
er" class, which remains frequently confused
with the other two.

Reasons for high misclassification rate of the
"other" class into "fire" or "smoke" include
(1) Class imbalance: the supplemented data-
set contains only around 3,647 "other" images,
compared to approximately 14,725 "fire" and
16,038 "smoke" images, limiting the model's
ability to learn distinct features for "other"; (2)
Color/brightness similarity: many "other" imag-
es share similar hue/gamma values with flames
(e.g., halogen lights, bright sunlight), causing
the Self Extraction Attention mechanism to
sometimes fail in distinguishing them; (3) An-
notation quality: some "other" bounding boxes
are too large and include background areas,
introducing noise during training. To improve

this, in future work, we plan to include harder
negative annotations and increase the diversi-
ty of "other" images (e.g., light bulbs, artificial
flames, cosplay fire) to reduce the false alarm
rate.

Table 10 presents the inference performance of
the YOLOvV10-S model, comparing configura-
tions using CPU and TPU. When using a CPU,
the model requires 15.7 MB of memory and
takes 4,043.1ms per inference, indicating rela-
tively slow processing time on standard hard-
ware. In contrast, the Edge TPU configuration
significantly improves performance, reducing
inference time to 1,698.1ms and memory usage
to 9.28 MB, demonstrating the superior benefits
of hardware acceleration for faster and more ef-
ficient fire detection. These results highlight the
potential for deploying the model on embedded
systems with Edge TPU support, enabling re-
al-time and efficient fire detection.

Additionally, to evaluate the impact of quanti-
zation on the accuracy of the proposed model,
we compared the mAP before and after quanti-
zation based on the YOLOvVI10-S version. De-
tails are shown in Table 11 (with INTS8 values
measured on the Edge TPU). All evaluations
are conducted on the same validation set. The
mAP degradation is not more than 2.5%, indi-
cating that quantization has minimal impact on
accuracy.

Table 9. Confusion matrix for the test set of 4,456 images.

Predict (%)
Fire Smoke Other
Fire 91.0 1.0 8.0
Actual
Smoke 3.0 90.0 7.0
Other 21.0 10.0 69.0




A Lightweight Real-time Fire Detection Framework for loT Devices... 175

Table 10. Efficiency of the YOLOvV10-S model in detecting different classes.

Memory (MB) Inference Time (ms)
CPU 15.7 4,043.1
Edge TPU 9.28 1,698.1

Table 11. mAP comparison before vs. after quantization (YOLOv10-S).

mAP50 | mAP50 (int8 mAP50-95 | mAP50-95 (int8
Category | f0at32) (%) | TPU) (%) | A@0C0) | qoat32) (%) | TPU) (%) | A@%0 (%)
all 83.0 82.0 _12 58.8 57.3 25
fire 91.1 90.3 0.9 66.6 65.5 17
smoke 89.6 88.8 0.9 64.0 633 11
other 68.2 67.0 ~18 459 445 3.0

5.2. Deployment Results

Figure 6 illustrates the real-world deployment
results of the real-time fire warning system on
IoT devices accessed via a smartphone. The
system operates by using a Camera Module to
capture real-time frames from the environment,
which are then sent to a Raspberry Pi for pro-
cessing. The YOLO model is employed to an-
alyze and detect fire signs. If a fire is detected,
the status information and frame data are updat-
ed to Firebase. The mobile application access-
es Firebase to synchronize data, display status
and notify users. When no fire is detected, the
app interface shows a "Safe Zone" status with
a green icon, indicating a safe area. Converse-
ly, if a fire is detected, the interface switches
to "Danger Zone", displaying a "Fire Alert"
notification along with the detected image and
timestamp. The system also sends emergency
notifications to users through the mobile app,

providing timely warnings. The final outcome
is a real-time fire detection system that deliv-
ers detailed information and enables users to
act quickly in case of incidents or potential fire
hazards.

The integration of YOLOv10 with the Cor-
al Accelerator addresses critical challenges in
IoT-based fire detection systems. Key contribu-
tions include reduced latency, improved accura-
cy, and compatibility with resource-constrained
devices. The modular design of the system en-
sures adaptability to various operational envi-
ronments, from residential safety to large-scale
industrial monitoring. Challenges such as de-
tection under low-visibility conditions (e.g.,
dense smoke or dim lighting) remain and pres-
ent opportunities for future research. Incorpo-
rating additional sensor data (e.g., thermal im-
aging or gas sensors) could further enhance the
accuracy and reliability of detection.



176

T. T. Huynh, D. T. Huynh, D. T. Phu and A. H. Nguyen

Collect
images
(realtime)

Camera Module

Mobile App <

Fine-tuned ;
YOLOv10s Model : Coral Accelerator |

Extract images

»  Raspberry PI
Confirm
signs of fire

Update

data

A 4

Extract data |
Firebase

Fire alert

Update interface 1

SAFE ZONE

NOTIFICATION OF LIVINGROOM
MRZARD DETECT

DANGER ZONE

Figure 6. Real-time fire detection system on loT device.

5.3. Effectiveness of Combining Coral
Accelerator with Raspberry Pi

In early fire detection systems, computational
performance and power consumption are two
critical factors that determine the effectiveness
of real-world deployment. Table 12 presents a
comparison of key criteria between the Coral
Accelerator combined with Raspberry Pi and
Jetson Nano.

In terms of power consumption, the Coral Ac-
celerator (Edge TPU) consumes only about 2W,
while the Raspberry Pi 4 consumes between
3-7W. The total system consumption remains
below 10W, making it suitable for battery or

solar-powered operation, optimizing operation-
al costs and mobility. In contrast, Jetson Nano
consumes 5—10 W in power-saving mode and
up to 15 W when handling heavy tasks, requir-
ing a more stable power source. This limits its
deployment on mobile devices or in remote ar-
eas where the power supply is unstable. When
deploying outdoor IoT systems, such as for-
est monitoring or large-scale surveillance, the
Coral Accelerator combined with Raspberry Pi
offers a significant advantage due to its abili-
ty to operate continuously with limited power
resources. In terms of Al processing perfor-
mance, although Jetson Nano has a more pow-
erful GPU, the Coral Accelerator (Edge TPU)



A Lightweight Real-time Fire Detection Framework for loT Devices...

177

Table 12. The combination of Coral Accelerator with Raspberry Pi vs. Jetson Nano.

Coral Accelerator with Raspberry Pi

Criteria Jetson Nano
Coral Accelerator Raspberry Pi
Power Consumption 5-10W 2W 3-TW
Al Performance 0.5-1.3 TOP 4 TOPS -
Cost 99-150 USD 60-100 USD
Deployment Complex Simple

has an advantage in specialized tasks such as
real-time image recognition, thanks to its high
efficiency with TensorFlow Lite. The Coral
Accelerator can achieve 4 TOPS, specializ-
ing in image recognition and object detection
with low latency. Jetson Nano's GPU supports
multiple AI models, but its real-world perfor-
mance is only 0.5-1.3 TOPS when running
on the Maxwell GPU. In early fire detection,
where detecting smoke and fire from camera
images is crucial, the Coral Edge TPU is better
optimized for TensorFlow Lite, enabling fast-
er recognition and immediate alerts, reducing
the risk of delays. In terms of cost, the Coral
Accelerator and Raspberry Pi setup costs ap-
proximately $60-$100 (including Raspberry
Pi 4 and Coral USB Accelerator), while Jetson
Nano costs $99-$150, excluding a higher-pow-
er adapter and additional accessories. Using
Coral combined with Raspberry Pi helps reduce
deployment costs for large-scale systems, espe-
cially when installing dozens or hundreds of
monitoring points. In terms of deployment, the
Coral Edge TPU can connect to the Raspberry
Pi via USB or PCle, making it easy to integrate
into existing systems. In contrast, Jetson Nano
requires a more complex setup and a stronger
power supply, which can be challenging for
IoT deployments in remote areas. Additionally,
temperature, humidity, and gas sensor modules
on Raspberry Pi can be easily integrated with
Coral, providing multi-source data to improve
fire detection accuracy.

Thus, when comparing Coral Accelerator com-
bined with Raspberry Pi and Jetson Nano for
early fire detection applications, Coral Acceler-
ator offers several key advantages: Lower pow-

er consumption, making it ideal for continuous
IoT operation; Specialized Al acceleration,
enabling faster smoke/fire recognition with
TensorFlow Lite; Lower cost, facilitating large-
scale deployments with an optimized budget;
Greater flexibility for IoT sensor integration,
allowing easy scalability and upgrades. There-
fore, if an Al-embedded fire detection system is
required, the Coral Edge TPU combined with
Raspberry Pi is a better solution in terms of per-
formance, power efficiency, and cost-effective-
ness compared to Jetson Nano.

We used several other tools to evaluate the
performance of combining the Coral Acceler-
ator with the Raspberry Pi. Specifically, we (1)
use the top/htop tools, recording every 5 sec-
onds, to measure the average CPU utilization
during continuous inference of 60 frames (on
CPU only) and inference of 60 frames (using
Coral); (2) measure the memory used by the
Python inference process at steady state after
running for 1 minute; (3) utilize edgetpu_moni-
tor —graph=false —interval=1 to record readings
every second. After 5 minutes, we compute the
average and deviation to assess the Coral tem-
perature; (4) used vcgencmd measure temp,
recording every 10 seconds during inference, to
determine the Pi SoC Temperature; and utilize
a watt-meter connected to the power supply for
the Raspberry Pi and Coral, taking 5 consecu-
tive measurements and averaging them to cal-
culate the power consumption.

The measured results are shown in Table 13.
When running YOLOVI10-S solely on the
Raspberry Pi 4's CPU, the average CPU usage
reached 85 + 5% and the RAM usage was about



178

T. T. Huynh, D. T. Huynh, D. T. Phu and A. H. Nguyen

2200 + 50 MB, causing the SoC temperature
to rise to 65 + 4°C, which could lead to throt-
tling if run for extended periods. The overall
power consumption of the system was approxi-
mately 7.8 £ 0.2 W. In contrast, when using the
combination with the Coral USB Accelerator,
the average CPU usage was only 45 + 5%, the
RAM usage was about 1900 = 60MB, the Coral
Accelerator temperature was 58 £+ 3°C, and the
Raspberry Pi SoC temperature was 57 + 2°C,
with the overall system power consumption
measured at approximately 9.1 = 0.3 W.

5.4 Comparison with Models Optimized
for Edge Devices

To evaluate the advantages of YOLOv10-S
when deployed on the Coral Accelerator, we
collected reference metrics from recent stud-
ies on models optimized for edge devices, in-

cluding PG-YOLO [4], EFA-YOLO [15], and
YOLOvV8n (implemented on Edge TPU). The
benchmark data includes mAP@50-95, la-
tency on Edge TPU, memory usage, and false
positive rate (FPS). From Table 14, it can be
observed that YOLOvV10-S achieves a compa-
rable mAP@50-95 to YOLOv8n (46.8% vs.
47.0%) but has a larger number of parameters
(7.2 M vs. 4.2 M), resulting in a slightly higher
inference time (1,698 ms vs. 1,650 ms). How-
ever, YOLOV10-S has the lowest false positive
rate (4.7%), attributed to a diverse dataset and
thorough fine-tuning. Although PG-YOLO and
EFA-YOLO have smaller model sizes, they
exhibit longer inference times and 2.3-5.6%
lower mAP@50-95 compared to YOLOv10-S.
These results indicate that YOLOvV10-S offers a
well-balanced trade-off between accuracy and
latency when deployed on the Coral Acceler-
ator.

Table 13. Resource utilization for YOLOvV10-S on Raspberry Pi 4 and Coral USB Accelerator.

Parameter Unit CPU alone With Coral TPU
CPU utilization (avg) %CPU 85+ 5% 45+ 4%
RAM usage (avg) MB 2,200 + 50 1,900 + 60
Coral Accelerator oC N/A 58 4 3°C
Temperature
Raspberry Pi SoC oC 65 = 4°C 571 20C
Temperature
Power consumption W 78402 91403
(whole system)

Table 14. Comparison of YOLOV10-S with other edge-optimized models.

Model Params (M) | mAP50-95 (%) I“fe“z‘l;fse)Time Memory (MB) Fall;:tz‘(’ﬁ/i:)ive
PG-YOLO [4] 3.6 412 1,050 10.5 6.3
EFA-YOLO [15] 1.8 44.5 1,720 9.8 58
YOLOV8n (TPU) 42 47.0 1,650 9.5 5.2
YOLOV10-S 7.2 46.8 1,698 9.28 47




A Lightweight Real-time Fire Detection Framework for loT Devices... 179

6. Conclusion

This study introduces a lightweight and efficient
framework for real-time fire detection, integrat-
ing the fine-tuned YOLOvV10 small model with
the accelerator module, specifically optimized
for IoT devices. The system not only address-
es critical challenges such as latency, accuracy,
and deployment in resource-constrained envi-
ronments but also ensures reliable operation
even under limited network connectivity. Its
compact design, edge processing capabilities,
and reduction in false alarms enhance the sys-
tem's practicality for fire monitoring in residen-
tial, industrial, and natural environments. Ex-
perimental results demonstrate that deploying
YOLOV10-S with the Coral Accelerator sig-
nificantly outperforms CPU-based solutions,
achieving inference speed four times faster and
reducing power consumption by approximately
30%. These improvements not only affirm the
feasibility of the proposed framework but also
make it an ideal choice for energy-constrained
geographic regions. The full source code in-
cluding setup instructions for Raspberry Pi and
Coral Accelerator is publicly available at [22].

This research lays a strong foundation for low-
cost real-time fire detection systems on IoT
platforms, promising to enhance early detection
capabilities, reduce response times, and miti-
gate damages. These advancements contribute
to a safer environment through intelligent edge-
based monitoring solutions. However, some
limitations remain to be addressed. Detection
under challenging conditions, such as dense
smoke or low light, could be improved by inte-
grating multimodal data sources, such as ther-
mal imaging or gas sensors. Future efforts will
focus on enhancing adaptability, scalability,
and system performance to ensure effectiveness
across a wide range of challenging scenarios.
Additionally, upcoming research will explore
the application of advanced network compres-
sion and structured pruning techniques, and
more importantly, the use of quantization-aware
pruning on YOLOV10-S to reduce the model
size to below 3 MB, lower the inference time
to under 1 s/frame, while still maintaining
mAP@50 more than 80%. We also aim to com-
bine knowledge distillation from YOLOv10-M
with dynamic channel pruning to preserve high
accuracy on ultra-low-power edge devices.

Declaration of Competing Interests

The authors declare no conflict of interest.

Funding

This research is supported by Posts and Tele-
communications Institute of Technology
(PTIT).

Data availability

Data used in this article is openly available at:
https://universe.roboflow.com/binbin-iz5rn/
fire detection-ckgf5/dataset/4

References

[1] S. Hall, "Fire Loss in the United States During
2023", NFPA Research, 2024.
https://www.nfpa.org/education-and-research/
research/nfpa-research/fire-statistical-reports/
fire-loss-in-the-united-states
Accessed on Jan. 2, 2025.

[2] State and Agency, "2018 National Year-to-Date
Report on Fires and Acres Burned", National In-
teragency Fire Center, 2024.

Accessed on Jan. 2, 2025.

[3] W. F. Magalhdes et al., "Investigating Mobile
Edge-Cloud Trade-Offs of Object Detection with
YOLOQ", in Symposium on Knowledge Discovery,
Mining And Learning (KDMILE), Porto Alegre,
Brasil, 2019, pp. 49-56.
https://doi.org/10.5753/kdmile.2019.8788

[4] C.Dongetal.,"PG-YOLO: A Novel Lightweight
Object Detection Method for Edge Devices in In-
dustrial Internet of Things", IEEE Access, vol. 10,
pp. 123736-123745, 2022.
https://doi.org/10.1109/ACCESS.2022.3223997

[5] M. A. Saleem, "An Edge Computing Infrastruc-
ture and Deep Learning Methods for Wildfire
Monitoring and Anomalies Detection", Ph.D. dis-
sertation, Ministry of Higher Education, 2022.

[6] F. M. Talaat and H. ZainEldin, "An Improved
Fire Detection Approach Based on YOLO-v8 for
Smart Cities", Neural Comput. & Applic., vol. 35,
pp- 20939-20954, 2023.
https://doi.org/10.1007/s00521-023-08809-1


https://universe.roboflow.com/binbin-iz5rn/fire_detection-ckgf5/dataset/4
https://universe.roboflow.com/binbin-iz5rn/fire_detection-ckgf5/dataset/4
https://www.nfpa.org/education-and-research/research/nfpa-research/fire-statistical-reports/fire-loss-in-the-united-states
https://www.nfpa.org/education-and-research/research/nfpa-research/fire-statistical-reports/fire-loss-in-the-united-states
https://www.nfpa.org/education-and-research/research/nfpa-research/fire-statistical-reports/fire-loss-in-the-united-states
https://doi.org/10.5753/kdmile.2019.8788
https://doi.org/10.1109/ACCESS.2022.3223997
https://doi.org/10.1007/s00521-023-08809-1

180

T. T. Huynh, D. T. Huynh, D. T. Phu and A. H. Nguyen

[7] S. Saponara et al., "Enabling YOLOv2 Models to
Monitor Fire and Smoke Detection Remotely in
Smart Infrastructures", Lecture Notes in Electri-
cal Engineering, vol. 738, Springer, Cham, 2021.
https://doi.org/10.1007/978-3-030-66729-0 4

[8] G. Chenglin et al., "Real-time Fire Detection and
Alarm System Using Edge Computing and Cloud
IoT Platform", Int. J. Wireless Mobile Comput.,
vol. 22, no. 3/4, pp. 310-318, 2022.
https://doi.org/10.1504/1JWMC.2022.124822

[9] A. A. Briley and F. Afghah, "Hardware Acceler-
ation for Real-Time Wildfire Detection Onboard
Drone Networks", IEEE INFOCOM 2024 — IEEE
Conf. on Computer Communications Workshops
(INFOCOM WKSHPS), Vancouver, Canada,
2024, pp. 01-06.
https://doi.org/10.1109/INFOCOMWKSHPS6
1880.2024.10620877

[10] 1. Shamta and B. E. Demir, "Development of a
Deep Learning-based Surveillance System for
Forest Fire Detection and Monitoring Using
UAV", PLoS ONE, vol. 19, no. 3, €0299058,
2024.
https://doi.org/10.1371/journal.pone.0299058

[11] G. Jocher et al., "YOLOv10 — Ultralytics YOLO
Documents", Ultralytics, 2024. [Online] Avail-
able:
https://docs.ultralytics.com/vi/models/yolov10/

[12] Google Research, "Get Started with the USB
Accelerator", Edge TPU Documentation.
[Online] Available:
https://coral.ai/products/accelerator-module
Accessed on Jan. 30, 2025.

[13] D. Mamadaliev et al., "ESFD-YOLOvS8n: Early
Smoke and Fire Detection Method Based on an
Improved YOLOv8n Model", Fire, vol. 7, no. 9,
p. 303, 2024.
https://doi.org/10.3390/fire7090303

[14]S. Liang and X. Zhang, "An Object Detection
System for Automatic Driving: MEC-YOLO
Based on Cloud-Edge-End", in Proceedings of
the 6th Int. Conf. on Natural Language Process-
ing (ICNLP), Xi'an, China, 2024, pp. 536-541.
https://doi.org/10.1109/ICNLP60986.2024.10692461

[15] P. Weichao et al., "EFA-YOLO: An Efficient Fea-
ture Attention Model for Fire and Flame Detec-
tion", Computer Vision and Pattern Recognition,
2024.
https://doi.org/10.48550/arXiv.2409.12635

[16] M. A. Firdaus, "Prototype Smart Integrated Fire
Detection Based on Deep Learning YOLO V8
and IoT (Internet of Things) to Improve Early
Fire Detection", Int. J. Appl. Math., Sci. & Tech-
nol. for Natl. Defense, vol. 2, no. 2, 2024.
https://doi.org/10.58524/app.sci.def.v2i2.437

[17] S. Banerjee et al., "Real-Time Fire Detection in
Unmanned Ground Vehicles Integrating YoloV5
and AWS IoT", in Proceedings of the Int. Conf. on
System, Computation, Automation and Network-
ing (ICSCAN), Puducherry, India, 2023, pp. 1-6.
https://doi.org/10.1109/ICSCANS58655.2023.10394971

[18] J. Gallagher, "How to Augment Images for Object
Detection", Roboflow, 2024.[Online] Available:
https://blog.roboflow.com/object-detection-
augmentation/

[19]C. Constantin, "FireSmokeDataset
Roboflow Universe, 2024.
https://universe.roboflow.com/catargiuconstantin/
firesmokedataset/dataset/3
Accessed on Jan. 6, 2025.

[20] BINBIN, "FIRE_DETECTION Dataset", Robo-
flow Universe, Jan. 2025.
https://universe.roboflow.com/binbin-iz5rn/fire
detection-ckgf5/dataset/4
Accessed on Jan. 6, 2025.

[21] T. T. Huynh et al., "Enhancing Fire Detection
Performance Based on Fine-Tuned YOLOv10",
Comput. Mater. Contin., vol. 81, no. 2, pp. 2281—
2298, 2024.
https://doi.org/10.32604/cmc.2024.057954

[22] BIN-PDT, "AN Al & 10T FIRE DETECTION
FRAMEWORK", GitHub, 2025. [Online] Avail-
able:
https://github.com/BIN-PDT/AIOT_ FIRE
DETECTION_FRAMEWORK

Dataset",

Received: February 2025
Revised: June 2025
Accepted: June 2025


https://doi.org/10.1007/978-3-030-66729-0_4
https://doi.org/10.1109/INFOCOMWKSHPS61880.2024.10620877
https://doi.org/10.1109/INFOCOMWKSHPS61880.2024.10620877
https://doi.org/10.1371/journal.pone.0299058
https://docs.ultralytics.com/vi/models/yolov10/
https://coral.ai/products/accelerator-module
https://doi.org/10.3390/fire7090303
https://doi.org/10.1109/ICNLP60986.2024.10692461
https://doi.org/10.48550/arXiv.2409.12635
https://doi.org/10.58524/app.sci.def.v2i2.437
https://doi.org/10.1109/ICSCAN58655.2023.10394971
https://blog.roboflow.com/object-detection-augmentation/
https://blog.roboflow.com/object-detection-augmentation/
https://universe.roboflow.com/catargiuconstantin/firesmokedataset/dataset/3
https://universe.roboflow.com/catargiuconstantin/firesmokedataset/dataset/3
https://universe.roboflow.com/binbin-iz5rn/fire_detection-ckgf5/dataset/4
https://universe.roboflow.com/binbin-iz5rn/fire_detection-ckgf5/dataset/4
https://doi.org/10.32604/cmc.2024.057954
https://github.com/BIN-PDT/AIOT_FIRE_DETECTION_FRAMEWORK
https://github.com/BIN-PDT/AIOT_FIRE_DETECTION_FRAMEWORK

A Lightweight Real-time Fire Detection Framework for loT Devices... 181

Contact addresses:

Trong Thua Huynh

Posts and Telecommunications Institute of Technology
Ho Chi Minh City

Vietnam

e-mail: thuaht@ptit.edu.vn

De Thu Huynh

The Saigon International University
Ho Chi Minh City

Vietnam

e-mail: huynhdethu@siu.edu.vn

Du Thang Phu

Posts and Telecommunications Institute of Technology
Ho Chi Minh City

Vietnam

e-mail: thangpd@ptithcm.edu.vn

Anh Hao Nguyen

Posts and Telecommunications Institute of Technology
Ho Chi Minh City

Vietnam

e-mail: haona@ptit.edu.vn

TrRONG THUA HUYNH is currently the Head of the Information Secu-
rity Department, Faculty of Information Technology II, at the Posts
and Telecommunications Institute of Technology (PTIT), Vietnam. He
received a bachelor's degree in information technology from Ho Chi
Minh City University of Natural Sciences, a master's degree in comput-
er engineering from Kyung Hee University, Korea, and a PhD degree in
computer science from the Ho Chi Minh City University of Technolo-
gy, Vietnam National University at Ho Chi Minh City in 2018. His key
areas of research include cybersecurity, Al and big data, and intelligent
information systems.

DE THU HuyNH is currently the Head of the Software Technology De-
partment, School of Computer Science & Engineering, at the Saigon
International University (SIU), Ho Chi Minh City, Vietnam. He received
a PhD degree in computer science from Huazhong University of Science
and Technology, China in 2018. His research interests focus on edge
Al for 6G networks, autonomous and cooperative UAV systems, energy
efficiency in wireless networks, and intelligent information systems.

Du THANG PHu is currently a researcher at the Information Security
Laboratory, Faculty of Information Technology II, at the Posts and Tele-
communications Institute of Technology (PTIT), Vietnam. He received
his engineer's degree in information technology from PTIT in 2025. His
current research interests focus on machine learning and deep learning,
with a particular emphasis on computer vision.

ANH HAO NGUYEN is a lecturer at the Faculty of Information Technol-
ogy 11, Posts and Telecommunications Institute of Technology (PTIT),
Vietnam. He holds a bachelor of science in mathematics — informatics
from Ho Chi Minh City University of Natural Sciences and a master's
degree in information management from the Asian Institute of Technol-
ogy (AIT), Thailand, from 2003. His key research areas are Al planning
and automation.




