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With the continuous improvement of the national 
economy, the development of power enterprises is 
gradually accelerating, and the popularity of smart 
grids is also increasing. The power grid data center 
contains a large amount of user data, and analyzing 
this data can help power companies predict the load of 
power plants, thereby improving the resource utiliza-
tion efficiency of power enterprises. However, current 
load forecasting models still suffer from information 
leakage and inaccurate predictions during data trans-
mission, storage, and analysis processes. To solve the 
above problems, this study uses federated learning 
technology to optimize the long short-term memory 
network algorithm and analyzes power grid data and 
load forecasting based on the optimized algorithm. 
This study first conducted comparative experiments on 
the optimized algorithm and found that the prediction 
accuracy of the optimized algorithm reached 94.5%, 
with a prediction time of only 1.2ms. The analysis of 
the data using a load forecasting model based on this 
algorithm showed that the data security of the model 
has been improved by 23.4%. After using this model, 
the power company's electricity resource utilization 
rate increased by 31.8% and operating costs decreased 
by 27.5%. The proposed power grid data analysis and 
load forecasting model can ensure the privacy of pow-
er grid data and improve prediction accuracy, there-
by improving the power grid operation efficiency of 
power enterprises and optimizing enterprise resource 
allocation.

ACM CCS (2012) Classification: Computing meth-
odologies → Machine learning → Machine learning 
approaches → Neural networks

Keywords: federated learning, long short-term memory 
network, data analysis, load forecasting

1. Introduction

The progress of power enterprises has led to the 
continuous improvement of the intelligence lev-
el of the power grid, gradually forming a smart 
grid [1]. The smart grid can achieve the goals of 
reliability, safety, efficiency, and environmen-
tal friendliness through advanced sensing and 
measurement technologies as well as advanced 
control methods [2]. The smart grid contains a 
large amount of user, electricity, energy, energy 
efficiency, and environmental data [3]. By an-
alyzing these data, it is possible to predict the 
load of the power grid, aiming to arrange pow-
er generation plans reasonably, optimize power 
resource allocation, improve power grid oper-
ating efficiency, and reduce power grid operat-
ing costs [4]. However, many Load Forecast-
ing Models (LFM) currently suffer from issues 
such as low data analysis accuracy, poor pre-
diction performance, and power grid data pri-
vacy leakage [5]. Therefore, designing a Power 
Grid Data Analysis (PGDA) and LFM that can 
enhance the precision of load forecasting effec-
tiveness, and prevent data privacy leakage is an 
urgent problem to be solved. 
Long Short-Term Memory (LSTM) algorithm 
is a type of recurrent neural network (RNN) 
that can process and predict sequence data [6]. 
However, this algorithm has poor performance 
in data privacy protection and cannot guarantee 
data security [7]. Federated Learning (FL) is a 
machine learning (ML) framework. This frame-
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work can effectively assist multiple participants 
in data usage and ML modeling while ensur-
ing data privacy protection and security [8]. 
Therefore, this study organically integrates FL 
and LSTM, using LSTM to analyze and predict 
power grid data, and then using FL to ensure 
the safety of power grid data during data anal-
ysis and load forecasting by LSTM, preventing 
privacy leakage. 
The innovation of this study lies in the distri-
bution of the FL-LSTM algorithm to each grid 
equipment of the power enterprise. The LSTM 
algorithm directly trains and analyzes data lo-
cally and finally transmits the trained data and 
analysis results to the global model of FL to 
protect the privacy of user data. The contribu-
tion of the research lies in the fact that this pre-
dictive model can optimize resource allocation, 
reduce operating costs, promote the construc-
tion of smart grids, and address the challenges 
brought by the integration of new energy into 
the grid.

2. Literature Review

To predict the load of the power grid, many 
scholars have researched LFM. For example, 
Dewangan et al. proposed a load forecasting 
method built on smart meter information sta-
tistics to predict the load of smart grids. This 
method was used in practical situations, and its 
prediction accuracy was only 73.5% [9]. Wang 
et al. designed a personalized joint method for 
individual consumption load forecasting to ad-
dress the current inability of LFM to predict 
individual loads for each consumer. Compared 
with traditional load forecasting methods, this 
method could predict the load of each user [10]. 
In addition, to ensure the safety of the power 
system operation and achieve its sustainable 
development, Ibrahim et al. proposed a power 
LFM based on AI and IoT. This prediction mod-
el could improve the security of the system by 
12.7% when used in practical situations [11]. 
Guo et al. designed a combined LFM based on 
bidirectional LSTM and multi-task learning to 
address low economic dispatch and operational 
efficiency in multi-energy systems. Compared 
with traditional prediction models, this mod-
el could improve the operational efficiency of 
multi-energy systems by 23.7% [12].

The LSTM algorithm is widely used in vari-
ous fields due to its excellent data processing 
and prediction capabilities. For example, Xiang 
et al. put forward a deep learning framework 
grounded on LSTM network optimization to 
address the problem of low computational effi-
ciency of deep learning algorithms in the seis-
mic design of high-speed railways. Compared 
with the unoptimized framework, this deep 
learning framework could improve computa-
tional efficiency by 21.1% [13]. In addition, 
Limouni et al. put forth a photovoltaic power 
prediction model built on LSTM. In practical 
situations, this model could improve the predic-
tion accuracy of photovoltaic power by 32.1% 
[14]. In addition, FL technology was often used 
in various fields due to its excellent privacy 
protection features. Wen et al. designed a pri-
vacy and security protection mechanism based 
on FL to address data silos and data privacy in 
joint modeling. This mechanism could improve 
data privacy by 23.6% [15]. Banabilah et al. 
analyzed the application and market status of 
previous FL technologies in the future develop-
ment trends of AI, IoT, blockchain, natural lan-
guage processing, and resource allocation. FL 
technology used in the above-mentioned fields 
could effectively improve the rationality of re-
source allocation in enterprises [16]. Further 
structured subdivision of the above research 
content was conducted, classified by method 
type, and the results are shown in Table 1.
In summary, the current LFM still has prob-
lems with poor load forecasting performance 
and low data security. Therefore, this study or-
ganically combines LSTM with FL, proposes 
a FL-LSTM algorithm, and uses this algorithm 
to construct LFM to improve the efficiency of 
load forecasting.

3. Research Methodology

3.1. LSTM Algorithm Optimized Based on 
FL Technology

Grid data refers to various datasets related to 
grid operation, including power plant genera-
tion, user electricity consumption data, energy 
utilization efficiency, and other datasets [17]. 
By analyzing power grid data and load fore-
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the output of new states through AFs and dot 
multiplication operations. The memory unit in 
LSTM is the core component of the algorithm, 
used to store and transmit information states. It 
updates the state at each time step to enable the 
LSTM algorithm to remember long-term infor-
mation. When analyzing data, sequence data 
first uses a FoG to decide which information 
in the data needs to be forgotten and then uses 
an InG to determine which new information re-
quires to be added to the memory unit. Finally, 
the OuG controls the output time of information 
in the memory unit. The calculation method for 
information retention in the InG of the LSTM 
algorithm is shown in equation (1).

I1 = sigmoid(W1 * xt + U1 * h(t-1) + b1)    (1)

In equation (1), I1 and b1 are the Output and 
Bias Vector (O&BV) of the InG. W1 and U1 are 
the weight matrices of the InGs. xt and h(t-1) are 
the input and hidden state for the current and 
previous time-step. The calculation of deleting 
information from the memory unit in the FoG is 
shown in equation (2).

I2 = sigmoid(W2 * xt + U2 * h(t-1) + b2)    (2)

casting, the operating costs of the power grid 
are able to be reduced, and the operational effi-
ciency of the system can be enhanced [18,19]. 
However, current LFM still faces issues of in-
formation leakage and inaccurate predictions 
during data transmission, storage, and analysis 
[20]. LSTM is a special type of RNN that can 
analyze data in time series [21]. This study ap-
plies the LSTM algorithm to PGDA and LFM 
to improve the accuracy of data analysis. Figure 
1 displays the basic framework of the LSTM 
algorithm.
In Figure 1, the Input Gate (InG) of LSTM con-
trols the flow of new information, including an 
Activation Function (AF) and a dot multiplica-
tion operation. In the InG, the AF is utilized to 
determine which information requires to be re-
tained and discarded. The dot multiplication op-
eration can multiply new input information with 
the AF, resulting in a new vector that represents 
the information that needs to be retained. The 
Forget Gate (FoG) controls the flow of old in-
formation, and it also includes an AF and a dot 
multiplication operation. The AF in the FoG has 
the same function as dot multiplication, which 
is to preserve the old information that needs to 
be left behind. The Output Gate (OuG) controls 

Table 1. Literature classification.

Type Author Application Analysis

Statistical analysis
Dewangan et al. [9] Smart meter information prediction

Wang et al. [10] Personalized prediction of personal  
consumption load forecasting

Artificial Intelligence  
(LSTM, Deep Learning)

Ibrahim et al. [11] Artificial Intelligence Load  
Forecasting Model

Guo et al. [12] A combined load forecasting model based on 
LSTM and multi task learning

Xiang et al. [13] LSTM deep learning network

Limouni et al. [14] Photovoltaic power prediction model based 
on LSTM algorithm

FL Technology
Wen et al. [15] FL's Privacy and Security Protection  

Mechanism

Banabilah et al. [16] FL application field
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In equation (2), I2 and b2 denote the O&BV of 
the FoG. W2 and U2 represent the weight ma-
trix of the FoG. After data deletion, the update 
method of the memory unit is shown in equa-
tion (3).

Gt = tanh(Wc * xt + Uc * h(t-1) + bc)       (3)

In equation (3), Gt and bc stand for the O&BV 
of the memory unit. Wc and Uc are the weight 
matrices of memory units. The calculation of 
the OuG is shown in equation (4).

I3 = sigmoid(W3 * xt + U3 * h(t-1) + b3)    (4)

In equation (4), I3 and b3 are the O&BV of the 
OuG. W3 and U3 are the weight matrices of the 
OuGs. The time-dependent sequence data are 
processed through the above calculation, and 
the processed data are classified. However, in 
practical applications, when LSTM algorithm 
is used for data analysis, data privacy is easily 
leaked and the security of the data cannot be 
guaranteed, which can lead to inaccurate sub-
sequent data analysis [22]. FL is a ML frame-
work that can protect data privacy [23-24]. 
This study utilizes FL technology to optimize 
the LSTM algorithm to improve the protection 
of data privacy. The data training process of 

FL and the basic process of the optimized FL-
LSTM algorithm are shown in Figure 2.
From Figure 2 (a), it can be seen that FL col-
lects data from the stations during data process-
ing, directly preprocesses the data, conducts 
data training, and then transmits the trained pa-
rameters to the central server. The central serv-
er then trains the parameters and sends them to 
each station. 
In Figure 2 (b), the rule of the FL-LSTM al-
gorithm is to distribute the LSTM algorithm to 
different devices or sites through the FL meth-
od. Each site is independent of each other and 
uses its own local data for LSTM algorithm 
training and data analysis, ultimately aggregat-
ing all data analysis results together. For exam-
ple, when analyzing large-scale datasets, the 
FL-LSTM algorithm collects datasets through 
different devices, normalizes the collected 
datasets, and directly trains them in the LSTM 
model without uploading the collected data to 
the central server, avoiding data loss or data 
privacy exposure issues. Instead, it uploads the 
parameters of the trained LSTM model to the 
central server, which updates the model param-
eters in each site using the federated averaging 
algorithm and analyzes the data using the up-
dated LSTM model. During this process, the 

Figure 1. Framework diagram of the LSTM.
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collected dataset was stored at various sites 
without being uploaded.
Through local training and parameter sharing, 
the transmission frequency of data is reduced, 
thereby reducing the possibility of data privacy 
leakage and ensuring data security. In this pro-
cess, the expression of the global objective func-
tion of FL technology is shown in equation (5).
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In equation (5), x ∈χ is the parameter of the ML 
model. f(x) is weighted. λi is the local experi-
ence loss function. fi(x) is the expected form. 

ξi is local random batch data. Di means the data-
set of the i-th client. The expression of the FL 
averaging algorithm is shown in equation (6).
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In equation (6), W 
t+1 and W 

t
k are the global 

model parameters for round t + 1 and client k in 
round t. nk is the sample size of client k. N is the 
sum of the sample sizes of all clients. Using the 
above calculation, the global optimal model can 
be obtained, which can be used to analyze and 
predict the data for each device and site.

Figure 2. The training process of FL and the basic process of FL-LSTM algorithm are 
shown in the figure.
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3.2. FL-LSTM Power Grid Data Analysis 
and LFM

The current PGDA and LFM still suffer from 
poor prediction performance due to data pri-
vacy breaches [25]. To solve this problem, this 
study utilizes the FL-LSTM algorithm men-
tioned in the previous section to optimize the 
current model, to ensure the security of data in 
the model through FL-LSTM. The basic frame-
work of data analysis and prediction model 
based on FL-LSTM is shown in Figure 3.
In Figure 3, the FL-LSTM data analysis and pre-
diction model first needs to clarify the purpose 
and requirements of data analysis to ensure that 
the analysis results can match the requirements. 
The next step is to collect and organize the data, 
including handling duplicate values, outliers, 
and normalization. Then, descriptive analysis is 
conducted on the data to understand the mean-
ings and computational logic of different fea-
tures, and to check whether the distribution of 
data features meets expectations and basic log-
ic. Unreasonable data are excluded. Afterwards, 
the selected FL-LSTM algorithm is used to ana-
lyze the data. In data analysis, the collected data 
are segmented into the training and validation 
sets to train, validate, and evaluate the model. 

Through model validation and evaluation, the 
parameters of the model are optimized and ad-
justed. Finally, the adjusted model is used for 
data analysis and prediction in practical prob-
lems. The basic process of using FL-LSTM 
data analysis and prediction model for PGDA 
and load forecasting is shown in Figure 4.
In Figure 4, based on FL-LSTM PGDA and 
LFM, the load forecasting objectives are first 
determined, and a forecasting plan is formulat-
ed. The purpose of this study is to optimize the 
operation and reduce resource waste. Second-
ly, historical data related to load are collected 
according to the prediction purpose. Then, the 
collected data are sorted, including data outlier 
processing, data duplicate processing, and data 
normalization processing, to ensure the data ac-
curacy. 
After data preprocessing is completed, the 
data are subjected to descriptive processing by 
drawing dynamic line charts or scatter plots 
to observe the trajectory of data changes and 
prepare for model establishment. Based on his-
torical data and descriptive analysis, as well as 
the FL-LSTM algorithm, PGDA and LFM are 
constructed. Using this model, power grid data 
are analyzed, and load is predicted based on the 

Figure 3. FL-LSTM data analysis and prediction model.
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analysis results. Using historical data, the mod-
el is validated and evaluated, and based on the 
validation results, the parameters of the model 
are continuously adjusted and optimized to im-
prove the accuracy of model predictions. 
Finally, using the optimized model, the actual 
power grid data are analyzed, and load forecast-
ing is carried out. The results are recorded, and 
a forecasting report is written and delivered to 
relevant departments. In this process, descrip-
tive analysis of data generally uses central ten-
dency and dispersion to analyze the data, with 
central tendency represented by mean, median, 
and mode. The degree of dispersion is repre-
sented by variance and range, and the variance 
is shown in equation (7).
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In equation (7), S 
2 is the variance and xi is the 

input data. x is the average value of the data, 
and n is the quantity of data. When conduct-
ing load forecasting, it is required to calculate 
the load in the electrical equipment, including 
three types of loads: active power load, reactive 
power load, and existing power load. The active 
power load is shown in equation (8).

Pc = Kx ∙ Pe                       (8)

In equation (8), Pc is the active power, Kx is the 
demand factor, and Pe is the rated capacity of 
the electrical equipment group. The calculation 
method for reactive power load is shown in 
equation (9).

Qc = Kx ∙ Qe                      (9)

In equation (9), Qc represents reactive pow-
er. Qe is the capacity of the capacitor at actual 
operating voltage. The current power load is 
shown in equation (10).

2 2
c c cS P Q= +                    (10)

In equation (10), Sc is the existing power load. 
The loads in distribution lines and substations 
also have an impact on the total load of the 
power system, so it is necessary to calculate 
the load data for this part. Through the above 
calculations, various load data in the power 
system can be obtained and analyzed to predict 
the load. The process of FL-LSTM PGDA and 
LFM analysis of power grid data is shown in 
Figure 5.

Figure 4. FL-LSTM power grid data analysis and LFM.
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In Figure 5, when the FL-LSTM model ana-
lyzes power grid data, the first step is to deter-
mine the participants of FL, namely the power 
system and power equipment involved in load 
forecasting, collect historical load data from 
these participants, and preprocess the data. 
Then, the FL and LSTM models are distributed 
to each participant. 
Each participant uses historical data to train the 
LSTM model and uploads the trained LSTM 
parameters to the central server of FL. The pa-
rameters are aggregated and shared in the cen-
tral server. By aggregating the parameters, the 
global model is updated again, and the updated 
model is distributed to each participant again. 
The power grid data are used for training again, 
and the above operations are repeated until the 
model can meet the final requirements. Through 
FL, the transmission frequency of load data is 
reduced to ensure data security.

4. Results and Discussion

4.1. Performance Analysis of FL-LSTM 
Algorithm

To verify the predictive performance of the FL-
LSTM algorithm, this study collects various 
historical load data such as power generation, 
generation capacity, substations, user electrici-
ty consumption, and energy loss from a power 

company's power system within one year as the 
dataset for empirical analysis. The data from 
the first 6 months of this dataset are used as the 
experimental dataset, and the data from the last 
6 months are utilized as the validation dataset. 
Using the experimental dataset, the data from 
the last 6 months are predicted and compared 
with actual data to validate the predictive per-
formance. Table 2 shows the experimental con-
figurations used for algorithm performance 
analysis.
Through experimental verification, the above 
computing resources can achieve optimal per-
formance of the LSTM model and eliminate po-
tential impacts caused by computing resources. 
During the experiment, the learning rate of the 
LSTM algorithm was set to 0.01, the iteration 
number of the algorithm was set to 500, the 
batch size was set to 5, the local training itera-
tion number of the federated learning technique 
was set to 3, the local training batch size was 
set to 32, and the learning rate was set to 0.001. 
Through the above configuration and dataset, 
the predictive performance of FL-LSTM al-
gorithm has been experimentally analyzed. 
The experiment first compares the predictive 
performance of algorithms on transformer uti-
lization rate, generator parameters, substation 
location, and communication circuit location in 
power grid data, as shown in Figure 6.

Figure 5. FL-LSTM power grid data analysis and load forecasting process.
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Table 2. Experimental environment configuration.

Environment Index Type

Hardware environment

OS Windows10

Processing element Intel Core i5

EMS memory 4GB

GPU RTX 4090

Network device Switch

Hard drive M.2 SSD

Software environment
Python version Python3.6

C++ version VC++6.0

Figure 6. Comparison of power grid data prediction effect.
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of FL-LSTM algorithm may be that when ana-
lyzing data, FL-LSTM algorithm saves upload 
time and accelerates calculation speed by not 
uploading data to the central server. 

In addition, the data in the FL-LSTM algorithm 
are independent of each other and do not affect 
each other, avoiding mutual influence between 
data and thus improving the EVS value of the 
algorithm. Figure 8 shows the space occupancy 
and prediction accuracy of the FL-LSTM al-
gorithm when predicting four types of power 
grid data.

In Figure 8, the FL-LSTM algorithm has a sim-
ilar spatial occupancy rate for predicting four 
types of power grid data, with a low occupancy 
rate of only 34.2%. Moreover, the prediction 
accuracy of FL-LSTM for different power grid 
data is roughly the same, fluctuating within 
the range of 90% to 100%, with an average of 
94.5%. 

The reason for the low space occupancy of 
the FL-LSTM algorithm may be that the cen-
tral processor of the FL-LSTM algorithm only 
contains the parameters used for training the 
LSTM model, and does not receive datasets 
from different devices, which can significantly 
reduce the utilization of space resources. FL-
LSTM can accurately predict different power 
grid data in a short period of time.

In Figure 6, the FL-LSTM algorithm performs 
well in predicting various components of the 
power grid data. Moreover, in Figures 6 (a) 
and 6 (b), the predicted values of transformer 
utilization rate and generator parameter relat-
ed data are within the actual range, indicating 
excellent prediction performance. In Figures 6 
(c) and (d), although the FL-LSTM algorithm 
still has errors in predicting data related to the 
location of substations and communication 
circuits, the errors are extremely small. The 
reason why the FL-LSTM algorithm has ex-
cellent predictive performance in data may be 
that the FL mechanism in the model can effec-
tively reduce data transmission frequency and 
avoid data loss by analyzing the data locally, 
thus reducing the prediction error of the model. 
Figure 7 compares the prediction time and Ex-
plained Variance Score (EVS) of the FL-LSTM 
algorithm for predicting four types of power 
grid data.
EVS is an indicator that measures the accuracy 
of algorithm predictions, representing the ra-
tio between explanatory data variances. When 
EVS is 1, it indicates that the algorithm can 
make perfect predictions. In Figure 7 (a), when 
FL-LSTM predicts four different types of pow-
er grid data, the algorithm's EVS values fluc-
tuate within the range of 0.8~1.0, indicating a 
relatively high EVS value. In Figure 7 (b), FL-
LSTM has a relatively short prediction time for 
all four types of power grid data, with an aver-
age prediction time of 1.2ms. The reason for 
the short prediction time and high EVS value 

Figure 7. Prediction of the time-consuming and EVS values of the FL-LSTM algorithm.
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4.2. Analysis of the Actual Effect of  
FL-LSTM Model

After verifying the predictive performance of 
the FL-LSTM algorithm, the performance of 
the FL-LSTM is analyzed. This paper compares 
the performance of FL-LSTM with the widely 
used Variational Mode Decomposition-Tempo-
ral Convolutional Network (VWD-TCN), Dy-
namic Convolutional Neural Network-LSTM 
(DCNN-LSTM), and traditional Grey Predic-
tion Model (GM) to verify the superiority of 
FL-LSTM data analysis and LFM. The exper-
imental dataset is the same as the previous sec-
tion. Figure 9 compares the prediction errors 
and data analysis errors of four models on pow-
er grid data.
In Figure 9 (a), among the four models used for 
load prediction, FL-LSTM has the smallest pre-
diction error of only 0.5%. The prediction er-

rors of VMD-TCN and DCNN-LSTM are 1.2% 
and 2.3%, while the error of GMLFM reaches 
3.7%. 
In Figure 9 (b), the analysis errors of FL-LSTM, 
VMD-TCN, DCNN-LSTM, and GM in ana-
lyzing power grid data are 0.4%, 1.2%, 1.9%, 
and 2.8%, respectively. The reason for the low 
prediction error and data analysis error of FL-
LSTM may be that FL-LSTM can effectively 
capture the long-term dependency relationship 
of power grid data, thereby improving the pre-
diction accuracy. 
Furthermore, the FL mechanism can reduce the 
frequency of data transmission, avoid data loss, 
so it can reduce the prediction error of the mod-
el and improve the prediction accuracy. Figure 
10 shows the comparison of power resource 
utilization and operating costs of power compa-
nies using four prediction models.

Figure 8. Comparison of algorithm space occupancy and prediction accuracy.
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Figure 9. Model data analysis error and prediction error comparison.

Figure 10. Comparison of the changes in power resource utilization rate and operating cost.
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In Figure 10 (a), after using FL-LSTM, the re-
source utilization rate in power companies in-
creased rapidly from the first quarter to the sec-
ond quarter. By the third and fourth quarters, 
the increase in resource utilization remains un-
changed, with a utilization rate of 31.8%, which 
is far higher than VMD-TCN's 23.4%, DCNN-
LSTM's 17.3%, and GM's 12.9%. 
In Figure 10 (b), FL-LSTM has the highest re-
duction in operating costs for power compa-
nies, reaching 27.5%. The reason may be that 
FL-LSTM has high accuracy in power grid 
data and load forecasting, which enables pow-
er companies to adjust resource distribution and 
operating costs based on forecast results, there-
by improving resource utilization and reducing 
operating costs. However, the other three mod-
els have inaccurate analysis of power grid data 
due to their low prediction accuracy, resulting 
in errors in decision-making, low resource uti-
lization, and increased operating costs. Table 3 
compares the security improvements of various 
models on power grid data.
In Table 3, after using four types of LFM, the 
security of power grid data can be improved, but 
only FL-LSTM can achieve the expected stan-
dards for data security indicators. This model 
can increase data confidentiality by 34.3%, data 
integrity by 29.1%, and overall data security by 
23.4%. VWD-TCN, DCNN-LSTM, and GM 
only achieved 22.7%, 22.1%, and 20.3% im-
provement in data security, which does not meet 
the expected requirements. 

In order to analyze the performance of the mod-
els, t-test was used to conduct significant sta-
tistical analysis on the data. The results showed 
that all four models had statistical significance 
(P<0.05). The reason for the excellent security 
performance of the FL-LSTM model may be 
that the federated learning framework of the 
FL-LSTM prediction model can analyze data 
locally, reducing privacy breaches and data se-
curity issues caused by data transmission, and 
improving the security of power grid data. The 
complex power grid network containing multi-
ple power plants, substations, and voltages was 
analyzed using this model again, and the results 
are shown in Figure 11.
As shown in Figure 11 (a), under complex pow-
er grid conditions, the load forecasting accuracy 
of the FL-LSTM model is also high, reaching 
96.7%. Moreover, the FL-LSTM model can im-
prove resource utilization by 30.8% and reduce 
the operating costs of the power grid by 24.5%. 
As shown in Figure 11 (b), under complex pow-
er grid conditions, the use of FL-LSTM model 
has improved its safety performance. From the 
above results, it can be seen that the FL-LSTM 
model can still significantly improve the accura-
cy of load forecasting and grid safety in complex 
power grid conditions. Further analysis of the 
performance of the FL-LSTM model under dif-
ferent types of power grids, market conditions, 
and extreme conditions is shown in Table 4.

Table 3. Improvement of data security performance.

Model Data  
confidentiality

Data  
integrity Backup Data  

monitoring
Overall  
safety P

FL-LSTM 34.3% 29.1% 23.5% 26.4% 23.4% 0.0001

VWD-TCN 32.4% 28.3% 20.1% 19.7% 22.7% 0.0004

DCNN-LSTM 30.7% 26.9% 20.5% 18.9% 22.1% 0.0012

GM 29.8% 25.7% 19.6% 17.3% 20.3% 0.0002

Expected boost 32.3% 27.1% 20.2% 23.2% 23.0% <0.05
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Figure 11. Performance changes of the model under complex power grid conditions.

Table 4. Performance analysis of FL-LSTM model under different conditions.

Classification Type Accuracy of load  
forecasting

Reduction in  
operating costs

Grid type
Local power grid 96.8% 23.5%

Regional power grid 93.6% 24.1%

Market conditions

Medium and long-term 
contract trading market 94.1% 22.1%

Futures and options trading 
market 92.3.% 20.9%

Daily trading market 90.6% 21.7%

Auxiliary trading market 93.5% 24.7%

Real time trading market 91.9% 23.1%

Extreme conditions

Mountain landslide 85.6% 13.6%

Debris flow 87.2% 14.7%

Equipment failure 83.5% 13.5%

Transmission line rupture 80.7% 16.7%

Substation damage 79.4% 12.4%



39Grid Data Analysis and Load Forecasting Model Based on Federated Learning Technology and...

According to Table 4, the FL-LSTM model has 
a prediction accuracy of over 90% for different 
types of power grid loads, and the reduction in 
power grid operating costs is greater than 20%. 
And under different market conditions, its pre-
diction accuracy can also reach over 90%. 
As shown in Table 4, under extreme conditions, 
the FL-LSTM model reduces the accuracy of 
load forecasting for the power grid, although 
the operating costs of the power grid also de-
crease, the amount of reduction will be smaller. 
The above results indicate that the FL-LSTM 
model is also applicable under different types 
of power grids and market conditions. How-
ever, under extreme conditions, the prediction 
accuracy of the FL-LSTM model and the reduc-
tion in grid operation costs will both decrease.

3.3. Potential Limitations and Failure 
Modes

Finally, the potential limitations and failure 
modes of the FL-LSTM model were analyzed, 
and the results are shown in Figure 12.
It can be seen from Figure 12 (a) that under the 
weather conditions of storm, typhoon, drought, 
high temperature and rainstorm, the prediction 
accuracy of FL-LSTM model cannot reach the 
expected prediction accuracy. According to 
Figure 12 (a), it can be seen that in the fault 
modes of power transmission line breakage, 

Figure 12. Potential Limitations and FL-LSTM Prediction Accuracy under Different Failure Modes.

cable breakage, equipment overheating, and 
excessive load on power grid transformers, the 
prediction accuracy of the FL-LSTM model 
cannot reach the expected accuracy. From the 
above results, it can be seen that the FL-LSTM 
model has certain limitations under extreme 
weather conditions and different fault mode 
conditions.

5. Conclusion

In response to the issues of poor prediction per-
formance, long prediction time, and low data 
security in current LFM, this study integrated 
FL and LSTM, proposed an FL-LSTM algo-
rithm, and constructed LFM based on this algo-
rithm. To validate the performance, this paper 
first analyzed the actual prediction performance 
of FL-LSTM. 
When predicting different power grid data, the 
EVS values of the algorithm fluctuated with-
in the range of 0.8~1.0, and the prediction ac-
curacy of the algorithm reached 94.5%. The 
FL-LSTM was compared with VWD-TCN, 
DCNN-LSTM, and GM. The prediction error 
of FL-LSTM was as low as 0.3%, and it could 
reduce the operating costs of power companies 
by 27.5%. Its reduction was much higher than 
VMD-TCN's 23.4%, DCNN-LSTM's 19.8%, 
and GM's 15.7%. 
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Overall, FL-LSTM can optimize the predic-
tion accuracy and reduce the operating costs 
of power companies. Through load forecast-
ing, relevant information on future electricity 
demand can be provided to power grid opera-
tors, which helps them to produce and schedule 
electricity resources reasonably, optimize the 
allocation of electricity resources, and adjust 
power generation plans. Consequently, through 
accurate load forecasting, power grid operators 
can better schedule power resources, ensure 
supply-demand balance, improve market com-
petitiveness, and reduce operating costs and 
market risks. 
However, in practical applications, the power 
load is often affected by weather, holidays, and 
economic fluctuations, which can increase the 
uncertainty of forecasting. In order to prevent 
the impact of weather on power grid load fore-
casting in the future, we can optimize power 
grid planning, enhance its disaster resistance 
capabilities, improve its emergency response 
capabilities, and reduce equipment damage and 
power supply risks. For the impact of holidays 
and economic fluctuations on prediction perfor-
mance, historical databases can be established, 
event series data or regression analysis can be 
used to predict data, data mining techniques can 
be used to predict load trends and training data 
and model parameters can be adjusted to im-
prove the adaptability of the model in different 
regions and times.
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