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The operation of virtual power plants in the electrici-
ty market requires handling complex resource sched-
uling and market trading decision-making problems. 
The research aims to enhance the participation effi-
ciency and responsiveness of virtual power plants in 
the electricity market and solve practical operational 
challenges by improving market trading strategies. 
Therefore, a resource grading model based on im-
proved support vector machine was developed. The 
model is optimized using adaptive synthetic sampling, 
principal component analysis, and deep clustering al-
gorithms. In addition, an improved long short-term 
memory network is utilized to achieve ultra short-term 
load forecasting. The results showed that the recall 
rate and F1 mean of the resource grading model based 
on the improved support vector machine algorithm 
were as high as 81.07% and 85.41%, respectively. The 
average prediction error of the improved long short-
term memory neural network algorithm is 0.35%, and 
the maximum error is only 0.62%. In the basic sce-
nario, the maximum deviation between the declared 
amount of backup auxiliary services based on load ad-
justable capacity prediction and the actual amount is 
only 88.62 kW. The method proposed by the research 
institute has significant advantages in improving the 
efficiency and responsiveness of virtual power plant 
market participation, which is conducive to promoting 
the overall economic benefits of virtual power plants 
in the electricity market.

ACM CCS (2012) Classification: Computing meth-
odologies → Machine learning → Machine learning 
approaches
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1. Introduction

With the continuous improvement of new pow-
er systems, Virtual Power Plant (VPP) has 
gradually become a key component of the pow-
er system [1]. In recent years, the market that 
includes spot and ancillary services has gradu-
ally become more perfected. Its role in resource 
allocation has become increasingly prominent. 
Under this trend, VPP real-time market trading 
strategies have strategic significance [2-3]. Al-
though VPP can participate in the medium to 
long term market for electricity purchases, its 
flexibility is poor. In real-time market trading, 
VPP demonstration projects mainly focus on 
meeting demand response and auxiliary ser-
vices. Some regions encourage VPP to partic-
ipate in the electricity spot market. However, 
most of them are unilateral markets on the 
power generation side, which cannot play a 
flexible regulatory role. In addition, VPP can 
manage multiple controllable resources and 
participate in real-time electricity market trad-
ing through aggregation [4]. The demand side 
resource-based VPP mainly aggregates distrib-
uted power sources, user side energy storage, 
and adjustable loads. The supply side resource 
oriented VPP mainly aggregates distributed 
power sources and grid side energy storage. 
The hybrid type aggregates the output of energy 
storage resources with the internal power gen-
eration consumption of VPP. 
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Although existing literature has explored how 
to improve the overall efficiency of VPP by 
optimizing resource allocation, most of these 
studies focus on optimizing single resource 
types or analyzing in existing market environ-
ments, without fully considering the hierarchi-
cal nature and multi-level optimization of de-
mand side resources [5]. In addition, existing 
research often lacks a systematic evaluation of 
VPP market trading strategies, failing to devel-
op more accurate trading strategies based on ac-
tual system needs and market dynamics. There-
fore, it is necessary to explore the hierarchical 
resource allocation on the demand side of VPP 
and develop more reasonable market trading 
strategies. Firstly, the purpose of this study is to 
optimize the real-time market trading strategy 
of VPP by establishing an improved resource 
grading model. Specifically, by implement-
ing more refined hierarchical management of 
demand side resources, more efficient market 
transactions and responses can be achieved. 
Secondly, the aim is to develop effective trading 
strategies based on actual system requirements 
and market dynamics. Finally, by quantitatively 
evaluating the economic benefits of resources 
and considering system requirements, enhance 
the overall value and market performance of 
VPP. To this end, advanced machine learning 
models were constructed and optimized, and 
advanced machine learning algorithms were 
introduced for load forecasting to address the 
gaps in existing research. The research innova-
tion lies in the improvement of SVM for VPP 
resource classification, which has successive-
ly introduced Adaptive Synthetic Sampling 
(ADASYN), Principal Component Analysis 
(PCA), and Deep Embedded Clustering (DEC). 
Furthermore, the study introduces an improved 
Long Short-Term Memory (LSTM) for ultra 
short-term load forecasting to propose effective 
real-time market trading strategies. This can 
enable the formulation of intraday scheduling 
strategies and capacity declaration during mar-
ket trading processes. Compared with existing 
methods, the integrated model proposed in this 
paper has significant advantages in processing 
complex data, improving prediction accuracy, 
and optimizing decision strategies, which are 
conducive to enhancing the operational and 
management capabilities of VPP in real-time 
electricity markets. The research contribution 
lies in improving the operational efficiency and 

market competitiveness of VPP in the electric-
ity market through improved machine learning 
methods. This provides strong support and ref-
erence for the intelligence and sustainable de-
velopment of future power systems.
The main content of the study includes four 
parts. The first part mainly reviews the oper-
ation and market trading strategies of VPP, as 
well as the impact of electric vehicles on VPP 
operation. The second part introduces the con-
struction of a load resource classification model 
and the prediction of ultra short-term load and 
adjustable capacity. The first section introduces 
the load resource grading model based on im-
proved SVM, and improves it by introducing 
ADASYN, PCA, and DEC algorithms to ad-
dress its shortcomings. In the second section, 
based on the hierarchical model, an improved 
machine learning algorithm combining LSTM 
and adaptive differential evolution algorithm 
is further proposed to achieve ultra short-term 
load forecasting, and is jointly applied to adjust-
able capacity forecasting. The third part con-
ducts experimental analysis on the hierarchical 
model based on improved SVM in this paper, 
and verifies the performance of ultra short-term 
load forecasting based on LSTM SaDE algo-
rithm, exploring the matching degree between 
the reserve market declaration results obtained 
from load adjustable capacity prediction and 
the actual quantity. The fourth part summariz-
es the research results and proposes future re-
search prospects.

2. Related Works

In the electricity market, the operation and mar-
ket trading strategy of VPP are related to the 
overall economic benefits and stability. Chung  
et al. proposed a new smart grid management 
framework that combined cloud comput-
ing-based energy trading and demand response 
to meet the demand for fast charging services 
in the power grid. Meanwhile, the interaction 
between VPP and car owners was modeled as a 
non-cooperative game. Car owners with electric 
vehicles and storage devices could effectively 
reduce charging costs and achieve greater prof-
its [6]. Wu et al. found that the high proportion 
of intermittent renewable energy in VPP led to 
high transaction costs in the electricity market. 
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constraints was constructed for this purpose. 
Meanwhile, the team adopted LSTM and sce-
nario generation methods to predict uncertain 
parameters such as electricity load and market 
prices in the model. This method effectively re-
duced the occurrence rate of faults in distribut-
ed generator sets [13].
To summarize, in the electricity market, many 
researchers adopt various advanced algorithms 
and models to optimize the operation and mar-
ket trading strategies of VPP. This is to address 
the volatility and market uncertainty of re-
newable energy. However, VPP may integrate 
multiple types of distributed energy resources, 
making it difficult to accurately predict and 
manage in market trading. To this end, a VPP 
resource classification model is proposed, and 
an ultra short-term load forecasting method 
is proposed. The paper aims to develop intra-
day scheduling strategies and declare capacity 
during market trading processes.

3. Methodology

Firstly, a load resource classification mod-
el based on improved SVM is constructed. 
ADASYN, PCA, and DEC are introduced to 
address its shortcomings. Subsequently, based 
on the hierarchical model, an improved ma-
chine learning algorithm combining LSTM and 
Self-adaptive Differential Evolution (SaDE) is 
further proposed. This is to achieve ultra short-
term load forecasting and jointly apply it to ad-
justable capacity forecasting.

3.1 Construction of Load Resource 
Classification Model Based on 
Improved SVM

The role of VPP in the electricity trading mar-
ket includes purchasing and selling electricity. 
Figure 1 is a schematic diagram of its participa-
tion in market trading regulation. VPP not only 
needs to predict future high and low electricity 
prices in the external market environment, but 
also needs to predict load demand. When the 
external market environment shows high spot 
electricity prices, VPP mobilizes aggregated 
resources to increase power generation through 
internal value transmission mechanisms. When 
predicting lower future electricity prices, com-

Therefore, they constructed a Stackelberg game 
model and established corresponding objective 
functions. This method effectively reduced the 
purchasing electricity cost and improved the 
operational and economic benefits of VPP [7]. 
Dogan et al. believed that accurate predictions 
of load demand, renewable energy generation, 
and electricity prices were crucial for maximiz-
ing the VPP market trading' returns. To this end, 
the team constructed a maximum likelihood 
model to predict VPP uncertainty. This method 
achieved effective uncertainty prediction [8]. 
Tsaousoglou et al. found that it was difficult 
to obtain flexibility costs in price and quanti-
ty quotations in electricity market trading. To 
this end, the team proposed a universal meth-
od that considered future time slot uncertainty 
and utilized offline simulation to train different 
machine learning algorithms. These machine 
learning methods made flexible decisions for 
balancing energy supply in investment portfo-
lios [9].
Yang et al. constructed a charging model to 
explore how electric vehicles affected VPP op-
eration and introduced the three stages of the 
electricity market from a trading perspective. 
Meanwhile, an improved artificial bee colony 
algorithm was utilized to solve the optimal bid-
ding strategy for VPP. The VPP bidding mod-
el had better performance [10]. Wozabal et al. 
proposed a multi-stage stochastic programming 
method for optimizing the bidding strategy of 
VPP operating in the electricity spot market. 
This method set the bidding for a single day 
operation as a Markov decision process and uti-
lized a stochastic dual dynamic programming 
algorithm for solution. Compared with deter-
ministic programming algorithms, the optimal 
strategy obtained by random programs was 
significantly better [11]. Zhang et al. proposed 
a new stochastic adaptive robust optimization 
model to determine the optimal scheduling plan 
for VPP participation in the day ahead reserve 
market. Meanwhile, fully considering the un-
certainty of market clearing prices, they pro-
posed a solution method based on improved 
Benders dual decomposition. This method im-
proved profitability while achieving real-time 
operations [12]. Ghasemi-Olanlari et al. found 
that medium to long-term scheduling strategies 
in the electricity market increased fault risk. 
A two-stage stochastic model considering risk 
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pensation prices decrease. VPP dominated by 
power supply will reduce power generation and 
lower declared power generation. User centric 
VPP will increase electricity consumption and 
increase declared electricity consumption [14].
VPP mainly guides resource transfer during 
power generation and consumption periods 
through its predictive ability. Real-time market 
trading profits are represented by equation (1).

R = Q ∙ (P1 - P2) - Q ∙ Pc             (1)

In equation (1), Pc refers to the compensation 
price that VPP needs to pay to the regulating 
resources based on the electricity price, Q rep-
resents the transferred electricity, P1 refers to the 
period of increasing power generation and re-
ducing electricity consumption and P2 refers to 
the period of reducing power generation and in-
creasing electricity consumption. In the electric-
ity market, VPP needs to determine the market 
generation and consumption situation at differ-
ent time periods based on load and daily demand 
side forecasting results to maximize demand side 
resources' benefits. Therefore, a load resource 
classification model based on improved SVM is 
constructed based on historical load data. SVM 

is suitable for data classification and regression 
problems, which can assist power companies 
and energy suppliers in power scheduling and re-
source management. In order to construct an ac-
curate and effective load resource classification 
model, relevant data needs to be preprocessed, 
including data missing value processing and 
data normalization processing. In the process-
ing of missing values, interpolation is mainly 
performed on the missing values, using methods 
such as mean, median, mode imputation, and in-
terpolation for data processing. Next, the data is 
standardized and transformed into a distribution 
with a mean of 0 and a standard deviation of 1, 
eliminating scale differences between features 
and making the SVM model training process 
more stable. In addition, in the classification of 
load resources, there are often problems of im-
balanced sample classification and complex re-
source characteristics that are difficult to classify 
[15-16]. In response to this issue, this research 
improves SVM by introducing ADASYN before 
training to increase the number of class samples. 
Subsequently, PCA is utilized to reduce the di-
mensionality of the data sample. DEC is utilized 
to enhance the sensitivity of the hyperplane. Fig-
ure 2 shows the improved SVM process.

Figure 1. Schematic diagram of VPP participating in market trading regulation.
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To solve the imbalanced sample classifica-
tion, the study resamples the training samples. 
Compared to undersampling, oversampling 
preserves important samples. For this purpose, 
oversampling is adopted to increase sample di-
versity. For this study, oversampling was used 
to increase sample diversity. Although SMOTE 
is a classic oversampling method, the new sam-
ples it generates are based on linear interpola-
tion of existing samples and do not specifically 
focus on regions that are difficult to classify, re-
sulting in lower effectiveness than ADASYN. 
For this purpose, the ADASYN method was 
chosen in the study, which enables the model 
to focus on unclassifiable regions and effec-
tively avoids the problem of imbalanced clas-
sification. Firstly, the quantity of few class and 
multi-class samples is corrected, as shown in 
equation (2).

H = δ ∙ (|Smax| - |Smin|), δ ∈(0, 1]        (2)

In equation (2), Smax refers to multi-class sam-
ples, namely medium and low value samples.   
Smin refers to small class samples, i.e. high-val-
ue samples. Then, the proportion of synthesized 
samples with few class samples to the total sam-
ples is calculated, represented by equation (3).

min
a a

Kx
S

ψ = ∆ ⋅
                     

(3)

In equation (3), K refers to the algorithm pa-
rameters. Δxa refers to the quantity of multi-
class samples in the K points closest to a few 
class sample xa. Subsequently, the quantity of 
oversampling is determined, represented by 
equation (4).

ha = ψa ∙ H                       (4)

Finally, a sample is randomly selected as a new 
few class sample, represented by equation (5).

[ ]ˆ( ), 0,1b a a ax x x xφ φ= + ⋅ − ∈            (5)

In equation (5), ˆax  refers to one of the K samples 
closest to xa. Due to the complex characteris-
tics of load resources, it is necessary to perform 
dimensionality reduction, including PCA, local 
linear embedding, t-distribution random neigh-
borhood embedding, independent component 
analysis, and other methods. Due to the com-
plexity of load resource data and its dependence 
on linear relationships, PCA can more effec-
tively extract the main information of the data 
compared to other methods. Meanwhile, PCA 
can compress high-dimensional data into few-
er principal components while preserving most 
of the variance in the data. Therefore, the re-
search mainly adopts PCA algorithm to achieve 
dimensionality reduction of resources, in order 

Figure 2. Flow chart of the improved SVM process.
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to achieve more effective load resource classi-
fication. The calculation expression of PCA is 
shown in the following formula.

Xpca = XaugW                      (6)
In equation (6), Xaug represents the data be-
fore dimensionality reduction, Xpca represents 
the data after dimensionality reduction, and W 
represents the dimensionality reduction matrix. 
Figure 3 shows the feature dimensionality re-
duction process based on PCA.
In addition, traditional SVM does not consid-
er the issue of data imbalance. Therefore, this 
study utilizes DEC to improve and enhance 
the algorithm's learning ability for imbalanced 
data. Compared with other methods, the DEC 
algorithm sets two different penalty parameters 

for positive and negative class samples, respec-
tively. This mechanism allows the model to 
impose higher penalties on minority class sam-
ples, thereby reducing the classifier's bias on 
imbalanced data and effectively improving the 
model's performance on imbalanced data. The 
calculation of DEC algorithm is shown in the 
following formula.

aug

cluster
1 1

log
N M

ab
ab

aba b

uL u
v= =

= ∑ ∑
               

(7)

In equation (7), uab represents the probability 
that sample a belongs to cluster b, and vab rep-
resents the true label probability of cluster b. 
Figure 4 shows the process of DEC.

Figure 3. Feature dimensionality reduction process based on PCA.

Figure 4. The process of DEC.
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3.2. Prediction of Ultra Short-term Load 
and Adjustable Capacity Based on 
LSTM-SaDE

Based on the improved SVM classification 
method, the experiment further selects the trad-
ing strategy of medium value resource analysis 
VPP participating in the real-time electricity 
market. Firstly, it should predict the ultra short-
term load of VPP and analyze how real-time 
electricity prices affect the load to achieve ad-
justable capacity prediction. Based on accu-
rate predictive data, VPP can develop power 
dispatch plans and market declaration volumes 
in advance. Predicting the adjustable capaci-
ty of VPP helps in the formulation of intraday 
scheduling strategies and capacity declaration in 
market trading [17-18]. In ultra short-term load 
forecasting, machine learning has significant 
advantages over traditional methods in terms of 
prediction accuracy. An improved method com-
bining LSTM and SaDE is adopted to achieve 
ultra short-term load forecasting. Before con-
ducting load forecasting, time-series analysis is 
required. The study adopts the AutoRegressive 
Integrated Moving Average (ARIMA) model. 
ARIMA's input feature is a time-series variable, 
which can be processed by ARIMA to obtain 
predicted values for the next few days. This 
model's prediction involves five steps. Firstly, 
stationarity identification is performed based 
on time-series scatter plots or function graphs. 

Then, differential processing is performed on 
the data sequence to eliminate heteroscedastic-
ity. The third step is to select the corresponding 
model based on the recognition rules. If the au-
tocorrelation function is truncated and the par-
tial correlation function is trailing, MA is cho-
sen. Otherwise, AR is chosen. If both functions 
belong to trailing, ARMA is chosen. The fourth 
step is to test the model. Finally, data predic-
tion is achieved based on the validation mod-
el. LSTM mainly controls the information flow 
through input, forget, and output gates, which 
is beneficial for processing long sequence infor-
mation. This method requires manual setting of 
parameters, making it difficult to obtain the opti-
mal solution [19]. To this end, the study utilizes 
Differential Evolution (DE) to improve LSTM 
and introduces adaptive crossover factors, there-
by generating LSTM-SaDE. The adaptive cross 
factor is represented by equation (8).

max min
max

( )G CR CRCR CR
GenM

−
= −

          
(8)

In equation (8), CRmax and CRmin correspond to 
the maximum and minimum values of the cross 
parameters, G refers to the current iteration, and 
GenM refers to the maximum iteration. Figure 5 
shows the ultra short-term load forecasting pro-
cess based on LSTM SaaDE.

Figure 5. The ultra short-term load forecasting process based on LSTM-SaDE.
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The LSTM SaDE model mainly utilizes the 
adaptive optimization capability of SaDE to 
optimize hyperparameters in LSTM networks, 
such as learning rate, number of hidden units, 
etc. This hyperparameter has a significant im-
pact on the performance of LSTM, and SaDE 
can adjust these parameters more accurately, 
thereby reducing overfitting and underfitting 
problems of the model and improving its pre-
diction accuracy. In addition, for load data with 
high nonlinearity and long-term dependencies, 
SaDE's optimization capability can help LSTM 
better capture these complex patterns. There-
fore, the LSTM SaDE model has higher pre-
diction accuracy and faster convergence speed 
compared to traditional LSTM models. Load-
based VPP mainly achieves auxiliary services 
by increasing or decreasing user electricity 
consumption. For loads, it should reduce elec-
tricity consumption as the load increases. When 
the load increases, the generator set needs to 
output more power, which belongs to positive 
standby. Otherwise, it belongs to a negative 
standby. VPP's reserve declaration volume is 
mainly achieved through adjustable capacity 
prediction. Figure 6 shows the specific predic-
tion scheme.
In Figure 6, first, the user's willingness to adjust 
is calculated based on the corresponding cost 
and real-time electricity price data. Subsequent-
ly, historical data are combined and quantified 
using the theory of demand elasticity. The elas-
ticity quantification of demand income mainly 
reflects the impact of compensation prices and 
adjustment costs on electricity consumption. 
The changes in electricity prices after marketi-
zation can convey electricity price signals and 
adjust electricity consumption behavior. Sub-
sequently, the standardized coefficient method 
is utilized to conduct correlation analysis on 

the willingness to mediate. The willingness to 
mediate is weighted according to its relative 
importance. Subsequently, based on LSTM-
SaDE-based ultra short-term load forecasting, 
they are jointly used in load adjustable capacity 
forecasting. The predicted values are utilized 
for reserve market declaration. For cost adjust-
ment, within the capacity range, the cost shows 
a linear upward trend with the increase of the 
adjustment ratio. The adjustment of proportion 
can be divided into multiple stages and catego-
ries. A lower proportion of adjustments has lit-
tle impact on users. However, a higher propor-
tion of adjustments will lead to a rapid increase 
in costs, as it should improve the technical level 
to enhance backup capacity [20]. From the per-
spective of real-time electricity prices, under 
the guidance of marketization, real-time elec-
tricity prices will fluctuate with different elec-
tricity supply and demand conditions. The will-
ingness to adjust costs and real-time electricity 
prices is expressed by equation (9).

0

,

0

t

t
k t

t

t

q
qe p
p

∂

=
∂

                         

(9)

In equation (9), k refers to the user, t refers to 
the moment, ek,t refers to willingness elasticity, 
qt

0  refers to the electricity load before regula-
tion, and pt

0 refers to the real-time electricity 
price or adjustment cost before adjustment. Due 
to the continuous electricity consumption of 
users, the study utilizes cross elasticity coeffi-
cients to describe the regulation law, represent-
ed by equation (10).

Figure 6. Adjustable capacity prediction scheme.
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In equation (10), i and j represent different time 
periods. Next, the standardization coefficient 
analysis will be conducted. The standardization 
of panel data will be represented by equation 
(11).

. .( )

y
xy

s d y

β
−

=







                    
(11)

In equation (11), y refers to a dependent vari-
able, x is an explanatory variable, and β rep-
resents that for every standard deviation change 
in the explanatory variable, the dependent vari-
able will change by β standard deviations.

4. Results and Discussion

Firstly, the study validated the proposed classi-
fication model based on improved SVM. Dif-
ferent kernel functions' impact on the model's 
classification performance was analyzed. In 
addition, ablation experiments were conducted. 
Subsequently, the ultra short-term load fore-
casting performance based on LSTM-SaDE 
was verified. The matching degree between 
the reserve market declaration results obtained 
from load adjustable capacity forecasting and 
the actual volume was explored to confirm its 
effectiveness.

4.1 Experimental Analysis of 
Classification Model Based on 
Improved SVM

In the study, an experimental analysis was con-
ducted using the summer operation of a power 
grid in a certain region to verify the proposed 
classification model based on improved SVM. 
There are 20 commercial buildings, 762 residen-
tial buildings, and 34 industrial users in the pow-
er grid of the region. The study selected 80% of 
resources as training samples and 20% as test-
ing samples. The testing samples include 42 low 
value samples, 88 medium value samples, and 
32 high value samples. The experiment utilized 

SVM classifiers with different kernel functions 
to classify and predict load levels, including 
linear kernel functions, polynomial kernel func-
tions, and Radial Basis Function Kernel (RBF). 
Figure 7 shows the classification confusion ma-
trix under different kernel functions. In Figure 7 
(a), the SVM classifier with linear kernel func-
tion had classification accuracy of only 56.25%, 
71.59%, and 57.14% for high, medium, and low 
value loads, respectively. In Figure 7 (b), the 
SVM classifier with polynomial kernel function 
had classification accuracy of 62.5%, 73.86%, 
and 64.29% for each load level, respectively, 
which showed a slight improvement when com-
pared to the linear kernel function. In Figure 7 
(c), the SVM classifier with RBF had classifica-
tion accuracy of 84.38%, 92.05%, and 85.71% 
for different load levels, respectively, which 
was significantly better than the other two ker-
nel functions. The SVM classifier based on RBF 
achieved better classification accuracy. By more 
precise classification of load levels, VPP opera-
tors can better optimize resource allocation and 
market trading strategies, meet users' electricity 
needs, and improve user satisfaction and service 
quality.
The study continued to utilize recall and F1 
value to evaluate confusion moments. Figure 8 
shows the classification recall and F1 value of 
SVM classifiers based on different kernel func-
tions for load levels. In Figure 8 (a), the clas-
sification recall of the linear kernel function 
for high, medium, and low values was 50.13%, 
77.68%, and 69.14%, respectively. The poly-
nomial kernel function's recall was 63.58%, 
73.46%, and 72.91%, respectively. RBF's 
classification recall was 82.41%, 90.04%, and 
91.36%, respectively, which was significantly 
higher than for other kernel functions. In Figure 
8 (b), the F1 values of the linear kernel func-
tion for high, medium, and low values were 
60.07%, 68.34%, and 70.05%, respectively. 
The F1 values of polynomial kernel functions 
were 70.04%, 84.71%, and 76.81%, respective-
ly. Finally, the F1 values of RBF were 83.14%, 
93.85%, and 82.91%, respectively. This indi-
cated that SVM classifiers based on RBF had 
better classification performance. The reason is 
that RBF can map the original sample to an in-
finite dimension, which distinguishes difficult 
to distinguish key points and, thus, improves 
classification performance.
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Figure 7. Confusion matrix of SVM classifiers based on different kernel functions.

(a) Confusion Matrix of Linear Functions. (b) Confusion Matrix of Polynomial Functions.

(c) Confusion Matrix of RFB function.

(a) Recall rates of different kernel functions. (b) F1 value of different kernel functions.

Figure 8. Classification recall and precision of SVM classifiers based on different kernel functions.
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To validate the improved SVM's superiority, 
ablation experiments were conducted. Four 
groups were set up. Firstly, solely the SVM 
used. The second group added the ADASYN 
synthesis step for few class samples to the 
SVM configuration. The third group added 
PCA dimensionality reduction processing on 
the previous configuration. The fourth group 
further added steps for DEC to enhance the 
sensitivity of hyperplanes based on the previ-
ous configurations. The evaluation indicators 
were precision, recall, and F1 value. 10 tests 
were conducted. Figure 9 shows the hierar-
chical model test results of four algorithms. In 
Figure 9 (a), the fourth group's precision was 
significantly better than the other groups, with 
an average value of 84.12%. Meanwhile, the 
second group's precision increased by 8.17% 
compared to the first group. The third group's 

precision increased by 10.58% compared to the 
second group. In Figures 9 (b) and 9 (c), the 
fourth group's recall and F1 value were higher 
than the other groups, with their mean values 
reaching 81.07% and 85.41%, respectively. 
ADASYN, PCA, and DEC all contributed to 
improving the classification model's classifica-
tion performance, confirming its effectiveness. 
The reason is that ADASYN can increase the 
few class samples by generating composite 
samples, thereby improving the model's clas-
sification ability for minority classes. PCA can 
preserve the most important feature informa-
tion by reducing the dimensionality of the data. 
DEC can effectively learn and extract abstract 
feature expressions from data through unsu-
pervised learning, combined with autoencoder 
and clustering methods.

(c) F1 value of different groups.

(a) Precision of different groups. (b) Recall of different groups.

Figure 9. Performance test results of hierarchical models based on different algorithms.
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4.2. Load Adjustable Capacity Prediction 
Analysis

The study utilized the summer daily load curve 
of 1000 households as the test set to validate the 
predictive performance based on LSTM-SaDE. 
LSTM-SaDE, LSTM, SVM, ARIMA, and 
SVM SaDE were utilized to generate predicted 
load curves. Figure 10 shows the predicted and 
actual load curves' fit. In Figure 10 (a), the load 
forecasting curves of LSTM, SVM, ARIMA, 
and SVM SaDE differed significantly from 
the true values. LSTM-SaDE's predicted curve 
was similar to the true curve, having the best 
fit. In Figure 10 (b), LSTM-SaDE's average 
prediction error was 0.35%, and the maximum 
error was only 0.62%. The individual errors of 
ARIMA were relatively large, with an average 
of 1.68%. LSTM-SaDE achieved better pre-
diction accuracy in ultra short-term power load 
forecasting scenarios. To evaluate the statistical 
significance of the performance improvement 
of the LSTM SaDE model proposed in our re-
search compared to the baseline method, paired 
t-tests were conducted. The results showed a 
significant difference (P<0.01) between our 
model and the LSTM model, indicating that the 
improvement was not accidental but made sub-
stantial contributions. Reducing prediction er-
rors can provide more reliable data support for 
long-term planning and optimization of power 
grid construction, resource investment, and op-
eration strategies, enabling VPP operators to 

gain an advantage in the market, optimize trad-
ing strategies, and increase their market share.
VPP is only a price taker and does not have the 
ability to make declaration decisions. Mean-
while, the electricity prices and compensation 
mechanisms vary in different regions. There-
fore, real-time market trading strategies need to 
adjust operating parameters based on different 
external conditions. The experiment set up three 
scenarios based on commercial characteristics 
and policy environment, including basic, high 
resource, and high electricity price scenarios. 
Table 1 shows the model parameter settings for 
different scenarios. In Table 1, when the power 
regulation coefficient increases by 10%, the to-
tal revenue of the model increases by about 8%, 
while the regulation cost increases by about 
6%. On the contrary, when the coefficient de-
creases by 10%, the revenue decreases by about 
7% and the adjustment cost decreases by about 
5%. When the dividend ratio of backup services 
increases by 10%, the investment in backup re-
sources increases by about 12%, and the total 
revenue increases by about 9%. When the pro-
portion decreases by 10%, the input of backup 
resources decreases by about 10%, and the total 
revenue decreases by about 8%. In case when 
the cost and adjustment parameters increase by 
10%, the total cost increases by about 7% and 
the adjustment efficiency improves by about 
5%. When the parameters are reduced by 10%, 
the total cost is reduced by about 6% and the 

(a) Prediction curves of different algorithms. (b) Prediction error of different algorithms.

Figure 10. The fit between the predicted curve and the actual load curve.
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regulation efficiency is reduced by about 4%. 
Furthermore, when the price of non water ex-
cess consumption vouchers increases by 10%, 
consumer demand decreases by about 8%, but 
the income of a single voucher increases by 
about 9%. When the price decreases by 10%, 
consumer demand increases by about 9%, but 
the income from a single coupon decreases by 
about 8%. When the price parameter increases 
by 10%, the total revenue increases by about 
7%, and the transaction cost increases by about 
5%. For the case when the parameter range is 
reduced by 10%, the total revenue decreases by 
about 6% and the transaction cost decreases by 
about 4%. When the total excess consumption 
voucher price increases by 10%, market de-
mand decreases by about 6% and total returns 
increase by about 5%. When the price decreas-
es by 10%, market demand increases by about 
7% and total revenue decreases by about 6%. 
When the parameter for evaluating the propor-
tion of new energy consumption increases by 
10%, the utilization rate of new energy increas-
es by about 8%, and the total revenue increases 
by about 6%. When the proportion decreases by 
10%, the utilization rate of new energy decreas-
es by about 7%, and the total revenue decreases 
by about 5%.

The research adopted the ultra short-term load 
forecasting results based on LSTM-SaDE to 
jointly use in load adjustable capacity fore-
casting. The predicted values were utilized for 
reserve market declaration. The actual load 
adjustable capacity prediction effect in actual 
reserve market declaration was analyzed. The 
backup auxiliary services' declared volume and 
the actual volume's matching degree in differ-
ent scenarios was verified. Figure 11 shows the 
declared and actual quantities of backup auxil-
iary services in different scenarios. In Figure 11 
(a), in the basic scenario, the declared and ac-
tual standby auxiliary service quantities based 
on load adjustable capacity prediction had con-
sistent variation, with a maximum deviation 
of only 88.62 kW. In Figure 11 (b), in the high 
electricity price scenario, the maximum devi-
ation between the declared and actual standby 
auxiliary services obtained by the proposed 
method was only 87.69 kW. In Figure 11 (c), in 
a high resource scenario, the maximum differ-
ence between the declared and actual amount 
of backup auxiliary services was only 52.39kW. 
The reason is that this method effectively en-
hances the cost and price's sensitivity, thereby 
improving the reserve declaration prediction 
accuracy.

Table 1. Model parameter settings for different scenarios.

Basic scenario High resource  
scenarios

High electricity price 
scenarios

The coefficient of the relationship  
between electricity regulation 1 0.8 1.5

Reserve auxiliary service dividend ratio 0.2 0.3 0.15

Cost and regulation parameters 0.4 0.3 0.5

Non water excess consumption voucher 
price (yuan) 53.62 70.14 42.58

Price parameters (%) 70~120 80~120 80~110

Total excess consumption voucher price 
(yuan) 48.25 38.59 62.68

New energy consumption assessment 
ratio parameters 0.9 0.8 1.0
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5. Discussion

In order to optimize the real-time market trad-
ing strategy of VPP, a resource grading mod-
el based on an improved SVM algorithm was 
constructed and optimized. On this basis, an 
ultra short term load forecasting and adjust-
able capacity forecasting method based on an 
improved LSTM algorithm was proposed. The 
results showed that the SVM classifier with 
RBF kernel function achieved classification 
accuracies of 84.38%, 92.05%, and 85.71% 
for different load levels, with classification re-
call rates of 82.41%, 90.04%, and 91.36%, and 
F1 values of 83.14%, 93.85%, and 82.91%, re-
spectively. Similarly, scholars such as Ali I M 

S proposed a new data classification model, 
which uses an optimized multi-core SVM clas-
sifier and utilizes hyper heuristic skip group 
optimization for adjustment. The results show 
that the classification accuracy of this method 
is as high as 95.69% [21]. Compared to it, the 
classification accuracy of the SVM classifier 
used in the study is slightly lower, because the 
hyper heuristic skip group optimization algo-
rithm adopted by Ali IMS can explore the pa-
rameter space on a larger scale, thereby find-
ing better parameter combinations. In contrast, 
the SVM classifier used in the study did not 
employ advanced optimization algorithms, 
resulting in insufficient parameter tuning and 
affecting the accuracy of the model, thus re-

Figure 11. The declared and actual quantities of backup auxiliary services in different scenarios.

(b) High electricity price scenarios.(a) Basic scenario.

(c) High resource scenarios.
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quiring further improvement. In load forecast-
ing experiments, the load forecasting curves 
of LSTM, SVM, ARIMA, and SVM SaDE 
algorithms differ significantly from the actual 
values. The predicted curve of LSTM SaDE 
algorithm is similar to the trend of the real 
curve, with the highest degree of fit. Among 
them, the average prediction error of LSTM 
SaDE algorithm is 0.35%, and the maximum 
error is only 0.62%. However, ARIMA has 
relatively large individual errors, with an av-
erage of up to 1.68%. Ghasemi Olanlari and 
other scholars' research used LSTM to predict 
uncertain parameters of electricity load, DA 
market price, wind speed, and solar radiation. 
The results show that the LSTM model has an 
error of 1.94% in load prediction [13]. This 
value is significantly higher than the predic-
tion error of the LSTM SaDE model used in 
the study, indicating that the research has sig-
nificantly improved the prediction accuracy of 
the LSTM model after improvement. By using 
improved SVM and LSTM SaDE models for 
data classification and ultra short term load 
and adjustable capacity prediction, VPP op-
erators can improve the accuracy of resource 
management and market transactions, thereby 
optimizing operational efficiency, reducing 
costs, and increasing market revenue. Stake-
holders in the electricity market will also ben-
efit from a more stable market environment 
and fair competition. 

Although the improved SVM and LSTM SaDE 
models proposed in the study perform well in 
classification and prediction, in the case of 
sparse data, the models may not be able to ef-
fectively learn patterns in the data, resulting 
in performance degradation. Especially in 
load forecasting tasks, if historical load data 
is insufficient or unevenly distributed, the pre-
diction accuracy of the model may be limited. 
Future research can explore solutions to the 
problem of data sparsity, such as using gen-
erative adversarial networks to generate more 
training samples, or using transfer learning 
techniques to improve model performance in 
situations of insufficient data.

6. Conclusion

With the continuous improvement of new pow-
er systems, VPP, as a key component, needs to 
efficiently schedule and make precise trading 
decisions while faced with a large number of re-
sources and demands. Currently, there is an ur-
gent need to optimize the technologies in these 
areas. Therefore, the study proposed an improved 
SVM for resource allocation. On the basis of the 
hierarchical model, the LSTM SaDE algorithm 
is further proposed to achieve ultra short-term 
load and adjustable capacity prediction. 
The results show that the SVM classifier with 
a linear kernel function has classification ac-
curacies of only 56.25%, 71.59%, and 57.14% 
for high, medium, and low value load levels, 
respectively. The classification accuracy of 
SVM classifier with polynomial kernel func-
tion for each load level was 62.5%, 73.86%, 
and 64.29%, respectively. Finally, the SVM 
classifier with the RBF kernel function had 
classification accuracy of 84.38%, 92.05%, and 
85.71% for different load levels, respectively, 
which was significantly better than the other two 
kernel functions. The SVM classifier based on 
RBF kernel function achieved better classifica-
tion accuracy. In the ablation experiment, SVM 
model improvement based on ADASYN, PCA, 
and DEC achieved higher precision, recall, and 
F1 value. In addition, in high electricity price 
scenarios, the maximum deviation between the 
declared amount of backup auxiliary services 
obtained by the proposed method and the actual 
amount was only 87.69 kW. In high-resource 
scenarios, the maximum difference between the 
declared amount of backup auxiliary services 
and the actual amount was only 52.39 kW. 
The comprehensive application of improved 
SVM and LSTM SaDE models effectively en-
hances the efficiency of VPP in complex re-
source scheduling tasks, making resource al-
location more precise and market participation 
more flexible. Meanwhile, this method optimiz-
es market trading decisions and enhances the 
overall economic benefits of VPP in the elec-
tricity market. Subsequent research can explore 
how to apply generative adversarial networks or 
transfer learning to generate more high-quality 
load data samples, in order to alleviate the prob-
lem of data sparsity and improve the learning 
ability and prediction accuracy of the model.
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