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Printed Circuit Board (PCB) defect detection is crucial 
for ensuring the quality and reliability of electronic 
devices. The study proposes an enhanced YOLOv5s 
model for PCB defect detection, which combines Co-
ordinate Attention (CA), Convolutional Block Atten-
tion Module (CBAM), and Inception-style convolu-
tions (IO). This model aims to improve the detection 
accuracy of small defects while reducing computa-
tional complexity. Experiments on the PCB defect 
dataset demonstrate that the proposed CA-CBAM-IO-
YOLOv5s model achieves higher accuracy (97.8%), 
recall (98.6%), and F1 score (98.3%) compared to the 
basic YOLOv5s and other state-of-the-art models. The 
model also shows excellent performance in detecting 
various types of PCB defects, with an average detec-
tion accuracy of 98.45% and an average detection time 
of 0.114 seconds. These results indicate that the pro-
posed model provides a promising solution for effi-
cient and accurate PCB defect detection in industrial 
applications.
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1. Introduction

In today's digital age, electronic products have 
become an indispensable part of our lives. From 
smartphones and computers to complex medi-
cal devices and spacecraft, the functionality and 
reliability of these devices depends in large part 
on a key component inside them - the printed 
circuit board (PCB). PCB is the cornerstone of 
electronic components, they not only carry the 

transmission of electronic signals, but also sup-
port the physical structure of each component 
[1-2]. Therefore, the quality of the PCB is di-
rectly related to the performance, stability and 
safety of the entire electronic product. However, 
PCB defects such as signal interference, over-
heating, power fluctuations, wire breaks or short 
circuits can seriously threaten the performance 
and reliability of electronic products. For exam-
ple, improper design may lead to incorrect data 
transmission of communication devices, heat 
dissipation problems may shorten the service life 
of medical devices, and short circuits may even 
cause fires, posing a direct threat to user safe-
ty. Therefore, how to efficiently and accurately 
detect these defects has become a key research 
issue in the field of electronic manufacturing. 
Traditional PCB inspection methods mainly 
rely on manual visual inspection and electrical 
testing, but these methods have problems like 
low efficiency, poor accuracy, and high cost 
[3-4]. With the rapid growth of computer vision 
and deep learning (DL) technology, image pro-
cessing-based non-destructive testing technolo-
gy has gradually become an important means of 
PCB detection. The use of DL to detect defects 
in electronic devices has become a popular re-
search topic at present. Among them, compared 
to other algorithms in the field of object detec-
tion, the You Only Look Once (YOLO) series 
of algorithms have been widely applied. This 
series of algorithms transforms object detection 
into a single pipeline, enabling rapid detection 
of multiple targets within an image, thus effi-
ciently and accurately completing the detection 
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task. With the progress of the YOLO series, the 
YOLOv5s algorithm inherits the core concept 
of the YOLO series and improves the detection 
performance and efficiency of first-generation 
YOLO by optimizing network structure and 
data augmentation technology [5]. To further 
improve the effectiveness of PCB-Defect Detec-
tion (PCBDD), this study proposes an improved 
YOLOv5s model that combines Coordinate At-
tention (CA), Convolutional Block Attention 
Mechanisms (CBAM), and Convolutional Op-
erator (IO) mechanisms. The innovation lies in 
the addition of the CA mechanism to capture the 
feature position information of the model in the 
spatial dimension, and the addition of CBAM to 
improve the representation ability of the feature 
map. Meanwhile, IO is also utilized to reduce 
computational complexity and parameter count. 
This study is not only expected to provide new 
technical means for PCBDD, but also valuable 
references for other similar object detection 
tasks.

2. Related Works

PCBDD refers to the detection of surface and 
internal defects in PCBs through various tech-
nical means to ensure their quality and perfor-
mance. Through defect detection, not only can 
defects be detected and corrected in a timely 
manner during the production process, but it 
can also reduce production costs, improve prod-
uct reliability and production quality. With the 
development of machine learning techniques, 
several studies have begun to explore the use of 
these algorithms to improve the automation and 
accuracy of detection. For example, Zhou  et al. 
proposed a PCB defect detection algorithm that 
optimizes YOLOv5 networks based on multi-
scale attention mechanisms. The research re-
sults show that this method reduces the number 
of parameters of the traditional v5 algorithm 
(You only look once version 5, YOLOv5s) by 
46% and improves the detection accuracy by 
3.34% [6].
Deep learning, especially convolutional neu-
ral networks, has become a leading technology 
in PCB defect detection. Yu et al. designed a 
lightweight and efficient network for the detec-
tion of tiny defective objects to solve the prob-
lems of small objects' small size and blurred 

pixels. In the backbone network, the diagonal 
feature pyramid is proposed, and the precision 
of network detection is improved by the same 
level feature fusion. At the same time, compu-
tational costs are reduced by eliminating bot-
tom-up paths and removing some features. In 
the neck network, a multi-scale neck network 
is designed to adapt to multi-scale micro de-
fect detection, and an adaptive localization loss 
function is introduced to improve sensitivity. 
The final results show that this model is supe-
rior to mainstream detection algorithms in both 
accuracy and speed [4]. Sezer et al. proposed 
an optimized deep learning model to improve 
PCB defect detection accuracy. A two-dimen-
sional signal processing method was developed 
to detect solder paste defects on PCB efficiently 
at an early stage. In addition, the model uses 
convolutional neural networks to classify sol-
der joint regions on the PCB. The experimental 
results show that the model has successfully de-
tected and visualized the defective solder paste 
area on PCB by combining image processing 
and deep learning methods [7].
To further improve detection performance, re-
searchers have proposed a variety of improved 
deep learning models. Long et al. propose an 
improved YOLO algorithm in which not only 
ShuffleAttention and BiFPN structures are 
added, but also WIoU loss functions are used 
instead of traditional CIoU loss functions to 
improve detection accuracy and robustness. 
Experimental results show that the proposed 
improved algorithm achieves 94.2% and 49.0% 
respectively on mAP50 and mAP90-95, and the 
number of parameters and weight size are re-
duced by 33% and 32% respectively, showing 
good performance [8]. Aiming at the complex-
ity of industrial surface defect detection, Xie 
et al. proposed an algorithm based on feature 
enhancement YOLO. The YOLO model is first 
simplified by combining deep separable con-
volution and dense joins. Secondly, the feature 
pyramid network is improved to improve the 
precision of multi-scale detection layer. Finally, 
the new prediction frame regression loss func-
tion and K-means algorithm are used to select 
the anchor frame to improve the quality of the 
initial anchor frame and the convergence speed 
of the model. The results show that the detection 
speed and accuracy of the proposed improved 
algorithm are superior to the existing methods, 
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3.1. Optimization Design of YOLOv5s 
Network Architecture Combining CA 
and CBAM

In PCB defect detection and fault location, 
YOLOv5s was used as the backbone network 
to build the detection model. YOLOv5s com-
bines high efficiency and high accuracy with 
excellent real-time detection capabilities, 
and its miniaturized design is suitable for re-
source-constrained environments while main-
taining the optimized network structure and 
advanced performance of the YOLO series. In 
addition, YOLOv5s is highly flexible and scal-
able, enabling it to adapt to various customiza-
tion improvements. YOLOv5s is the smallest 
model in the YOLOv5 model, which is mainly 
composed of Backbone, Neck and Head. The 
structure is shown in Figure 1 below [11].

In Figure 1, the Backbone in YOLOv5s in-
cludes four modules: Convolution Block 
(CBL), Focus, Cross Stage Partial (CSP), and 
Space Pyramid Pool (SPP). CBL is composed 
of Convolutional Layer (Conv), Batch Normal-
ization (BN), and HardSwish. In addition, a 
Resunit residual module has been added to the 
CSP module. When using YOLOv5s to detect 
PCB defects, the sample is first input into the 
Focus module, which segments the data infor-
mation into four parts and generates a dimen-
sion channel. Next, the partitioned information 
is input into CSP for processing and then input 
into the Path Aggregation Network (PanNet). 
This section includes several connecting layers, 
convolutional layers, and CSP layers. Final-
ly, the detection results are output through the 
Head layer [12-13].

The study attempts to further achieve precise 
localization of small defects and fault targets 
in PCBs, while effectively aggregating deeper 
and broader contextual information to improve 
the feature extraction ability of the YOLOv5s. 
By utilizing two different attention mechanisms 
to optimize the YOLOv5s model, an improved 
YOLOv5s combining CA and CBAM, namely 
CA-CBAM-YOLOv5s, is proposed. Its struc-
ture is shown in Figure 2.

reaching values of 83.9% and 98.9% respec-
tively [9]. Huo  has developed a real-time visu-
al inspection system for misalignment detection 
of electronic components. In the system setup, 
the hardware part involves equipment setup, 
and the software part includes pre-processing 
and post-processing. In the pre-processing, im-
age enhancement is performed to remove noise, 
and an improved YOLO model is used to detect 
defective elements. Experimental results show 
that the system can effectively detect missing 
components on the PCB board [10].
In summary, while existing PCB defect de-
tection technologies such as traditional visual 
inspection, machine learning algorithms, and 
early deep learning models have made advanc-
es in automation and accuracy, they still face 
challenges such as speed and accuracy trade-
offs, deployment challenges due to high model 
complexity, and lack of adaptability and robust-
ness in complex environments. Especially for 
the high-precision detection of small defects, 
the existing technology still has room for im-
provement. To address these limitations, an 
innovative and improved YOLOv5s model is 
proposed, which integrates coordinate attention 
(CA), convolutional block attention mechanism 
(CBAM) and internal volume operator (IO), 
aiming to improve the accuracy and speed of 
detection, while reducing the computational 
burden of the model, making it more suitable 
for resource-constrained environments. This 
comprehensive technical approach demon-
strates superior performance in ablation testing, 
significantly improving inspection accuracy 
while maintaining low inspection time and re-
source consumption, providing the electronics 
manufacturing industry with an efficient, accu-
rate and easy-to-deploy PCB defect detection 
solution.

3. Method

To improve the detection performance of small 
defect PCBs, this study first optimizes the 
YOLOv5s network structure by combining CA 
and CBAM. Secondly, IO is introduced to im-
prove the efficiency of feature extraction in the 
model and reduce the computational burden. 
Finally, a new PCBDD model is designed by 
combining CA, CBAM, and IO.
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Figure 1. Structure of YOLOv5s.

Figure 2. Structure of CA-CBAM-YOLOv7.
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In Figure 2, this study first embeds two CA 
modules after CSP1-3 of Backbone to ensure 
that YOLOv5s preserves important defect lo-
cation information during feature extraction. 
Meanwhile, three CBAM modules are embed-
ded after the three CSP2-1 modules in the Neck 
section to improve the detection accuracy. Com-
pared to other attention mechanisms, CA is rel-
atively new. Its purpose is to capture the content 
of features in space in the spatial dimension, 
such as the spatial position and coordinates of 
features [14]. Figure 3 shows the CA structure.
In Figure 3, CA can be divided into two parts: 
embedding coordinate information and gen-
erating CA. The core of CA mechanism is to 
capture the spatial position information of fea-
tures. It decomposes the global information into 
local features through pooling operations, thus 
preserving the spatial dimension information 
of features. CA consists of two main steps. The 
first step is to embed coordinate information and 
decompose input features into two directions 
by one-dimensional pooling operation. Second-
ly, coordinate attention is generated to enhance 

the expression ability of features through con-
catenation, convolution and nonlinear activa-
tion operations. In this way, CA can highlight 
important spatial location information and help 
the model locate defects more accurately. As-
suming the dimension of input information is 
C * H * W, and each channel is denoted as xc, 
the pooling decomposition formula is obtained 
as shown in equation (1) [15].

( )
1 1

1 ,
H W

c c
a b

z x a b
H W = =

=
× ∑∑

              
(1)

In equation (1), H and W refer to the size of the 
pooling kernel. zc represents global pooling.  a 
and b are the input sizes of channel xc in the 
spatial X and Y directions. After average pool-
ing, C * H * W can obtain the outputs of two 
new dimensions, C * H * 1 and C * 1 * W, while 
retaining a certain spatial positional relation-
ship between these two outputs. The pooling 
information is concatenated using the formula 
shown in equation (2).

f = δ(F1[zh, zw])                     (2)

Figure 3. Structure of CA.
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In equation (2), f means the spatial informa-
tion of the input feature map after concatena-
tion. [zh, zw] is the pooling output of height h 
and width w in the spatial X and Y directions. 
F1 is the convolutional transformation function.   
δ represents a nonlinear activation function. 
Decomposing f into f h along the X direction to 
obtain the output weight of f h is shown in equa-
tion (3).

gh = σ (Fh( f h))                  (3)
In equation (3), g 

h is the attention weight acting 
in the X direction. Fh is the convolutional trans-
formation function of f h. σ is the sigmoid acti-
vation function. Similarly, f is decomposed into 
f w along the Y direction, and the output weight 
of f w is obtained as shown in equation (4).

gw = σ (Fw( f w))                  (4)
In equation (4), gw is the attention weight act-
ing in the Y direction. Fw is the convolutional 

transformation function of f w. The output of CA 
can be obtained through equations (1) - (4) as 
shown in equation (5).

yc(a, b) = xc(a, b) × g 
h × gw          (5)

In equation (5), yc(a, b) is the output of the CA 
module. xc(a, b) is the input feature.

In order to improve the information extraction 
ability of the YOLOv5s model for small defect 
fault targets, this study added CBAM modules 
after three CSP2-1 modules. As a lightweight 
attention mechanism, CBAM not only has a 
smaller computational burden, but also has a 
larger kernel convolution to extract more fea-
tures. This structure mainly consists of two 
parts: Channel Attention Mechanism (CAM) 
and Spatial Attention Mechanism (SAM), as 
shown in Figure 4 [16].

Figure 4. Structure diagram of CBAM.

(a) CBAM structure diagram.

(b) Flowchart of feature processing in CAM.

(c) Flowchart of feature processing in SAM.
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Figure 4 shows the structural diagrams of 
CBAM, CAM, and SAM. The purpose of CAM 
is to learn the features of different channels and 
weight them so that the model can focus on the 
channels with more information. SAM, on the 
other hand, focuses on identifying key regions 
in feature graphs, generating spatial attention 
graphs through convolution and activation func-
tions. By combining these two kinds of atten-
tion, CBAM not only improves the representa-
tion ability of feature maps but also increases 
the sensitivity of the model to key features, thus 
improving the detection accuracy. In CBAM, its 
calculation formula is given in equation (6) [17].

F' = Mc(F ) ⊗ F                    (6)

In equation (6), F is the feature map gained 
through the previous operation. ⊗ is the multi-
plication symbol between features. Mc is CAM.   
F' denotes the new feature map processed by 
CAM. The expression of the feature map pro-
cessed by SAM is shown in equation (4).

F'' = Ms(F' ) ⊗ F'                    (7)

In equation (7), Ms represents SAM. F'' is the 
attention weight value obtained by processing 
F' through SAM. The final attention weight 
value is weighted and summed with the original 
feature map, and then output as a new feature 
map. In CAM, the formula for generating chan-
nel attention maps is given in (8).

MC(F ) = σ (MLP(AvgPool(F )) +        
(8)                  MLP(MaxPool(F )))

In equation (8), MC(F)  is the channel atten-
tion map. σ represents the ReLu activation 
function. MLP is a multi-layer perceptron. 
AvgPool(F ) and MaxPool(F ) are average and 
maximum pooling. In SAM, the formula for 
generating spatial attention maps is shown in 
equation (9).

MS(F ) = θ( f 3*3[AvgPool(F );         
(9)                         MaxPool(F )])

In equation (9), MS(F)  is the spatial-attention 
map. θ represents the activation function sig-
moid. f 3*3 is a convolution operation with a fil-
ter size of 3*3.

3.2. Construction of PCBDD Model Based 
on CA-CBAM-IO-YOLOv5s

After adding CA and CBAM modules, 
YOLOv5s can better extract small defects in 
PCBs, but it also increases the computational 
burden of the network. To reduce the param-
eter computation of CA-CBAM-YOLOv5s, 
this study introduces IO for optimization. IO 
is a new type of convolution operation aimed 
at improving the efficiency and flexibility of 
feature extraction. Traditional convolution op-
erations achieve feature extraction by sliding a 
fixed convolution kernel over the input feature 
map. IO dynamically generates convolutional 
kernels to adapt to the features of each input 
position, making it more flexible and efficient 
[18-19]. Figure 5 shows the structure of IO.

Figure 5. IO structure.
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Figure 5 shows the inner convolution process 
of IO. Compared to traditional convolution op-
erations, IO has the following four advantages. 
Firstly, IO dynamically generates convolution 
kernels based on the content of input features, 
which enables it to better capture local changes 
in input features and enhance feature expres-
sion capabilities. Secondly, compared to tradi-
tional convolution operations, the number of IO 
parameters is greatly reduced. This is because 
the convolution kernels generated by IO are 
specific to each position, rather than globally 
fixed, thereby reducing the quantity of param-
eters that need to be trained [20]. Thirdly, the 
computational complexity of IO is relatively 
low, which can reduce the computational bur-
den of the model. Fourthly, IO performs well in 

processing input data with high heterogeneity, 
better adapting to different feature patterns, and 
improving robustness and generalization abili-
ty. In IO operations, ϕ represents the inner core, 
and the size of ϕ is denoted as H × W × K × K × G. 
ϕ refers to the execution of a convolutional ker-
nel generation function on the input features 
to form a dynamic inner convolution core and 
ensure that the size of the core and the size of 
the input features are always aligned in the spa-
tial dimension. The generating function of ϕ is 
shown in equation (10).

ϕ (Xi, j) = ω1σ(ω0 Xi, j)              (10)

In equation (10), Xi, j represents the feature in-
formation input from position (i, j) to ϕ. ω1 and   
ω0 are two different feature mapping matrices, 

(a) Structure diagram of CA-CBAM-IO-YOLOv5s.

(b) Structure diagram of C3.

Figure 6. PCBDD frame structure.
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and their specific expressions are shown in 
equation (11).

( )

0

1

C C
r

C K K G
r

R

R

ω

ω

×

× × ×


∈


 ∈                   

(11)

In equation (11), r is the ratio seen by the chan-
nel. R represents a set of real numbers. G is the 
number of inner convolutional kernels shared 
by the channel. K is the size of the inner core.  
C is the number of unshared inner convolution 
kernels in the channel. The formula for inner 
convolution operation is given in equation (12).

( )1 1
, , , ,0 0

K K
i j i j i m j n i m j nm n

y X Xφ− −

+ + + += =
= ⋅∑ ∑       (12)

In equation (12), yi, j is the output inner convolu-
tion operation value at position (i, j). ϕi, j (Xi+m, j+n) 
is the generation function of the inner kernel at 
position (i, j). Xi+m, j+n is the value of the input 
feature map at position (i+m, j+n). m and n are 
the changes in coordinate positions in different 
directions. Figure 6 shows the framework for 
PCBDD using CA-CBAM-IO-YOLOv5s.
In Figure 6, YOLOv5s serves as the backbone 
network and adds a CA module after each C3 
module. Four CA modules have been added 
in total. Due to the introduction of the CBAM 
module increasing computational complexity, 
the detection speed slows down. Therefore, to 
ensure real-time performance as much as pos-
sible, the network only retains two CBAMs to 
reduce the computational load of the model. Fi-
nally, IO is embedded in the 20th and 26th layers 
of the network, respectively, and an improved 
model, CA-CBAM-IO-YOLOv5s, is ultimate-
ly formed. When using the CA-CBAM-IO-
YOLOv5s model for PCBDD, the PCB image 
is first input into the model, and after process-
ing by the backbone network, the CA mecha-
nism embedded after each C3 module enhances 
the feature expression ability. Subsequently, the 
model further optimizes feature extraction and 
improved detection accuracy by inserting two 
CBAM modules in the neck region. The IO em-
bedded in the 20th and 26th layers will improve 
computational efficiency and reduce parame-
ters by dynamically generating convolutional 
kernels. Finally, the model outputs detection 
results containing defect types and positions, 

achieving efficient and accurate detection of 
PCB surface and internal defects [21].
Based on the above content, IO has been in-
novatively integrated into YOLOv5s model to 
improve the efficiency and flexibility of feature 
extraction by significantly reducing the number 
of parameters and computational complexity 
compared with traditional convolution through 
its dynamic convolution kernel generation ca-
pability. In the YOLOv5s architecture, IO is 
embedded at layers 20 and 26 of the network, 
an integrated strategy that not only optimizes 
feature representation, but also maintains the 
real-time performance of the model. Through 
this integration, IO helps .the model to better 
adapt to local changes in input characteristics, 
while maintaining a balance of detection ac-
curacy and speed, making the improved CA-
CBAM-IO-YOLOv5s model perform well in 
PCB defect detection tasks.

4. Results and Discussion

To demonstrate the good performance of the 
CA-CBAM-IO-YOLOv5s model, this study 
first used ablation experiments to test the 
benchmark performance among various com-
binations of the model. Secondly, Single Shot 
Multi-Box Detector (SSD), YOLOv5s, and 
Mask Region-Based CNN (Mask-RCNN) were 
selected as comparison algorithms to test their 
detection performance. Finally, four detection 
models were constructed using different algo-
rithms to verify the CA-CBAM-IO-YOLOv5s 
in practical defect PCB detection applications.

4.1. Performance Testing of  
CA-CBAM-IO-YOLOv5s  
Algorithm

The PCB dataset selected for the study was 
sourced from Peking University and contained 
693 high-resolution images covering six com-
mon defect types: leaky hole, rat bite, open 
circuit, short circuit, stray and stray copper. 
The number of defects in the image is bal-
anced, the average area ratio is small, and the 
aspect ratio is close to 1, which is suitable for 
small target detection. The dataset was labeled 
in YOLO format and expanded by Music on-
line enhancement strategy to enhance model 
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F1 value balances precision and recall to pro-
vide a comprehensive performance indicator. 
The results of ablation experiments are shown 
in Table 1.
Table 1 lists a total of five different network 
combinations, denoted as M1, M2, M3, M4, and 
M5. Among them, M5 is the final CA-CBAM-
IO-YOLOv5s detection model built. Among 
the five different combinations, M3 has the 
worst benchmark performance test results, with 
precision, recall, and F1 values of 0.864, 0.858, 
and 0.861, respectively. The benchmark per-
formance of M5 combination is the best, with 
three values of 0.978, 0.986, and 0.983, respec-
tively. Ablation results showed that all com-
ponents in the CA-CBAM-IO-Yolov5S mod-
el could promote the detection performance. 
Specifically, the single attention mechanism 
CA or CBAM could already improve the mod-
el performance, but the effect was better when 
combined. Although the internal volume oper-
ator IO has limited performance improvement 
when used alone, it can significantly reduce the 
computational burden and increase the process-
ing power when combined with the attention 
mechanism. The final model CA-CBAM-IO-
YOLOv5s shows excellent performance in pre-
cision, recall rate and F1 value, which proves 
that the model combining these technologies 
can effectively deal with the defect image with 
large amount of data while maintaining high 
detection accuracy. After completing the ab-
lation test, this study compares the loss curve 
changes of SSD, YOLOv5s, Mask-RCNN, and 
CA-CBAM-IO-YOLOv5s in the training and 
testing sets, as exhibited in Figure 7.

generalization. In the experiment, the initial 
learning rate was set to 0.001, the batch size 
was set to 16, and the training period was ini-
tially set to 50 epochs. The size of the anchor 
box obtained using clustering is assumed to be 
(12, 16), (24, 32), (32, 24). The voidage of the 
voidage convolution starts from 1. The selected 
optimizer was Adam, whose β1 and β2 are set 
to 0.9 and 0.999 respectively. SSD, YOLOv5s 
and Mask-RCNN are selected as comparison 
algorithms in the experiment, because they are 
representative advanced algorithms in the field 
of object detection, which can provide perfor-
mance benchmarks and comprehensively eval-
uate the effectiveness of new algorithms. Each 
of these algorithms has its own characteristics, 
covering single-stage to multi-stage detection 
methods, and helps to comprehensively mea-
sure the performance of the newly proposed 
CA-CBAM-IO-YOLOv5s model in terms of 
accuracy, speed, and application potential. By 
comparing with these well-known algorithms, 
the innovation and practical application value 
of the new model can be demonstrated more in-
tuitively.
Considering that the CA-CBAM-IO-YOLOv5s 
model is composed of multiple different mod-
ules, different combination methods are chosen 
to test the ablation performance of the model. 
The detection accuracy (precision), recall rate 
and F1 value are selected as the detection in-
dexes of ablation experiment. Among them, 
precision ensured the accuracy of the model in 
predicting the positive class and avoided mis-
judging the flawless PCB. The recall rate en-
sures that the model can detect as many actual 
defects as possible, reducing missed tests; The 

Table 1. Ablation test results of CA-CBAM-IO-YOLOv5s model.

Network structure Precision Recall F1

CA+YOLOv5s (M1) 0.862 0.885 0.876

CBAM+YOLOv5s (M2) 0.889 0.893 0.890

IO+YOLOv5s (M3) 0.864 0.858 0.861

CA+CBAM+YOLOv5s (M4) 0.942 0.957 0.955

CA+CBAM+IO+YOLOv5s (M5) 0.978 0.986 0.983
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In Figure 7 (a), all four algorithms exhib-
it varying degrees of iterative fluctuations 
during the algorithm process. Compared to 
SSD, YOLOv5s, and Mask-RCNN, CA-
CBAM-IO-YOLOv5s has a smaller fluctua-
tion amplitude and can reach a stable state in 
the training set with only 136 iterations, while 
the other three models require 328, 336, and 
225 iterations. Similarly, in Figure 7 (b), the 

four algorithms can be iterated 331 times, 273 
times, 186 times, and 112 times, respectively, 
to complete the iteration and maintain a sta-
ble loss value. By comparing the error perfor-
mance of four algorithms during the training 
process, the Mean Squared Error (MSE) and 
Mean Absolute Error (MAE) curves shown in 
Figure 8 are obtained.

(a) Loss curve in training set. (b) Loss curve in the test set.

Figure 7. The loss curves of the four algorithms under two data sets.

(a) The results of MSE. (b) The results of MAE.

Figure 8. The MSE and MAE values of the four algorithms.
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In Figure 8 (a), when SSD, YOLOv5s, Mask-
RCNN, and CA-CBAM-IO-YOLOv5s reach a 
stable state, the MSE values of the four algo-
rithms are 0.49, 0.42, 0.31, 0.18, and the MAE 
values are 0.42, 0.34, 0.29, and 0.13. The re-
search algorithm can obtain stable MSE val-
ues at a faster speed and has better error per-
formance. This is because the CA and CBAM 
structures in the model can enhance the main 
network model YOLOv5s's ability to extract 
detailed features, thereby better avoiding 
missed and false detections. Image Ambiguity 
(IA) and Structural Similarity Loss (SSL) are 
used as detection metrics. The lower the IA val-
ue, the lower the ambiguity of the algorithm in 
the detection process [22]. The smaller the SSL 
value, the more complete the image features are 
preserved during the detection process, and the 
lower the damage to the overall image struc-
ture. Figure 9 shows the IA and SSL values of 
four algorithms during testing.
In the IA values shown in Figure 9 (a), when 
the sample size increased from 0 to 400, the 
IA values of the three comparison algorithms 
fluctuate significantly, but the IA values of the 
study algorithms remain below 0.2. Through-
out the training process, the maximum IA val-
ues of SSD, YOLOv5s, Mask-RCNN, and CA-
CBAM-IO-YOLOv5s are 0.65, 0.59, 0.32, and 
0.18. In Figure 9 (b), the maximum SSL values 
of the four algorithms during training are 0.67, 
0.61, 0.28, and 0.20, respectively.

4.2. Analysis of the Practical Application 
Effect of the CA-CBAM-IO-YOLOv5s 
Model

In addition to testing the performance of four 
comparative models, SSD, YOLOv5s, Mask-
RCNN, and CA-CBAM-IO-YOLOv5s, this 
study also selects five types of PCBs with dif-
ferent defect appearances, including leakage de-
fects, open circuit defects, short circuit defects, 
burr defects, and bite defects, as the detection 
objects. Table 2 further tests the performance of 
the four models in actual detection tasks.
Table 2 shows the accuracy and time for detect-
ing five types of defective PCBs, with the re-
search model's being the highest among them. 
When detecting open circuit defects in PCBs, 
the mean detection accuracy of the CA-CBAM-
IO-YOLOv5s can reach 99.02%. In addition, 
the average detection time of this model is also 
lower than the other three, with a minimum of 
0.08 seconds to complete the detection task.
Figures 10 (a) to (d) show the actual perfor-
mance of four models in detecting a defective 
PCB. Based on Figure 10, SSD, YOLOv5s, 
Mask-RCNN, and CA-CBAM-IO-YOLOv5s 
can detect 6, 7, 8, and 12 defective components, 
respectively. In summary, the research model 
has a wider detection range for defective PCBs 
and can accurately detect more defective elec-
tronic components.

(a) IA test result. (b) SSL test results.

Figure 9. Four algorithms for detecting IA and SSL values of different numbers of samples.



247Enhanced YOLOv5s for PCB Defect Detection with Coordinate Attention and Internal Convolution

Table 2. The detection effect of various models for different defective PCB.

PCB type Network structure Average detection  
accuracy/% Average detection time/s

Leaky defect

SSD 86.38% 0.56

YOLOv5s 89.43% 0.34

Mask-RCNN 92.91% 0.25

CA-CBAM-IO-YOLOv5s 98.25% 0.13s

Open circuit defect

SSD 87.08% 0.68

YOLOv5s 88.79% 0.45

Mask-RCNN 93.89% 0.22

CA-CBAM-IO-YOLOv5s 99.02% 0.11s

Short-circuit defect

SSD 87.89% 0.48

YOLOv5s 91.01% 0.35

Mask-RCNN 94.26% 0.21

CA-CBAM-IO-YOLOv5s 98.94% 0.09s

Burr defect

SSD 87.12% 0.50

YOLOv5s 89.56% 0.44

Mask-RCNN 93.28% 0.23

CA-CBAM-IO-YOLOv5s 98.16% 0.08s

Occlusal defect

SSD 85.04% 0.61

YOLOv5s 89.71% 0.49

Mask-RCNN 92.36% 0.27

CA-CBAM-IO-YOLOv5s 97.89% 0.16s
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5. Discussion

The proposed CA-CBAM-IO-YOLOv5s mod-
el performs well in PCB defect detection tasks, 
and its advantages can be attributed to several 
key innovations. First of all, the introduction 
of coordinate attention mechanism (CA) and 
convolutional attention mechanism (CBAM) 
significantly improved the ability of the mod-
el to capture small flaw features. CA enhanced 
the sensitivity of the model to the location of 
defects by embedding spatial position informa-
tion. CBAM, on the other hand, enhances the 
representation power of feature maps through 
fine channel and spatial attention mechanism. 
Moreover, the addition of the IO operator fur-
ther optimizes the computational efficiency of 
the model, reduces the number of parameters, 
and enables the model to maintain high accura-
cy while having faster detection speed.

However, despite the remarkable results 
achieved in the experiment, the model still has 
some limitations, such as the imbalanced sensi-
tivity to specific defect types and the ability to 
generalize under complex environmental con-
ditions. Future work needs to further fine-tune 
the model to achieve wider applicability and 
greater robustness. In addition, the model has a 
broad application prospect in the field of PCB 
manufacturing and quality control, which can 
not only improve the efficiency and accuracy of 
automated inspection, but also has the potential 
to promote the innovation and development of 
quality control in the entire electronics manu-
facturing industry. With the continuous progress 
of technology and the optimization of models, 
its role in actual production will become more 
and more important, providing a stronger guar-
antee for the quality and reliability of electronic 
products.

(c) Mask-RCNN. (d) CA-CB AM-IO-YOLOv5s.

Figure 10. Recognition effects of different models.

(a) SSD. (b) YOLOv5s.
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6. Conclusion

In this study, an enhanced YOLOv5s model is 
proposed, which combines CA, CBAM and 
IO mechanisms to achieve efficient and accu-
rate PCB defect detection. The proposed CA-
CBAM-IO-YOLOv5s model performs well in 
detecting various PCB defects, achieving high 
accuracy (precision, 97.8%), recall rate (98.6%) 
and F1 score (98.3%). The model is capable 
of detecting small defects with high accuracy 
while maintaining low computational complex-
ity, making it a promising solution for industrial 
PCB inspection processes. The integration of CA 
and CBAM mechanisms significantly improves 
the feature extraction capability of the model, 
especially for small defects, while the IO mech-
anism effectively reduces the computational 
burden. These enhancements allow the model 
to outperform existing state-of-the-art methods 
in both accuracy and efficiency. While the cur-
rent study focused on five common PCB defect 
types, future research should explore the model's 
performance across a wider range of defects and 
PCB designs. In addition, the robustness of the 
study model under different imaging conditions 
and its potential in real-time detection systems 
can further enhance its practical applicability. In 
summary, the CA-CBAM-IO-YOLOv5s model 
represents a significant advance in automated 
PCB defect detection, providing a powerful tool 
for improving quality control in the electronics
manufacturing process.
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