
Power Load Prediction Algorithm 
Based on Wavelet Transform

143CIT. Journal of Computing and Information Technology, Vol. 32, No. 3, September 2024, 143–158
doi:  10.20532/cit.2024.1005854

Xu Chen, Haomiao Zhang, Chao Zhang, Zhiqiang Cheng and Yinzhe Xu
State Grid Ningxia Marketing Service Center, State Grid Ningxia Metrology Center, Yinchuan, Ningxia, China

To address the environmental impact, low efficiency, 
and poor accuracy of existing power load prediction 
methods, this study innovatively proposes a power 
load prediction system that combines wavelet trans-
form with digital twin technology. Compared with 
similar power load prediction methods, the proposed 
method achieved the highest power load prediction 
accuracy rate of 97.26%, with the lowest MAPE and 
RMSE being only 3.96% each. Our proposed method 
has good noise resistance and overcomes the disad-
vantage of traditional power load prediction methods 
that are easily affected by the environment. Moreover, 
the false detection rate of the load information data ob-
tained from the power system in the Fuxin area from 
2022 to 2023 was less than 5%, further verifying the 
reliability of the proposed method. This achievement 
is attributed to the powerful signal processing capa-
bilities of the discrete wavelet transform, advanced 
pattern recognition and prediction capabilities of these 
three deep learning network algorithms, and the intel-
ligence of digital twin technology. The combination 
of these three elements has brought new technological 
breakthroughs to the field of power load prediction.
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1. Introduction

With the development of digital and intelligent 
distribution networks, accurate and effective 
power load prediction has become particularly 
important [1]. Timely power load supply can 
ensure stable social development. Accurate 
prediction results can achieve supply-demand 
balance in the power system [2-3]. Therefore, 
in recent years, many scholars both domestical-

ly and internationally have conducted research 
on power load prediction. Xue M et al. aimed 
to effectively balance the peak valley differ-
ence caused by power dispatching, improve 
the power supply utilization rate of power grid 
dispatching, and reduce the power supply pres-
sure of line transformers. Therefore, a power 
load prediction method combining Extreme 
Gradient Boosting (XGBoost) and Long Short 
Term Memory (LSTM) was proposed. The 
experimental results indicated that the meth-
od could support regional load prediction for 
penetration electric vehicles, further success-
fully optimizing the current power dispatch 
method [4]. Kalhori M R N et al. developed a 
data-driven power load prediction system for 
long-term trend related macroeconomic factors 
and short-term temperature factors in power 
generation-transmission expansion planning. 
The designed system performed significantly 
better than other systems in residential, com-
mercial, and agricultural electricity loads [5]. 
Tao Y et al. designed a hybrid energy consump-
tion prediction framework by combining the 
LSTM with the encoder-decoder unit to address 
the shortcomings of historical power load data. 
Several commonly used algorithms were ex-
tensively experimented on integrated cross-do-
main datasets. The experimental results showed 
that the designed framework outperformed ex-
isting methods [6]. Agga F A et al. developed 
a power load prediction model based on deep 
learning networks to address the power outages 
or overproduction in photovoltaic power plants 
under unstable weather conditions. The exper-
imental results showed that when the number 
of hidden layers in deep learning networks 
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changed at different configurations, the model 
performance also varied, but the change in the 
number of hidden layers did not affect the accu-
racy of its power load prediction [7]. 
Wavelet Transform (WT) is an excellent load 
prediction method that can project various se-
quence components onto different scales and 
obtain complete results through wavelet re-
construction. It has been widely applied in 
the field of electricity [8]. Ylmaz A et al. built 
a feature extraction method based on WT to 
classify power quality interference. An exper-
imental Distributed Generation (DG) system 
was constructed in the LabVIEW environment. 
This method had excellent noise sensitivity in 
noise environments of 25dB, 30dB, and 40dB 
[9]. Wang Y et al. proposed a short-term power 
load prediction strategy by combining WT and 
Recurrent Neural Network (RNN) to improve 
the accuracy and reliability of power load pre-
diction. The Mean Absolute Error (MAE) of the 
proposed method was 7.77, and the Root Mean 
Square Error (RMSE) was 17.41 [10]. Ruiz M 
et al. proposed a WT-based power quality sig-
nal compression rate algorithm to manage the 
large amount of data obtained by telecommu-
nications networks and avoid the cost increase 
caused by a large number of data storage de-
vices. The optimal compression rate of the al-
gorithm was 99.80%, the RTE was 99.95%, 
the Normalized Mean Square Error (NMSE) 
was 0.000434, and the Cross-Correlation was 
0.999925 [11].
In summary, existing power load prediction 
methods still have significant shortcomings, 
especially in dealing with the limitations when 
processing massive data sources and identify-
ing prediction issues in complex environments. 
Some studies attempt to improve the accuracy 
of power prediction by integrating deep learn-
ing models, such as RNN and LSTM, and us-
ing WT to perform frequency decomposition 
on load sequences to achieve model general-
ization. However, they still cannot accurately 
grasp the impact of load change patterns and 
environmental factors, resulting in low over-
all performance and difficulty in adapting to 
the power load characteristics of different re-
gions or time periods. In response to these 
limitations, this study innovatively utilizes the 
power digital twin application framework and 
a deep learning network algorithm to propose 

a WT-based power load prediction algorithm 
and a power digital twin application framework 
combined with load prediction. The WT-based 
power load prediction algorithm utilizes en-
semble learning theory and integrates various 
deep learning networks to solve the long-term 
dependence on information loss and noise in-
terference in traditional WT algorithms. This 
ensemble method not only improves the ability 
to grasp the load change patterns, but also en-
hances the system's robustness to environmen-
tal factor changes. The digital twin application 
framework for power load prediction creates a 
virtual replica of the power system, which can 
simulate and predict the system's behavior un-
der different conditions, providing support for 
real-time monitoring and decision-making of 
the power system. The application of digital 
twin technology makes the prediction model 
more flexible to adapt to different operating 
conditions, improving the model's universality 
and generalization ability. By innovatively inte-
grating various deep learning networks, digital 
twin technology, and WT, advanced technical 
support has been provided for the field of pow-
er load prediction, promoting technological 
progress in this field. This study is divided into 
four parts. The first part is the research analysis 
and summary of various researchers. The sec-
ond part introduces the improved power load 
prediction algorithm and the application frame-
work of power digital twin. The third part tests 
the designed method. Finally, the last part sum-
marizes the article.

2. Methods and Materials

In order to better remove noise interference 
from the original power load data and address 
the problems in power load prediction, this 
study introduces the Discrete Wavelet Trans-
form (DWT) method. Then the DWT method 
is optimized by ensemble learning. Secondly, 
the application framework of digital twin is de-
signed having five dimensions, combined with 
an improved power load prediction algorithm. 
Finally, a novel power load prediction system 
combining DWT and digital twin is proposed, 
aiming to improve the accuracy and detection 
efficiency of power load prediction and ensure 
timely power load supply in the distribution 
network.
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reconstruction stage, the low-frequency and 
high-frequency coefficients obtained in the 
wavelet decomposition stage are subjected to 
wavelet reconstruction to obtain low-frequen-
cy and high-frequency signals. Finally, load 
prediction is performed on signals with differ-
ent frequencies to obtain the prediction results. 
The coefficient matrix Vx( j, k) of wavelet de-
composition is shown in equation (1).
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and   represent basic functions and wavelet ba-
sis functions, respectively. a0

-jt represents the 
time shift factor. j and k represent constants. 
The low-frequency coefficient A1(n) of DTW is 
shown in equation (2).

A1(n) = f(k) ∙ h(k - n)               (2)

In equation (2), f(k) represents the discrete. 
h(k - n) represents the low-pass coefficient of 
the wavelet analysis filter. The high-frequency 
coefficient of DTW is shown in equation (3).

D1(n) = f(k) ∙ g(k - n)               (3)

2.1. Construction of Power Load 
Prediction Algorithm Based on 
Wavelet Transform

Power load prediction algorithms directly af-
fect the accuracy of power load prediction 
results. The current intelligent power load 
prediction methods usually combine WT for 
feature extraction to smoothly classify Power 
Quality Disturbance (PQD) [12–13]. WT is a 
mathematical transformation method that can 
decompose a signal into wavelet functions to 
analyze the local characteristics of the signal. 
This transformation is widely applied in the 
fields of signal processing, image processing, 
data compression, and other areas. The com-
mon WT methods can be divided into three 
types, namely Continuous Wavelet Transform 
(CWT), DWT, and Wavelet Transform Recon-
struction (WTR) [14]. DWT can transform 
continuous wavelets into discrete sequences, 
minimizing redundancy to the greatest extent 
possible [15]. Therefore, in order to better re-
move the noise from the original power load 
data, the DWT method is adopted in the study, 
as displayed in Figure 1.
In Figure 1, DTW generally contains two stag-
es, namely the wavelet decomposition and 
the wavelet reconstruction [16]. Firstly, in the 
wavelet decomposition stage,  load data are 
subjected to WT and single branch reconstruc-
tion to obtain low-frequency and high-fre-
quency coefficients. Secondly, in the wavelet 

Figure 1. Structure of the DWT.
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In equation (3), g(k - n) represents the high-
pass coefficient of the wavelet analysis filter. 
However, a simple DWT method cannot meet 
the requirements of current power load predic-
tion. Ensemble learning constructs multiple in-
dividual learners and by combining them using 
specific combination strategies it is possible to 
produce a more powerful learner [17]. A sig-
nificant improvement in data prediction perfor-
mance can be achieved, making the algorithm 
more fault-tolerant and disturbance resistant 
[18–19]. Multiple learners are independent 
of each other, and the prediction accuracy of 
each learner itself should not be less than 50%. 
The Deep Belief Network (DBN), LSTM, and 
Multi-layer Perceptron (MLP) deep learning 
algorithms precisely meet this requirement. 
Furthermore, DBN constructs a deep network 
by stacking multiple Restricted Boltzmann Ma-
chines (RBMs), which can automatically ex-
tract advanced features from data and enhance 
the model's generalization ability. LSTM can 
avoid gradient vanishing in traditional RNNs 
and effectively capture long-term dependencies 
in time series through its gating mechanism. 
MLP can learn the nonlinear mapping rela-
tionships between input features and outputs. 
Therefore, the study combines these three deep 
learning network algorithms through ensemble 
learning to construct an ensemble deep learn-
ing algorithm, namely DBN-LSTM-MLP algo-
rithm. The process framework of this algorithm 
is shown in Figure 2.
As shown in Figure 2, the study uses a simple 
averaging method to combine these three deep 

learning algorithms. Firstly, these raw load data 
are preprocessed and divided into training and 
testing sets. Secondly, the dataset is subjected 
to WT using DBN, LSTM, and MLP, respec-
tively, to obtain three different prediction re-
sults. Finally, the predicted values are subjected 
to inverse normalization, and the final load pre-
diction result is obtained by taking the average. 
The prediction error is calculated based on the 
prediction result. The output of DBN is shown 
in equation (4).

yDBN (xi) = fDBN (xi, θDBN)             (4)

In equation (4), yDBN (xi) represents the explana-
tory variable vector. fDBN represents the function 
that maps the control variable vector to the ex-
planatory variable vector. xi and θDBN represent 
the control variable vector and the parameters 
of the trained DBN, respectively. The DBN loss 
function L(x, x*) is displayed in equation (5).

L(x, x*) = || x - x* ||22              (2)
In equation (5), x and x* represent the input 
data vector and the reconstructed data vector, 
respectively. The output of LSTM is shown in 
equation (6).

yLSTM (xl) = fLSTM (xl, θLSTM)             (6)
In equation (6), yLSTM (xl) represents the out-
put corresponding to the input data vector xl in 
LSTM. fLSTM represents the corresponding rela-
tionship of LSTM network mapping. θLSTM rep-
resents the parameter value within LSTM. The 
output of MLP is shown in equation (7).

yMLP (xt) = fMLP (xt, θMLP)             (7)

Figure 2. Process framework diagram of DBN-LSTM-MLP algorithm.
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In equation (7), yMLP (xt) represents the output 
value of MLP. fMLP represents the mapping of 
the trained MLP with respect to input and out-
put. xt and θMLP represent the input vector and 
the parameter of the trained MLP, respectively. 
The output value xij of each neuron in the MLP 
feedforward process is shown in equation (8).

xij = σ(wi xi-1 + bi-1)                (8)
In equation (8), σ and wi represent the Sigmoid 
activation function and weight vector, respec-
tively. xi-1 and bi-1 represent the input vector of 
layer i-1 and the bias of layer  , respectively. 
The feature normalization calculation is shown 
in equation (9).

min

max min
norm

X XX
X X

−
=

−                  
(9)

In equation (9), Xnorm represents the normalized 
value. X, Xmax and Xmin represent the initial data, 
the maximum value of the initial data, and the 
minimum value of the initial data, respectively. 
Based on the above improvements, the DBN-

LSTM-MLP algorithm is combined with DTW 
to propose a power load prediction algorithm, 
namely DTW-DBN-LSTM-MLP algorithm. 
The framework flow of the DTW-DBN-LSTM-
MLP algorithm is shown in Figure 3.
A shown in Figure 3, the study first uses the 
DTW method to decompose the experimental 
data into multiple wavelet components and pre-
dicts components of different frequencies sepa-
rately to improve prediction accuracy. Then, WT 
and single branch reconstruction are performed 
on these load data to obtain low-frequency and 
high-frequency coefficients. Wavelet recon-
struction is performed on each frequency com-
ponent to obtain low-frequency and high-fre-
quency signals. Finally, the DBN-LSTM-MLP 
prediction algorithm for each wavelet compo-
nent is trained using these data from the train-
ing set. The trained prediction algorithm is used 
to predict each wavelet component in the test-
ing set. Finally, the prediction results and pre-
diction errors are obtained. The prediction val-
ue of the DTW-DBN-LSTM-MLP algorithm is 
shown in equation (10).

Figure 3. Framework flow of DTW-DBN-LSTM-MLP algorithm.
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In equation (10), y* represents the prediction 
result vector of the DTW-DBN-LSTM-MLP al-
gorithm. yD, j and yA represent the prediction re-
sults of the high-frequency and low-frequency 
components using the DTW-DBN-LSTM-MLP 
algorithm, respectively.

2.2. Construction of Power Load 
Prediction System Combining 
Wavelet Transform and Digital Twin

As a bridge between the physical world and the 
digital world, digital twin technology can sim-
ulate and predict the behavior of physical enti-
ties under different conditions by creating vir-
tual replicas. In power systems, digital twin can 
construct virtual models of electrical equipment 
to monitor and predict the state and perfor-
mance of the power system in real time. A pow-
er load prediction system that combines WT 
and digital twin technology can fully leverage 
the advantages of both to achieve more accurate 
predictions. To promote the better application 
of digital twin technology in power load pre-
diction systems, a basic application framework 
is established to provide architectural support 
for subsequent applications. The commonly 
used digital twin technologies at present mainly 

include five parts: physical entities, virtual en-
tities, twin data, connections, and services [20]. 
However, the digital twin technology at home 
and abroad is still in the exploratory stage, and 
existing technologies cannot meet the effective 
prediction of power load in the power system. 
The basic process of power load prediction is 
shown in Figure 4.
In Figure 4, the power load prediction has two 
stages, namely the data preparation and the 
model construction. The former collects real 
and reliable electricity load data. Then, the col-
lected power load data is preprocessed and di-
vided into training, validation, and testing sets. 
Secondly, during the model construction phase, 
the model is continuously improved and adjust-
ed to its optimal state through evaluation and 
testing in the validation set. Finally, the testing 
set is input into the model and adjusted to the 
optimal state to obtain the final prediction re-
sults. However, the process of power load pre-
diction is influenced by many different factors. 
Therefore, to avoid the influence of multiple 
factors, the digital twin application framework 
is designed utilizing five dimensions [21]. The 
structure of the power digital twin application 
framework is shown in Figure 5.
As shown in Figure 5, the designed power digi-
tal twin application framework mainly consists 
of five parts: the data center, digital distribution 
network, transmission connection, physical 

Figure 4. Electricity load prediction process flow.
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distribution network, and application services. 
The physical distribution network is mainly 
composed of physical entities, such as distri-
bution network infrastructure, sensors, commu-
nication equipment, edge computing devices, 
jointly responsible for the precise perception, 
collection, and real-time stable transmission of 
data on the status, electrical, physical, sound, 
environment, and other aspects of each link 
[22–23]. The digital distribution network is a 
complete mapping of physical entities in the 
digital space, providing intelligent and digital 
support for physical entities. The transmission 
connection section is responsible for stable, re-

liable, and efficient communication transmis-
sion connections between various links. The 
data center is responsible for data management 
and virtual real integration. The application ser-
vices mainly serve scenarios such as optimized 
scheduling, coordinated control, monitoring 
and analysis, data prediction, and state estima-
tion. Finally, based on the proposed digital twin 
application framework and the DTW-DBN-
LSTM-MLP algorithm, a power load prediction 
system combining the DTW-DBN-LSTM-MLP 
load prediction algorithm and digital twin is 
proposed. The flowchart of the system is shown 
in Figure 6.

Figure 5. Power digital twin application framework architecture diagram.
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As shown in Figure 6, the power load predic-
tion system, which combines DWT and digi-
tal twin, mainly consists of four parts: digital 
distribution network, physical distribution 
network, data center, and application services 
[24–25]. Firstly, the data center integrates the 
data input from the digital distribution network 
and the physical distribution network to quickly 
extract the time-frequency domain features of 
these fused data. Secondly, load identification 
is carried out using the DTW-DBN-LSTM-
MLP algorithm. Finally, the recognition result 
is output. Due to the significant differences be-
tween values in the power load data, to assess 
the effectiveness of power load prediction, the 
study selects Mean Absolute Percentage Error 
(MAPE) as the main evaluation indicator for 
power load prediction. The MAPE is shown in 
equation (11).

*

100%
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i i
i
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Y Y
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Y N

−
= ×
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(11)

In equation (11), Yi* and Yi represent the pre-
dicted and true values, respectively. N rep-
resents the number of experiments.

3. Results

To verify the performance of the DTW-DBN-
LSTM-MLP algorithm and the power load 
prediction system combining DWT and digital 
twin, a suitable experimental environment is 
first established. The test data are preprocessed, 

with a portion of the data used for training. Sec-
ondly, performance and simulation experiments 
are conducted on the DTW-DBN-LSTM-MLP 
algorithm and the power load prediction system 
combining DWT and digital twin to verify the 
actual effectiveness.

3.1. Performance Testing of DTW-DBN-
LSTM-MLP Power Load Prediction 
Algorithm

The study uses the Windows 10 operating sys-
tem, equipped with Intel Core i7 CPU, NVID-
IA GeForce GPU, and 64GB of memory. The 
PLAID dataset and Simulink dataset are used 
as test data sources, dividing into training and 
testing sets in a 6:4 ratio. The number of neu-
rons in the first hidden layer of the MLP is set 
to 15, and the number of neurons in the second 
hidden layer is set to 4. For the DBN, the first 
hidden layer has 42 neurons, and the second 
hidden layer has 8 neurons. To verify the over-
all impact of each module in the DTW-DBN-
LSTM-MLP power load prediction algorithm, 
the study first conducts ablation testing with 
detection accuracy as the indicator. Figure 7 
displays the test results.
Figures 7 (a) and 7 (b) show the ablation test 
results on the PLAID and Simulink datasets at 
20, 40, 60, 80, and 100 iterations, respectively. 
In the Simulink dataset, the detection accura-
cy of the four algorithms DTW, DTW-DBN, 
DTW-LSTM, and DTW-DBN-LSTM-MLP 
were 74.42%, 75.32%, 77.69%, and 97.85%, 
respectively. However, due to the relatively 

Figure 6. Flow chart of the system.
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single collection environment and fixed electri-
cal parameters on the PLAID dataset, there is 
a significant difference between the extracted 
sample instances and the original dataset. As a 
result, the detection accuracy is relatively re-
duced [26]. The detection accuracy of the four 
algorithms DTW, DTW-DBN, DTW-LSTM, 
and DTW-DBN-LSTM-MLP were 59.98%, 
73.84%, 78.68%, and 93.24%, respectively. 
The DBN, LSTM, and MLP modules all play 
a positive role in promoting the final DTW-

DBN-LSTM-MLP algorithm. Secondly, the 
study introduces the Generalized Auto-regres-
sive Conditional Heteroscedasticity (GARCH), 
Auto-regressive Integrated Moving Average 
model (ARIMA), and Artificial Neural Net-
work (ANN) as comparison algorithms for 
power load prediction. Subsequently, the study 
conducts multi-indicator tests on the four algo-
rithms, including Precision (P), Recall (R), F1 
value, and average detection time, as displayed 
in Table 1.

Figure 7. Overall impact of each module in the DTW-DBN-LSTM-MLP algorithm.

(a) Simulink. (b) PLAID.

Table 1. Comparison test results of multiple indicators.

Data set Algorithm P/% R/% F1/% Average  
detection time/s T-test

PLAID

ANN 64.24 57.67 62.08 8.28 0.053

GARCH 73.89 70.62 73.87 7.02 0.042

ARIMA 76.97 68.88 73.43 6.38 0.031

DTW-DBN-LSTM-MLP 93.67 89.37 91.65 3.74 0.012

Simulink

ANN 89.31 88.18 88.35 5.69 0.048

GARCH 88.54 88.80 88.72 4.78 0.036

ARIMA 91.46 90.76 91.15 3.06 0.029

DTW-DBN-LSTM-MLP 95.58 93.88 95.42 2.61 0.008
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scores of 93.67%, 89.37%, and 91.65%, respec-
tively, and a T-test significance level of 0.012, 
proving its superior predictive performance. 
The DTW-DBN-LSTM-MLP algorithm has 
achieved the best performance on both datasets, 
confirming its efficiency and accuracy in power 
load prediction tasks, and the significance level 
of the T-test also verifies the statistical signifi-
cance of these results. These outcomes suggest 
that the DTW-DBN-LSTM-MLP algorithm 
is suitable for precise power load prediction, 
which can provide reliable decision support for 
the operation and management of smart grids. 
Subsequently, the detection classification con-
fusion matrices of the four algorithms on the 
Simulink dataset are shown in Figure 8.

Table 1 presents a comprehensive performance 
comparison of four algorithms on both the 
PLAID and Simulink datasets, including ANN, 
GARCH, ARIMA, and DTW-DBN-LSTM-
MLP. The DTW-DBN-LSTM-MLP algorithm 
demonstrates exceptional performance in power 
load prediction, achieving high precision and ef-
ficiency on both PLAID and Simulink datasets. 
On the Simulink dataset, the average detection 
time of the DTW-DBN-LSTM-MLP algorithm 
was 2.61s, with P, R, and F1 scores reaching as 
high as 95.58%, 93.88%, and 95.42% respec-
tively, and a T-test significance level of 0.008, 
indicating a statistically significant advantage. 
On the PLAID dataset, the algorithm's aver-
age detection time was 3.74s, with P, R, and F1 

Figure 8. Confusion matrix results for electricity load prediction algorithms.

(a) ANN. (b) GARCH.

(c) ARIMA. (d) DTW-DBN-LSTM-MLP.
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Figures 8 (a), 8 (b), 8 (c), and 8 (d) show the con-
fusion matrix results of ANN, GARCH, ARI-
MA, and DTW-DBN-LSTM-MLP algorithms 
for four types of power loads: resistive load, 
motor load, industrial load, and power electron-
ic load. As shown in Figure 8, faced with four 
different types of power loads, the ANN algo-
rithm detected two types of power loads well, 
while GARCH and ARIMA detected three 
types of power loads. Relatively speaking, the 
DTW-DBN-LSTM-MLP algorithm detected all 
types of power loads, with excellent detection 
applicability and classification efficiency, and 
its scores were all above 60 points.

3.2. Simulation Testing of Power Load 
Prediction System Combining 
Wavelet Transform and Digital Twin

After verifying the performance of the power 
load prediction algorithm DTW-DBN-LSTM-
MLP, further experimental tests are conducted 
on the power load prediction system combining 
DWT and digital twin. The power system load 
information data of the Fuxin region from 2022 
to 2023 is selected as the simulation environ-
ment. Based on the DTW-DBN-LSTM-MLP 
power load prediction algorithm framework, 
it is integrated with the improved power dig-
ital twin application framework to construct a 
power load prediction system. To evaluate the 

robustness of the proposed system to noise, the 
power load prediction system is tested. Taking 
the signal-to-noise ratios of 10 dB, 15 dB, 20 
dB, and 30 dB as examples, the power load 
prediction system combining DWT and digital 
twin is tested. Table 2 displays the test results.
According to Table 2, the new power load pre-
diction system only showed a significant perfor-
mance decrease when the signal-to-noise ratio 
dropped to 10dB. Before improving the power 
digital twin application framework, the highest 
accuracy of the proposed power load prediction 
method was 95.34%, and the lowest MAPE and 
RMSE were 4.58% and 61.08%, respectively. 
After improvement, the highest accuracy of 
power load prediction application system was 
97.26%, and the lowest MAPE and RMSE were 
3.96% and 3.96%. The above experimental data 
effectively proves that the power load prediction 
system combining WT and digital twin technol-
ogy has excellent noise resistance. The method 
of integrating various deep learning algorithms 
enhances the robustness of the system to noise 
and improves its ability to grasp load change 
patterns. In addition, the study also introduces 
power load prediction algorithms commonly 
used in power digital twin application systems, 
namely FFT-BDT, VI image-CNN, HT-LSTM, 
and the DTW-DBN-LSTM-MLP algorithm for 
comparative testing. The test results are shown 
in Figure 9.

Table 2. Test results for different signal-to-noise ratios.

Framework Signal-to-noise 
ratio/dB Accuracy/% MAPE/% RMSE/%

Before  
improvement

10 80.27 7.63 68.34

15 89.68 6.34 66.32

20 91.25 5.68 64.25

30 95.34 4.58 61.08

After  
improvement

10 82.65 7.01 65.25

15 90.09 6.12 62.18

20 93.56 5.07 60.29

30 97.26 3.96 59.87
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Figure 9 (a), Figure 9 (b), Figure 9 (c), and Fig-
ure 9 (d) respectively show the false detection 
rate test results of the load information data 
obtained by the power digital twin application 
system combining FFT-BDT, VI image-CNN, 
HT-LSTM, and DTW-DBN-LSTM-MLP in the 

Fuxin area power system in 2022 and 2023. 
As shown in Figure 9, when the number of 
data samples was 100, the power digital twin 
application system combining FFT-BDT, VI 
image-CNN, HT-LSTM, DTW-DBN-LSTM-
MLP power load prediction algorithms had a 

(a) FFT-BDT.

(c) HT-LSTM.

(b) VI image-CNN.

Figure 9. False detection rate test result.

(d) DTW-DBN-LSTM-MLP.
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false detection rate of 7.89%, 6.58%, 5.74%, 
and 2.86% in the load information data ob-
tained by the power system in Fuxin area in 
2022. When the number of data samples was 
500, the false detection rates of each system 
were 9.64%, 7.48%, 6.28%, and 4.22%, re-
spectively. The false detection rate of the pro-
posed system was the lowest. When the number 
of data samples was 100, 200, 300, 400, and 
500, the false detection rates of the load infor-
mation data obtained by the power system in 
Fuxin area in 2023 were 2.71%, 3.32%, 3.76%, 
4.07%, and 4.22%, respectively. In conclusion, 
the proposed system has good accuracy in pow-
er load prediction. Finally, due to the high vari-
ability of data resources in small sample sizes, 
the study conducts 10 repeated experiments on 
the system, taking stability as an indicator. The 
test results are shown in Figure 10.
Figures 10 (a) and 10 (b) show the Standard 
Deviation of F1-score (STDEV) test results ob-
tained by four different power digital twin ap-
plication systems in the Fuxin area power sys-
tem in 2022 and 2023, respectively. If the value 
of STDEV is small, it indicates that the perfor-
mance of the system fluctuates less in differ-
ent experiments, and the stability of the system 
is better. In low-shot scenarios, the STDEV of 
each system was relatively high. As the number 
of shots increased, the STDEV values of each 
system gradually decreased in high-shot sce-
narios. The reason is that the system can obtain 
more training data in high-shot environments, 
which can make it better generalize to new data. 
In Figure 10 (a), at 100-shot, the STDEV val-
ues of the power digital twin application system 
combined with FFT-BDT, VI image-CNN, HT-
LSTM, DTW-DBN-LSTM-MLP prediction al-
gorithms were 0.041, 0.045, 0.050, and 0.025, 
respectively. In Figure 10 (b), the STDEV val-
ues of the power digital twin application system 
combined with FFT-BDT, VI image-CNN, HT-
LSTM, and DTW-DBN-LSTM-MLP predic-
tion algorithms at 100-shot were 0.028, 0.096, 
0.085, and 0.013, respectively. From this, the 
power digital twin application system com-
bined with the DTW-DBN-LSTM-MLP power 
load prediction algorithm has a lower STDEV 
value, proving that the power digital twin appli-
cation system has superior stability.

Figure 10. System stability test results.

(a) 2022

(b) 2023

4. Discussion

With the rapid development of smart grids, 
power load prediction has attracted widespread 
attention as a key technology for optimizing 
the operation and management of power grids. 
Accurate load prediction not only contributes 
to the economic dispatch of the power grid, 
but also improves its reliability and stability, 
effectively addressing the challenges brought 
by supply and demand fluctuations. Therefore, 
this study uses DWT to perform frequency de-
composition on load sequences, in order to ad-
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dress the characteristic multi period variations 
of current power system loads. Furthermore, 
leveraging the distinct features of various deep 
learning methods, a robust learner based on 
deep learning is established through a simple 
averaging ensemble method, providing a foun-
dation for the subsequent development of intel-
ligent power load prediction systems. Jalalifar 
R et al. discovered that the combining DWT 
and deep learning is effective in time series and 
load prediction for distribution networks. In the 
two-week short-term power load prediction, the 
method combining DWT with deep learning 
outperforms algorithms such as Support Vector 
Machines (SVM), LSTM, and Convolutional 
Gated Recurrent Units [27]. Gimonkar R M 
et al. processed multiple neural networks with 
DWT, decomposing historical power load data 
into multiple wavelet coefficients, which were 
then used to train neural networks and served 
as inputs for power load prediction. Case stud-
ies showed that the proposed method offered 
high predictive accuracy [28]. Kelly et al. ap-
plied Deep Neural Networks (DNNs) and dig-
ital twin technology to power load prediction 
systems with good results. This indicates that 
the integration of deep learning algorithms with 
digital twin technology is beneficial for load 
prediction in power systems [29].
In summary, the research findings support the 
hypothesis of combining DTW, DBN-LSTM-
MLP and digital twin technology. In balancing 
accuracy and load calculation scenarios, at-
tempting to combine more deep learning algo-
rithms with digital twin technology can further 
explore the potential of deep learning applica-
tions in load prediction and provide intelligent 
technology and decision support for distribu-
tion networks.

5. Conclusion

With the increasing complexity of the pow-
er system and the rapid growth of power data, 
traditional analysis and optimization methods 
were unable to meet the requirements of load 
prediction in new power systems. A compre-
hensive and innovative power load prediction 
algorithm based on DWT digital twin was pro-
posed in response to this current situation. The 
ablation test results indicated that the DBN 

module, LSTM module, and MLP module all 
had a certain positive promoting effect on the 
DTW-DBN-LSTM-MLP power load prediction 
algorithm. In multi-indicator testing, the DTW-
DBN-LSTM-MLP power load prediction algo-
rithm had the best detection accuracy and com-
prehensive quality on both PLAID and Simulink 
datasets. The average detection time on the Sim-
ulink dataset was 2.61s, and the P, R, and F1 
values were 95.58%, 93.88%, and 95.42%, re-
spectively. Compared with other power digital 
twin application systems that combined differ-
ent power load prediction algorithms, the power 
digital twin application system combined with 
DTW-DBN-LSTM-MLP power load predic-
tion algorithm achieved the highest power load 
prediction accuracy, at 97.26%, and the lowest 
MAPE and RMSE were only 3.96% and 3.96%, 
respectively. The system had the lowest false de-
tection rate. When the number of data samples 
was 100, 200, 300, 400, and 500, the false detec-
tion rates of the load information data obtained 
by the power system in Fuxin area in 2023 were 
only 2.71%, 3.32%, 3.76%, 4.07%, and 4.22%, 
respectively. In summary, the proposed method 
outperforms most existing methods in various 
indicator and simulation tests, achieving a high 
detection accuracy, low false alarm rate, stabil-
ity, and excellent operational efficiency. How-
ever, the proposed method is only applicable to 
power load prediction. In the future, other meth-
ods will be combined to construct a more ac-
curate and robust power comprehensive system 
detection method.
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