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Due to the complexity of fault states and the non-lin-
ear relationship between input and output responses, 
fault diagnosis in complex power circuit systems faces 
significant challenges. This study proposes a novel hy-
brid method, PW-FBPNN, which integrates principal 
component analysis (PCA), wavelet packet transform 
(WPT), and fuzzy back propagation neural network 
(FBPNN) to enhance fault diagnosis. The effectiveness 
of this method was demonstrated through experiments 
on the voltage divider basic operational amplifier and 
the second-order filter circuit of the four operational 
amplifiers. PW-FBPNN achieved 100% accuracy in 
diagnosing most types of faults, with a minimum ac-
curacy of 91.67% for challenging faults. This method 
was significantly superior to existing methods such as 
FCM-HMM-SVM and KICA-DNN in terms of accu-
racy and computational efficiency and could complete 
the diagnosis in just 0.01 seconds. These results in-
dicate that PW-FBPNN has the potential to improve 
fault diagnosis in power circuit systems, providing a 
promising solution for enhancing system reliability 
and maintenance efficiency.
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1. Introduction

The adjustment of China's energy structure has 
made the construction of a power system an 
important task in the current power sector [1]. 
According to the prediction of State Grid En-
ergy Academy, by 2030, China's new energy 
will become the largest power source in terms 
of installed capacity, which also marks the de-
velopment of the power system into a critical 
stage [2]. The power system mainly based on 
new energy is a complex giant system with 
multi-temporal and spatial scales, multi-level 
and multi-system coupling, which supports the 
access of a large number of power electronic 
devices [3–4]. The fast response characteristics 
of power electronic devices for power circuit 
system (PCS) bring new stable forms of pow-
er electronics related to broadband oscillation 
[5]. However, when a fault occurs in a PCS 
system, analog circuits face great challeng-
es in fault diagnosis due to the complexity of 
fault states, the complexity and variety of fault 
characteristics, and the existence of various 
nonlinear relationships between the input and 
output responses, which cannot be analyzed by 
constructing the corresponding mathematical 
models [6]. A fuzzy neural network can handle 
fuzzy knowledge well with self-learning ability 
and strong parallel processing capability. It is 
well suited for the uncertainty and complexity 
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of relationships in power circuit fault diagno-
sis. The nonlinearity, high difficulty, and mul-
tiplicity of influencing factors inherent to fault 
diagnosis in the extant power system impose 
severe constraints on its intelligent develop-
ment. The study combines principal compo-
nent analysis (PCA) with wavelet packet trans-
form (WPT) for circuit fault characterization. 
The study then introduces fuzzy theory for 
optimization on the basis of error back prop-
agation neural network (BPNN), which leads 
to fuzzy BPNN (FBPNN). Finally, it obtains 
a complete intelligent fault diagnosis method 
(PW-FBPNN) based on the PCA method, the 
WPT method and FBPNN. The objective of this 
research is to address the limitations of analog 
circuits, and the challenges associated with 
identifying and accurately diagnosing faults 
when the PCS system encounters failure. The 
research method solves the problem of high di-
mensionality of raw data in power circuit fault 
diagnosis through the PCA-WPT method and 
solves the problem of easily getting stuck in 
local minima in PCS fault diagnosis through 
the PW-FBPNN fault diagnosis method. The 
innovations of the study are mainly the follow-
ing. First, a PCA method combined with WPT 
method is proposed to solve the problem of too 
high dimensionality of the original data and to 
remove the redundant information. Second, a 
PW-FBPNN-based fault diagnosis method is 
designed to solve the problem of easily get-
ting trapped into local minima with slow con-
vergence speed. The structure of the study is 
divided into four main parts. The first part is 
a review of the relevant research results. The 
second part is the design of the PCS system 
with PE-FBPNN-based circuit fault diagnosis 
method. The third part is the validation of the 
effectiveness of the proposed method of the 
study. The last part summarizes the research. 
The objective of the research is to address the 
tolerance issues and inability to locate and ac-
curately analyze faults in simulated circuits 
during PCS system failures. This is done in or-
der to ensure the safe and stable operation of 
PCS systems and to promote the development 
of circuit fault diagnosis technology.

2. Related Work

The electric power system is an important pow-
er source for industrial production and an im-
portant energy support module for commercial 
on-line services, which has an important practi-
cal value. However, circuit faults can adversely 
affect the regional power quality of the power 
system. Moreover, circuit fault diagnosis is dif-
ficult and requires long time troubleshooting by 
relevant personnel. The fuzzy neural network 
(FNN) is particularly well-suited for represent-
ing fuzzy experience and knowledge, and thus 
is an effective tool for processing fuzzy infor-
mation in practical applications, whereby valu-
able insights can be gleaned. Cho et al. proposed 
a fault diagnosis algorithm based on switch 
functions to protect power systems from fatal 
damage caused by circuit faults. The simula-
tion results demonstrated that the system exhib-
ited robust resistance to discontinuous current 
mode operation, enabling it to make decisions 
in response to fault occurrence and fault type 
within a time frame of less than two switching 
periods [7]. Liu et al. proposed a wireless sen-
sor control strategy for a five-phase permanent 
magnet synchronous motor based on a medium- 
and high-speed twisted sliding film observer to 
improve the reliability of the system position 
estimation during single-phase open-circuit 
faults. The results revealed that the method was 
robust to various external variations in circuit 
fault diagnosis [8]. Zhang et al. designed a hy-
brid DC circuit breaker natural commutation 
current topology with integrated fault current 
limitation for realizing short circuit fault protec-
tion in high voltage DC transmission. The ring 
experiments verified the correctness and feasi-
bility of the research method [9]. Mahfoudh et 
al. proposed a mutual correlation based electro-
magnetic interference analysis to extract open 
switching fault characteristics in three level 
circuit inverters. Simulation results verified the 
effectiveness of the research method for fault 
diagnosis [10]. Ivanov et al. provided a meth-
od for training datasets for FNNs that could be 
applied to quickly obtain probabilistic estimates 
of anomalous critical events or causes of acci-
dents in diagnostic systems. It enabled relative-
ly accurate probabilistic estimation of faults at a 
low cost of computational resources [11]. Liu et 
al. designed a locally linear FNN based on the 
realization of developing a generalized method 
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3.1. Power Circuit System and Fault Data 
Preprocessing

The power system is a large and complex net-
work that contains four links: power generation, 
transmission, distribution and consumption, 
which are interrelated and influenced by each 
link [15–16]. The advent of high-voltage trans-
mission technology has necessitated the inter-
connection of power plants that are geographi-
cally separated by a certain distance via power 
lines. This enables the reliable and economic 
supply of power to isolated power plants, there-
by constituting a unified PCS system [17–18]. 
If a fault occurs in one of the circuits, it may 
have a great impact on the power supply of the 
region, so it is extremely important to imple-
ment intelligent fault diagnosis methods. The 
architecture of the PCS system is schematically 
shown in Figure 1.
In Figure 1, the PCS system broadens the tra-
ditional relatively homogenized electric energy 
transmission network into a multifaceted intelli-
gent transmission network. Each part of the en-
ergy conduction is connected through the circuit 
to further enhance the optimized allocation of 
electric energy in a wide range. The traditional 
circuit fault diagnosis method is mainly through 
the instrument to carry out point-by-point test-
ing and then through the experience and knowl-
edge of the relevant personnel to identify the 
faults that occur in the system. However, with 
the continuous development of industrial and 
intelligent technologies, analog circuits are 
developing towards a larger scale and a more 
complex trend, which makes the traditional hu-
man-made circuit fault diagnosis methods face 
great challenges [19–20]. Troubleshooting is 
to test the faulty circuit and analyze and judge 
the category from the result, then it can be con-
venient for the subsequent repair. However, 
the following problems exist when performing 
fault diagnosis. First, since the parameter vari-
ations of different components are continuous, 
it is difficult to realize rapid diagnosis once the 
components produce faults. Second, the com-
ponents themselves have a certain tolerance 
range, and when only one component is in the 
safe tolerance range, it cannot be regarded as a 
fault. However, a number of component toler-
ances can lead to cumulative effects, which can 
cause the entire circuit to deviate from the nor-

for different time-varying processes. The results 
demonstrated that the method was able to ex-
tract parsimonious model results while identi-
fying time-varying parameters without adding 
additional computational burden [12]. Shankar 
et al. introduced an artificial neural network 
with adaptive neuro-fuzzy inference system as 
a classifier and proposed a method for breast 
cancer diagnosis based on whale optimization 
algorithm and dragonfly algorithm. The results 
showed that the accuracy of the method was 
98% and the AUC value was 0.998 ± 0.001 [13]. 
Choudhury et al. developed an easily solvable 
mathematical model for the cathode of phos-
phate fuel cells in the field of fuel cells for pow-
er generation and distributed generation. The 
maximum phase angle relative to frequency and 
position were employed as diagnostic markers, 
and the experimental results validated the effi-
cacy and viability of the method [14]. 
A comprehensive analysis reveals that FNN cur-
rently outperforms other methods in a variety of 
fields. However, circuit faults are predominant-
ly observed in the field of electric power engi-
neering. Furthermore, the development of fault 
diagnosis in power systems is constrained by 
the nonlinearity, high difficulty, and numerous 
influencing factors inherent to the system. Con-
sequently, the study employs the PCA method 
in conjunction with the WPT method to metic-
ulously extract the circuit fault characteristics 
within the PCS system. It then proposes the FB-
PNN model for network diagnosis, which ulti-
mately culminates in the circuit fault diagnosis 
method based on PW-FBPNN.

3. Design of PW-FBPNN-based  
Circuit Fault Diagnosis Method in 
PCS System

A circuit fault diagnosis method based on 
PW-FBPNN is studied and designed. It includes 
three parts: PCS and fault data preprocessing, 
fault feature extraction of analog circuits, and 
FBPNN fault diagnosis training. The study first 
constructs a PCS and introduces fault data ac-
quisition and preprocessing methods. Then, a 
fault feature extraction method combining the 
PCA and WPT method is proposed. Finally, 
FBPPNN is introduced to complete the train-
ing.
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mal operating point. Therefore, the circuit fault 
judgment has a certain degree of ambiguity. 
Third, there are also nonlinear components in 
the circuit, which leads to nonlinearities in the 
circuit, and the difficulty of testing is increased. 
The data preprocessing process is as follows: 
Monte Carlo analysis is used to analyze the col-
lected data, and different faults in the circuit are 
tested separately. The voltage information cor-
responding to each node is extracted and simu-
lated using the Saber software. Moreover, the 
voltage value corresponding to the subsequent 
node during the normal operation of the circuit 
must be evaluated, with a tolerance value of 5% 
for the components. A total of 50 tests should be 
conducted for each fault type, with the voltage 
information set for 12 nodes in the circuit. This 
will result in the generation of a 12-dimensional 
matrix for each fault type.

3.2. Features Extraction of Faults in 
Analog Circuits in PCS System Faults

After the above data acquisition is complete, the 
task of fault feature extraction can be carried 
out. But the difficutly of the current research is 
how to get the feature parameters that contrib-
ute the most to the circuit fault diagnosis from 
the huge amount of initial feature signals. The 
PCA method is an effective means of reducing 
the dimensionality of data, improving compu-
tational efficiency and quality, and discovering 
the main features in the data. This enables the 
understanding of the essence of the data. The 
WPT method can provide localized information 
in both time and frequency domains, effectively 
analyzing the instantaneous frequency charac-
teristics of signals. It is particularly effective 
for non-stationary signal processing in circuit 
fault diagnosis. Consequently, research is be-
ing conducted on feature extraction processing, 
employing PCA and WPT methods to identify 

Figure 1. PCS system architecture diagram.
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the optimal feature parameters that can effec-
tively reflect circuit faults as sample data for 
FBPNN. This approach aims to reduce redun-
dant sample data and input dimensionality, ul-
timately enhancing the execution efficiency of 
PCS systems. The WPT method builds upon the 
concept of localization of the short-time Fourier 
transform, addressing its inherent limitations. 
One such limitation is the fixed window size, 
which does not adapt to varying frequencies. 
The WPT method addresses this by providing 
a time-frequency window that changes with 
frequency. This adaptability makes it an ideal 
tool for time-frequency analysis and process-
ing of signals. The wavelet transform process 
is described as follows. After shifting the basis 
function A(t) displacement translation factor b, 
then the process of inner product with the same 
waiting analysis information under different 
scale factor a. For ∀A ∈ L2(R), if A(t) is Fourier 
transformed, the wavelet mother function Â(w) 
can be obtained, which satisfies the tolerability 
condition of Equation (1).
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in Equation (2).
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If there exists an arbitrary signal x(t) ∈ L2(R), 
x(t) corresponds to the continuous wavelet 
transform with the corresponding inverse trans-
form givern in Equation (3).
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In Equation (3), α' and α are conjugate functions 
of each other while satisfying xR|α(t)|dt < ∞. 
Where α(t) has bandpass, fluctuation and atten-
uation. Moreover, the discrete wavelet trans-
form is discretized for a and b. Let a = Dk, 
b = nEDk, where n and k correspond to the time-
step transformation index and frequency range 
index, respectively. The result of E is related to  

α(t). The expression of the discrete wavelet ba-
sis function A is given in Equation (4).
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The discrete wavelet variation of x(t) is shown 
in Equation (5).
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Let D = 2, E = 1, αk,n(t) can then be transformed 
into a binary wavelet. The corresponding wave-
let inverse transform expression is shown in 
Equation (6).
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According to the transformation of k-value, 
the discrete wavelet transform function corre-
sponding to different scales can be obtained. 
Wavelet multi-resolution analysis is to observe 
and analyze the signal from coarse to fine ac-
cording to the change of k-value from large to 
small. Wavelet decomposition is first obtained 
from the original signal X(t) through the low-
pass filter to obtain the low-frequency signal 
A1, and then by the high-pass filter to obtain 
the high-frequency signal D1, thus realizing 
the first layer of decomposition. The wavelet 
decomposition only continuously decomposes 
the low-frequency components to obtain A2, 
A3, D2 and D3, and does not decompose the 
high-frequency components sexually. However, 
after the signal enters the wavelet decomposi-
tion, reconstruction processing is also required 
to restore the X(t). The wavelet decomposition 
and reconstruction and the three-level wave-
let packet decomposition process, as shown in 
Figure 2.
In Figure 2, X(t) acquires twice as much data 
as the original after completing the wavelet de-
composition. Through the Nyquist sampling 
theorem, the study uses one of every 2 samples 
in each channel and then reconstructs it using 
the upsampling with filtering process to obtain 
X(t). In the three-layer wavelet packet decom-
position, X(t) is obtained after three wavelet 
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decompositions to obtain 8 components, and 
also reconstructs it using the upsampling with 
filtering process to obtain X(t). The WPT meth-
od decomposes the high-frequency component, 
which contains various disturbing factors such 
as noise. This enables insignificant noise sig-
nal frequency features to be represented by sig-
nificant energy changes at various resolutions. 
Consequently, wavelet packet analysis is more 
commonly used in the extraction of analog 
power supply faults than wavelet analysis. The 
PCA method can then be performed to trans-
form a number of variables that are correlated 
with each other into a linear combination of 
several uncorrelated variables through the ei-
genvalue decomposition of the data covariance 
matrix and then removing the invalid informa-
tion. The input raw data feature matrix is UM×N 
and the calculation is shown in Equation (7).

UM×N = (U1, U2, ..., UM)               (7)

In Equation (7), M and N are the corresponding 
number and sample size in each sample vari-
able, respectively. If M is large, it is necessary 
to carry out dimensionality reduction to reflect 
the original information as much as possible 
through fewer indicators. At the same time dif-
ferent values are independent of each other. The 
key to solving PCA is to solve the coefficients. 
At this time the covariance matrix needs to be 
solved. That is, the matrix diagonalization op-
eration is carried out, thus obtaining a new ma-
trix as an orthogonal matrix. The values on the 
corresponding diagonal are the eigenvalues of 
the covariance matrix. The smaller variance is 
the corresponding noise information or redun-
dancy, and only the larger eigenvalues are taken 
to achieve the purpose of dimensionality reduc-
tion. This leads to the fault feature extraction 
process of the PCA method combined with the 
WPT method, as shown in Figure 3.
In Figure 3, it is first necessary to apply the 
PCA method to downscale the original data, se-

(a) Wavelet decomposition and reconstruction.

Figure 2. Wavelet decomposition and reconstruction and three-level wavelet packet decomposition process diagram.

(b) Three-level wavelet packet decom position.
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lect the first p principal components to form the 
new data, and then perform a wavelet packet 
decomposition task at the k-th layer. This is fol-
lowed by the reconstruction of the signal after 
denoising using high-frequency filtering with 
soft thresholding, which yields new fault infor-
mation features. This process lays a solid foun-
dation for subsequent network diagnosis.

3.3. FNN-based Circuit Fault Diagnosis 
Method

BPNN has the advantages of a simple opera-
tion and stable operation, which is very suitable 
for fault diagnosis in analog circuits. However, 
there are limitations such as that the connection 
of each layer cannot be expressed in language 

Figure 3. Fault feature extraction flow diagram of PCA method combined with WPT method.
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and the meaning of different nodes is not clear. 
Therefore, the study proposes a fuzzy BPNN 
method for circuit fault diagnosis. The use of 
fuzzy theory for linguistic interpretation of the 
meaning of each node and connection relation-
ship can make the network structure clearer. In 
biological neural networks, dendrites receive 
electrical signals from a neuron. The signals 
are processed in the nucleus and then the pro-
cessed signals are transmitted to the next neu-
ron through the axon. The operation of comput-
erized neurons in BPNNs, on the other hand, 
mimics biological neurons. The biological neu-
rons as well as the structure of the BPNN are 
shown in Figure 4.
In Figure 4, BPNN is the most widely used 
neural network, whose signals are propagated 
through the connecting lines, while the signals 
and weights need to be multiplied, where i, o 
and y correspond to the neurons in the input, 
output and hidden layers, respectively. Assume 
that the training sample in the sample data is 

F = (u1, v1), (u2, v2), ..., (um, vm), while the out-
put result is given in Equation (8).

( )ˆ k
j j jy g β χ= −                     (8)

In Equation (8), g denotes the sigmoid func-
tion. βj and χj are the input and output layers 
corresponding to the j-th (uk, vk) is calculated in 
Equation (9).

( )2

1

1 ˆ
2

l
k k

k j j
j

J v v
=

= −∑
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The BPNN provides a systematic method for 
determining the error of the implicit layer. 
Once the error of the implicit layer has been 
determined, the estimation parameters can be 
updated by the perceptual learning rule to ob-
tain the final solution. Furthermore, fuzzy the-
ory is concerned with the fuzzy characteristics 

Figure 4. Structure diagram of biological neuron and BPNN.

(a) Biological neurons.

(b) BP neural network structure.
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of things by simulating the fuzzy logic way of 
thinking of the human brain and constructing 
the mapping relationship on [0, 1], as shown in 
Equation (10).

L: S → [0, 1], s → L(a) ∈ [0, 1]       (10)

In Equation (10), L represents the fuzzy set on 
the argument domain S. L(a) represents the affil-
iation function. This study adds a fuzzification 
layer after the input layer on the basis of BPNN 
and introduces fuzzy values to fuzzify the pa-
rameters. Assume there exist q kinds of circuit 
faults and the fault space is U = (u1, u2, ..., uM). 
There are K kinds of fault causes. The elements 
of both U and V spaces are fuzzy variables. 
The fuzzy relationship that the two have is ex-
pressed in Equation (11).

( )ij K q
V X r

×
= 

                   
(11)

In Equation (11), ° and (rij)K×q are the gener-
alized fuzzy operator and fuzzy relationship 
matrix, respectively. Through Equation (11) 
and combined with the diagnostic criteria we 
can determine whether the circuit is faulty or 
not. To solve the problem of traditional BPNN 
weight adjustment, the study introduces a mo-

mentum term. The calculation is shown in 
Equation (12).
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In Equation (12), ε and δ are the additional mo-
mentum factor and learning rate, respectively.   
ωij(h) is the connection weight matrix from 
layer i to layer j for the h-th φij(h) Δωij(h) h-th 
training, respectively. The flow of the circuit 
fault diagnosis method based on PW-FBPNN is 
shown in Figure 5.

In Figure 5, it is necessary to apply the cor-
responding excitation signal of the circuit to 
obtain the raw data through simulation exper-
iments. This is followed by the extraction of 
features using the PCA and WPT methods, the 
division of the data into training and test sam-
ples, and the input of the features into the FB-
PNN model for learning. Finally, the final fault 
information can be obtained. The training flow 
of FBPNN-based circuit fault diagnosis method 
is shown in Figure 6.

Figure 5. Process flow of circuit fault diagnosis method based on PW-FBPNN.
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In Figure 7, the normal values of different com-
ponents have been given. By analyzing the UI 
circuit, it is possible to search for the compo-
nents that are most likely to affect the function-
ing of the circuit and thus get the corresponding 
type of fault. The fault markings for different 
circuits are shown in Table 1.
Note: "+" and "-" indicate the increase and 
decrease of the corresponding components, re-
spectively.
The specific experimental parameters are set as 
follows. The number of input and output neu-
rons is 360 and 16, respectively, and the num-
ber of fuzzy and hidden layers is 30. ε and δ is 
0.75 and 0.03, respectively. The error is taken 
to be 0.05, and the data dimensions are set to 
be 5. In addition, the study is evaluated using 
diagnostic effectiveness, correctness, and time. 
In order to more scientifically validate the ef-
fectiveness of the research method in the appli-
cation of PCS system faults, the study conducts 
comparative experiments using the current 
mainstream methods, i.e., the method based on 
fuzzy c-means clustering, hidden Markov mod-
el and support vector machine (FCM-HMM-
SVM) and the method based on kernel inde-
pendent component analysis and deep neural 
network (KICA-DNN).

In Figure 6, it is necessary to initialize the 
weights of each layer, calculate the outputs of 
different layers, determine the error between 
the correct output and the model output, and 
then update the bias and weights until the sam-
ples are trained. Once this process is complete, 
the training can be terminated.

4. Result Analysis of  
PW-FBPNN-based Diagnostic 
Method in PCS System Faults

To investigate the validity and feasibility of 
the research method, two circuits are designed 
for performance evaluation and comparative 
experiments are conducted using mainstream 
fault diagnosis methods.

4.1. Experimental Preparation of a 
Diagnostic Method Based on  
PW-FBPNN

The study sets two circuits to analyze and eval-
uate different circuit troubleshooting methods, 
namely, a voltage-divided basic operational 
amplifier circuit (Circuit 1) and a four-op-amp 
second-order filter circuit (Circuit 2). The cor-
responding schematic diagrams are shown in 
Figure 7.

Figure 6. Training process of circuit fault diagnosis method based on FBPNN.
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Figure 7. Schematic diagram of two circuits.

(a) Circuit 1. (b) Circuit 2.

Table 1. Fault marking of different circuits.

Circuit type Fault number Fault type Nominal value Fault value

Circuit 1

G0 Normal / /

G1 R1+ 40 K 45–90 K

G2 R1- 40 K 10–35 K

G3 R2+ 19 K 20–40 K

G4 R3+ 1 K 1.3–3 k

G5 R3- 1 K 0.1 k–0.9 k

G6 R4+ 2 K 3.6 k–6.6 k

G7 C3+ 480 μF 500–750 μF

Circuit 2

G0 Normal / /

G1 R1+ 6.3 K 9–12 K

G2 R1- 6.3 K 1–3 K

G3 R3+ 6.3 K 9–12 K

G4 C1- 5 μF 0.5–2 μF

G5 R4+ 1.5 K 2.5–4 K

G6 C2+ 5 μF 10–15 μF

G7 R7+ 10 K 15–20 K

G8 R7- 10 K 1–5 K
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4.2. Diagnostic Results of Voltage-divided 
Basic Operational Amplifier Circuits in 
PCS System Faults

The study begins with the validation of the ef-
ficacy of disparate diagnostic methods through 
the utilization of Circuit 1 and experiments 
employing identical fault feature vectors, fault 
markers, training sets and test sets. The results 
are presented in Figure 8.
Figure 8(a)–Figure 8(c) correspond to the fault 
diagnosis results of the PW-FBPNN diagnos-
tic method, the FCM-HMM-SVM diagnostic 
method, and the KICA-DNN diagnostic meth-
od, respectively. In Figure 8, the PW-FBPNN 
diagnostic method correctly diagnoses all fault 
types present in Circuit 1, while the FCM-
HMM-SVM diagnostic method is very ineffec-
tive in diagnosing the G7 fault types, and the 
KICA-DNN diagnostic method is ineffective 
in diagnosing most of the G7 fault types. The 
above results may be attributed to the difficul-
ty in troubleshooting the G1, G7, and G8 fault 
types due to the minimal difference in output 
voltage changes. Additionally, the failure of 
components in the aforementioned fault types 
has a relatively minor impact on the overall cir-
cuit performance. The performance results of 
different fault diagnosis methods in the training 
and test samples are compared in Table 2.
In Table 2, the PW-FBPNN diagnostic method 
achieves high accuracy in fault identification 
in a short period of time. It takes 22.43s in the 
training sample and only 0.01s in the test sam-
ple to achieve 100% correctness in the G0-G6 
fault types, with only a slightly lower correct-
ness of 93.33% in the G7 type. Whereas FCM-
HMM-SVM is more than 90% correct in most 
fault categories, the diagnostic correctness is 
only 53.33% in the G7 fault category. The KI-
CA-DNN diagnostic method has a more gen-
eral correct rate of recognizing various circuit 
fault categories, which are all greater than 80%. 
This is due to the fact that the research method 
makes the network structure clearer, which can 
effectively determine the best structure through 
the actual needs of various circuit fault diagno-
sis and then improve the correct rate of the fault 
diagnosis method.

(a) PW-FBPNN.

(b) FCM-HMM-SVM.

(c) KICA-DNN.

Figure 8. Diagnosis results of different fault diagnosis 
methods in Circuit 1.

4.3. Diagnostic Results of a Four-op-amp 
Second-order Filter Circuit in PCS 
System Faults

The study conducts experiments using the same 
setup as Circuit 1 and obtains the diagnostic re-
sults of different circuit troubleshooting meth-
ods under Circuit 2, as shown in Figure 9.
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Table 2. Comparison of performance results of different fault diagnosis methods in  
training samples and test samples.

Diagnostic 
method

Fault  
number

Training sample Test sample

Sample size Time/s Sample size Correct 
quantity

Correct rate/ 
% Time/s

PW
-F

B
PN

N

G0 72

22.43

30 30 100

0.01

G1 72 30 30 100

G2 72 30 30 100

G3 72 30 30 100

G4 72 30 30 100

G5 72 30 30 100

G6 72 30 30 100

G7 72 30 28 93.33

FC
M

-H
M

M
-S

V
M

G0 72

30.66

30 30 100

0.11

G1 72 30 28 93.33

G2 72 30 29 96.67

G3 72 30 28 93.33

G4 72 30 25 83.33

G5 72 30 27 90

G6 72 30 29 96.67

G7 72 30 16 53.33

K
IC

A
-D

N
N

G0 72

27.68

30 30 100

0.15

G1 72 30 26 86.67

G2 72 30 29 96.67

G3 72 30 27 90

G4 72 30 28 93.33

G5 72 30 30 100

G6 72 30 28 93.33

G7 72 30 24 80
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(a) PW-FBPNN.

Figure 9. Diagnosis results of different fault diagnosis 
methods in Circuit 2.

(b) FCM-HMM-SVM.

(c) KICA-DNN.

Figure 9(a)–Figure 9(c) show the fault diagnosis 
results of the PW-FBPNN diagnostic method, 
the FCM-HMM-SVM diagnostic method, and 
the KICA-DNN diagnostic method in Circuit 2, 
respectively. In Figure 9, the PW-FBPNN diag-
nostic method proposed in the study can accu-
rately identify various types of faults occurring 
in Circuit 2. Meanwhile, the research method 

can still show better fault diagnosis results 
when facing larger-scale analog circuits. The 
FCM-HMM-SVM diagnostic method is not 
able to diagnose the corresponding fault cate-
gory in the G1 and G8 fault type diagnosis. The 
KICA-DNN diagnostic method, on the other 
hand, is less effective in the diagnosis of a small 
number of G1 fault categories with most G7 
fault categories. This indicates that the research 
method can effectively and accurately extract 
the feature vectors in the original fault data, 
reduce the interference of noise and redundant 
information, and lay a solid foundation for the 
subsequent fault diagnosis methods to improve 
the execution efficiency. In order to further de-
termine the performance of different diagnostic 
methods, the study uses training samples and 
test samples to conduct experiments. The num-
ber of samples is 75 and 36, respectively. The 
results are shown in Figure 10.
Figure 10(a) shows the sample size and time re-
sults of each diagnostic method under different 
samples. Figure 10(b)–Figure 10(c) shows the 
results of the correct rate of PW-FBPNN, FCM-
HMM-SVM and KICA-DNN under different 
fault types in the test samples. The PW-FBPNN 
method proposed in the study has a lower cor-
rect rate only under G1 and G7 fault types, both 
of which are 91.67%. The rest of the fault types 
are judged with 100% accuracy, when the time 
required is 0.01s. The FCM-HMM-SVM diag-
nostic method has poor recognition correctness 
in four fault types, G1, G2, G7 and G8, which 
are lower than 70%, corresponding to a time 
of 0.12s. The KICA-DNN diagnostic meth-
od has low correctness only in two fault types, 
G7 and G8, which are 70% and 75%, respec-
tively. The correct rate for the rest of the fault 
types is over 80%, and the corresponding time 
is 0.13s. The above results may be attributed to 
the fact that the PCA method combined with the 
WPT method can effectively reduce the noise 
and redundant samples and reduce the number 
of input dimensions. To scientifically evaluate 
the superiority of research methods, statistical 
tests are conducted to evaluate whether there 
are significant differences between different 
fault diagnosis methods. The Nemenyi test is 
used to determine whether the research method 
is significantly superior to other comparative al-
gorithms. It is essential to calculate the critical 
range (CR) of the average order value difference 
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(a) Sample size and time results.

Figure 10. Comparison of the performance of different fault diagnosis methods under different fault types in training 
samples and test samples.

(b) PW-FBPNN.

(c) FCM-HMM-SVM. (d) KICA-DNN.

and the difference in average sorting (DAS) 
between the two algorithms. The study intro-
duces other advanced methods for comparative 
experiments. Namely, the optimal selection of 
wavelet packet and extreme learning machine 
(OSWP-ELM), fault diagnosis method based 
on nonlinear spectral characteristic and kernel 
principal component analysis (NSC-KPCA) and 
high order spectrum and support vector machine 
(HOS-SVM) based fault diagnosis methods are 
used to obtain the average ranking difference 
results between the research method and other 
fault diagnosis methods, as shown in Table 3.
In Table 3, the DAS values of PW-FBPNN, 
FCM-HMM-SVM method, KICA-DNN meth-
od, OSWP-ELM method, NSC-KPCA method, 

and HOS-SVM method are 3.885, 2.617, 5.103, 
2.197, and 3.752, respectively, all exceeding 
the CR value. It demonstrates that the research 
method exhibits superior diagnostic perfor-
mance in identifying PCS faults compared to 
other mainstream algorithms. The aforemen-
tioned outcomes may be attributed to the fact 
that the PCA method proposed in the study, 
when combined with the WPT algorithm, is 
capable of accurately and effectively extract-
ing the diagnostic features of system faults. To 
further validate the performance of the research 
method, a comparison is made between the 
computational complexity, diagnostic accuracy, 
and diagnostic speed using Circuit 2. The re-
sults are shown in Figure 11.

Table 3. The average ranking difference result between the research method and other fault diagnosis methods.

Method DAS > CR(1.952)

FCM-HMM-SVM 3.885 Exceed

KICA-DNN 2.617 Exceed

OSWP-ELM 5.103 Exceed

NSC-KPCA 2.197 Exceed

HOS-SVM 3.752 Exceed
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(a) Computational complexity.

Figure 11. Comparison of performance results of different fault diagnosis methods.

(b) Diagnostic accuracy. (c) Diagnostic speed.

Figures 11(a)–11(c) correspond to computa-
tional complexity, diagnostic accuracy, and 
diagnostic speed results of different fault diag-
nosis methods, respectively. In Figure 11, with 
the continuous increase of data volume, only 
the HOS-SVM method has the fastest growth 
rate and the largest fluctuation in computational 
complexity. Whereas the PW-FBPNN method 
has the slowest growth rate, and the variation 
amplitude of other mainstream algorithms is 
also relatively small. In the results of fault di-
agnosis accuracy, the PW-FBPNN method and 
OSWP-ELM method utilize wavelet transform 
and wavelet analysis to denoise the circuit sig-
nals. This leads to a significant improvement 
in their fault diagnosis accuracy. This indi-
cates that the data processed by wavelet trans-
form and wavelet analysis can better reflect 
the characteristics of simulated state changes. 
The PW-FBPNN method has the highest diag-
nostic accuracy due to its optimization of the 
FBPNN training method, identification of the 
most suitable parameters, and design of a supe-

rior circuit fault diagnosis method. In terms of 
diagnostic speed results, the diagnostic time of 
the research method is much shorter than that of 
other methods, which may be because the PCA 
method in the research method reduces redun-
dant sample data and lowers input dimension-
ality. The aforementioned results demonstrate 
that research methods can facilitate relatively 
low computational complexity and scalabil-
ity in power systems of varying scales. Fur-
thermore, the introduction of the fuzzy theory 
provides a more concise way to determine the 
optimal structure, which, when combined with 
the aforementioned reasons, can provide strong 
support for the improvement of the fault iden-
tification rate and the reduction of the com-
putation time. However, there are still certain 
limitations to the research methods. Due to the 
inherent shortcomings of neural networks, it is 
of great importance to explore how to exploit 
the advantages of algorithms, integrate differ-
ent algorithms, and fully exploit their strengths 
in future research.
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5. Conclusion

This study proposes PW-FBPNN, a novel fault 
diagnosis method for PCSs that synergistical-
ly combines PCA, WPT, and fuzzy neural net-
works. Compared with existing methods, this 
method performed well in terms of accuracy 
(up to 100% for most fault types) and efficiency 
(diagnosis time as low as 0.01 seconds). These 
advances were important to power system op-
erators as they could improve system reliabili-
ty, reduce downtime, and increase maintenance 
efficiency. The integration of fuzzy logic and 
neural networks facilitated the exploration of 
novel approaches to address uncertainty in fault 
diagnosis. Future research should focus on ex-
tending this method to larger and more complex 
power systems and exploring its applicability in 
real-time monitoring scenarios. While PW-FB-
PNN displays considerable promise, further in-
vestigation is required to ascertain its long-term 
reliability and adaptability to diverse forms of 
faults, to fully realize its potential in industrial 
applications.
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