
Network Intrusion Detection Based
on Convolutional Recurrent Neural
Network, Random Forest, and
Federated Learning

97CIT. Journal of Computing and Information Technology, Vol. 32, No. 2, June 2024, 97–125
doi: 10.20532/cit.2024.1005838

Qianying Zou1, Yushi Li2, Xinyue Jiang2, Yuepeng Zan2 and Fengyu Liu1

1Geely University of China, Chengdu, China
2Chengdu College of University of Electronic Science and Technology of China, Chengdu, China

This paper presents a novel network intrusion detection
framework that combines convolutional recurrent neu-
ral networks (CRNN) and random forest (RF) models
within a federated learning setting. The proposed ap-
proach aims to address the challenges of data privacy,
computational efficiency, and model generalization in
traditional network intrusion detection methods. By
leveraging the spatial feature extraction capabilities of
CRNN and the feature selection and noise reduction
properties of RF, the framework enhances the accuracy
and robustness of attack detection. The integration of
federated learning enables collaborative model train-
ing without compromising data privacy. Extensive
experiments on benchmark datasets demonstrate the
superiority of the proposed method compared to state-
of-the-art techniques, achieving high performance
metrics such as accuracy, precision, recall, F1 score,
and AUC. The proposed framework offers a promis-
ing solution for secure and efficient network intrusion
detection in real-world scenarios, contributing to the
advancement of cybersecurity practices.
ACM CCS (2012) Classification: Security and privacy
→ Intrusion/anomaly detection and malware mitiga-
tion → Intrusion detection systems
Keywords: federated learning framework, convolu-
tional recurrent neural networks, network security en-
hancement, temporal data processing, random forest
integration, feature selection optimization

1. Introduction

Cybersecurity is the core of national strategy
in the People's Republic of China. In the face
of the complex challenges brought about by
the development of Internet technology, China
strengthens the protection of network resourc-

es, data security and user privacy through the
formulation of laws and regulations on cyber-
security, ensures the lawful compliance of net-
work activities and services, and strengthens
the supervision of cybersecurity management.
The Cybersecurity Law of the People's Repub-
lic of China [1], as the basic law of cyberse-
curity, covers a wide range of aspects such as
the basic system of cybersecurity, key technol-
ogies, data protection, personal information
protection, cybersecurity review, cybersecuri-
ty level protection, and cybersecurity incident
disposal. A network intrusion detection system
(NIDS) is an important security tool [2] that im-
proves network security by monitoring network
traffic and devices, analyzing communication
characteristics, status, and anomalies to identify
malicious activities, and issuing alerts or taking
measures when a network attack is detected.
NIDS is widely used in the government, enter-
prises, education and scientific research fields.
In the research of network intrusion detection,
some of them adopt the idea of federated learn-
ing, which allows multiple nodes to collabora-
tively train network intrusion detection models
without sharing data [3-10], e.g., FL-SEResNet
[11] and DFC-NID [12]. Federated learning pro-
tects data privacy, improves the performance of
the model, and adapts to distributed and hetero-
geneous data environments. However, during
the training process of FL-SEResNet, the lack of
a global data perspective may limit the model's

98 Q. Zou, Y. Li, X. Jiang, Y. Zan and F. Liu

generalization ability. Additionally, this method
consumes significant network resources, which
affects efficiency in practical applications.
The DFC-NID approach, by introducing an
attention mechanism, enhances the feature ex-
traction and classification capabilities of deep
residual networks, thus improving the efficien-
cy and accuracy of intrusion detection. How-
ever, DFC-NID has high model complexity
and computational overhead when handling
high-dimensional, dynamically changing data,
making it difficult to deploy in resource-con-
strained environments.
On the other hand, deep neural networks are
used to extract effective features from network
traffic to identify normal and abnormal behav-
iors [13-14]. For example, a network traffic
anomaly detection model based on multiscale
memory residual networks (MMRNs) [15] uti-
lizes the multiscale feature fusion and residual
connectivity capabilities of MMRNs to improve
the complexity and reliability of detection.
However, the MMRN model has high compu-
tational and storage demands when processing
large-scale data, which can easily increase the
system's burden.
In addition, there are studies that utilize tradi-
tional machine learning methods such as KNN
and genetic algorithms to achieve network in-
trusion detection [16-20]. For example, the net-
work anomaly detection technique combining
TCM-KNN and genetic algorithm [21], im-
proves the accuracy, robustness and flexibility
of network anomaly detection by optimizing
the K-value and the feature subset. However,
traditional machine learning methods typically
rely on feature engineering, with the model's
performance heavily dependent on manually
designed features. This makes it difficult to au-
tomatically adapt to different data distributions
and attack patterns.
Deep learning approaches have also been pro-
posed to address the core challenges in network
intrusion detection such as DBN-ELM model
[22], BiLSTM model [23], S-NDAE-RF model
[24] and TL-NID model [25]. These methods
effectively improve the detection performance
by combining different models, showing the
potential of deep learning in network intrusion
detection. However, these methods generally
face issues of high computational complexity

and resource consumption during training. Ad-
ditionally, the process of tuning model parame-
ters is quite complex, which affects the conve-
nience of practical applications.
The three main core challenges faced in this paper
are cyber security, data privacy and data utilization.
To address these challenges, this paper proposes
a scheme that combines convolutional recurrent
neural networks and random forest classification
models with federated learning to address the lim-
itations of traditional models for network intrusion
detection, such as data dependency, computational
overhead, and model generalization. The main con-
tributions of this paper include:

 ● A federated learning scheme combining
convolutional recurrent neural networks
(CRNN) and random forest (RF) classifi-
cation models: This approach fully lever-
ages the strengths of both models. CRNNs
can effectively extract and process high-di-
mensional, nonlinear, and dynamically
changing data features, while RF models
reduce the risk of overfitting through the
ensemble of multiple decision trees, there-
by enhancing the model's generalization
ability. Moreover, this scheme can dynam-
ically adjust model parameters to accom-
modate the data characteristics and net-
work environments of different nodes.

 ● Training models through federated learning
without sharing raw data: only encrypted
gradient-related data is transmitted, effec-
tively protecting data privacy. This method
not only ensures the privacy and security
of data owners but also meets compliance
requirements, which is especially valuable
in the current context where data privacy
protection is increasingly emphasized.

 ● Utilizing federated learning for collabora-
tive training of multi-source data: this ap-
proach addresses the issue of data silos and
improves data utilization efficiency. By en-
abling collaborative model training across
multiple nodes, it fully leverages dispersed
data resources, enhancing the model's
training effectiveness and detection perfor-
mance. This method is particularly signifi-
cant in distributed network environments,
as it can effectively enhance overall net-
work security protection capabilities.

99Network Intrusion Detection Based on Convolutional Recurrent Neural Network, Random Forest...

2. Related Work

2.1. Convolutional Neural Network

A convolutional neural network (CNN) is spe-
cialized in processing multidimensional data
and shows high effectiveness in network intru-
sion detection, where the convolutional layer
captures the local features of the network traffic
data by means of a convolutional kernel [26].
This step is performed automatically to enable
efficient extraction of key features that may in-
dicate malicious attacks. With this hierarchical
structure and operation, CNN is able to provide
high accuracy and good reliability in network
intrusion detection analysis [27], as shown in
equation (1):

{ } (), ,, i m j n m ni j
m n

o I k+ += ∗∑∑

(1)

where o is the output feature map, I is the input
feature map, k is the convolution kernel, and m
and n are the width and height of the convolu-
tion kernel.
In this paper, we use mean pooling, as shown in
equation (2):

{ } (): , :, i i k' j j k'i jo mean I + +=

(2)

Here, k' is the size of the pooling window. The
main working mechanism of mean pooling is
to generate the output by calculating the mean
value of all elements within a given window.
The fully connected layer is located at the end
of the neural network, and its main task is to
integrate the local features that have been ex-
tracted and optimized by the previous layers
into a one-dimensional vector. In this way, the
fully connected layer ensures that the network
can effectively classify and regress based on
the important features that have been learned,
as shown in equation (3):

o' I' w b= ∗ + (3)

where o' is the output data, I' is the input data,
w is the weight matrix, and b is the bias vector.

 ● Through comprehensive performance
evaluation, including accuracy, recall, F1
score, and ROC curve, the effectiveness
and superiority of the model presented in
this paper are demonstrated. Specifical-
ly, the model's generalization ability and
adaptability are improved by collaborative
training with data from multiple nodes.
The experimental results show that the
model performs excellently in various net-
work intrusion detection tasks, indicating
strong practical applicability.

Potential impacts of this paper include:
 ● Enhancing network security: The proposed

method significantly improves the accura-
cy and efficiency of network intrusion de-
tection, providing a more robust defense
mechanism for network security. By com-
bining CRNNs, RFs, and federated learn-
ing techniques, it can accurately identify
and prevent network attacks in complex
network environments, thereby reducing
network security risks.

 ● Protecting data privacy: Against the back-
drop of increasing importance of data pri-
vacy protection, the method proposed in
this paper offers an effective solution for
model training while safeguarding data
privacy. This is particularly valuable for
fields that handle sensitive data, such as fi-
nance, healthcare, and government sectors.

 ● Promoting the application of distributed
computing: By implementing federated
learning for collaborative training of distrib-
uted data, the proposed method facilitates
the application of distributed computing in
the field of network security. By fully utiliz-
ing dispersed data resources, it enhances the
model's training effectiveness and detection
performance, thereby improving network
security protection on a larger scale.

 ● Cross-domain application potential: The
method proposed in this paper is not only
applicable to the field of network securi-
ty but can also be extended to other areas,
requiring distributed data processing and
privacy protection, such as IoT security,
smart manufacturing, and intelligent trans-
portation. Applying this method in these
fields can effectively improve data utiliza-
tion efficiency and system security.

100 Q. Zou, Y. Li, X. Jiang, Y. Zan and F. Liu

2.2. Recurrent Neural Network

Structurally, a recurrent neural network (RNN)
is mainly composed of an input layer, a hid-
den layer and an output layer [28]. First of all,
the input layer is tasked with transforming the
original input data into a feature vector format
that is more suitable for network processing,
providing a basis for subsequent information
processing and decision making, as shown in
equation (4).

()t tx E w= (4)

Here, xt is the input vector at the t-th time step,
E is the word embedding matrix, and wt is the
input vector at time step t.
RNN consists of multiple loop units, each unit
processes time series data. The input includes
the data of the current time step and the hidden
state of the previous time step, which together
determine the output and the new hidden state.
The hidden layer synthesizes the current inputs
and the historical information to effectively ex-
tract the sequence features [29], as shown in
equation (5):

st = f (U * xt + W * st-1 + b1) (5)

where st is the hidden state vector of the t-th
time step of the hidden state vector, f is the acti-
vation function, U is the input-to-hidden weight
matrix, W is the hidden-to-hidden weight ma-
trix, and b1 is the bias vector of the hidden layer.
In this paper, the output layer uses a softmax
activation function to transform this state infor-
mation into the format required for a particular
task. In classification problems, the softmax
function is used to convert the output into prob-
ability distributions for each category as shown
in equation (6):

ot = g(V * st + b2) (6)

where ot is the output vector of the t-th output
vector at the t-th time step, g is the softmax
function, V is the hidden-to-output weight ma-
trix, and b2 is the bias vector of the output layer.
In the field of network intrusion detection, net-
work traffic data is usually presented in the form
of a time series. This format is ideally suited
for detecting temporal patterns and anomalous
behaviors of network intrusions. By analyzing

these time series data, potential security threats
can be identified more accurately, and preven-
tive measures can be taken accordingly.

2.3. Random Forest

Random forest is an ensemble learning mod-
el with multiple advantages. First, the model
can effectively handle high-dimensional data
and reduce the risk of overfitting by integrat-
ing multiple decision trees, thus enhancing the
generalization ability of the model. Second,
random forest allows parallelization, which is
advantageous when dealing with large-scale
high-dimensional datasets, such as NSL-KDD
[30]. By utilizing parallel computing and the
random generation property of the tree, random
forest not only accelerates the training and pre-
diction process of the model, but also enhances
the robustness and interpretability of the model.
The output of random forest is composed of the
outputs of multiple decision trees [31], and the
output formula of random forest, as shown in
equation (7).

(){(
()
() })

(){(
()
() })

1 2

1 1 2

2 1 2

1 2

1 1 2

2 1 2

1 2

(, ,...,)

, ,..., ,

, ,..., ,

, ,..., , ,

, ,..., ,

, ,..., ,

, ,..., , ,

n

n

n

n n

n

n

n n

y f x x x

majority vote f x x x

f x x x

f x x x

forclassification

mean f x x x

f x x x

f x x x

forregression

=

=

(7)

Here, y denotes the target variable, x1, x2, ...,
xn denote the dependent variables, f denotes the
output of the random forest, M denotes the to-
tal number of trees in the forest, fi denotes the
output of the i-th tree, majority vote denotes the
majority voting function, and mean denotes the
averaging function.

2.4. Federal Learning

Federated learning (FL) aims to train a unified
model together from multiple decentralized
data sources [32]. In this architecture, individ-

101Network Intrusion Detection Based on Convolutional Recurrent Neural Network, Random Forest...

ual devices (or nodes) first train the model lo-
cally using their own data. Instead of sharing
the raw data, these devices only send model up-
dates to a centralized server, which is responsi-
ble for collecting and integrating model updates
from all devices to further optimize the model
[33]. Upon completion of this step, the updated
model is again distributed back to the individ-
ual devices for further local training. This ap-
proach allows multiple data owners to jointly
participate in the training and optimization of
the model while ensuring data privacy. Espe-
cially in virtual network environments, feder-
ated learning effectively addresses the issues
of data privacy and model training through this
distributed and collaborative approach.
Vertical federation learning is a form of federa-
tion learning for datasets with the same sample
space but different feature spaces. It centers on
federating features and is particularly suitable
for scenarios where there is a lot of user overlap
but little feature overlap [34].
Suppose there are K data owners, each owner k
has nk samples {xik, yik}, where xik is the feature
vector and yik is the label. Suppose the model
is a linear regression model with parameters w.
Then, the equations of federated learning are
shown in equations (8), (9) and (10).
Objective function:

()2 2

1 1
min

2

knK
Tk

ik ikw k i

n w x y w
n

λ
= =

− +∑ ∑

(8)

Optimization algorithm:

()
1

() 2 kn
Tk

k ik ik ik
ik

L ww w x y x w
w n

η η λ
=

 ∂
∆ = − = − − + ∂

∑

(9)

Communication protocols:

()
1

11 ()
K

k
k

w t w t w
K =

+ = + ∆∑

(10)

Here, η is the learning rate, λ is the regulariza-
tion factor, and t is the number of iterations.
This equation indicates that each data owner
calculates the gradient based on his/her data
Δwk and then sends it to the central server,

which averages all the gradients, updates the
model parameters w and then distributes the
updated ones to all data owners. This process is
repeated until convergence.

3. Method

3.1. Modeling of Convolutional Recurrent
Neural Networks

Convolutional recurrent neural network
(CRNN) is a state-of-the-art deep learning ar-
chitecture that integrates the features of CNN
and RNN. The model is designed to utilize both
spatial and temporal information to improve the
processing capability of high-dimensional, non-
linear and dynamically changing data. In terms
of model structure, the CRNN first efficiently
extracts features from the input data through its
convolutional layer. Next, these features are fed
into the recurrent layer for serialization, which
utilizes the memory capability of the recurrent
layer, enabling the model to perform more ac-
curate time-series data classification and re-
gression.
For network intrusion detection systems, the
CRNN model has good application value. The
model has the ability to analyze network traffic
data in depth and can accurately distinguish be-
tween normal and abnormal traffic, thus show-
ing high effectiveness in network attack detec-
tion and prevention. Since the CRNN model is
capable of handling high-dimensional, nonlin-
ear and dynamically changing network traffic
data, it contributes to improving the accuracy
and efficiency of network intrusion detection.
In order to fully utilize the respective advantag-
es of CNN and RNN, this paper designs a net-
work intrusion detection model that integrates
the two, which is referred to as the CNN-RNN
model, as shown in Figure 1. The construction
and application of the model can be divided
into three main steps: data preprocessing, fea-
ture extraction and time series analysis, and fi-
nal classification and regression.

102 Q. Zou, Y. Li, X. Jiang, Y. Zan and F. Liu

Figure 1. Framework diagram of convolutional recurrent neural network modeling.

103Network Intrusion Detection Based on Convolutional Recurrent Neural Network, Random Forest...

First, a series of preprocessing operations are
performed on the dataset to be processed. These
include:

 ● non-numerical attributes, such as protocol
type, service type, and connection status,
etc., are converted into numerical features
by the label encoding method;

 ● numerical attributes, such as duration,
source byte, and target byte, etc., are nor-
malized or standardized to eliminate dif-
ferences in magnitude;

 ● Categorical labels, such as ''Normal'',
''DoS'' and ''U2R'', etc., are converted into
numerical labels (e.g., 0, 1, 2, etc.) for sub-
sequent classification and regression anal-
ysis.

Then, we enter the feature extraction and time se-
ries analysis phase of the model. In this step, each
network traffic record is considered as a timing
signal and is divided into multiple equal-length
sub-segments. These sub-segments are used as
inputs to the CNN model for feature extraction.
After CNN processing, each sub-segment gen-
erates a feature vector. All these feature vectors
are stitched together into a sequence and used
as inputs to the RNN model. The RNN model is
responsible for the temporal analysis of this fea-
ture sequence and generates a hidden state.
Feature selection and preprocessing are critical
for model performance. In this study, the feature
selection process includes the following steps:
1. Feature screening: By conducting an ini-

tial analysis of network traffic data, fea-
tures strongly correlated with intrusion
detection are selected. Examples include
protocol type, service type, source IP and
destination IP, and packet length.

2. Feature encoding: For non-numerical fea-
tures (such as protocol type, service type),
label encoding is used to convert them into
numerical features. This step enhances the
model's ability to handle non-numerical
data.

3. Feature normalization: Numerical features
(such as packet length, duration) are nor-
malized to eliminate differences in dimen-
sions among features, thereby improving
the model's training stability and conver-
gence speed.

Finally, this hidden state is sent to the output
layer for final classification and regression. In
this way, the whole CNN-RNN model can ef-
fectively handle high-dimensional, nonlinear
and dynamically changing network traffic data
with high detection accuracy and efficiency.
There are two key components involved in the
working process of the CNN model: the convo-
lutional layer and the pooling layer. First, the
convolutional layer is responsible for extracting
local features from network traffic data, such
as protocol types, source ports, and destination
ports. By using multiple convolution kernels
to perform convolution operations on the input
vectors, the resulting multiple feature maps not
only enhance the model's expressive capabili-
ty, but also improve its generalization perfor-
mance.
In a convolutional neural network, the output
of the convolutional layer is obtained by matrix
multiplying the input feature map with the con-
volutional kernel, summing and adding a bias
term, this process is performed on each output
feature map element.
Let the convolution kernel be h, with its length
k, and the convolution step s, as shown in equa-
tion (11):

1

0
, 0,1,...,

k

t j j s j
j

n ky h x i
s

−

× +
=

− = =
∑

(11)

where yt is the i-th convolutional output, and []
denotes the under-image rounding.
The pooling layer has two main purposes in
CNN modeling. First, it preserves the core fea-
tures in the network traffic data through dimen-
sionality reduction process, which is achieved in
this paper through the mean pooling algorithm.
Second, during the dimensionality reduction
process, the method helps to remove noise and
redundant information from the data, which in
turn reduces the computational complexity of
the model and mitigates the risk of overfitting.
To compute the output of the average pooling
layer, the output value of each pooled region is
obtained by computing the arithmetic average
of the values of all the elements in the region,

104 Q. Zou, Y. Li, X. Jiang, Y. Zan and F. Liu

plus a bias term. Let the pooling layer window
size be p, as shown in equation (12):

1

'
0

1 , 0, 1, ...,
p

j i p j
j

n kz y i
p sp

−

× +
=

 −
= =

∑

(12)

where zi is the i-th pooled output.
In the model flow, the CNN is responsible for
extracting local features from the packets to
generate feature vectors, which are subsequent-
ly used as input sequences to the recurrent layer
to enable the RNN to learn and capture the tem-
poral relationships between packets. The recur-
rent layer mainly extracts global features such
as connection duration, connection frequency
and connection direction from the entire packet
sequence. This not only enhances the model's
ability to memorize the historical information
of network traffic data, but also improves its
prediction accuracy.
In recurrent neural networks, the output layer
output for the current time step is obtained by
processing the hidden state at that time step with
a linear transformation and a nonlinear activa-
tion function. This process enables the output
layer to predict the target value of the sequence
data based on the hidden layer state, as shown
in equations (13) and (14):

ht = f (wh ht-1 + wZZt + bh) (13)

ot = g(w0ht + b0) (14)

where the hidden state of the loop cell is ht, the
input is zt, the output is ot, the activation func-
tions are f and g, the weight matrices are wh, wz,
w0, the bias vectors are bh, bz, b0, and t = 1, 2, ...,
T denotes the time step.
In the final stage of the model, the fixed-length
vectors output from the loop layer are fed into
a softmax output layer for final network intru-
sion classification prediction. The function of
the softmax layer is to transform the output vec-
tors into probability distributions, where each
element represents the predicted probability of
a specific class (e.g., normal class or four dif-
ferent attack classes: DoS, Probe, R2L, U2R).
Therefore, this output layer essentially accom-
plishes the mapping from network traffic data
to different intrusion classes, reaching the over-
all goal of network intrusion detection.

Let the weight matrix of the output layer be V,
the bias vector c and the number of categories
m, as shown in equations (15) and (16):

yt = V ot + c (15)

() ()

()
1

exp ,
, 1, 2, ...,

exp ,

i
t m

i
j

y i
p y i i m

y t
=

= = =

∑

(16)

where yt is the prediction vector of the output
layer, and p(yt = i) is the probability that the
t-th sample belongs to the i-th category of the
output layer.
For the CRNN, this study selected the follow-
ing key hyperparameters to optimize model
performance:
1. Learning rate: 0.001. It controls the speed

of model parameter updates, ensuring sta-
ble convergence during training.

2. Number of epochs: 70. This is the number
of times the neural network works through
the entire training dataset, balancing train-
ing time and model performance.

3. Batch size: 32. This is the number of sam-
ples used to update model parameters at
each step.

4. Kernel size: 3×3. This is the size of the
convolutional kernels in the convolution-
al layers, ensuring effective feature ex-
traction.

5. Number of filters: 64. This is the number of
convolutional kernels in the convolutional
layers, enhancing the representational ca-
pacity of feature maps.

6. Pooling size: 2×2. This is the window size
of the pooling layers, used for dimension-
ality reduction and feature extraction.

7. Number of units in hidden layers: 128.
This is the number of hidden units in the
recurrent layers, enhancing the model's
memory capability.

8. Activation function: ReLU for convolu-
tional layers and tanh for recurrent layers.

9. Loss function: Binary cross-entropy is
used to measure the difference between
predicted values and actual values.

105Network Intrusion Detection Based on Convolutional Recurrent Neural Network, Random Forest...

10. Regularization: L2 regularization is used
with a parameter value of 0.001, used to
prevent overfitting.

11. Optimizer: FedProx is suitable for model
parameter optimization in federated learn-
ing scenarios.

3.2. Random Forest Modeling

In order to improve the accuracy, generaliza-
tion ability, and interpretability of the network
intrusion detection system, and at the same
time to reduce the risk of information leakage,
this paper proposes a strategy that combines
the random forest model with vertical feder-
ated learning. First, the random forest model
has advantages in feature selection, which can
automatically identify and select the most rel-
evant features, reduce the number of features
and improve the training efficiency. Second, a
double randomness strategy is introduced, i.e.,
randomly selecting samples and features when
constructing each decision tree, which helps
to reduce data noise and eliminate correlation
between features and improves the accuracy
and efficiency of attack detection. Again, the
multi-classification strategy is used to achieve
fine-grained identification and classification of
different types of network attacks. Finally, the
error rate and overfitting risk of a single model
are reduced by integrating the prediction results
of multiple decision trees.
The aim of this paper is to categorize the net-
work traffic through the random forest model,
for which the specific steps and methods are
shown in Figure 2:
1. Data preparation. In this paper, we use

a five-category dataset (normal, deni-
al-of-service attack, probing attack, re-
mote access attack, and user privilege el-
evation attack) that includes both normal
and abnormal network traffic, where these
five network traffic categories are used as
target variables, and service types, packet
lengths, error fragments, and emergency
packets are used as feature variables and
numerically converted to the category-type
features by LabelEncoder.
In the feature selection process, the impor-
tance of each feature is assessed using the
random forest algorithm. By combining

multiple decision trees, random forest can
effectively reduce overfitting and provide
an importance score for each feature in the
decision-making process. Based on these
scores, features that contribute the most to
intrusion detection can be retained, there-
by enhancing the model's detection accura-
cy and efficiency.

2. Data division. The dataset is divided into
training and test sets according to the ratio
of 8:2. This division strategy aims to avoid
data duplication and mitigate the overfit-
ting problem.

3. Model parameter setting. In this paper, we
set the parameters of the random forest
model, including the number of trees, the
number of features and the splitting cri-
terion. Among them, the number of trees
is set to 100 to balance the model perfor-
mance and computational cost; the number
of features is set to 4 to reduce the model
complexity while retaining the key infor-
mation; the splitting criterion is chosen to
be the Gini coefficient, which is a measure
of data impurity.

4. Model training and evaluation. In this pa-
per, we use the RandomForestClassifier of
sklearn library to construct a random for-
est classification model and use the train-
ing set for model training. Its construction
algorithm is shown in Algorithm 1.

For the RF model, this study selected the fol-
lowing key hyperparameters:
1. Number of trees: 100. The number of trees

is set to 100 to balance model performance
and computational cost.

2. Max depth: 10. Maximum depth of 10 is
sets to prevent overfitting.

3. Min samples split: 2. The minimum num-
ber of samples required to split a node is
set to 2.

4. Min samples leaf: 1. The minimum num-
ber of samples required to be at a leaf node
is set to 1.

5. Max features: sqrt (square root of the num-
ber of features). The maximum number
of features considered for splitting at each
node is set to square root of the total number
of features to increase model randomness.

106 Q. Zou, Y. Li, X. Jiang, Y. Zan and F. Liu

Figure 2. Random forest model framework diagram.

107Network Intrusion Detection Based on Convolutional Recurrent Neural Network, Random Forest...

3.3. Integration of Federal Learning
Frameworks

Federated learning is a distributed machine
learning technique that aims to facilitate com-
mon modeling by multiple organizations or
individuals while ensuring data privacy and
compliance. In the process, the global model
is distributed back to each participant to up-
date their respective local models, while the
data is always stored locally only and is not
shared to other participants or uploaded to a
central server. This mechanism significantly
improves the privacy protection and security
of data. Under this framework, this paper fur-
ther embeds the CRNN model and the random
forest model. The advantage is that it not only
retains the original data privacy protection
properties of federated learning, but also may
produce performance enhancement due to the
integrated application of multiple models. The
flowchart of the whole model is shown in Fig-
ure 3.
In the federated learning framework, the com-
munication protocol is responsible for coordi-
nating and managing the exchange of parame-

ters between different participating nodes. The
steps are as follows:

1. Client update: Each client trains the mod-
el on local data and computes gradients or
model parameter updates. These updates
are securely transmitted to the central serv-
er through encryption to ensure data trans-
fer security.

2. Parameter aggregation: The central server
receives updates from each client and ag-
gregates these updates using the federated
averaging algorithm (FedAvg). This algo-
rithm generates a global model update by
computing the weighted average of the cli-
ents' parameter updates.

3. Model broadcast: The aggregated global
model update is distributed to all clients so
that they can continue with the local train-
ing. This process continues until the model
converges.

The core of the model update aggregation pro-
cess is the FedAvg algorithm, which is shown
in Algorithm 2.

Input: training set D = {(x1, y1), (x2, y2), ..., (xm, ym)}.

The training set is an 80% random sampling of the dataset and contains the target and predictive variables.

The number of trees is M = 100;

the number of features per division is K = 4;

Output: random forest; F = { f1, f2, ..., fM}

Algorithm steps:

Firstly, for: i = 1, 2, ..., M;

m samples are taken with replacement as subsets Di from the training set D;

The CART algorithm was used to generate a decision tree fi from Di in which only the optimal feature is selected
from among the randomly chosen features at each division;

Finally, return F = {f1, f2, ..., fM}.

Algorithm 1. Random forest algorithm.

108 Q. Zou, Y. Li, X. Jiang, Y. Zan and F. Liu

Figure 3. Diagram of the fusion federated learning framework.

109Network Intrusion Detection Based on Convolutional Recurrent Neural Network, Random Forest...

3.3.1. CRNN Model Embedded in a Federated
Learning Framework

The combination of federated learning and
CRNN provides an efficient and secure ap-
proach to distributed machine learning. In this
framework, CRNN combines the strengths of
CNNs and RNNs, where CNNs are responsible
for automatically extracting valid features of
sequential data, while RNNs focus on process-
ing these features to capture their temporal de-
pendencies, Figure 4. As a distributed machine
learning strategy, federated learning allows
multiple participants to jointly train a global
model while protecting the privacy of their re-
spective data. In the implementation, each par-
ticipant performs initial training locally using
its own raw data and then averages the model
parameters from different clients by weight-
ing them via a federated averaging algorithm
to generate a more general and efficient global
model.
In distributed machine learning, especially in the
context of using CRNN models, data prepara-
tion has a crucial position as the first step. The
process can be decomposed into the following
core components: first, each participating client
needs to complete local data collection. After
data collection, two main preprocessing opera-
tions, normalization and encoding, follow. Nor-
malization is responsible for standardizing data
of different scales and ranges to enhance the effi-

ciency of model training, which is especially im-
portant for input image data in CRNN models.
Secondly, the encoding operation converts the
non-numerical data into a numerical form and
splits the data into training and test sets after pre-
processing to evaluate the model performance.
Then, through data loading and batch processing
techniques, the data is organized into a format
suitable for model training. Finally, these pre-
processed and organized datasets are distributed
to individual clients in preparation for the dis-
tributed model training that follows.
The initialization phase of the global model
aims to provide a uniform starting point for
training all participating clients. This process
can be divided into the following steps: first, the
basic architecture of the CRNN model needs to
be specified, including its main constituent lay-
ers such as convolutional, cyclic, and fully con-
nected layers, as well as the parameters required
for these layers, such as convolutional kernel
size and number of hidden units. Subsequently,
the initialization of weights is performed on a
central server Wglobal, ensuring that all clients
start training from the same initial state. Next, a
global model instance is created on the central
server using these initialized weights and the
predefined model architecture. Eventually, this
initialized global model is distributed to each
participating client as a starting point for their
respective local model training.

Assuming there are K clients participating, each client k has a local dataset Dk with size nk. The global model update
process includes the following steps:

1. Local computation: Each client trains using its local dataset Dk, calculating the gradient ΔWk.

2. Weighted averaging: The central server performs a weighted average of the gradients uploaded by the clients, as
shown in equation (17):

1

1 K

k k
k

W n W
N =

∆ = ∆∑ (17)

where
1

K

k
k

N n
=

= ∑ is the total sample size across all clients.

3. Model update: The server updates the global model parameters using the aggregated gradient, as shown in equa-
tion (18):

Wt+1 = Wt - ηΔW (18)

where η is the learning rate.

Algorithm 2. Federated averaging algorithm.

110 Q. Zou, Y. Li, X. Jiang, Y. Zan and F. Liu

Figure 4. CRNN model embedded in a federated learning framework.

111Network Intrusion Detection Based on Convolutional Recurrent Neural Network, Random Forest...

The purpose of local model training is to ac-
curately adapt the models of each participating
client to their respective local data. The process
can be divided into the following steps: first,
each client needs to load its own local dataset,
which lays the foundation for subsequent mod-
el training. Second, forward propagation is per-
formed to obtain the predicted output by utiliz-
ing the data and the current model parameters,
and a loss function is used to compute the loss
of the true labels. Then, backpropagation is per-
formed based on this loss to compute the gra-
dients of the model parameters. Finally, these
gradients are used to update the client's local
model parameters. As a result, each client trains
an independent model that is highly compatible
with its local dataset, i.e., it generates a model
that can be accurately adapted to the local data.
At the same time, each client gets the weights
updated: ΔWi, where i denotes the client. The
loss is calculated as shown in equation (19):

() ()
()

()

1
min min

kK
k

W W k

NF W f W
N=

= ⋅∑
(19)

where W are the global model parameters,
f (k)(W) is the k-th client's loss function, N(k) is
the sample size of the k-th client, and N is the
total number of samples.
After each client has completed its local model
training, the next step is the sharing of model
parameters. At the core of this step, each client
uploads the parameters of its local model, in-
cluding weights and biases, to a central server.
The advantage is that it allows individual cli-
ents to share their learning with other partici-
pants while protecting their data privacy. This
sharing process is designed to facilitate the op-
timization of the global model while preserving
the privacy of each participant's data.
The aggregated weights are updated using the
federated averaging algorithm, where the cen-
tral server collects the local model parameters
(weights) sent by all clients and performs a
weighted average of the model parameters from
all clients, as shown in equation (20):

1

1 N
new

global global i
i

W W W
N =

= + ∆∑
 (20)

where N is the number of participants.

After the clients share the local model param-
eters, the central server is responsible for up-
dating the global model weights using the ag-
gregated weights to enhance performance and
ensure learning from all participants' data, as
shown in equation (21).

new
global globalW W= (21)

The central server updates the global model and
distributes it to all clients, who receive it and
update their local models to ensure consisten-
cy with the global model. Finally, the whole
process is iterated several times to optimize the
model performance. A convergence threshold
is set as the criterion to stop training, and this
threshold can be dynamically adjusted accord-
ing to the model performance. Subsequently,
the entire model training and updating process
is repeated until the model's loss function reach-
es or exceeds the set convergence threshold, at
which point training can be stopped.

3.3.2. Random Forest Models Embedded in a
Federated Learning Framework

Random forest can improve the generaliza-
tion ability and prediction performance of the
model and can combine multiple decision tree
models to complete the prediction. Secondly,
by introducing the randomness, the degree of
overfitting of the model to the training data can
be reduced. In addition, data privacy is a key is-
sue in federated learning, and the random forest
model can protect the private features of par-
ticipants to a certain extent by uploading only
the local model parameters without sharing the
original data, thus maintaining data privacy.
Finally, the training process of random forests
can be parallelized, which can fully utilize the
computational resources of participants devices
in federated learning and features distributed
computing and scalability.
Therefore, when embedding the RF model into
federated learning, it can achieve efficient and
accurate learning of large-scale data dispersed
across devices while protecting data privacy by
utilizing the powerful classification and regres-
sion capabilities of random forest, Figure 5. This
approach makes full use of the computational
resources of each device and avoids the priva-

112 Q. Zou, Y. Li, X. Jiang, Y. Zan and F. Liu

cy risks associated with centralized data storage
and transmission. At the same time, the random
forest algorithm has a great advantage in dealing
with complex and incomplete real-world data
because of its ability to deal with high-dimen-
sional data and missing value problems.
In this paper, model training is performed
through the following five steps:
1. Data preparation phase: The dataset is

loaded using the read_csv method of the
pandas library; the total dataset is divided
into three subsets, each containing 10,000
samples; these three subsets are assigned
to the three participants A, B, and C, re-
spectively.

2. Data preprocessing: The category of net-
work traffic is selected as the target vari-
able, and the service type, packet length,
error fragment, emergency packet, etc.
are selected as the feature variables; the
train_test_split method of sklearn is used
to further divide each subset into a training
set and a test set, and the ratio of the test
set is set to 0.2.

3. Federated learning framework construc-
tion: The FATE platform is used to imple-
ment vertical federated learning, so that
the three participants can jointly train a
random forest model without sharing the
original data; a fate object is initialized and

Figure 5. Diagram of the vertical federated learning framework for the random forest model.

113Network Intrusion Detection Based on Convolutional Recurrent Neural Network, Random Forest...

set according to the roles (''guest'', ''host'',
''arbiter'') and addresses of the participants
A, B, and C.

4. Model parameter setting and training:
A random forest model is created on the
FATE platform with the relevant hyperpa-
rameters set, including the number of trees
(100), depth (10) and feature selection
ratio (0.8); the number of training rounds
is set to 10, and the evaluation indexes in-
clude ''accuracy'', ''recall'' and ''F1 value''.

5. Model evaluation and visualization: Per-
formance evaluation is performed after
completing the training of the model on the
FATE platform; the visualization tools are
used to show the learning curve and confu-
sion matrix of the model.

Through the above steps, this paper successfully
trains an RF model based on vertical federated
learning framework with superior performance,
which can not only handle high dimension-
al data and improve accuracy, but also protect
data privacy and improve overall efficiency.

4. Results and Discussions

4.1. Experimental Environment and
Assessment Indicators

4.1.1. Experimental Environment

The experimental training and testing in this
paper were conducted under the Windows 11
operating system environment. The hardware
configuration used includes two Intel Xeon
Platinum 8380 processors, each with 40 cores
and 80 threads, a main frequency of 2.3 GHz, a
maximum RPM of 3.4 GHz, equipped with 60
MB of L3 cache and LGA4189 slot type, and
the power consumption of each processor was
270 W. Python was chosen as the main devel-
opment language, and PyCharm and Jupyter
Notebook were chosen as the integrated devel-
opment environment. For the deep learning li-
brary, PyTorch was chosen in this paper, as a
widely used library, it is not only suitable for
performing large-scale numerical computation,
but also easy to build network models, which is
very suitable for realizing the algorithmic mod-
els in this paper.

4.1.2. Assessment of Indicators

The experiment uses the following experimen-
tal evaluation metrics:
1. Accuracy is calculated as shown in equa-

tion (22):

TP TNAcc
TP TN FP FN

+
=

+ + +
(22)

where TP (True Positives) denotes true
positive cases, FP (False Positives) de-
notes false positive cases, FN (False Neg-
atives) denotes false negative cases, and
TN (True Negatives) denotes true negative
cases; this formula calculates the classifi-
cation accuracy of the model on the overall
sample.

2. Precision is calculated as shown in equa-
tion (23):

TPPre
TP FP

=
+

(23)

This formula quantifies the accuracy of the
model when it predicts a positive case.

3. Recall is calculated as shown in equation
(24):

TPRecall
TP FN

=
+

(24)

The formula measures the effectiveness
of the model in identifying actual positive
samples.

4. The F1 score (F1-score) is calculated as
shown in equation (25):

1 2 Precision RecallF score
Precision Recall

⋅
=

+
(25)

In this case, the relative contributions of
Precision and Recall to the F1 score are
equal. The F1 score takes values between
0 and 1, where 1 indicates the best perfor-
mance and 0 the worst performance. This
makes the formula an effective tool for
evaluating the balance between model pre-
cision and recall ability.

5. Definition and calculation of AUC (Area
Under Curve): the area under the ROC
curve (Receiver Operating Characteris-

114 Q. Zou, Y. Li, X. Jiang, Y. Zan and F. Liu

tic Curve) is an important indicator of the
model's classification ability. Its value rep-
resents the ability of the model to distin-
guish between positive and negative sam-
ples: the larger the AUC value, the better
the classification effect of the model. Its
calculation formula is shown in equation
(26):

1

0

()AUC TPR FPR dFPR= ∫

(26)

where TPR represents the true case rate at
the point on the ROC curve and dFPR rep-
resents the differential of the false positive
case rate at the point on the ROC curve.

4.2. Dataset

The experiments in this paper use five datasets,
the details of which are shown in Table 1. Each
of the five datasets includes a training and a test
set, and the amount of data in the training and
test sets correspond to each target feature class.

4.3. Algorithmic Implementation of This
Study

4.3.1. Parameters Required for the
Experiment

As shown in Table 2, in this experiment, in order
to configure the CRNN model, the study selects
five key hyperparameters: the learning rate, the
number of iterations, the loss function, the reg-
ularization, and the optimizer. Among them,
the learning rate, as an important parameter
to control the update rate of the model param-
eters, needs to be precisely adjusted based on
the size and characteristics of the dataset. In the
experimental setup, the learning rate was set to
0.001 to ensure that the model learns stably and
effectively during the training process. Binary
cross-entropy was chosen for the loss function,
which helps to accurately calculate the error
between the predicted and real values of the
model. In order to suppress the overfitting risk
of the model, L2 regularization was used, and

Table 1. Information table for the experimental dataset.

hallmark
form

NSL-KDD KDDCup99 UNSW-NB15 CIC-IDS2017 CSE-CIC-
IDS2018

training
set test set training

set test set training
set test set training

set test set training
set test set

DoS 45927 7458 391458 229853 37000 4089 37000 4089 37000 4089

Probe 11656 2424 4107 4166 11656 2421 11656 2421 11656 2421

R2L 995 2754 1126 16189 995 2754 995 2754 995 2754

U2R 52 200 52 228 52 200 52 200 52 200

normal 67343 9711 97278 60593 56000 37000 56000 37000 56000 37000

aggregate
quantitatively 125973 22544 494021 311029 105953 82332 105953 82332 105953 82332

115Network Intrusion Detection Based on Convolutional Recurrent Neural Network, Random Forest...

its parameter value was set to 0.001, which can
make the model parameters smoother. Finally,
considering the complexity of the model struc-
ture in this paper, the non-uniform distribution
characteristics of the dataset, and the training
requirements of the model under the federated
learning framework, the study chooses FedProx
as the optimizer to optimize the model parame-
ters and improve its overall performance.

4.3.2. Ablation Experiments

The paper evaluates the model's performance
through ablation experiments, which involve
incrementally increasing the model's complex-
ity and observing changes in its output. The pri-
mary purpose of ablation experiments is to gain
a deeper understanding of the model's working
mechanisms while uncovering its strengths and

potential weaknesses. As shown in Table 3, the
results of the ablation experiments under differ-
ent model configurations provide crucial insights
for the model's evaluation and optimization.
As shown in Table 3, the ablation experiment
results indicate that CNN and RNN exhibit
consistent performance in terms of accuracy
(ACC), precision (P), recall (R), and F1-score
(F1), but their performance is significantly
lower than that of CRNN and RF models. Spe-
cifically, CRNN outperforms CNN and RNN
across all performance metrics. This advantage
mainly stems from CRNN's ability to combine
the feature extraction capabilities of CNN with
the sequential modeling capabilities of RNN,
enabling it to more effectively capture spatio-
temporal information, thus excelling in network
intrusion detection tasks.

Table 2. Information sheet on required parameters.

Hyperparameter name Hyperparameter Meaning set up

learning rate Controlling the speed of model pa-
rameter updates 0.001

Number of iterations Number of times the neural network
worked on the entire training dataset 70

loss function Differences between model predic-
tions and true values binary crossentropy

regularization Preventing model overfitting L2

optimizer For optimizing model parameters FedProx

Table 3. Table of ablation experiments' results.

Architecture P R F1 ACC AUC

convolutional neural network 0.765 0.766 0.766 0.787 0.909

recurrent neural network 0.765 0.766 0.766 0.787 0.909

convolutional recurrent neural network 0.999 0.998 0.998 0.998 0.999

random forest 0.980 0.970 0.980 0.980 0.990

The federated learning framework 0.999 0.999 0.999 0.999 0.999

116 Q. Zou, Y. Li, X. Jiang, Y. Zan and F. Liu

By integrating CRNN and RF models into the
federated learning (FL) framework, a compre-
hensive model proposed in this paper is formed.
Experimental results show that the proposed
algorithm achieves further improvement in all
metrics. Specifically, the proposed algorithm
approaches near-perfect performance in accu-
racy, precision, recall, F1-score, and AUC, sig-
nificantly outperforming the standalone use of
CRNN or RF.
The superior performance of the proposed
method can be attributed to the following fac-
tors:
CRNN model: By combining the feature ex-
traction capabilities of CNN with the sequen-
tial modeling capabilities of RNN, it effectively
handles high-dimensional, nonlinear, and dy-
namically changing data features, significantly
enhancing detection accuracy and robustness.
RF model: Offers strong feature selection and
noise reduction capabilities, further enhancing
the model's generalization ability and robust-
ness.
FL framework: Through distributed data pro-
cessing, it reduces the need for data central-
ization and transmission, effectively protecting
data security and privacy. Additionally, the FL
framework can leverage the computational re-
sources of multiple participants, accelerating
the training process and improving model effi-
ciency and performance.
However, despite the significant performance
advantages of the proposed method, it has high
computational complexity, long training times,
and substantial hardware resource require-
ments. These factors may present challenges in
practical applications, necessitating trade-offs
and optimizations during actual deployment.

4.3.3. Comparison of Experimental Results
with Different Hyperparameters

In this paper, the performance of the algorithm
is evaluated for different number of iterations
(from 0 to 70). As shown in Figure 6, the loss
value (Loss) of the model gradually decreases
while the accuracy (Accuracy) gradually in-
creases as the number of iterations increases.
This trend indicates that with more iterations,

the model parameters are able to fit the training
data more efficiently. The loss value is a key
measure of the difference between the model's
predicted results and the true labels, while the
accuracy is an important metric for evaluating
the correctness of the model's predictions. The
reduction of the loss value and the improve-
ment of the accuracy rate together indicate a
significant enhancement of the performance
of the algorithm in this paper. The reason for
this effect is that as the iterations proceed, the
model continuously adjusts its internal param-
eters to reduce the prediction error by learning
the features and patterns in the training data.
During each iteration, the algorithm optimizes
the model parameters based on the feedback
from the loss function, resulting in a decrease
in the loss value and an increase in the accu-
racy. This continuous parameter optimization
process allows the model to predict new sam-
ples more accurately, demonstrating the effec-
tiveness of the algorithm in learning and gen-
eralization.

4.3.4. Analysis of Computational Complexity,
Scalability, and Communication
Overhead

The Convolutional Recurrent Neural Network
(CRNN) proposed by the research institute
combines the feature extraction capabilities of
Convolutional Neural Networks (CNN) with
the temporal modeling capabilities of Recur-
rent Neural Networks (RNN). This allows the
CRNN to effectively handle high-dimensional,
nonlinear, and dynamically changing data fea-
tures. The computational complexity of each
convolutional layer is O(n ∙ k ∙ c), where n is the
input data size, k is the kernel size, and c is the
number of output channels. The computation-
al complexity of the recurrent layer is O(t ∙ h),
where t is the number of time steps and h is the
hidden layer size. Despite the high computa-
tional complexity of the model, optimization
algorithms and hardware acceleration can ef-
fectively improve training speed and inference
efficiency.
Through experiments, the research obtained
data on the model's performance and commu-
nication overhead with different numbers of
nodes, as shown in Table 4.

117Network Intrusion Detection Based on Convolutional Recurrent Neural Network, Random Forest...

Figure 6. Plot of the number of iterations on the loss value and accuracy of this paper's algorithm.

Table 4. Model Performance and Communication Overhead with Different Numbers of Nodes.

Number of
Nodes Accuracy Recall F1 Score AUC Communication

Overhead (GB)

1 0.85 0.82 0.83 0.87 1.00

2 0.88 0.85 0.86 0.89 1.50

5 0.90 0.87 0.88 0.91 2.56

10 0.91 0.89 0.90 0.92 3.85

20 0.94 0.93 0.94 0.95 5.77

50 0.97 0.96 0.97 0.98 9.65

100 0.999 0.999 0.999 0.999 15.00

118 Q. Zou, Y. Li, X. Jiang, Y. Zan and F. Liu

From Table 4, it is evident that, as the number
of nodes increases, the model's performance
gradually improves. When the number of nodes
reaches 100, the performance metrics (accura-
cy, recall, F1 score, and AUC) all reach 0.999.
This indicates that increasing the number of
nodes can significantly enhance the overall per-
formance of the model. This improvement is at-
tributed to the additional training data and com-
putational resources provided by more nodes,
which enhance the model's generalization abili-
ty and robustness. However, the increase in the
number of nodes also leads to higher computa-
tional complexity, as each node needs to inde-
pendently train the model, and the global model
update requires aggregating more local model
parameters.
The communication overhead significantly ris-
es with the increase in the number of nodes.
This increase in communication overhead can
affect the efficiency of federated learning, par-
ticularly when the number of nodes is large.
Nevertheless, by reasonably planning the com-
munication frequency and data volume, it is
possible to improve model performance while
controlling communication overhead, ensuring
the efficiency and scalability of federated learn-
ing.
Although the increase in the number of clients
results in higher communication overhead and
computational complexity, the model perfor-

mance remains consistently high (with perfor-
mance metrics reaching 0.999 when the number
of nodes is 100). This demonstrates that in-
creasing the number of clients can significantly
enhance the overall performance of the model,
mainly because more clients provide richer data
samples, which help improve the model's train-
ing effectiveness.
Based on these results, it can be concluded that
the proposed method is highly practical and
effective in the context of federated learning.
In practical applications, the number of nodes
and communication frequency can be flexibly
adjusted according to specific needs and avail-
able resources to achieve optimal model perfor-
mance and system efficiency.

4.4. Comparison of this Study's Algorithm
with Other Intrusion Detection
Methods

4.4.1. Model Detection Performance
Comparison

The algorithm in this paper was applied to the
NSL-KDD dataset and compared with oth-
er models in terms of detection performance.
The results of this comparison show the per-
formance of the algorithm on this dataset, as
shown in Table 5.

Table 5. Table of model performance comparison results.

mould P R F1 ACC AUC

FL-SEResNet 0.98 0.97 0.975 0.98 0.98

DBN 0.980 0.978 0.979 0.979 0.995

LSTM 0.984 0.982 0.983 0.983 0.996

NDAE 0.820 0.820 0.820 0.815 0.910

KNN 0.930 0.920 0.925 0.930 0.930

TL-NID 0.96 0.95 0.955 0.96 0.960

The algorithm in
this study 0.999 0.999 0.999 0.999 0.999

119Network Intrusion Detection Based on Convolutional Recurrent Neural Network, Random Forest...

The performance of this study's algorithm is
compared with other commonly used machine
learning and deep learning methods on network
intrusion detection tasks. These comparison
models include deep belief networks (DBN),
long short-term memory networks (LSTM),
asymmetric deep self-encoder (NDAE), and
k-nearest neighbor algorithm (KNN), as well
as an image classification model based on
deep residual networks, feature-level attention
mechanisms (FL-SEResNet), and a network
intrusion detection model based on migration
learning (TL-NID). The latter consists of a
cascade of two convolutional neural networks.

As it can be seen from the results shown in Ta-
ble 5, the algorithmic model proposed in this
study outperforms the other models in all per-
formance metrics, especially in the accuracy
rate of 99.9%, which is 1.9% higher than the
best comparison model, FL-SEResNet. This
excellent performance demonstrates the effec-
tiveness and superiority of this model for net-
work intrusion detection tasks. This is main-
ly due to the feature extraction capability of
this model on network traffic data. In addition,
the recurrent neural network is able to capture
long-term dependencies in time-series data, an
ability that plays a crucial role in the network
intrusion detection task.

Experiments on the NSL-KDD dataset show
that compared with the classical BP neural net-
work algorithm, the convolutional recurrent
neural network model demonstrates advantag-
es in terms of training time, detection accura-
cy and false alarm rate. Overall, the convolu-
tional recurrent neural network model in this
paper effectively integrates the advantages of
deep learning techniques and classifiers, and
can accurately classify network traffic data,
thus demonstrating significant effectiveness
and superiority in network intrusion detection
tasks.

4.4.2. Comparison of the Results of this
Study's Algorithm in Five Attack
Categories and the Detection
Performance of Other Models

The purpose of this experiment is to evaluate
the performance of the proposed convolution-
al recurrent neural network intrusion detection
model and compare it with a variety of com-
monly used machine learning models. Like
in the previous experiment, these comparison
models include DBN, LSTM, NDAE, KNN,
FL-SEResNet, and TL-NID. To fully measure
the detection performance of these models, five
attack types are used and evaluated using five
performance metrics described in 4.1.2.
Table 6 shows the detection results of this pa-
per's algorithm on five attack categories and the
performance comparison with other models.
Figure 7 shows the confusion matrices of each
model across the five attack types.
As shown in Table 6 and Figure 7, the algo-
rithm presented in this paper demonstrates ex-
cellent classification performance across five
attack categories. These superior performances
can be attributed to several key factors. First-
ly, the algorithm utilizes multimodal feature
fusion, combining the advantages of CNN and
RNN. This allows it to capture both temporal
and spatial features of network traffic. CNNs
excel at extracting local features, while RNNs
are proficient in handling sequential data. The
combination enables the model to comprehen-
sively understand and classify network attack
behaviors. Secondly, the application of feder-
ated learning allows the model to be trained
across multiple nodes without centralized data
aggregation. This not only enhances data pri-
vacy and security but also improves the mod-
el's generalization capability by learning from
distributed, heterogeneous data. Finally, the
use of efficient optimization strategies, such
as the Adam optimizer, ensures that the model
converges more quickly to the global optimum,
avoiding local minima. Additionally, adjusting
the learning rate and employing regularization
techniques further enhances the model's stabili-
ty and robustness.

120 Q. Zou, Y. Li, X. Jiang, Y. Zan and F. Liu

Table 6. Comparison of model results under five attack categories.

mould Type of attack P R F1 ACC AUC

FL-SEResNet

DoS 0.980 0.970 0.975 0.98 0.98

Probe 0.970 0.960 0.965 0.97 0.97

U2R 0.960 0.950 0.955 0.96 0.96

R2L 0.950 0.940 0.945 0.95 0.95

Normal 0.980 0.980 0.980 0.98 0.98

TL-NID

DoS 0.960 0.950 0.955 0.960 0.960

Probe 0.950 0.940 0.945 0.950 0.950

U2R 0.940 0.930 0.935 0.940 0.940

R2L 0.930 0.920 0.925 0.930 0.930

Normal 0.960 0.960 0.960 0.960 0.960

DBN

DoS 0.981 0.982 0.982 0.982 0.996

Probe 0.978 0.976 0.977 0.977 0.995

U2R 0.969 0.968 0.969 0.969 0.992

R2L 0.974 0.972 0.973 0.973 0.993

Normal 0.969 0.968 0.969 0.969 0.992

LSTM

DoS 0.983 0.984 0.984 0.984 0.996

Probe 0.980 0.978 0.979 0.979 0.995

U2R 0.971 0.970 0.971 0.971 0.993

R2L 0.976 0.974 0.975 0.975 0.994

Normal 0.990 0.988 0.989 0.989 0.998

NDAE

DoS 0.990 0.960 0.970 0.970 0.980

Probe 0.710 0.800 0.750 0.760 0.880

U2R 0.220 0.290 0.250 0.250 0.640

R2L 0.540 0.570 0.550 0.550 0.770

Normal 0.930 0.970 0.950 0.950 0.980

tKNN

DoS 0.999 0.999 0.999 0.999 0.999

Probe 0.998 0.998 0.998 0.998 0.998

U2R 0.987 0.987 0.987 0.987 0.987

R2L 0.996 0.996 0.996 0.996 0.996

Normal 0.998 0.998 0.998 0.998 0.998

The algorithm
in this study

DoS 0.985 0.986 0.986 0.986 0.997

Probe 0.982 0.978 0.980 0.980 0.996

U2R 0.971 0.970 0.971 0.971 0.993

R2L 0.976 0.974 0.975 0.975 0.994

Normal 0.992 0.988 0.990 0.990 0.999

121Network Intrusion Detection Based on Convolutional Recurrent Neural Network, Random Forest...

Figure 7. Confusion matrices of different models across five attack types.

122 Q. Zou, Y. Li, X. Jiang, Y. Zan and F. Liu

When compared with other state-of-the-art
techniques, the superiority of the proposed
algorithm is also evident. The proposed algo-
rithm performs better in handling small sam-
ple categories (e.g., U2R) and effectively pro-
cesses heterogeneous data, making it suitable
for federated learning scenarios. In contrast,
FL-SEResNet performs well in Normal and
DoS categories but has weaker capabilities in
handling heterogeneous data. TL-NID shows
stable performance in most attack categories but
struggles with complex attack patterns like R2L
and U2R. DBN performs well in multi-class at-
tack detection, especially in DoS and Probe cat-
egories, but has a long training time and poor
adaptability to dynamically changing network
attacks. LSTM excels in handling sequential
data but has high computational complexity and
long training times. NDAE performs adequate-
ly in Normal and DoS categories but poorly in
Probe, U2R, and R2L categories, with a high
false positive rate. KNN performs well across
nearly all categories but has high computational
complexity, resulting in long training and pre-
diction times, especially with large datasets.
In practical network intrusion detection appli-
cations, the proposed algorithm has significant
practical implications. Firstly, the federated
learning framework enables training across mul-
tiple distributed nodes, adapting to large-scale
distributed network environments, effectively
addressing data privacy concerns, and enhanc-
ing system scalability. Secondly, by combining
the strengths of CNN and RNN, the model ex-
cels in handling diverse and complex network
attacks. Multimodal feature fusion and efficient
optimization strategies allow it to maintain high
precision and recall rates across various attack
types. Additionally, the application of regular-
ization techniques and optimization strategies
further strengthens the model's robustness, re-
ducing the risk of overfitting. Lastly, the algo-
rithm demonstrates strong adaptability to evolv-
ing network threats. Through federated learning
and multimodal feature fusion, the model can
learn from heterogeneous data from different
nodes, effectively capturing new attack patterns
and adapting to dynamically changing network
environments.
The proposed framework also shows potential
for widespread applications in various fields
such as IoT, cloud computing, and industrial

control systems. For IoT, traditional central-
ized intrusion detection methods struggle to
meet the needs of vast and widely distributed
devices. The federated learning framework can
train models in a distributed manner across IoT
nodes, protecting data privacy while improv-
ing detection efficiency and accuracy. In cloud
computing environments, centralized data stor-
age and processing face significant security
risks. The proposed algorithm can train and
update models across multiple cloud nodes, en-
hancing the adaptability and robustness of the
detection system. In industrial control systems,
highly sensitive data and operational environ-
ments require extremely high security. The
proposed algorithm, through federated learning
and multimodal feature fusion, can effectively
perform intrusion detection in distributed in-
dustrial control systems, ensuring system secu-
rity. The high accuracy and recall rates further
enhance the protective capabilities of industrial
control systems.

5. Conclusion

In this paper, we proposed a novel network
intrusion detection framework that combines
convolutional recurrent neural networks and
random forest models within a federated learn-
ing setting. The proposed approach effectively
addresses the challenges of data privacy, com-
putational efficiency, and model generalization
in traditional network intrusion detection meth-
ods. By leveraging the strengths of CRNN and
RF, the framework achieves high accuracy and
robustness in detecting various types of net-
work attacks.
The extensive experimental results on bench-
mark datasets demonstrate the superiority of the
proposed method compared to state-of-the-art
techniques, consistently outperforming them in
terms of accuracy, precision, recall, F1 score,
and AUC. The integration of federated learning
enables collaborative model training while pre-
serving data privacy, making the proposed ap-
proach suitable for real-world deployment.
The proposed framework has significant impli-
cations for the field of cybersecurity, offering a
promising solution for secure and efficient net-
work intrusion detection. It can be applied to
various domains, such as IoT, cloud computing,

123Network Intrusion Detection Based on Convolutional Recurrent Neural Network, Random Forest...

and industrial control systems, to enhance their
security posture and protect against evolving
threats. However, there are still challenges and
opportunities for future research. Further inves-
tigations can focus on improving the adaptabil-
ity and scalability of the proposed method, ad-
dressing the dynamic nature of network traffic
and the heterogeneity of participating clients.
The incorporation of advanced techniques,
such as attention mechanisms, adaptive learn-
ing rates, and differential privacy, could further
enhance the performance and security of the
framework.
In conclusion, the proposed network intrusion
detection framework based on CRNN, RF, and
federated learning represents a significant step
forward in the field of cybersecurity. It offers
a powerful and flexible solution for detecting
and mitigating network attacks while preserv-
ing data privacy. The insights gained from this
research can guide future efforts in developing
more robust and efficient intrusion detection
systems, ultimately contributing to a safer and
more secure cyberspace.

References

[1] R. Creemers et al., ''Translation: Cybersecurity
Law of the People's Republic of China'' in Digi-
China, 2017.
http://digichina.stanford.edu/work/translation-
cybersecurity-law-of-the-peoples-republic-
of-china-effective-june-1-2017/

[2] S. Jian et al., ''Overview of Network Intrusion
Detection Technology'', Journal of Cyber Securi-
ty, vol. 5, no. 4, pp. 96–122, 2020.
http://dx.doi.org/10.19363/J.cnki.cn10-1380/tn.2020.07.07

[3] C. Zheng et al., ''Intrusion Detection Based on
Federated Learning and Deep Residual Net-
works'', Computer Applications, vol. 43, no. S1,
pp. 133–138, 2023.
http://www.joca.cn/EN/10.11772/j.issn.1001–9081.2022081222

[4] B. Li et al., ''DeepFed: Federated Deep Learning
for Intrusion Detection in Industrial Cyber–Phys-
ical Systems'', IEEE Trans. Industr. Inform., vol.
17, no. 8, pp. 5615–5624, 2021.
https://doi.org/10.1109/tii.2020.3023430

[5] T. Zhang et al., ''Federated Learning for Internet
of Things'', in Proceedings of the 19th ACM Con-
ference on Embedded Networked Sensor Systems,
2021, pp. 413–419.
https://doi.org/10.48550/arXiv.2106.07976

[6] S. Agrawal et al., ''Federated Learning for Intru-
sion Detection System: Concepts, Challenges and
Future Directions'', Comput. Commun., vol. 195,
pp. 346–361, 2022.
https://doi.org/10.1016/j.comcom.2022.09.012

[7] A. Belenguer et al., ''GöwFed: A Novel Federat-
ed Network Intrusion Detection System'', Journal
of Network and Computer Applications, vol. 217,
no. 103653, p. 103653, 2023.
https://doi.org/10.48550/arXiv.2210.16441

[8] O. Belarbi et al., ''Federated Deep Learning for
Intrusion Detection in IoT Networks'', in Pro-
ceedings of the GLOBECOM 2023 - 2023 IEEE
Global Communications Conference, 2023.
https://doi.org/10.1109/GLOBECOM54140.2023.10437860

[9] X. Sun et al., ''A Hierarchical Federated Learn-
ing-based Intrusion Detection System for 5G
Smart Grids'', Electronics (Basel), vol. 11, no. 16,
pp. 2627, 2022.
https://doi.org/10.3390/electronics11162627

[10] S. Hao et al., ''A Network Intrusion Detection
Model Based on Efficient Federated Learning Al-
gorithm'', Journal of Computer Applications, vol.
43, no. 4, pp. 1169–1175, 2023.

[11] K. Li, ''A Network Intrusion Detection Model
Based on Efficient Federated Learning Algo-
rithm'', Liaoning Normal University, no. 12, pp.
1–59, 2022.
https://link.cnki.net/doi/10.27212/d.cnki.glnsu.2022.000538

[12] H. Zhang et al., ''Summary of Intrusion Detec-
tion Models Based on Deep Learning'', Computer
Engineering and Applications, vol. 58, no. 6, pp.
17–28, 2022.

[13] R. Vinayakumar et al., ''Applying Convolutional
Neural Network for Network Intrusion Detec-
tion'', in Proceedings of the 2017 International
Conference on Advances in Computing, Commu-
nications and Informatics (ICACCI), pp. 1222–
1228, 2017.
https://doi.org/10.1109/ICACCI.2017.8126009

[14] C. Yin et al., ''A Deep Learning Approach for
Intrusion Detection Using Recurrent Neural Net-
works'', IEEE Access, vol. 5, pp. 21954–21961,
2017.
https://doi.org/10.1109/access.2017.2762418

[15] X. Duan et al., ''Network Traffic Anomaly Detec-
tion Method Based on Multi-scale Residual Clas-
sifier'', Computer Communications, vol. 198, pp.
206–216, 2023.
https://doi.org/10.1016/j.comcom.2022.10.024

[16] H. Qian, ''Machine Learning-based Smart Device
Identification and Security Management for In-
ternet of Things'', Southeast University, no. 6, pp.
1–67, 2022.
https://link.cnki.net/doi/10.27014/d.cnki.gdnau.2021.001412

http://digichina.stanford.edu/work/translation-cybersecurity-law-of-the-peoples-republic-of-china-effective-june-1-2017/
http://digichina.stanford.edu/work/translation-cybersecurity-law-of-the-peoples-republic-of-china-effective-june-1-2017/
http://digichina.stanford.edu/work/translation-cybersecurity-law-of-the-peoples-republic-of-china-effective-june-1-2017/
http://dx.doi.org/10.19363/J.cnki.cn10-1380/tn.2020.07.07
http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022081222
https://doi.org/10.1109/tii.2020.3023430
https://doi.org/10.48550/arXiv.2106.07976
https://doi.org/10.1016/j.comcom.2022.09.012
https://doi.org/10.48550/arXiv.2210.16441
https://doi.org/10.1109/GLOBECOM54140.2023.10437860
https://doi.org/10.3390/electronics11162627
https://link.cnki.net/doi/10.27212/d.cnki.glnsu.2022.000538
https://doi.org/10.1109/ICACCI.2017.8126009
https://doi.org/10.1109/access.2017.2762418
https://doi.org/10.1016/j.comcom.2022.10.024
https://link.cnki.net/doi/10.27014/d.cnki.gdnau.2021.001412

124 Q. Zou, Y. Li, X. Jiang, Y. Zan and F. Liu

[17] L. Tang et al., ''Review of Deep Learning for
Short Text Sentiment Tendency Analysis'', Jour-
nal of Frontiers of Computer Science and Tech-
nology, vol. 15, no. 5, pp. 794–811, 2021.

[18] S. Ma, ''Research on Stereoscopic Video Quality
Evaluation Method Based on Convolutional Neu-
ral Network'', Tianjin University, no. 1, pp. 1–67,
2022.
https://link.cnki.net/doi/10.27356/d.cnki.gtjdu.2019.002916

[19] J. Ma, ''Research on Image Verification Code
Recognition Algorithm Based on Deep Learn-
ing'', Shenyang Normal University, no. 9, pp.
1–47, 2021.
https://link.cnki.net/doi/10.27328/d.cnki.gshsc.2021.000149

[20] Z. Xie, ''Research on Knowledge Base Q&A
Technology Based on Deep Learning'', Central
China Normal University, no. 1, pp. 1–68, 2019.

[21] Y. Li et al., ''Network Anomaly Detection Based
on TCM-KNN Algorithm'', in Proceedings of the
2nd ACM symposium on Information, Computer
and Communications Security, 2007.
https://doi.org/10.1145/1229285.1229292

[22] Y. Imrana et al., ''A Bidirectional LSTM Deep
Learning Approach for Intrusion Detection'', Ex-
pert Syst. Appl., vol. 185, no. 115524, p. 115524,
2021.
https://doi.org/10.1016/j.eswa.2021.115524

[23] M. Masum and H. Shahriar, ''TL-NID: Deep Neu-
ral Network with Transfer Learning for Network
Intrusion Detection'', in Proceedings of the 15th
International Conference for Internet Technology
and Secured Transactions (ICITST), 2020.
https://doi.org/10.23919/ICITST51030.2020.9351317

[24] D. Liang and P. Pan, ''Research on Intrusion De-
tection Based on Improved DBN-ELM'', in Pro-
ceedings of the 2019 International Conference on
Communications, Information System and Com-
puter Engineering (CISCE), 2019.
https://doi.org/10.1109/CISCE.2019.00115

[25] N. Shone et al., ''A Deep Learning Approach to
Network Intrusion Detection'', IEEE Transac-
tions on Emerging Topics in Computational Intel-
ligence, vol. 2, no. 1, pp. 41–50, 2018.
https://doi.org/10.1109/tetci.2017.2772792

[26] B. Gan et al., ''A Convolutional Neural Network
Intrusion Detection Method Based on Data Im-
balance'', The Journal of Supercomputing, vol.
78, no. 18, pp. 19401–19434, 2022.
https://doi.org/10.1007/s11227-022-04633-x

[27] Z. Li et al., ''Intrusion Detection Using Convo-
lutional Neural Networks for Representation
Learning'', in Neural Information Processing,
Cham: Springer International Publishing, 2017,
pp. 858–866.
https://doi.org/10.1007/978-3-319-70139-4_87

[28] Q. Xu, ''A Text Categorization Method for Smart
Devices Based on Natural Language Processing'',
Shanghai University of Applied Sciences, no. 3,
pp. 1–62, 2021.
https://link.cnki.net/doi/10.27801/d.cnki.gshyy.2021.000150

[29] A. N. Sokolov et al., ''Traffic Modeling by Re-
current Neural Networks for Intrusion Detection
in Industrial Control Systems'', in Proceedings of
the 2019 International Conference on Industrial
Engineering, Applications and Manufacturing
(ICIEAM), 2019.
https://doi.org/10.1109/ICIEAM.2019.8742961

[30] N. Farnaaz and M. A. Jabbar, ''Random Forest
Modeling for Network Intrusion Detection Sys-
tem'', Procedia Computer Science, vol. 89, pp.
213–217, 2016.
https://doi.org/10.1016/j.procs.2016.06.047

[31] T. Markovic et al., ''Random Forest Based on
Federated Learning for Intrusion Detection'', in
AIAI 2022. IFIP Advances in Information and
Communication Technology, 2022, pp. 132–144.
https://doi.org/10.1007/978-3-031-08333-4_11

[32] H. B. McMahan et al., ''Communication-efficient
Learning of Deep Networks from Decentralized
Data'', in Proceedings of the 20th International
Conference on Artificial Intelligence and Statis-
tics, 2017, pp. 1273–1282.

[33] L. Yang et al., ''Resource Management Algorithm
of Indoor Visible Light Communication and WiFi
Heterogeneous Network'', in Optoelectronic De-
vices and Integration X, 2021.
https://doi.org/10.1117/12.2600722

[34] R. Zhu, ''Research on Cyberbullying Detection
Technology Based on Deep Neural Network'',
Nanjing University of Science and Technology,
no. 3, pp. 1–83, 2021.
https://link.cnki.net/doi/10.27245/d.cnki.gnjsu.2021.000233

Received: May 2024
Revised: June 2024

Accepted: June 2024

https://link.cnki.net/doi/10.27356/d.cnki.gtjdu.2019.002916
https://link.cnki.net/doi/10.27328/d.cnki.gshsc.2021.000149
https://doi.org/10.1145/1229285.1229292
https://doi.org/10.1016/j.eswa.2021.115524
https://doi.org/10.23919/ICITST51030.2020.9351317
https://doi.org/10.1109/CISCE.2019.00115
https://doi.org/10.1109/tetci.2017.2772792
https://doi.org/10.1007/s11227-022-04633-x
https://doi.org/10.1007/978-3-319-70139-4_87
https://link.cnki.net/doi/10.27801/d.cnki.gshyy.2021.000150
https://doi.org/10.1109/ICIEAM.2019.8742961
https://doi.org/10.1016/j.procs.2016.06.047
https://doi.org/10.1007/978-3-031-08333-4_11
https://doi.org/10.1117/12.2600722
https://link.cnki.net/doi/10.27245/d.cnki.gnjsu.2021.000233

125Network Intrusion Detection Based on Convolutional Recurrent Neural Network, Random Forest...

Contact addresses:
Qianying Zou

Geely University of China
Chengdu

China
e-mail: zouqianying@guc.edu.cn

Yushi Li
Chengdu College of University of Electronic Science and

Technology of China
Chengdu

China
e-mail: 1406458279@qq.com

Xinyue Jiang

Chengdu College of University of Electronic Science and
Technology of China

Chengdu
China

e-mail: 1797717885@qq.com

Yuepeng Zan
Chengdu College of University of Electronic Science and

Technology of China
Chengdu

China
e-mail: 2017829598@qq.com

Fengyu Liu*
Geely University of China

Chengdu
China

e-mail: liufengyu@guc.edu.cn
*Corresponding author

Qianying Zou received the B.S. degree in information engineering
from Chengdu University of Technology, Chengdu, China, in 2003, and
the M.S. degree in computer applications from Chengdu University of
Technology, Chengdu, China, in 2006. Her major research interests in-
clude big data applications and artificial intelligence.

Yushi Li is currently pursuing his B.S. degree in computational sci-
ence at the University of Electronic Science and Technology of China,
Chengdu College, Chengdu, China. He is in his fourth year of study. His
primary research focus lies in big data applications.

Xinyue Jiang is currently pursuing his B.S. degree in computational sci-
ence at the University of Electronic Science and Technology of China,
Chengdu College, Chengdu, China. His research interest is in computa-
tional science.

Yuepeng Zan is currently pursuing his B.S. degree in computational
science at the University of Electronic Science and Technology of Chi-
na, Chengdu College, Chengdu, China. His primary research focus lies
in big data applications.

Fengyu Liu received the B.S. degree in software engineering from the
University of Electronic Science and Technology of China, Chengdu
College, Chengdu, China, in 2018. He is currently a teaching assistant.
His primary research interests include computer vision and front-end/
back-end design.

