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DNA is a valuable tool for classifying expression of 
genes in detection of breast cancer. Gene expression 
data are biological data that extract valuable hidden 
information from gene datasets. Extracting useful 
features from datasets is a challenging task. Our gene 
expression dataset had a small number of samples 
but many features. This paper compared three types 
of recurrent deep learning models, including recur-
rent neural networks (RNN), long short-term memory 
(LSTM), and gated recurrent unit (GRU), for classifi-
cation of breast cancer. The goals of the study were to 
improve the accuracy of classification and to enhance 
the effectiveness of feature selection; the basic prin-
ciple was to select the best features from the original 
datasets. The bat algorithm assists in selecting the best 
relevant feature when integrated with recurrent deep 
learning models, which improves breast cancer classi-
fication by leveraging training datasets. Data prepro-
cessing involves removing unnecessary columns and 
filling out missing values with the median value. The 
result was a comparative study using recurrent deep 
learning with the bat algorithm to classify breast can-
cer. The bat algorithm with LSTM achieved higher 
accuracy than RNN and GRU, where GRU had the 
lowest accuracy.
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1. Introduction

Breast cancer is the most frequent cancer in 
women worldwide, and it is one of the primary 
reasons for death in women. There are three dif-
ferent forms of breast cancer: invasive, benign, 
and in situ. The benign tumors are minor and 
not harmful, while mammary duct lobule sys-
tem-specific in situ cancer is curable with early 
detection. The deadliest kind of carcinoma is in-
vasive because it can spread to other organs [1]. 
Genomic analysis or histological image analy-
sis are methods to diagnose breast cancer. Ge-
nomics is more efficient but less often applied 
because of its high cost and processing power 
requirements. The primary distinction between 
these two approaches is in the information gap 
that exists between the study of molecular and 
genetic disease biomarkers; the latter may re-
sult in over- or under-treatment because of its 
impreciseness [2].
Biology research is moving towards the 
post-genome age with the completion of the 
Human Genome Project. The precise workings 
of DNA sequences are still mostly unknown de-
spite biologists having gathered much sequence 
data. The complexity of genomes is seen even 
in the most basic organisms [3]. Biology was 
once a data-poor science, but under increasing-
ly sophisticated methods developed recently, 
biologists can now turn enormous volumes of 
valuable biological data into useful data [4]. 
Numerous techniques have been developed to 
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comprehend how genes behave. One signifi-
cant approach for tracking the expression levels 
of multiple genes at once is microarray tech-
nology. Gene expression is defined as the tran-
scription of a gene's DNA sequence into RNA 
(ribonucleic acid), which acts as a template for 
the synthesis of proteins. Gene expression level 
reveals how active a gene is in a given tissue 
at a particular moment or during a specific ex-
periment. In addition to reflecting the actions 
of the respective proteins under particular cir-
cumstances, the tracked gene expression levels 
offer a general overview of the genes [5].
Scholars have suggested that nature is an es-
sential wellspring of ideas for the creation of 
intelligent systems and provides answers to 
complex issues. The bat algorithm is a recent 
entry in the nature-inspired metaheuristic opti-
mization algorithms. Bats possess remarkable 
abilities in echolocation, which has captured 
the interest of researchers across various disci-
plines. Echolocation works similarly to sonar in 
that bats create a loud and transient sound pulse, 
wait for it to bounce off an object, and then re-
ceive the echo in their ears; this enables bats to 
determine the distance between themselves and 
an object. Furthermore, their exceptional orien-
tation mechanism allows bats to differentiate 
between obstacles and prey, allowing them to 
hunt even in total darkness. The bat algorithm 
has gained significant popularity and has been 
successfully employed in diverse applications 
such as engineering optimization and pattern 
recognition [6].
 The bat algorithm extracts features from the 
dataset to improve classification accuracy and 
decrease the number of features; feature selec-
tion may be used to choose the most informa-
tive features from various tumor datasets. The 
bat algorithm's primary objective is to improve 
the effectiveness of the feature selection ap-
proach [7].
Technology is advancing quickly in medical di-
agnosis, and computer-aided diagnosis (CAD) 
is becoming widely used due to its high speed 
and accuracy. Breast cancer can be classified 
as benign or malignant using CAD software. 
A significant contributor to this advancement 
is deep learning. The RNN, LSTM, and GRU 
models are examples of classifiers from recur-
rent deep learning [8].

The three primary methodologies that under-
pin breast cancer diagnosis are preprocessing, 
feature selection and classification. Feature se-
lection is critical in deep learning of cancer di-
agnosis [9]. In this paper, we implemented the 
bat algorithm with recurrent deep learning and 
applied them to training datasets in order to en-
hance the prediction accuracy of breast cancer 
classification. In recent years, there has been 
significant research focused on deep learning. 
These networks feature complete connections 
across layers but lack intra-layer connections, 
making them suitable for processing sequen-
tial input with limitations in recalling previous 
data. RNNs with internal memory were devel-
oped to address this, allowing for considering 
current and previous data. RNNs can lose ac-
curacy over longer spans due to exploding gra-
dients and vanishing issues. The LSTM and 
GRU networks are an enhanced form of RNNs 
to overcome these problems [10]. These sys-
tems integrate two core mechanisms: states 
(memory) and gates. The memory cells within 
can discern when certain information should be 
forgotten and pinpoint the optimal duration for 
time lags. Furthermore, gates offer a method 
of controlling the information flow-through by 
employing a pointwise multiplication operation 
after a layer of sigmoid neural networks. LSTM 
and GRU have demonstrated effectiveness in 
several applications, including gesture recog-
nition, intrusion detection, handwriting recog-
nition, language translation, speech synthesis, 
and data analysis. The LSTM stands out for its 
exceptional classification and feature extraction 
accuracy. LSTM is used for breast cancer clas-
sification by incorporating different types of 
layers for the classification task [11]. The struc-
ture of this paper is set out as follows: Section 2 
considers related work, Section 3 concentrates 
on the specifics of the underlying theory, the 
dataset is discussed in Section 4, the proposed 
work is described in Section 5, Section 6 pro-
vides the experiment and results, and Section 7 
summarizes the conclusions.

2. Related Work

This study [12] investigates the use of artificial 
intelligence algorithms to classify breast cancer 
DNA, with a focus on machine learning and 
deep learning techniques. It involves the ap-
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the false alarm rate compared to other ANN 
schemes. Moreover, this focused approach to 
breast cancer identification based on the false 
alarm rate of the ANN improved the classifica-
tion accuracy by 14.3%. 
In a research study [19], two commonly used 
machine learning algorithms, multilayer per-
ceptron (MLP) and convolutional neural net-
work (CNN) were utilized to develop a mod-
el for detecting and diagnosing malignancy in 
breast cells. The study concluded that the CNN 
algorithm outperformed the MLP algorithm in 
accuracy. In [20], a study conducted a thorough 
experiment to determine which factors in the 
breast cancer dataset were the least significant. 
The study covered machine learning techniques 
such as decision trees, random forests, naive 
Bayes, logistic regression, k-nearest neigh-
bor, neural networks, and SVM. The findings 
showed that SVM produced a precision score 
of 0.95 with fifteen features, while naive Bayes 
and random forest produced a promising accu-
racy score of 0.94 with thirty features. Verma et 
al. [21]  proposed implementing a neural net-
work-based breast cancer management system 
and decision tree. This system is called the trans-
parent breast cancer management system with 
P-rules (TBCMS-PR); it used datasets from the 
UCI library and machine learning algorithms. 
Dasgupta et al. [22] experimented with feature 
selection using datasets related to breast cancer. 
The study aimed to develop a model for can-
cer diagnosis and evaluate its accuracy. For this 
purpose, they utilized various techniques such 
as ANN, Bayesian network, random forest, and 
decision tree. The study compared different 
methods to determine the most accurate algo-
rithm for predicting cancer type. 
A unified deep learning architecture was pre-
sented by [23] to learn features from images 
for breast cancer classification automatically. 
The system's architecture uses pointwise gat-
ed Boltzmann machines (PGBM). Researchers 
also used CNNs to analyze mammograms to de-
tect breast cancer. A study [24] utilized LSTM 
and CNN-based semantic features to classify 
mammography images for breast cancer detec-
tion. The performance of the suggested model 
was evaluated using classification accuracy and 
loss rate.

plication of genetic algorithms to identify gene 
expressions and reduce misclassified cancers. 
In their research, Omondiagbe et al.  [13] used 
the WDBC dataset with naive Bayes, ANN 
and SVM with radial basis kernel to identify 
breast cancer with 98.82% accuracy, 98.41% 
sensitivity, and 99.07% specificity. The objec-
tive of study [14] was to develop a method for 
predicting the recurrence of breast cancer us-
ing advanced neural network architectures such 
as LSTM and GRU, in combination with fea-
ture selection methods like logistic regression 
(LR) and analysis of variance (ANOVA). The 
models, LR-LSTM and ANOVA-GRU, have 
demonstrated significant success. In[15], a 
breast cancer prediction model was developed 
using an optimized deep learning approach. The 
model utilized an optimized deep RNN with a 
Keras tuner. The study [16] used an ANN to 
detect breast cancer. To evaluate the classifier's 
performance in various noise levels and ensure 
its practicality, the authors integrated three loss 
functions: cross-entropy, hinge, and correntro-
py. This approach helped determine the most 
suitable loss function for the ANN-based clas-
sifier. 
Bhardwaj and Tiwari [17] proposed a technique 
that combined a wrapper and filter approach to 
achieve a high classification rate. The method 
included a preprocessing step to improve the ef-
fectiveness of the search for the best features. It 
proved advantageous in addressing the problem 
of overfitting and avoiding getting stuck in a lo-
cally optimal solution. To minimize the adverse 
effects of mutation and crossover operators, the 
researchers introduced a new method for detect-
ing breast cancer, called enhanced ANN-based 
method. The approach utilized a genetically op-
timized neural network to distinguish between 
malignant and benign tumors accurately. Com-
pared to previous methods, the genetically opti-
mized neural network-based approach achieved 
a significantly improved classification accura-
cy rate of 13.56%. In a study  [18], the Wiscon-
sin dataset was used to achieve a classification 
accuracy of 99.25% for breast cancer detection. 
The study tested and confirmed the false alarm 
detecting rate of the backpropagation technique 
based on the feed-forward benefits of an ANN. 
The ANN model was trained without noise to 
assess the degree of roughness. The proposed 
mechanism resulted in a 23.4% reduction in 
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3. Theoretical Background 

This section describes the recurrent deep learn-
ing algorithms and feature selection by the bat 
algorithm for classification of breast cancer.

3.1. Deep Learning

Deep learning falls under the umbrella of ma-
chine learning in artificial intelligence, employ-
ing artificial neural networks that independent-
ly learn from unstructured data. The learning 
process can be supervised or unsupervised; 
Figure 1 shows several algorithms of the ma-
chine learning model. A deep learning method 
can learn from large amounts of unstructured 
data that would take humans a long time to pro-
cess and understand. Deep learning levels learn 
to convert incoming data into more abstract and 
complicated representations [25]. The prog-
ress made in machine learning has created a 
notable opportunity for applying deep learning 
models in disease prediction and breast cancer 
classification. Deep learning has demonstrated 
its effectiveness in solving problems related to 
image processing, classification, and pattern 
recognition. With the abundance of publicly 
available data from microarray gene expression 
and RNA-Seq, deep learning is becoming cru-
cial in identifying specific patterns within large 
gene expression datasets. Classifying cancer 
cells based on gene expression levels continues 
to present a substantial challenge; unsupervised 
recurrent deep-learning techniques are em-
ployed to address this issue [26].

3.1.1. Recurrent Neural Network

RNN excels at analyzing gene expression be-
cause each neuron has an internal memory that 
allows it to retain information about prior in-
puts. RNNs are often more suitable for tasks 
involving sequential inputs like speech, natural 
phenomena, and DNA sequences [27]. RNNs 
are capable of processing sequential data of 
varying lengths without the need for a predeter-
mined input size, making them effective for an-
alyzing gene expression patterns across diverse 
experimental conditions. However, it's import-
ant to note that RNNs face problems, including 
the risk of vanishing and exploding gradients 
during training, which demand careful man-
agement during model development [28]. The 
RNNs are referred to as recurrent because they 
do the same task for each sequence element 
with the output dependent on past calculations. 
The RNN architecture consists of essential 
components: an input, hidden, and output lay-
er for processing sequential data and revealing 
hidden dependencies, as shown in Figure 2 [29]

 ● Input Layer: RNN starts by accepting a 
sequence of data as a vector, this means 
the RNN considers two types of inputs: 
the present input x(t) and the input derived 
from previous computations h(t) [28]; 

 ● Hidden Layer: This crucial layer pro-
cesses the data in sequence, continuously 
updating a hidden state h(t) that incorpo-
rates information from both the previous 
step h(t-1) and the current input x(t), with 
an activation function adjusting the inputs 

Figure 1. Types of machine learning.
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shown in Equation (1). The function f is 
considered a non-linear transformation, 
like the hyperbolic tangent (tanh) function 
shown in Equation (2) or the Rectified Lin-
ear Unit (ReLU) function shown in Equa-
tion (3). These weights (W, V, U) are shared 
with (input-to-hidden, hidden-to-hidden, 
hidden-to-output). 

 ● Output Layer: The processed data from 
the hidden layer is passed to the output 
layer, which produces the final output. The 
network's output represents the y(t) shown 
in Equation (4). After the output is gener-
ated, a loss function calculates the differ-
ence between the predicted and actual re-
sults. The error is then utilized to adjust the 
weights in the hidden layer, improving the 
effectiveness of the model. Consequently, 
the modeling approach will focus on opti-
mizing two important RNN hyperparame-
ters: the number of hidden layers and the 
number of neurons [30], [31].

h(t) = Ϝ(w x(t) + v h(t-1))            (1)

Tanh(x) = (e x - e-x ) / (e x + e-x )         (2)

ReLU(x) = max(0, x)              (3)

y(t) = g(U h(t))                   (4)

3.1.2. LSTM (Long Short-Term Memory)

LSTMs are an advanced version of the RNNs, 
created to solve the vanishing gradient prob-
lem by integrating a dedicated memory unit. 
Their design features memories and gates that 
help them effectively learn and maintain long-
term dependencies, with gates that selective-
ly include or exclude information from a cell 
[32]. LSTM comprises three types of gates: 
input, forget, and output. Each gate includes a 
sigmoid neural network layer and a pointwise 
multiplication operation, as shown in Figure 3. 
The LSTM unit makes decisions based on the 
current input Xt, previous output ht-1, and stored 
memory Ct-1, generating new output ht and up-
dating its memory Ct, the key elements of the 
LSTM cell are [33]: 

 ● In the memory cell and forget gate: The 
input gate controls the input activation into 
the memory cell, the output gate regulates 
the output flow from cell activation into 
the network, and the amount of memory 
passed to the next LSTM unit is determined 
by the sigmoid layer of this gate [34]. The 
information no longer needed is removed 
from the cell state by the sigmoid layer 
output. It evaluates the function based on 
the previous state ht-1 and the current input 
xt. Wf denotes the weight vector, and bf de-
notes the bias of the forget gate layer. The 
output of the forget gate layer is represent-
ed as ft, which is depicted in Equation (5).

ft = σ(Wf  ∙ [ht-1, Xt] + bf)           (5)

Figure 2. Diagram of RNN architecture.
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In the input gate and candidate gate: The input 
gate comprises two sections: the sigmoid and 
the tanh function. The sigmoid layer determines 
which values to update. The tanh layer gener-
ates a vector of fresh candidate values for the 
state. These elements are combined in the fol-
lowing step to update the state, as detailed in 
Equations (6) and (7). The previous cell state 
(Ct-1) is replaced with the new cell state (Ct). 
The old state is multiplied by ft to forget the un-
necessary information, and the candidate C̃t * it 
is added as in Equation (8).

it = σ (Wi ∙ [Xt, ht-1] + bi)              (6)

C̃ = tanh(Wc ∙ [Xt, ht-1] + bc)           (7)

Ct = ft * Ct-1 + Ct̃ * it                 (8)

 ● In the output gate: The output is calcu-
lated in two steps: first, a sigmoid layer is 
used to pick the relevant parts of the cell 
state that will be expressed in the out-
put; second, the cell state is passed on 
via tanh (to normalize values between -1 
and 1) and multiplied by the output of the 

sigmoid gate. The output gate layer represents 
the current LSTM blocks output, shown in 
Equation (9) and (10).

Ot = σ(Wo [ht-1, Xt] + bo)               (9)

ht = Ot * tanh(Ct)                  (10)

The three gates learn to select which informa-
tion to retain in memory. By organizing memo-
ry cells into blocks that share gates, the system 
efficiently reduces the total number of adjust-
able parameters [35–37]. Initial modeling re-
sults indicated that the tanh activation function 
performed significantly better than ReLU and 
sigmoid in LSTM models [28]. 

3.1.3. Gated Recurrent Unit

GRU is a simplified version of LSTM and rep-
resents the advanced version of the RNN, it 
is designed to address the vanishing gradient 
problem. GRUs have demonstrated their effec-
tiveness in various applications involving gene 
expression analysis, modeling complex non-

Figure 3. An illustration of the architecture of the LSTM.



201Enhancement of Breast Cancer Classification Using Bat Feature Selection with Recurrent Deep Learning

linear relationships and extracting key features 
from time series. GRU is constructed without a 
cell state and contains only two gates (update 
and forget (reset)). These gates are made up of 
a sigmoid layer and a pointwise multiplication 
action, depicted by two vectors that generate 
values within the [0, 1] range, if the reset gate's 
output equals zero then overlooks the stored 
memory information. Figure 4 shows the GRU 
architecture [38], [39].
The forget gate rt regulates combining the 
current input (xt) with the existing memory               
(ht-1) shown in Equation (11).

rt = σ(Wr ∙ [ht-1, xt])                (11)

The update gate employs a sigmoid function to 
proportionally update the state ht using a newly 
computed state ht̃, shown in Equations (12–14) 
[40].

zt = σ (Wz ∙ [ht-1, xt])             (12)

h̃t = tanh(W ∙ [rt * ht-1, xt])         (13)

ht = (1 - zt) * ht-1 + zt * h̃t         (14)

3.2. Feature Selection

The analysis of Gene expression data involves 
various stages. Firstly, the data is preprocessed 
by utilizing feature selection methods, elimi-
nating noisy and redundant features and leav-
ing only the informative ones. Afterwards, a 
recurrent deep learning algorithm is trained us-
ing the bat algorithm to detect cancer subtypes. 
This algorithm is trained on a generated subset 
of features, as shown in Figure 5 [41].

Figure 4. An illustration of the architecture of GRU.

Figure 5. A flowchart of breast cancer classification.
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Feature selection involves identifying factors 
that influence predictions, either automatically 
or manually:
Reduce overfitting: It is necessary to eliminate 
noisy and redundant data that hinder the mod-
el's ability to generalize effectively from the 
training data to unseen data.

 ● Improve accuracy: The accuracy can be 
improved by training the model with fewer 
misleading data.

 ● Reduce training time: Less computation 
time is required for training with fewer 
features.

 ● Provide biologists with an understanding 
of the relationship between gene signa-
tures and diseases [42].

One of the four feature selection techniques can 
be used: embedded, filters, hybrid, and wrap-
pers, as shown in Figure 6. However, using 

more than one feature selection method can 
increase computational costs. Each technique 
has advantages and disadvantages to maximize 
performance, and it is essential to ensure diver-
sity while making the feature selection process 
more frequent [43]. Table 1 presents the advan-
tages and disadvantages of different feature se-
lection methods [42].

3.3. Bat Algorithm

The bat algorithm draws inspiration from bats' 
echolocation process for sensing distances. The 
bats send out short, powerful sound waves and 
listen for echoes reflecting off barriers or po-
tential prey. Bats have a unique auditory system 
that allows them to determine the size and lo-
cation of objects. This echolocation feature of 
bats was the basis for the bat algorithm, as pro-
posed by Yang [44]. The algorithm of the bat is 
outlined in Algorithm 1.

Table 1. Advantages and disadvantages of different feature selection methods.

Type Advantages Disadvantages

Filter
 ● Independence from any specific algorithm.

 ● Simple and quick on the computation.

 ● Does not take into account an interaction 
with a classifier.

 ● Low performance.

Wrapper

 ● Always chooses a nearly perfect subset.

 ● The error rate is less than that of alternative 
methods.

 ● There is a greater risk of overfitting  
compared to filter methods.

 ● It is quite computationally demanding in 
comparison to other techniques.

 ● They are intended for the specific learning 
machine that has undergone testing.

Embedded

 ● Less computationally demanding than  
wrapper techniques.

 ● Comprises the way interaction along with the 
classification model is used.

 ● Eliminates a need to divide the training data 
into a training and validation set, making  
better use of the given data.

 ● Finds a solution faster by reducing the need 
to train the predictor for each variable subset 
examined thoroughly.

 ● Specific to a learning machine.

 ● Higher risk of overfitting than filter methods.

Hybrid  ● Bring together the benefits of multiple  
strategies.

 ● The complexity of time might increase.
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Figure 6. Kinds of feature selection.

Step 1: Set up the initial parameters for the bat algorithm, as illustrated in Table 2.
Step 2: Modify the i-th bat's global best position X*, along with its pulse frequency, velocity, and position,  

as detailed below:
fi = fmin + ( fmax - fmin )β,   β ∈[0, 1]

Vi
t + 1 = Vi

t + (Xi
t + X* ) fi

Xi
t + 1 = Xi

t + Vi
t

In this formula, Vi
t and Xi

t refer to the velocity and position at the time t, respectively. Vi
t + 1 and Xi

t + 1 indi-
cate the velocity and position at the subsequent time point, t + 1. Additionally, β represents a random value 
selected from a range between 0 and 1.

Step 3: When the random number exceeds ri, a new solution for the bat is calculated using the equation below:

Xnew = Xold + εAt

In this case, ε symbolizes a random number that falls within the range of [-1, 1], and At denotes the mean 
loudness of all bats at the time t.

Step 4: When the random number is smaller than Ai and f (Xi) is lesser than f (X*), the new solution gets approved. 
Subsequently, Ai and ri are revised in the following way:

Ai
t + 1 = ∝ Ai

t

ri
t = ri

o [1 - e-γt]

Here, Ai
t + 1 and Ai

t refer to the loudness levels at time instances t and t + 1, consecutively. The terms ri
o and 

ri
t denote the initial pulse rate and the pulse rate at time t, consecutively. α is defined as a constant parameter 

within the range of [0, 1], and γ is also a constant parameter with a value greater than 0. As t approaches 
infinity, Ai

t approaches 0, and ri
t approaches the initial value ri

o.
Step 5: Organize the bats in order of their fitness levels and determine the current best solution, denoted as X*.
Step 6: Go back to Step 2 and continue until the maximum iteration count is achieved; then, output the globally best 

solution [6], [45].

Algorithm 1. The bat algorithm.
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search. The quality of each feature set is evalu-
ated through a fitness function that checks the 
classification performance of recurrent deep 
learning (RNN, LSTM, GRU). The 10 features 
that achieve the highest classification accura-
cy are chosen and this iterative process repeats 
until the maximum accuracy is achieved.

In this paper, the bat algorithm is used to select 
the best 10 features out of a total of 70 fea-
tures. Each bat in the algorithm stands for a po-
tential solution, aligning with a specific feature 
set. The algorithm modifies each bat's position 
to represent the selected features by adjusting 
frequency and velocity parameters, guided by 
the most effective solutions found during the 

Table 2. Group of parameters utilized in the bat algorithm.

Parameter symbol Description Value

M Represents the total number of bats in the population. 30

I Identifies an individual bat, with a value from 1 to M. 1 to 30

ri The pulse rate of the i-th bat. randomly

Xi The position of the i-th bat. best DNA feature

α A fixed parameter within the [0, 1] range, used for adjusting Ai 
(the loudness).

0.9

fi The i-th bat pulse frequency is within fmax and fmin range. fmin = 0 and fmax = 2

X* The optimal global location or solution at present. high accuracy

N The maximum iterations allowed. 100

Ai The loudness level of the i-th bat. initialized to 1

f (X ) The fitness function. initialized to 0

Γ A stable parameter also in the [0, 1] range, employed for  
modifying ri (the pulse rate). 0.9

Vi The velocity of the i-th bat. initialized to 0
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4. Gene Expression Data for Breast 
Cancer

The analyzed dataset  consists of 72 columns. 
The first column includes the sample_number 
(id), columns 2–71 represent the input features 
and column 72 indicates the class label. Table 
3 presents gene expression data from a DNA 
dataset for breast cancer patients. It includes 
columns for each gene (G5, FGF18, G6, and 
G7) and a 'Label' column that indicates progno-
sis (0 for good, 1 for poor), this information is 
crucial for cancer prognosis. Microarray analy-
sis was used to evaluate the previously generat-
ed prognostic profile of 70 genes. This dataset 
found 295 patients with primary breast cancer 
who had a gene-expression pattern that was 
associated with a poor or excellent prognosis. 
All patients were younger than 53 years old and 
had stage I or II breast cancer; 151 had lymph 
node-negative disease, and 144 had lymph 
node-positive disease. The prognostic profile's 

predictive ability was assessed using multi-
variable and univariable statistical techniques. 
From the group of 295 patients, 82 presented a 
prognostic signature that indicated a poor prog-
nosis, while 115 received a positive prognosis, 
with mean (SE) overall 10-year survival rates of 
54.6 ± 4.4% and the 94.5 ± 2.6%, respectively. 
Ten years later, the group with a poor prognosis 
signature had a 50.6 ± 4.5% likelihood of still 
being free of distant metastases, while the group 
with a good prognosis signature had an 85.2 ± 
4.3% chance. When comparing the group with 
a poor prognosis signature to the group with a 
favorable prognosis signature, the calculated 
hazard ratio for distant metastases was 5.1 (95% 
confidence range, 2.9–9.0; P < 0.001) when the 
groups were examined based on the status of 
their lymph nodes, this ratio continued to be sig-
nificant. An investigation of multivariable Cox 
regression revealed that the prognostic profile 
was a highly reliable independent predictor of 
the course of the disease [46].

Table 3. A sample from the gene expression data.

Id
Input features (contains only 70 features) Class

Label… G5 FGF18 G6 G7 …

127 … -0.026 -0.425 0.204 0.016 … 0

245 … 0.084 -0.303 0.234 -0.459 … 0

247 … -0.218 -0.148 0.164 0.166 … 0

251 … -0.124 -0.185 0.192 -0.001 … 0

254 … -0.132 -0.188 -0.145 0.058 … 0

258 … 0.609 0.146 -0.161 0.202 … 0

260 … -0.093 -0.072 -0.313 0.006 … 0

345 … -0.386 -0.256 -0.255 -0.068 … 1
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5. Proposed System Architecture

This section will explain the approach of the 
proposed model. First, we loaded the dataset 
and cleaned it by removing an unnecessary col-
umn and filling in any missing values with the 
median value. We used the bat algorithm with 
recurrent deep learning methods such as RNN, 
LSTM, and GRU to classify the gene expres-
sion data. Algorithm 2 illustrates the mecha-
nism of work of these techniques.

This study employs the bat algorithm to opti-
mize the feature selection process, further re-
fining the model's potential to differentiate be-
tween various types of breast cancer cells. The 
bat algorithm is leveraged with GRU, RNN, 
and LSTM models to enhance the accuracy of 
breast cancer classification from gene expres-
sion data. The block diagram for classification 
with the best feature is illustrated in Figure 7.

Input: Breast cancer gene expression data.

Output: Classify the dataset

Step 1: Read the Dataset: Load the gene expression data for breast cancer.

Step 2: Preprocessing

 ● Clean the dataset by removing unnecessary columns.

 ● Impute missing values with median values.

Step 3: Dataset Splitting: split the dataset into an 80% training and the 20% testing using cross-validation methods.

Step 4: Classification Using Bat Optimization with GRU, RNN, or LSTM

 ● Generate an initial population, where each individual represents a potential solution, and each 'cell' in an 
individual corresponds to a column in the dataset.

 ● Define the Bat algorithm parameters, including the frequency, velocity, and loudness of bats (individual 
solutions).

 ● Compute the fitness of each bat based on the classification accuracy achieved by GRU, RNN, or LSTM 
models. This accuracy serves as the objective function.

 ● Identify the best local and global solutions based on their fitness values.

 ● Iteratively update the solutions using the Bat algorithm:

 ○ For each bat, update its velocity based on its relation to the best local and global solutions.

 ○ Normalize the velocity to ensure controlled exploration of the solution space.

 ○ Update the position of each bat based on its new velocity.

 ● Compute the fitness of each updated bat.

 ● Identify the best local solution for the new population.

 ● Update the global best solution if a better solution is found.

 ● Repeat the process for a specified number of iterations.

Step 5: Return the best global solution, which represents the optimal set of features for breast cancer classification.

Algorithm 2. The proposed approach.
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6. Results 

This section displays the findings of a breast 
cancer diagnosis utilizing gene expression data 
with approaches (recurrent deep learning com-
bined with the bat algorithm) implemented in 
MATLAB® R2021a. The bat algorithm with 
GRU, RNN, and LSTM classifiers allowed 
faster generation and comparison of results. 
The first step involved collecting an entire 
DNA dataset, and then the cleaning process and 
filling of the missing values were conducted. 
We used a variety of recurrent deep learning 
approaches with the bat algorithm to classify 
gene expression data and compare methods. 
The data is divided into two sets: 80% is uti-
lized to train the models (GRU, RNN, and 
LSTM), with the remaining 20% used for test-
ing. The bat algorithm improves the perfor-
mance of GRU, RNN, and LSTM models by 
adjusting hyperparameters like the number of 
layers and learning rate. It assesses these ad-
justments based on accuracy to identify the 
best settings, continuously refining solutions 
by iteratively updating position and velocity. 
The dataset dimensions for the proposed RNN 
model were organized as 20*1*70. The RNN 
was configured with a learning rate of 0.01 and 
incorporated techniques such as backpropaga-
tion through time for efficient training. The 
network architecture comprised multiple recur-
rent layers, each designed to capture different 
aspects of the sequence data. Regularization 
with a weight decay of 5 × 10−4 was applied to 
prevent overfitting, and a dropout ratio of 0.5 

was used to enhance generalization. The LSTM 
and GRU models utilized similar learning rates 
and regularization parameters but differed in 
their internal architectures. LSTMs incorporat-
ed cell states and gates (input, output, and for-
get gates) to control the flow of information, 
while GRUs used to update and reset gates for 
a similar purpose but with a simpler structure. 
Training for these models was conducted over 
500 epochs with an initial learning rate of 0.01 
and adjusted based on the performance. The 
training process was stopped when the models 
reached the optimal state, as depicted in Table 
4. GRU, RNN, and LSTM are using sequential 
processing to improve the accuracy of breast 
cancer classification from gene expression 
data. In this context, the bat algorithm's job 
was to optimize feature selection and boost the 
model's performance in identifying different 
breast cancer cells.
After setting up the network architecture as out-
lined in Table 4, the GRU, RNN, and LSTM 
model training commenced. In the GRU mod-
el at epoch one, the elapsed time was six sec-
onds, the mini-batch accuracy was 51.47%, 
and the mini-batch loss was 0.6891. The 
RNN model showed a mini-batch accuracy of 
50.89% and a mini-batch loss of 0.6922 at the 
same epoch with an identical elapsed time of 
six seconds. The LSTM model started slightly 
slower with an elapsed time of seven seconds, 
but with a slightly higher mini-batch accura-
cy of 52.36% and a mini-batch loss of 0.6875. 

Figure 7. Block diagram of the classification and feature selection process.
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Table 4. The parameters of the GRU, RNN, and LSTM models.

Model Parameter Value

GRU

Input layer (dimensions) 20*1*70

Number of layers 4

Neurons 
in layer 1 32 Neurons 

in layer 2 64 Neurons in 
layer 3 128 Neurons in 

layer 4 64

Learning rate 0.005

Epochs 150

Batch size 32

Output layer cancer or normal

RNN

Input layer (dimensions) 20*1*70

Number of layers 3

Neurons in 
layer 1 32 Neurons in 

layer2 64 Neurons in  
layer 3 32

Learning rate 0.01

Epochs 120

Batch size 16

Output layer cancer or normal

LSTM

Input layer (dimensions) 20*1*70

Number of layers 5

Neurons in 
layer 1 32 Neurons in 

layer 2 64 Neurons in 
layer 3 128 Neurons in 

layer 4 64 Neurons in 
layer 5 32

Learning rate 0.003

Epochs 200

Batch size 64

Output layer cancer or normal
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Significant improvements were noticed at epoch 
100; the GRU model reached a mini-batch ac-
curacy of 97.85% with a loss of 0.1543 in one 
minute, the RNN model achieved a mini-batch 
accuracy of 97.43% with a loss of 0.1589 in the 
same duration, and the LSTM model attained a 
mini-batch accuracy of 98.22% with a loss of 
0.1466 in one minute and ten seconds. As the 
training progressed to epoch 500, the GRU 

model recorded a stellar mini-batch accuracy of 
99.89% with a loss of 0.0214 at five minutes; 
the RNN model followed closely with a mini-
batch accuracy of 99.83% and a loss of 0.0247, 
and the LSTM model topped the accuracy at 
99.93% with the lowest loss of 0.0189 in five 
minutes and fifty seconds, as depicted in Table 5 
and Figure 8.

Table 5. Overview of the training phase for the GRU, RNN, and LSTM.

Epoch Model Time Elapsed 
(hh:mm:ss)

Mini-batch  
Accuracy Mini-batch Loss Base Learning 

Rate

1 GRU 00:00:06 51.47% 0.6891 0.005

1 RNN 00:00:06 50.89% 0.6922 0.01

1 LSTM 00:00:07 52.36% 0.6875 0.003

50 GRU 00:00:30 92.14% 0.3072 0.005

50 RNN 00:00:30 91.78% 0.3120 0.01

50 LSTM 00:00:35 93.07% 0.3011 0.003

100 GRU 00:01:00 97.85% 0.1543 0.005

100 RNN 00:01:00 97.43% 0.1589 0.01

100 LSTM 00:01:10 98.22% 0.1466 0.003

150 GRU 00:01:30 98.96% 0.0954 0.005

150 RNN 00:01:30 98.72% 0.0991 0.01

150 LSTM 00:01:45 99.37% 0.0882 0.003

... ... ... ... ... ...

500 GRU 00:05:00 99.89% 0.0214 0.005

500 RNN 00:05:00 99.83% 0.0247 0.01

500 LSTM 00:05:50 99.93% 0.0189 0.003
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After the previously described algorithms 
(GRU, RNN, and LSTM) were applied sepa-
rately, they were combined with the nat algo-
rithm to achieve better results; we selected the 
columns in the classification procedure that 
worked effectively. As was previously men-
tioned, the gene expression data consisted of 72 
columns (one sample number (id), seventy at-
tributes, and one label); the bat algorithm chose 
the ten best columns. The procedure began by 
initializing 100 particles, each representing a 
potential solution with ten attributes from the 
dataset. The fitness of each particle was as-
sessed based on its effectiveness in the classifi-
cation task. A crossover event between two ran-
domly chosen particles was performed through 
a single-point crossover, ensuring diversity 
among solutions. Mutation was also employed 
to replace repeating attributes with unique ones, 
preventing redundancy in the selected features. 
This iterative crossover and mutation process 
was repeated for 100 generations, enhancing 
the particles' feature selection capabilities. The 
particles' effectiveness was gauged by their ac-
curacy in classifying the dataset after applying 
the hybrid models: Bat-GRU, Bat-RNN, and 
Bat-LSTM. The performance results indicated 
substantial improvements in accuracy in the 
true positive rate (TPR), and precision with a 
decrease in false positive rate (FPR) and false 
negative rate (FNR), underscoring the robust-

ness of the hybrid models in handling the breast 
cancer classification task. The detailed out-
comes of this hybrid approach are summarized 
in Table 6.
As depicted in Table 6, the hybrid algorithm, 
combining bat with GRU, RNN, or LSTM 
achieved better accuracy rates of 0.879, 0.918, 
and 0.964, respectively, when compared to us-
ing only the individual recurrent algorithms. 
Figure 9 is a visual representation of a confu-
sion matrix that outlines the performance of the 
proposed method, which employs a hybrid ap-
proach combining the bat algorithm with GRU, 
RNN, or LSTM models for the classification of 
breast cancer. Each cell in the confusion matrix 
corresponds to the counts of true positives (TP), 
true negatives (TN), false positives (FP), and 
false negatives (FN) for each model, providing 
a clear depiction of their predictive capabilities.
The performance of the models was evaluated 
using different data split ratios: 90-10-10, 80-
10-10, 70-15-15, 60-20-20, and 50-25-25. The 
analysis showed that the 80-10-10 split pro-
vided the highest accuracy, especially for the 
hybrid bat-LSTM model, which achieved an 
accuracy of 0.964. This result highlights the 
importance of choosing the right data split ratio 
to optimize model performance, as depicted in 
Table 7.

Figure 8. Plots of the training progress of the proposed GRU, RNN, and LSTM.
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In our paper involving the deep learning algo-
rithms, we have found that, when combining 
advanced techniques with the custom bat algo-
rithm, the hybrid approach yields superior re-
sults compared to traditional machine learning 

methods that use genetic algorithms, as seen in 
previous studies [12]. This suggests that inte-
grating innovative algorithms with deep learn-
ing can significantly enhance classification per-
formance.

Table 6. Confusion matrix for the hybrid algorithm, combining bat with GRU, RNN, or LSTM.

Metric Hybrid  
bat-GRU

Hybrid  
bat-RNN

Hybrid  
bat-LSTM GRU RNN LSTM

TP (true positives) 163 169 178 135 145 158

TN (true negatives) 108 115 121 99 105 111

FP (false positives) 19 14 6 48 38 26

FN (false negatives) 7 3 1 34 17 10

ACC (accuracy) 0.879 0.918 0.964 0.701 0.806 0.864

TPR (true positive rate) 0.929 0.975 0.994 0.729 0.895 0.940

FPR (false positive rate) 0.149 0.109 0.047 0.327 0.279 0.196

TNR (true negative rate) 0.850 0.890 0.952 0.672 0.720 0.803

FNR (false negative rate) 0.070 0.025 0.0056 0.270 0.104 0.059

Precision 0.895 0.923 0.967 0.737 0.792 0.858
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Figure 9. Confusion matrix displaying the proposed approach performance.

Table 7. Comparison of model accuracy with various data split ratios.

Split Ratio Accuracy

Train  
ratio

Validation 
ratio

Test  
ratio

Hybrid  
bat-GRU

Hybrid  
bat-RNN

Hybrid  
bat-LSTM GRU RNN LSTM

90% 10% 10% 0.850 0.890 0.950 0.680 0.760 0.830

80% 10% 10% 0.879 0.918 0.964 0.701 0.806 0.864

70% 15% 15% 0.830 0.880 0.940 0.660 0.740 0.800

60% 20% 20% 0.800 0.850 0.920 0.640 0.720 0.780

50% 25% 25% 0.750 0.810 0.890 0.620 0.700 0.750
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7. Conclusion

Most papers published possess the ability to 
identify a variety of characteristics that signifi-
cantly influence breast cancer diagnosis. The 
reliance on a single medical professional's view 
to categorize cancer has grown increasingly 
problematic. They need deep learning to help 
medical practitioners diagnose breast cancer, 
and these procedures are universally acknowl-
edged for determining the likelihood of patient 
survival. The proposed system is a way of clas-
sifying the gene expression of breast cancer 
genes to achieve better results; the large num-
ber of features and limited sample size affected 
the accuracy of this result. Feature reduction 
techniques and feature selection approaches 
were employed to mitigate the decline in accu-
racy. The missing values of the breast cancer 
gene expression dataset were filled in to obtain 
better results. 
The bat algorithm combined with recurrent 
deep learning to extract important features re-
lated to breast cancer patients by utilizing the 
training dataset, thereby improving the clas-
sification accuracy of breast cancer. The hy-
brid bat-LSTM approach has the highest TPR 
(recall) of 0.994, excelling at identifying true 
positives, while the regular GRU model has the 
lowest recall (0.729), suggesting average per-
formance. Hybrid models are often more effec-
tive at capturing true positive rates than the tra-
ditional RNN and LSTM architectures. These 
results suggest that integrating feature selection 
algorithms with deep learning techniques holds 
great promise for advancing the field of medi-
cal diagnostics. The proficiency of the hybrid 
bat-GRU, bat-RNN, and bat-LSTM models in 
discerning the nuances of gene expression data 
has laid the groundwork for future research. 
In future research, a suggestion would be to 
explore a hybrid feature selection technique in-
corporating an embedded search strategy with 
deep learning. The idea behind combining mul-
tiple individual models for feature selection is 
that it can lead to better results than using a 
single feature selection method. However, the 
improvement is not just because of having mul-
tiple models, like classification ensembles, but 
also because of the variety of feature subsets 
obtained.
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