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Industrial safety helmets are crucial personal protec-
tive gear but detecting them as small targets in com-
plex environments is challenging. This work proposes 
enhancements to the YOLOv8 object detection frame-
work, specifically incorporating a spatial-to-depth 
(SPD) convolution module and a large selective ker-
nel network (LSKNet). SPD-Conv combines spatial-
to-depth layers and non-strided convolutions to retain 
fine-grained information when downscaling feature 
maps, while LSKNet introduces dynamic spatial se-
lection and attention for refined context modeling. Our 
customized model is trained on a dataset of construc-
tion hardhat images captured via drones. Quantita-
tive results showcase higher precision and recall over 
baseline YOLOv8, surpassing competing YOLOv5 
versions. An optimized final model outcomes demon-
strate accuracy exceeding 90% validation in mAP 
metric after 200 training rounds. By tackling limita-
tions posed by small, obscured industrial safety gears, 
this enhanced real-time detection approach provides 
indispensable technological support for bolstering 
workplace hazard identification and prevention.

ACM CCS (2012) Classification: Computing method-
ologies → Artificial intelligence → Computer vision 
→ Computer vision problems → Object detection
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1. Introduction

In recent years, the popularization of indus-
trial safety helmets has become a key issue in 
the field of industrial safety. As an important 
personal protective equipment, industrial safe-
ty helmets can significantly reduce the risk of 
head injuries in industrial accidents and are cru-

cial to safeguarding workers' lives, health, and 
safety. However, detecting small targets in com-
plex industrial environments has always been a 
challenging task, especially when those small 
targets are the safety helmets worn by workers 
on their heads. Therefore, this study aims to 
explore methods for detecting small objects – 
industrial safety helmets to improve industrial 
safety and production efficiency.
With the rapid development of computer vision 
and deep learning technology, significant prog-
ress has been made in the field of target detec-
tion. YOLO (You Only Look Once) algorithm, 
as an end-to-end real-time target detection al-
gorithm, has attracted widespread attention. 
Among them, YOLOv8, as its latest version, 
has achieved an ideal balance between target 
detection accuracy and speed, making it a po-
tential application in the industrial sector.
Shan et al. (2023) [1] studied the method of 
enhancing the YOLOv5 target detection al-
gorithm to improve the real-time alert ability 
for individuals not wearing safety helmets. By 
adopting ECA (Enhanced Channel Attention) 
mechanism [2] and introducing a weighted bi-
directional feature pyramid network structure 
(BiFPN), the decoupling head in YOLOv5 im-
proves detection performance and convergence 
speed. The experimental results show that the 
enhanced YOLOv5 model achieves an average 
accuracy of 95.9% on the custom helmet data-
set, which is 3.0 percentage points higher than 
the original model.
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Chen et al. (2023) [3] proposed an improved 
convolutional neural network model called 
YOLOv7 WFD for detecting unhelmeted 
workers in the construction industry. The im-
provements include adding a new module DBS 
to enhance target feature extraction ability, in-
troducing CARAFE (channel-wise attention 
refinement module) to improve detail recon-
struction ability during image upsampling, and 
adopting a dynamic focus mechanism with a 
Wise IoU loss function to improve generaliza-
tion ability and detection accuracy. The exper-
imental results show that when tested on the 
SHEL5K dataset, the improved YOLOv7 WFD 
achieves 92.6% mAP and 79.3 FPS.
Deng et al. (2022) [4] proposed a lightweight 
target detection algorithm called ML-YOLOv3, 
which addresses the problems of complex net-
works, high FLOPs, and large parameter sizes in 
YOLOv3. The improvements include integrat-
ing CSPNet and GhostNet to design an efficient 
residual network CSP-Ghost-Resnet, designing 
a new backbone network ML Darknet to imple-
ment gradient shunting, and designing a light-
weight multi-scale feature extraction network 
using PAN CSP network. The experimental 
results showed that compared with YOLOv3, 
ML-YOLOv3 has only 29.7% and 29.4% more 
FLOPs and parameters, respectively, and is sig-
nificantly better than YOLOv5 in terms of com-
putational cost and detection effect.
Zhou et al. (2021) [5] used a YOLOv5-based 
safety helmet detection method. By annotating 
6045 datasets and training and testing different 
parameter versions of YOLOv5 models, they 
obtained experimental results. Among them, the 
average detection speed of YOLOv5s reached 
110 FPS, fully meeting the requirements of re-
al-time detection. The mAP of YOLOv5x, us-
ing trainable target detection engines, reached 
94.7%, proving the effectiveness of helmet de-
tection based on YOLOv5.
These studies provide us with important ref-
erences, but they still have some limitations, 
such as false positive problems in complex 
backgrounds, insufficient adaptability to differ-
ent postures and obstructions for small targets, 
etc. Therefore, the main goal of this study is to 
improve the YOLOv8 model and realize small 
object detection on industrial safety helmets to 
improve industrial safety and production effi-

ciency. By combining the YOLOv8 algorithm 
with industrial safety helmet small object de-
tection, we aim to achieve the following goals: 
1. improve the detection accuracy of small tar-

gets, including accuracy in complex back-
grounds; 

2. improve detection speed to achieve re-
al-time monitoring and rapid response;  

3. improve adaptability to different postures 
and obstructions for workers' head safety 
helmets.

By addressing these issues, we aim to achieve 
rapid and accurate detection of workers wear-
ing safety helmets in industry, ensuring worker 
safety while providing strong support for indus-
trial safety helmet detection and worker safety 
in industry.

2. Literature Review

In the field of industrial safety, the development 
of small object detection technology has always 
attracted much attention. Especially for the 
identification and monitoring of helmet wearers 
in industrial scenes, researchers have proposed 
various solutions based on different technical 
means. These methods include statistics-based 
methods, traditional machine learning methods, 
and deep learning methods.
In the research method based on statistical 
analysis, Smith et al. proposed a Gaussian 
model-based industrial safety helmet small ob-
ject detection method in their 2019 study [6]. 
By conducting statistical analysis on the pixel 
grayscale values of different regions in the im-
age, effective detection of the safety helmet tar-
get was achieved. However, the recognition ac-
curacy of this method in complex backgrounds 
has certain limitations.
On the other hand, traditional machine learn-
ing-based research methods also have their 
unique contributions. Wang et al. proposed a 
support vector machine-based industrial safety 
helmet small object detection method in their 
2021 study [7]. By feature extraction and clas-
sifier design, accurate detection and classifica-
tion of small targets were achieved. However, 
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3. Experimental Methods

3.1. Yolov8 Model Introduction

YOLOv8 [13] is a deep learning model that 
serves as a prevalent real-time object detection 
algorithm in the field of object detection. As the 
latest iteration in the YOLO series of models, 
YOLOv8 builds upon and improves its prede-
cessors with the aim to realize both real-time 
object detection and localization. YOLOv8 in-
troduces enhancements and optimizations over 
previous versions to boost detection accuracy 
and speed, achieving favorable results across a 
variety of application scenarios.

3.1.1. Model Input and Output

The input of the Yolov8 model is a single image 
at a time. Typically, the resolution of this im-
age is fixed, and YOLOv8 will divide the image 
into a fixed grid. The typical input size may be 
416x416, 608x608, or 640x640 pixels.
The output of the YOLOv8 model compris-
es bounding boxes enclosing objects detected 
within an image, along with their respective cat-
egories [14]. Specifically, the output includes 
class labels for the targets, positions of the 
bounding boxes (commonly represented by the 
coordinates of their top-left and bottom-right 
corners), as well as confidence scores for each 
bounding box, which indicate the model's cer-
tainty about the presence of a target.

3.1.2. Model Architecture

The core structure of the YOLOv8 model con-
sists of a backbone network, a detection head, 
and a loss function.
Input layer: Typically, it is a predefined-size 
image with an image size that is usually a mul-
tiple of 32.
Backbone network: YOLOv8 typically employs 
a backbone network, such as Darknet, to extract 
image features. Specifically, YOLOv8 refer-
ences the CSPDarkNet-53 network [15]. Un-
like YOLOv5, YOLOv8 utilizes C2f (CSPLay-
er_2Conv) modules instead of C3 modules.

the recognition of this method still faces chal-
lenges in illumination changes and occlusion 
situations.
The most striking aspect is the research meth-
odology based on deep learning, particular-
ly the small object detection method using 
YOLOv8. In recent years, Zhang et al., in their 
2023 proposal addressing the challenge of de-
tecting small objects in drone images [8], have 
improved upon the YOLOv5 algorithm by in-
corporating a spatial-to-depth (SPD) convolu-
tional module, adding various attention mech-
anisms, and refining the multi-scale detection 
module to enable recognition of small targets in 
drone imagery.
Qian et al., in their 2023 introduction of a nov-
el safety helmet detection method based on 
Convolutional Neural Networks [9], optimized 
the BottleneckCSP structure in the YOLOv5 
backbone network to reduce model complexi-
ty. They also designed an upsampling feature 
enhancement module to eliminate information 
loss and introduced self-attention mechanisms 
to avoid redundant information resulting from 
feature fusion. This allows for faster inference 
speed and better performance under the same 
computational capacity.
Tan et al., in their 2022 proposal of a deep 
learning method based on YOLOv8 [10], com-
bined attention mechanisms with multi-scale 
feature fusion [11], effectively enhancing the 
precision and robustness of industrial safety 
helmet small object detection. Furthermore, 
Chen et al., in their 2023 research, presented 
a residual network-based approach to industri-
al safety helmet small object detection [12]. By 
incorporating the residual network structure, 
they effectively improved the model's detection 
performance in complex scenarios.
Although deep learning-based methods have 
made significant progress, they also face chal-
lenges such as complex models, large compu-
tation volumes, and high data demand. In ad-
dition, problems such as high labeling cost for 
datasets and low model robustness still need 
further research and improvement. This paper 
aims to gain insights from these studies and 
propose a new YOLOv8 model to solve these 
problems in small object recognition.
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Feature extraction layers: YOLOv8 employs 
a feature extraction mechanism similar to the 
PAN-FPN used in YOLOv5, referred to as du-
al-stream FPN [16]. This mechanism efficiently 
extracts feature information from the input im-
age through multiple convolutional and pooling 
operations, resulting in fast and effective detec-
tion performance.

Detection layers: This section is responsible 
for performing object detection based on the 
features extracted by the backbone network. 
YOLOv8 utilizes specialized convolutional and 
connection layers to predict the positions and 
categories of bounding boxes [17].

Output layer: This layer outputs information 
regarding the detected objects, including their 
categories, positions, and confidence scores. 
After the output, the results must undergo a 
non-maximum suppression (NMS) algorithm 
[18] to filter the output. The purpose of NMS 
is to eliminate overlapping bounding boxes and 
select the highest confidence scoring bounding 
box as the final output.

Loss function: The YOLOv8 model uses two 
aspects of loss functions: positive and negative 
sample allocation strategies and loss calcula-
tion.

3.2. Improvement Methods

3.2.1. SPD-Conv Module

SPD-Conv [19], depicted in Figure 1, consists 
of an SPDlayer and a convolutional layer with 
no stride, which can be applied to most CNN 
architectures, including the YOLOv8 model.
The role of the SPD layer is to reduce each spa-
tial dimension of the input feature map to the 
channel dimension while preserving informa-
tion within the channels. This can be achieved 
by mapping each pixel or feature in the input 
feature map to a channel [20]. During this pro-
cess, the size of the spatial dimensions decreas-
es while the size of the channel dimension in-
creases.
The no-stride convolution (cConv) layer is a 
standard convolution operation performed af-
ter the SPD layer. Unlike stride convolutions, 
which move across the feature map, no-stride 
convolutions perform convolution operations 
on each pixel or feature map without shifting 
[21]. This helps alleviate potential over-downs-
ampling issues that may arise in the SPD layer 
and retains more fine-grained information.
The combination method of the SPD-Conv 
module involves sequentially applying the SPD 
layer and then the Conv layer to the input fea-

Figure 1. SPD-Conv architecture, scale=2.
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ture map. This combination method can reduce 
the size of the spatial dimensions without losing 
information while retaining information within 
the channels, thereby improving the detection 
performance of CNNs on low-resolution imag-
es and small objects. It can also reduce depen-
dence on ''good quality'' inputs for models.

3.2.2. Data Augmentation

Data augmentation is a crucial technique for 
small object detection tasks as it improves the 
robustness and generalization ability of models 
to small targets. When handling data augmen-
tation for small targets, there are several com-
monly used methods:

 ● Random cropping and rescaling: Increas-
ing dataset diversity through random crop-
ping and rescaling is a common data aug-
mentation technique. When dealing with 
small targets, random cropping and resca-
ling can help the model better learn con-
textual information and scale variations of 
the targets, thereby enhancing detection 
performance [22].

 ● Rotation and flip augmentation: By intro-
ducing random rotation and flip augmen-
tation, the model can learn the appearance 
features of safety helmets at different an-
gles and orientations. This is significant 
for improving the robustness of the model 
in complex scenarios [23].

 ● Color jittering: For small targets, color jit-
tering can be introduced to increase data 
variety, allowing the model to better adapt 
to target detection under different lighting 
conditions. This can enhance the model's 
generalization ability and adaptability [24].

When performing data augmentation, it is im-
portant to maintain the integrity of target fea-
tures to avoid data distortion affecting model 
performance. Therefore, appropriate strategies 
for data augmentation should be selected based 
on specific datasets and tasks, and evaluation 
and adjustment should be carried out using 
techniques such as cross-validation.

3.2.3. LSKNet

The design idea of LSKNet [25], shown in Fig-
ure 2, is to achieve adaptive receptive fields 
through a spatial selection mechanism. In tradi-
tional convolutional neural networks (CNNs), 
the size of the convolution kernel is fixed, 
whereas in LSKNet, the size of the convolution 
kernel is dynamically determined based on the 
input. This means that the model can adjust the 
receptive field for each target as needed, there-
by better capturing the features of the target.

Figure 2. LSKNet network structure.

In addition to rotation-sensitive convolution 
operations, LSKNet also utilizes attention 
mechanisms to further enhance the accuracy 
of object detection [26]. In LSKNet, the atten-
tion mechanism is applied to feature represen-
tations, enabling the model to better focus on 
target features and thus improve object detec-
tion accuracy. The attention mechanism helps 
the model better attend to regions relevant to 
the target and suppress interference from irrele-
vant regions. By incorporating LSKNet into the 
YOLOv8 network, it optimizes network per-
formance and improves the detection of small 
objects.

4. Experimental Verification

4.1. Dataset and Experimental 
Environment

The training data used in this experiment comes 
from the Smart Construction project provided 
by SHWD for headwear detection and human 
head detection. It includes 7581 images, in-
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cluding 9044 headwear objects (front view) 
and 111514 normal head objects (not worn or 
negative). The front objects are from Google or 
Baidu, and the objects in the dataset are man-
ually labeled with LabelImg. Some negative 
objects come from SCUT-HEAD. The origi-
nal SCUT-HEAD errors have been fixed in the 
dataset, and the data can be loaded directly in 
the normal Pascal VOC format. Some dataset 
examples are shown in Figures 3 and 4.

After acquiring the training data, it is neces-
sary to put the data into the model for training. 
The hardware environment required for mod-
el training determines whether the experiment 
will proceed smoothly. The experimental envi-
ronment for this paper is shown in Table 1.

Table 1. Configuration of model training environment.

Experimental  
Environment  

Environment  
Selection

Programming Language  Python 3.8

Framework  Pytorch 1.10.0

Operating System ubuntu20.04

GPU RTX 3090 (24 GB)

Cuda 11.3

Memory 43 GB

Figure 3. Test set images of Safety Helmets 1.

Figure 4. Test set images of Safety Helmets 2.
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4.2. Experimental Analysis

In Chapter 3, the YOLOv8 model was ana-
lyzed, and its deficiencies were identified and 
improved according to the research objectives, 
resulting in our proposed model, OurModel. As 
described in section 1, previous studies used 
the YOLOv5 model for small object detection, 
which also greatly improved performance, with 
good accuracy and precision. Therefore, in this 
experiment, YOLOv5 models, YOLOv8 mod-
els, and OurModel models will be used to ver-
ify the feasibility of the proposed improvement 
method, respectively Model 1, Model 2, and 
Model 3. Below, these three network structures 
will be tested through ablation and comparison 
experiments to conclude that the introduced 
modules can improve the accuracy of the model.
For data augmentation, there is no consider-
ation of performance metrics.

4.2.1. Ablation Experiments

The purpose of ablation experiments is to un-
derstand and evaluate the effectiveness of a 

model's network structure by dissecting its in-
ternal principles and components.

Based on the two proposed network structures, 
experiments will be conducted using the preci-
sion and recall plots from the training set, as 
shown in Figures 5 and 6.

According to Figure 5, the precision of the 
original YOLOv8 model is gradually increas-
ing, and the learning effect of the model is also 
gradually improving [27]. After introducing 
the SPD-Conv and LSKNet network modules, 
respectively, the accuracy of the new model is 
higher than that of the Yolov8 model in the ear-
ly stage. In Figure 5, until around the 60th ep-
och, the precision of the newly introduced mod-
ule is higher than that of the original YOLOv8 
model. As the number of rounds increases, it 
starts to decline slowly and becomes lower than 
the YOLOv8 model. However, the model with 
the LSKNet module has a precision similar to 
that of the original YOLOv8 model and is even 
higher than the original model at some points.

Figure 5. Precision graph of each model.
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In Figure 6, the recall rate of the model with 
the SPD-Conv module is unstable in the ear-
ly stage, and its performance is not very good. 
However, as the number of rounds increases, it 
begins to exceed the YOLOv8 model after the 
60th round. The recall rate of the model with 
the LSKNet module is stable throughout the 
training process.
Upon analyzing the aforementioned issue, it 
can be concluded that although the precision 
of the SPD-Conv and LSKNet models starts to 
decrease below the YOLOv8 model in the later 
stages depicted in Figure 5, their precision re-
mains higher than that of the YOLOv8 model 
around the 80th round. Furthermore, in terms of 
recall rate at the 80th round in Figure 6, both the 
SPD-Conv and LSKNet models demonstrate 
good performance with an improvement over the 
YOLOv8 model. LSKNet effectively addresses 
these issues through its rotation-sensitive con-
volution operations and attention mechanism, 
enhancing the accuracy of object detection [28]. 
Therefore, introducing these two modules into 
the YOLOv8 model is indeed effective.

4.2.2. Comparison Experiments

The purpose of comparison experiments is to 
obtain conclusions about which model is better, 
through comparing different models' perfor-
mance and selecting the best one.
Using the same dataset and performing the 
same dataset division as Model 1, Model 2, and 
Model 3 under all parameters being consistent, 
training results with precision and mAP50 will 
be plotted, as shown in Figures 7 and 8.
Through the comparison of the two graphs, it 
can be seen that the OurModel model signifi-
cantly outperforms the YOLOv5 model. In Fig-
ures 7 and 8, the OurModel model consistent-
ly demonstrates superiority over the YOLOv5 
model in terms of precision and mAP50, and 
to some extent, it can be compared with the 
YOLOv8 model. However, as the number of 
rounds increases, the advantages of the Our-
Model model become more evident. Its preci-
sion starts to improve and remains higher than 
that of the YOLOv8 model. The mAP50 is also 
a highlight, consistently staying above both the 
YOLOv8 and YOLOv5 models.

Figure 6. Recall graph of each model.
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Figure 7. Precision graph of each model.

Figure 8. mAP50 of each model.
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The mAP50 measure, to some extent, reflects 
the accuracy of the model when labeling data, 
and it can enhance detection efficiency and ac-
curacy. Therefore, the OurModel model is supe-
rior to both the YOLOv8 and YOLOv5 models 
and can be used for identifying industrial safety 
helmets and detecting small target objects.

4.3. Final Model

After the above experiments, it can be conclud-
ed that the proposed network structure is effec-
tive for recognizing small targets. Therefore, the 
parameters of OurModel model will be tuned to 
obtain the optimal solution.
Training is performed on a GPU with the initial 
settings given in Table 2. As shown in the train-
ing environment and related parameters, differ-
ent parameters will be set to obtain the trained 
model (OurModel). Based on the training of the 
model, the accuracy of each round in the vali-
dation set will be saved and plotted. The loss 
results are shown in Figure 9.
According to the precision of OurModel model, 
with the increase of training rounds, the model 

tends to stabilize, and the maximum value of 
accuracy exceeds 0.9. It can be seen that the 
improved YOLOv8 model has a much higher 
performance than the original YOLOv8 model.
When the number of training rounds is adjusted 
to 200, according to the loss diagrams given in 
Figure 10 for both the training set and in the 
validation set, the losses of predicting target 
boxes and target categories are very low. After 
reaching a certain number of rounds in the val-
idation set, they basically stabilize. Therefore, 
the improvement is effective.
The inference visualization of the model is 
shown in Figures 11 and 12.

Table 2. Training parameters and methods of OurModel.

Related Parameters 
Settings Value

epochs 100

imgsz 640

Batch size 32

optimizer AdamW

Figure 9. Precision of OurModel.
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Figure 11. The Inference Structure of OurModel Model.

Figure 10. Loss of OurModel.
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Figure 12. Inference of OurModel Model.

5. Conclusion

In conclusion, this paper presented a robust 
objection detection technique tailored for ac-
curate identification of small safety helmets 
in industrial settings by augmenting YOLOv8. 
Structural improvements via the proposed 
SPD-Conv and LSKNet modules help retain 
multi-scale visual information and focus con-
textual modeling through dynamic spatial se-
lection and attention. Comparative evaluations 
indicate consistently higher precision and recall 
over the default YOLO frameworks. The final 
optimized model achieves over 90% validation 
accuracy, demonstrating real-world reliability. 
While constrained to headgear use cases, the 
methodologies and experiments provide useful 
insights into enhancing deep neural networks 
for allied minute object detection challenges in 
complex environments. As industrial IoT and 
automated monitoring systems gain traction, 
such computer vision capabilities form integral 
components to uphold safety and compliance.
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