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The stable operation of power transmission and dis-
tribution is closely related to the overall performance 
and construction quality of circuit breakers. Focusing 
on circuit breakers as the research subject, we propose 
a machine vision method for automated defect detec-
tion, which can be applied in intelligent robots to im-
prove detection efficiency, reduce costs, and address 
the issues related to performance and assembly qual-
ity. Based on the LeNet-5 convolutional neural net-
work, a method for the detection of character defects 
on labels is proposed. This method is then combined 
with squeezing and excitation networks to achieve 
more precise classification with a feature graph mech-
anism. The experimental results show the accuracy of 
the LeNet-CB model can reach up to 99.75%, while 
the average time for single character detection is 17.9 
milliseconds. Although the LeNet-SE model demon-
strates certain limitations in handling some easily con-
fused characters, it maintains an average accuracy of 
98.95%. Through further optimization, a label content 
detection method based on the LSTM framework is 
constructed, with an average accuracy of 99.57%, and 
an average detection time of 84 milliseconds. Overall, 
the system meets the detection accuracy requirements 
and delivers a rapid response. making the results of 
this research a meaningful contribution to the practical 
foundation for ongoing improvements in robot intelli-
gence and machine vision.
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1. Introduction

With the development of industry, effective use 
of electricity has become the core of sustainable 
development for enterprises. In this context, the 
low-voltage circuit breaker, as the core equip-
ment in the power system, is experiencing an 
increasing demand. To ensure high efficiency 
and product quality in the production process, 
it is particularly important to automate the ap-
pearance and assembly quality of the low-volt-
age circuit breaker. However, the current detec-
tion process mainly relies on manual operation. 
This method has many limitations, such as 
strong subjectivity, low efficiency, and poor 
stability, all of which significantly impact the 
overall detection effectiveness and production 
efficiency [1–3]. 
In light of these challenges, the research aims 
to overcome the limitations of existing methods 
and address these issues by enhancing the auto-
mation and intelligence of detection processes. 
Two key algorithms, label defect detection and 
content resolution, are developed. The goal of 
these algorithms is to improve the label defect 
detection accuracy and clarity of the charac-
ter electrical parameter identification, thereby 
solving the common misidentification and con-
fusion in manual detection problems [4–6]. 
In the technical implementation, the LeNet-5 
Convolutional Neural Network (LeNet-5) is 
adopted. Subsequently, LeNet-5 is combined 
with the Squeeze Excitation Network (SENet) 
to develop an advanced label feature detection 
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tial fracture types. There are differences in the 
morphology and size of these defects. There-
fore, relying on traditional feature engineering 
detection methods makes it difficult to achieve 
stable reliability. 
To address this challenge, a novel machine vi-
sion detection algorithm is proposed to accu-
rately identify and classify these fracture de-
fects. The LeNet-5 detection algorithm, as the 
core tool used in this study, is mainly used for 
precise recognition of label character defect de-
tection methods [16].
Figure 1 shows the LeNet-5 network archi-
tecture. It includes three convolutional layers 
for feature extraction, two pooling layers for 
downsampling, and a fully connected layer for 
feature mapping, as well as input and output 
layers. LeNet-5 integrates feature extraction 
and classification, laying the foundation for 
Convolutional Neural Networks [17]. The input 
layer is used for preprocessing, standardization, 
and conversion of data formats, with fixed at-
tributes and no learnable weights. The convo-
lutional layer is the core of the network, which 
convolves the upper output data and generates 
new feature maps through activation functions. 
The convolutional kernel size is used to consid-
er the input data size, receptive field, and net-
work width [18]. The convolutional kernel pa-
rameter is a key to learning, affecting the types 
of features extracted. The relevant calculation 
is shown in equation (1).
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pooling layer implements downsampling of 
convolutional feature map. The purpose is to 
reduce the burden on feature parameters and 
prevent overfitting to some extent. This process 
involves multiple pooling strategies, such as 
average pooling, maximum pooling, and over-
lapping pooling. The specific operation is dis-
played in equation (2).
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activation functions for effective detection and 
recognition. The experimental results demon-
strated the effectiveness of the model [14]. 
Zhou et al. proposed an optimized fault detec-
tion method using a deep learning model. Trans-
fer learning was used to mitigate the impact of 
data differences while learning fault-related 
features. The model also explored the common 
features of real and synthetic seismic data to 
enhance their applicability. The experimental 
results showed that this method significantly 
improved detection performance and reduced 
manual labeling costs without the real data la-
bels [15].
In summary, many scholars and scientists have 
dedicated efforts to improve detection accura-
cy and apply it across diverse fields. However, 
considering the significant diversity, size differ-
ences, and irregular morphology of characters 
on labels, a LeNet-5 neural network is proposed 
for content parsing and detection of defects in 
characters on labels.

3. Research Model

Considering the diversity, size differences, and 
irregular shapes of label characters, we have 
developed a character defect detection method 
based on neural networks, namely the LeNet-5 
architecture. This method incorporates a fea-
ture graph channel mechanism and is designed 
by combining LeNet-5 and SENet. To further 
enhance classification performance and meet 
the demands of intelligent robots, a label con-
tent parsing scheme based on LSTM is con-
structed.

3.1. Character Defect Detection Model 
Based on Convolutional Neural 
Networks

Research on machine vision detection algo-
rithms for robot intelligence is a pivotal area 
that can enable robots to accurately recognize 
and understand the visual information from 
their surroundings, and achieve efficient and 
intelligent operations. The label characters 
exhibit a variety of fracture defects, such as 
top and bottom, lateral, combination, and par-

method based on the feature graph channel 
mechanism. In addition, a label content parsing 
scheme based on a Long Short-Term Memory 
(LSTM) network is constructed. This scheme 
effectively improves classification performance 
and better meets the needs of intelligent robots 
in complex industrial environments. 
The rest of this paper is organized as follows. 
Section 2 summarizes the research achieve-
ments and shortcomings of machine vision and 
its application in detection of character defects 
on labels. In Section 3, a method based on a con-
volutional neural network model is proposed 
for content parsing and detection of faulty char-
acters in labels. The experiments conducted on 
the designed model are described in Section 4. 
Section 5 concludes the paper by providing a 
summary of the experimental results and the 
shortcomings in the research and proposes fu-
ture research directions.

2. Related Work

Machine vision offers unique advantages in char-
acter defect recognition, with deep learning and 
neural network technology playing pivotal roles 
[7]. Both industry experts and scholars have con-
ducted a series of related studies in this field. 
Li et al. proposed a hybrid model for optimizing 
code smell detection through multi-level code 
representation. The model first parsed the code 
into an abstract syntax tree, and a Convolutional 
Neural Network was used to perform grammar 
and semantic prediction. A bidirectional LSTM 
network with an attention mechanism was used 
to analyze encoded symbols. The experimental 
results showed that the model outperformed ex-
isting methods in code smell detection for both 
single-label and multi-label codes [8]. 
W. Tang et al. proposed an evolutionary al-
gorithm that combined traditional image pro-
cessing, deep learning, and transfer learning 
to achieve automatic recognition of unknown 
defects. This algorithm extracted and classified 
features through deep learning, using deep clus-
tering to classify and store unmarked defects, 
and automatically update the database. Then, 
transfer learning was introduced to train clas-
sifiers using updated databases. The effective-

ness and accuracy of this method in image de-
fect detection were verified [9]. 
C. Zheng et al. used label decoupling technol-
ogy to split the original label map into inter-
nal and boundary diffusion maps to collaborate 
with GT maps. This process involved a three-
stream neural network with a multi-scale inter-
active expansion module designed to explore 
more contextual information. The boundary 
perception feature stitching modules based on 
attention were developed to integrate multi-
modal information. This strategy significant-
ly improved detection accuracy and boundary 
clarity [10]. 
Potapenko et al. explored the accurate detec-
tion of retinal edema using convolutional neu-
ral networks on optical coherence tomography 
images. Training data, with recorded treatment 
decisions as labels, effectively identified the 
presence of edema, maintaining high accuracy 
even in the presence of inconsistencies between 
training and validation labels [11].
Kumar et al. proposed a multi-label learning 
algorithm. The dataset was divided into three 
groups by gender. The word frequency, inverse 
document frequency, and global vector features 
were calculated for each group. The analysis 
involved the problem transformation method 
and a multi-channel recurrent neural network 
with attention mechanisms. The results showed 
that traditional multi-label conversion methods 
had excellent processing performance for small 
amounts of data and long sequences [12]. 
Wang et al. proposed a deep learning frame-
work for detecting related events from news 
reporting on renewable energy system acci-
dents. This framework adopted bidirectional 
encoder representation and text Convolutional 
neural network. The framework trained a bina-
ry classifier for detecting event existence and 
a multi-label classifier for identifying event at-
tributes. The experimental results showed that 
the framework performed well in detecting the 
existence of events [13]. 
Turkoglu et al. proposed a deep neural network 
method based on an Extreme Learning Machine 
(ELM). Convolutional neural networks were 
used to extract features from scanned images. 
This method utilized a pre-trained deep network 
architecture and transfer learning to evaluate the 
performance of ELM classifiers with different 
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tial fracture types. There are differences in the 
morphology and size of these defects. There-
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convolves the upper output data and generates 
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In equation (6), rotate() represents the rotation 
function, and θ is the rotation angle. The ran-
dom damage step is shown in equation (7).
Bdst = rot(rand(Rdst), rand( pos), rand(methods))

(7)
In equation (7), rot() represents the damage op-
eration, pos represents the location of the dam-
age point, and methods represents the method 
set.

3.2. Optimization of LeNet-5 and SENet 
for Recognizing Electrical Parameters 
on Labels

While LeNet-5 has demonstrated excellent per-
formance in handwritten digit recognition, its 
direct application for tasks that involve the rec-
ognition of electrical parameters on labels with 
multiple character categories and high recog-
nition accuracy requirements may not meet all 
requirements. To address the specific require-
ments of applying machine vision to intelligent 
robots for the recognition of electrical param-
eters on labels, a dedicated electrical parame-
ter label detection and recognition algorithm 
is optimized based on the LeNet-5 to achieve 
higher accuracy and stability. In addition, the 
Squeeze-and-Excitation Network (SENet) en-
hances the model's representational ability by 

introducing feature recalibration mechanisms 
to strengthen the dependency relationships be-
tween feature channels. The SENet model ar-
chitecture is shown in Figure 3.
In Figure 3, F represents operating on the fea-
ture map X = {x1, x2, ..., xC'} with C inputs to 
obtain the feature map U = {u1, u2, ..., uC} of 
C  channels. The convolution operation only 
slides within the local window of the feature 
space. Therefore, U does not include dependen-
cies between channels in the previous layer of 
feature maps. To introduce these dependencies, 
the SENet introduces the Squeeze and Excep-
tion steps. The Squeeze step performs global 
average pooling on the feature map U in the 
H × W space dimension, without changing the 
same dimension, to obtain z = {z1, z2, ..., zC}. 
The global average pooling is shown in equa-
tion (8).
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After the operation described by equation (8), 
the feature map is converted into a channel de-
pendency relationship, as shown in equation 
(9).

s = Fex(z, W) = σ(W2 ∙ ReLU(W1 ∙ z))     (9)

In equation (2), sl
j represents the sampling co-

efficient, and sl
j represents the pooling process. 

The fully connected layer is responsible for 
transforming dispersed feature representations 
into the sample label space, playing the role of 
a classifier in the convolutional neural network, 
as shown in equation (3).
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In equation (3), x 

l represents the output value 
of the l-th. w 

l represents the l-th weight coef-
ficient, and bl represents the offset term of the 
l-th fully connected layer. 
LeNet-5, originally designed for handwritten 
digit recognition, has an accuracy rate of 97%, 
demonstrating excellent classification ability. 
The goal of this study is to differentiate between 
non-faulty and faulty characters. This task re-
quires detecting character categories, including 
uppercase and lowercase letters, numbers, and 
special symbols. 
Handwritten digit recognition typically in-
volves number categories only. However, char-
acter defect detection tasks place more em-
phasis on features related to character size. In 
light of this, we have optimized the LeNet-5 
architecture, which includes adjustments to the 
network input size (46 × 32) to maintain the 
original aspect ratio of characters. A 3×3 small 
convolutional kernel is used to enhance feature 
extraction and generalization capabilities. The 

ReLU activation function and initialization 
method are introduced to avoid gradient prob-
lems. The improved network structure of LeN-
et-CB is shown in Figure 2.
Artificial data generation covers operations 
such as color character image synthesis, ran-
dom scaling, and rotation of grayscale images, 
as well as interference factor injection and ran-
dom breakage. Ibg represents the image back-
ground. Chars represents the printed character 
set. The color image synthesis process of label 
characters is shown in equation (4).

( ) ( )( ), , 1 100dst bgG g rand Chars rand I i= ≤ ≤
   

(4)

In equation (4), rand() represents a random 
number operation, while g() represents the fu-
sion of characters and background. The random 
scaling of grayscale images is shown in equa-
tion (5).

( )( ) [ ]( ), 0.8, 1.2dst dstS rand gray G rand s s= × ∈    (5)

In equation (5), gray() represents the grayscale 
image operation, and s represents the random 
scaling factor. The grayscale image random ro-
tation and the interference factor injection are 
shown in equation (6).

Rdst = rotate(rand(Sdst), rand(θ)) + rand(τ),
θ ∈[-2, 2], ∈[0, 255]               (6)

Figure 1. LeNet-5 network architecture.

Figure 2. Improved network structure of LeNet-CB.
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In equation (12), a represents a constant. The 
BN operation transforms the feature distribu-
tion into a standard distribution, which to some 
extent constrains the expressive ability. To en-

hance this ability, two learnable adjustment 
parameters γ and β are introduced during the 
execution of BN, as shown in equation (13). 
This is crucial for feature expression in robot 
intelligence.

yi = BNγ, β(xi) = γxi + β           (13)

3.3. LSTM-based Framework for Label 
Content Parsing and Character 
Detection Optimization

Due to the lack of accurate identification for 
electrical parameters in labels, we introduce a 
fusion of prior knowledge and contextual infor-
mation based on LeNet-5 to improve the recog-
nition accuracy of easily mixed characters [21]. 

In equation (9), s = {s1, s2, ..., sC}, σ represents 
the sigmoid activation function. The exception 
step uses the sigmoid function as the activation 
function, aiming to enable the network to learn 
the nonlinear relationships between channels 
while keeping the weight coefficients of each 
channel independent. Afterwards, the activa-
tion value s of each channel is multiplied by the 
corresponding feature map u for feature adjust-
ment, which assigns weights to each channel 
in the feature map. Thus, a channel dependent 
feature map X = {x1, x2, ..., xC} is obtained. The 
feature adjustment operation is represented by 
equation (10).

xi = Fscale(ui, si) = si ∙ ui             (10)

The core function of SENet is to enhance the 
focus on key features and suppress irrelevant 
features by dynamically adjusting the weight 
of feature graph channels, to achieve more ac-
curate feature recognition and expression. By 
introducing this attention mechanism, especial-
ly when dealing with complex electrical param-
eter detection tasks, the recognition efficiency 
and accuracy have been significantly improved. 
Based on the classic LeNet-5 model, this study 
introduces the Squeeze-and-Excitation Block 
(SE-Block) [19]. Subsequently, the LeNet with 
Squeeze-and-Excitation (LENET-SE) model is 
developed. The LeNet-SE model not only re-
tains the basic architecture of LeNet-5, but also 
significantly enhances the ability to identify 
electrical parameter labels through the integra-
tion of SE-Block. Based on the improvement 
strategy of LeNet-CB described in the previous 
section, the LeNet-SE model has been further 
optimized. LeNet-CB is a further improve-

ment based on LeNet-5, including adjusting 
the network input size to 46×32 to maintain the 
original character aspect ratio, using a small 
convolution kernel of 3×3 to enhance feature 
extraction and generalization capabilities, in-
troducing ReLU activation functions and ad-
vanced initialization methods to avoid gradient 
disappearance. Figure 4(a) shows the LeN-
et-CB structure diagram. 
These optimization measures together improve 
the performance of the LeNet-SE model, mak-
ing it more accurate and efficient in the detec-
tion and identification of electrical parameters. 
To further improve the performance of the LeN-
et-SE model, Batch Normalization (BN) is add-
ed after each convolution layer to stabilize the 
learning process and accelerate convergence. 
The SE blocks are embedded after the third and 
fourth convolution layers for optimization, as 
shown in Figure 4(b).
Batch normalization mainly standardizes the 
output characteristics of convolutional layers. 
The distribution is adjusted to a standard nor-
mal distribution with a mean of 0 and a vari-
ance of 1. This processing aims to reduce the 
tendency of the feature distribution towards the 
saturation zone of the nonlinear activation func-
tion, prevent the gradient vanishing, and thus 
accelerate the convergence speed of the net-
work. In the batch training stage, implementing 
BN mainly involves calculating the mean and 
variance of each batch's features [20]. Then the 
standardization processing is performed. Tak-
ing Figures 3 and 4 as examples, the mean of 
the feature map  can be calculated, as shown in 
equation (11).

Figure 3. SENet model architecture.

Figure 4. Structure diagram of LeNet-SE model.
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In equation (12), a represents a constant. The 
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transmit structure gates. The current unit status 
and output are shown in equation (15).
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In equation (15), WC and bC are the weights and 
biases of the current unit state. C represents 
current state unit output. ht represents the out-
put characteristics generated by the current 
unit. Each LSTM unit generates the current 
unit state and output after receiving the previ-
ous unit state and output as well as the current 
input [25]. These states are quickly transmitted 
to the next unit, allowing the network to obtain 
contextual information of long and short time 
series, thereby promoting the identification of 
tag electrical parameters that rely on such in-
formation [26]. It has practical value in robot 
intelligence applications.

4. Result and Discussion

The primary goal of the evaluation is to explore 
the accuracy of character defects detection 
method. This involves a comparative analysis 
of the accuracy between LeNet-5 and LeN-

et-CB. Subsequently, based on LeNet-5 and 
SENet, the performance of electrical parame-
ter identification and detection is verified. To 
further improve the accuracy of detection and 
recognition, the experiment uses standard word 
libraries, self-trained word libraries, and a com-
bination of the two for electrical parameter de-
tection.

4.1. Results and Analysis of Character 
Defect Detection Method

A character image dataset is created in the re-
search experiment. 25000 images are devel-
oped, named CNN-25K, with a ratio of approx-
imately 1:1 for complete and broken characters. 
Due to the limited diversity and acquisition 
cost of industrial data, 1999 complete charac-
ters, 799 broken characters, and 99 background 
images were selected [27]. The data synthesis 
is conducted using algorithms designed for 
printing font information. To evaluate the per-
formance of LeNet-5 and LeNet-CB networks 
in character breakage detection tasks, the two 
networks are trained on the CNN-25K dataset. 
The dataset is divided into training, validation, 
and testing sets in a ratio of 8:1:1. 80% of each 
type of sample is used for training and the rest 

This is a key element in the machine vision de-
tection algorithms for intelligent robots. 
The targeted application of prior knowledge 
is pivotal in this context. The incorporation 
of contextual information requires converting 
strings into sequential data and establishing a 
neural network capable of processing this data. 
The LSTM and Gated Recurrent Unit (GRU) 
are commonly used networks for processing 
sequential data. Constructing and training of 
Recurrent Neural Networks (RNN) for this pur-
pose is time-consuming and expensive. There-
fore, transfer learning technology is adopted 
for transfer training and deployment of LSTM-
based frameworks, as shown in Figure 5 [22].
In Figure 5, the framework consists of four 
parts - input, preprocessing, model processing, 
and output, receiving grayscale or binary im-
ages. The preprocessing layer adopts text lay-
out analysis and digital image technology to 
achieve character segmentation and extraction. 
The model processing layer loads the trained 
LSTM network, processes character features, 
and optimizes recognition results, while the 
output layer presents the results in text format 
[23]. LSTM is an upgraded version of the re-
current neural network. The LSTM memory 

model is used to manage the transmission and 
importance of feature information, ensuring the 
effective transmission of features in a recurrent 
network. The basic structure is shown in Figure 
6.
In Figure 6, there are three control mechanisms 
and one fast channel within the LSTM unit. 
The discard structure is responsible for elimi-
nating noncritical information from previous 
states. The receiving structure determines the 
contribution of the current input information 
to the state. The emission structure controls 
the amount of information from the state to the 
output [24]. The fast channel quickly transmits 
the status of each cycle unit to achieve short-
term memory function. The calculation method 
for each control structure is shown in equation 
(14).
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In equation (14), Wf, Wi and Wo represent the 
weights of the discard structure, receive, and 

Figure 5. Frame model based on LSTM.

Figure 6. LSTM cell structure diagram.
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transmit structure gates. The current unit status 
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and output, receiving grayscale or binary im-
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out analysis and digital image technology to 
achieve character segmentation and extraction. 
The model processing layer loads the trained 
LSTM network, processes character features, 
and optimizes recognition results, while the 
output layer presents the results in text format 
[23]. LSTM is an upgraded version of the re-
current neural network. The LSTM memory 

model is used to manage the transmission and 
importance of feature information, ensuring the 
effective transmission of features in a recurrent 
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In addition, to ensure that the sample size of 
various categories in the dataset is as balanced 
as possible, the data synthesis technology is 
used to expand the seven special characters. 
The number of images per special character 
has increased by about 450. The total amount 
of data reaches about 65,000 images. The re-
sulting dataset is named CNN-65K, as shown 
in Figure 8. 
To simplify the data loading process of the net-
work model and reduce data annotation and col-
lation work, a concise data organization method 
is adopted. Each folder in the data set is named 
using a serial number, representing the corre-
sponding character label. For example, num-
bers 1-10 correspond to numbers 0-9, numbers 
11-36 to uppercase letters A-Z, numbers 37-62 
to lowercase letters a-z, and numbers 63-68 
to special characters. In this way, the network 
model can load the path and label of the train-
ing data at the same time. During the loading 
process, the training set, validation set, and test 
set are divided. The data is randomly shuffled 
to ensure the effectiveness and reliability of the 
training process.

To evaluate the performance of network models 
in electrical parameter identification and detec-
tion tasks, LeNet-5, LeNet-CB, and LeNet-SE 
network models are trained on the CNN-25K 
dataset. The ablation experiments are conduct-
ed on the LeNet-SE network model. 
Figure 9 shows the training results of the LeN-
et-5 and LeNet-CB network models. From Fig-
ure 9 (a) it is visible that the training and testing 
accuracy of the LeNet-5 network model in elec-
trical parameter recognition tasks exceeds 98% 
after convergence, highlighting the generaliza-
tion ability of the network model for character 
recognition tasks. By comparing Figures 9(a) 
and 9(b), it can be concluded that the training 
and testing accuracy of the LeNet-CB network 
model has only slightly improved by about 
0.2% compared to the LeNet-5 network mod-
el. However, the variance of the former after 
convergence is smaller. In the neural network 
model, a small variance means that it has good 
generalization performance, which verifies the 
feasibility of the proposed improved algorithm.

is small. Therefore, if hardware conditions are 
met, priority should be given to selecting LeN-
et-CB with higher accuracy.

4.2. Performance Analysis of Electrical 
Parameter Detection and 
Identification Network Model

The study first selects 12,500 image datasets 
in CNN-25K. The dataset contains 69 different 
categories, covering numbers, uppercase let-
ters, lowercase letters, and special symbols. It 
serves as a standard sample for model recogni-
tion. Further, to enhance the generalization abil-
ity and prevent overfitting, 51000 images are 
selected from the publicly available CHARS 
dataset, involving 62 categories, including vari-
ous numbers and upper and lower case English 
letters. These images are fused with the CNN-
25K dataset to form a richer LeNet-SE training 
dataset. 

for validation and testing. The specific training 
results are shown in Figure 7.
In Figure 7, LeNet-5 achieves an accuracy of 
98.85% in character detection tasks, which is 
consistent with the performance in handwritten 
digit recognition, demonstrating the general-
ization ability in character classification tasks. 
The improved LeNet-CB achieves an accuracy 
of 99.75% in this task, which is 0.9% higher 
than LeNet-5, confirming the effectiveness of 
the improved algorithm. Figure 7 also reveals 
the changes in loss values during the training of 
the two networks. The loss value after conver-
gence of LeNet-CB is lower than that of LeN-
et-5. To evaluate the detection performance of 
the two networks, a faulty character detection 
test is conducted. The results are shown in Ta-
ble 1. When the actual measurement accuracy 
of two networks is lower than that of training, it 
indicates the possibility of model optimization. 
LeNet-CB outperforms LeNet-5 in accuracy. 
Although it takes slightly longer, the difference 

Figure 7. Accuracy and loss value change curves.

Table 1. Comparison of model detection accuracy rate and average duration.

Model Sample size Correct number Accuracy rate (%) Average duration 
(ms)

LeNet-CB 999 988 99.49% 10.6ms

LeNet-5 999 979 97.98% 8.57ms
Figure 8. Sample character image.
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In addition, to ensure that the sample size of 
various categories in the dataset is as balanced 
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Figure 10 shows the training results of the LeN-
et-SE and LetNet-SE without BN network mod-
els. By comparing the results between Figures 9 
and 10, it is evident that the LeNet-SE surpass-
es the LeNet-5 network in key indicators such 
as accuracy, loss value, and variance, verifying 
the modeling effectiveness of LeNet-SE. Com-
pared with LeNet-CB, LeNet-SE performs sim-
ilarly in variance. However, it performs better 
in terms of accuracy and loss value, which in-
dicates that the improved algorithm is practical 
and effective.
Figure 10 (b) shows the training results after 
disabling the BN operation. Although disabling 
the BN operation slightly improves the training 
accuracy, the testing accuracy and loss perfor-
mance are not ideal. It proves the important 
regularization effect of the BN operation. From 
Figure 9, compared to LeNet-CB, the mod-
el with SE Block alone shows an increase of 
0.89% in training accuracy and a 3% decrease 
in loss value, demonstrating the strong potential 
and positive effects of SE Block. 
For further comparison, Figure 11 (a) displays 
the testing accuracy of LeNet-5, LeNet-CB, 
and LeNet-SE. LeNet-SE surpasses LeNet-5 
and LeNet-CB in testing accuracy, with im-
provements of 0.5% and 0.98%, respectively, 
demonstrating the outstanding performance ad-
vantage.
To verify the ability of the LeNet-SE network 
model in electrical character detection, Figure 

11 (b) shows the sorted classification accuracy 
data. Although the LeNet-SE network model has 
overall high classification accuracy, the detection 
ability for certain characters is slightly insuffi-
cient, as shown in the purple highlighted part in 
Figure 11 (b). These indistinguishable characters 
are mainly characters with similar shapes, such 
as ''P'' and ''p'', as well as ''X'' and ''x''. 
In the labels studied, the same character may 
have different sizes in different lines. It is im-
possible to avoid character confusion due to 
differences in capitalization, size, and similar 
morphology. To meet the requirements of de-
tection standards, the detection method of elec-
trical parameter labels is further optimized. At 
the same time, to further evaluate the perfor-
mance of LeNet-SE network, the commonly 
used three-layer BP neural network and LeN-
et-5 network are used as benchmarks for com-
parative experiments, as shown in Table 2. 
The experimental results show that the char-
acter recognition speed of LeNet-SE is higher 
than that of LeNet-5. Compared with BP neu-
ral network, LeNet-SE also has a significant 
improvement in recognition rate, although the 
difference is still obvious in operation speed 
due to more network layers. In practical appli-
cations, the recognition speed of LeNet-SE is 
sufficient. The performance can be further im-
proved through subsequent software and hard-
ware optimization.

Figure 11. Comparison and prediction accuracy of LeNet-SE classification.

Figure 9. Training results of traditional LeNet-5 and LeNet-CB models.

Table 2. Character recognition comparison of the three algorithms.

Network type Recognition accuracy rate Average duration

LeNet-5 95% 9.8 ms

LeNet-SE 92% 13.9 ms

BP neural network 88% 4.5 ms

Figure 10. LeNet-SE model training results and experiments.
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morphology. To meet the requirements of de-
tection standards, the detection method of elec-
trical parameter labels is further optimized. At 
the same time, to further evaluate the perfor-
mance of LeNet-SE network, the commonly 
used three-layer BP neural network and LeN-
et-5 network are used as benchmarks for com-
parative experiments, as shown in Table 2. 
The experimental results show that the char-
acter recognition speed of LeNet-SE is higher 
than that of LeNet-5. Compared with BP neu-
ral network, LeNet-SE also has a significant 
improvement in recognition rate, although the 
difference is still obvious in operation speed 
due to more network layers. In practical appli-
cations, the recognition speed of LeNet-SE is 
sufficient. The performance can be further im-
proved through subsequent software and hard-
ware optimization.

Figure 11. Comparison and prediction accuracy of LeNet-SE classification.

Figure 9. Training results of traditional LeNet-5 and LeNet-CB models.

Table 2. Character recognition comparison of the three algorithms.

Network type Recognition accuracy rate Average duration

LeNet-5 95% 9.8 ms

LeNet-SE 92% 13.9 ms

BP neural network 88% 4.5 ms

Figure 10. LeNet-SE model training results and experiments.
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For example, in high-end servers or profession-
al image processing hardware, the combination 
of the two word libraries can better balance de-
tection speed and accuracy, while improving 
the ability to recognize various characters and 
symbols. This flexibility makes the algorithm 
not only suitable for common configurations, 
but also scalable to high-end application sce-
narios that require higher computing power and 
more accurate detection.

4.4. Test Results of Label Detection and 
Recognition Algorithm 

To comprehensively evaluate the effect and fea-
sibility of the label defect detection method, a 
comprehensive analysis is conducted on the de-
signed algorithm, as shown in Figure 13.
The next test uses the proposed method to mea-
sure the distance between the label wireframe 
and the backplane baseline. First, the distance 
between wire frame and baseline is measured 
manually for the samples with label offset. 
Then, the proposed algorithm is applied to per-
form the same measurement. The purpose of 
this procedure is to compare and verify the ac-
curacy of the algorithm measurements. 
To comprehensively evaluate the effect of 
the algorithm, the results measured by the al-
gorithm are compared in detail with the data 
measured manually, as shown in Table 4. From 

these data, there is a high agreement between 
the results measured by the algorithm and the 
values measured manually. The average abso-
lute error of the proposed algorithm is 0.25 mm 
and 0.29 mm, respectively. These results show 
that the proposed algorithm meets the expect-
ed standards in terms of measurement accuracy 
and detection accuracy. These findings not only 
prove the effectiveness of the algorithm, but 
also emphasize the reliability and accuracy in 
practical applications.
To ensure that the low-voltage circuit breaker 
visual inspection system meets the needs of 
practical applications, several key performance 
indicators of the system are evaluated compre-
hensively. These indicators include accuracy, 
timeliness, reliability, and cost-effectiveness, 
which together determine the effectiveness of 
the system. 
Based on the pixel accuracy calibration results 
of the system, the pixel accuracy is 0.0437 
mm/pixel. Combined with the pixel resolution 
standard adopted in the research, the detection 
accuracy of the system is 0.40mm. This result 
is significantly higher than the minimum detec-
tion accuracy requirement set by the system, 
which is 0.50 mm. It demonstrates the efficient 
performance of the system in terms of accuracy. 
For testing the detection accuracy of the algo-
rithm, five main detection surfaces of low-volt-
age circuit breakers are selected as evaluation 
objects, as shown in Table 5.

4.3. Detection and Recognition Accuracy, 
and Running Time Results 

To verify the recognition accuracy of algorithm 
and the effectiveness of transfer learning font 
files, the experiment uses standard font library, 
self-training font library, and a combination of 
the two for electrical parameter detection. In an 
industrial environment, experiments are con-
ducted on 495 laser engraved label images. 
The obtained accuracy data and statistical re-
sults are shown in Figure 12. Statistics show 
that the average detection accuracy using only 
the standard font library is 91.82%, while the 
accuracy of the self-trained font library and 
the combination with the standard font library 
reach 99.57% and 99.82%, respectively, veri-
fying the effectiveness of the transfer learning 
font library file. From the accuracy curves of 
the self-trained word library and the combined 
word library, they show little difference in most 
electrical parameter detection. It improves de-
tection accuracy and optimizes image quality, 
reduces image interference, and thus improves 
the detection and recognition accuracy.

In addition to the detection accuracy rate, the 
running time of the algorithm is also recorded 
in this study, as shown in Table 3. The algo-
rithm achieves the best time when using the 
self-training font file. The average detection 
time is only 84ms. The result is far below the 
industry standard time threshold. 
In practical applications, such as automated de-
tection systems and real-time monitoring sys-
tems, rapid response is crucial. In emergency 
situations or in high-throughput scenarios, this 
efficient performance ensures that the system 
can process large amounts of data in a timely 
manner, reducing latency and improving overall 
efficiency. In addition, considering that differ-
ent application environments may have differ-
ent computing power configurations, the study 
further explores the strategy for using standard 
font and self-training font in high computing 
power environments. This mixed-use approach 
aims to optimize the performance of the algo-
rithm in a wider range of application contexts, 
especially when dealing with complex or di-
verse data sets. 

Figure 12. Comparison of tag detection and recognition accuracy.

Table 3. Detection and identification experiment timings.

Self-library Minimum time  
consuming (ms)

Maximum time 
consuming (ms)

Average time  
consuming (ms)

Average time per 
parameter (ms)

Standard font library 1628 2759 1893 95

Self-training library 1620 2370 1675 84

Associative library 2119 3130 2317 116
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Table 4. Label wireframe distance measurements.

Sample label Manual  
measurement / [x,y]

Algorithm  
measurement / [x,y] error Mean absolute error

Sample 1 [7.35, 7.60] [7.25, 7.90] -0.11/0.21

0.25/0.31

Sample 2 [7.80, 5.27] [8.02, 5.15] 0.24/-0.11

Sample 3 [8.75, 6.45] [8.85, 6.87] 0.11/0.43

Sample 4 [8.55, 3.25] [8.97, 3.85] 0.40/0.62

Sample 5 [6.85, 4.38] [6.85, 4.25] 0.01/-0.12

Sample 6 [7.65, 3.15] [7.88, 3.90] 0.21/0.75

Sample 7 [6.05, 6.00] [6.38, 5.65] 0.33/-0.32

Sample 8 [7.86, 3.25] [7.31, 3.47] -0.55/0.22

Sample 9 [9.35, 6.70] [9.12, 7.00] -0.25/0.21

Sample 10 [8.99, 6.55] [8.76, 6.40] -0.21/-0.14

From Table 5 it is evident that the average de-
tection accuracy of the proposed algorithm for 
the whole system reaches the predetermined 
design standard. However, in the case of one 
specific detection item (Tag top), the average 
accuracy is only 97.01%, which is slightly low-
er than the expected standard. Further investi-
gation and analysis reveal the potential cause of 
this problem. The current configuration of the 
light source is not ideal for the lighting effect of 
the deep-hole screw when the assembly quality 
of the deep-hole screw is evaluated. To solve 
this problem and further improve the detection 
accuracy, the following work can consider add-
ing a point light source scheme to improve the 
detection accuracy of the system.

5. Conclusion

To address the diversity, size differences, and 
irregular shapes of label characters, an innova-
tive LeNet-5 machine vision method based on 
neural networks is used for detection of label 
character defects. A label character detection 
method with a feature map channel mechanism 
is developed by integrating LeNet-5 and SEN-
et. Additionally, a label content parsing scheme 
based on LSTM is constructed to enhance clas-
sification performance and better serve in intel-
ligent robot applications. 

According to the experimental results, the accu-
racy of LeNet-CB testing reached 99.75%. The 
average time for single character detection was 
only 17.9 milliseconds, which meets the detec-
tion requirements. For the LeNet-SE detection 
model with feature graph mechanism, the av-
erage recognition and detection accuracy was 
98.95%. However, the network had limitations 
in classifying easily confused characters such 
as ''P'' and ''p'', ''X'' and ''x'', which led to the 
final construction of a label content detection 
scheme based on the LSTM framework. This 
method showed that the average accuracy for 
detection of electrical parameters on labels was 
99.57%. The average time for single parameter 
detection was 84 milliseconds, which meets the 
detection standards. 
Comprehensive testing showed that this meth-
od could meet the accuracy and response times 
requirements. However, there is still room for 
improvement. Future research will explore de-
tection schemes based on deep learning tech-
nology to enhance stability in different oper-
ating environments. In addition, the system 
scheduling logic and robot motion paths will be 
further optimized to improve system stability 
and performance, promoting the development 
of machine vision for intelligent robots.

Table 5. System detection surface detection accuracy test.

Tag detection surface Average accuracy Comprehensive accuracy rate

Label front 98.90%

98.74%

TAB right side 99.35%

Label back 98.70%

TAB left side 99.75%

Tag top 97.01%

Figure 13. Label defect detection examples.
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