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The current intelligent diagnosis and prediction meth-
ods for transformer faults are prone to low diagnostic 
accuracy and insufficient trend prediction ability when 
the fault categories are imbalanced. Therefore, a fault 
diagnosis and prediction model for transformers was 
constructed using a deep learning framework. The 
fault diagnosis model was constructed using a focus 
loss stacked sparse noise reduction autoencoder on the 
deep learning framework. The prediction model was 
constructed by fusing long and short term memory 
networks on the basis of tree structure Parzen optimi-
zation, and the two models were validated. The results 
obtained through validation of the diagnostic model 
indicate that, when the actual hidden layer is set to 3 
and the quantity of neurons is 58, the model accuracy 
during training and testing reaches 97.5% and 92.5%, 
respectively. After adding 0.001 times the Gaussian 
white noise, the model accuracy was significantly 
lifted, so this study set the Gaussian noise coefficient 
to 0.001. In the comparison with baseline models, the 
actual classification ability of the research model sam-
ples is strong, significantly improving the fault diag-
nosis ability. In the validation of the prediction mod-
el, the three error index values of the research model 
in the single prediction step of CH4 concentration 
were 0.0699, 0.0540, and 0.8481%, respectively, and 
proved to be were lower than in the case of the base-
line model. The three error values in the two-step pre-
diction are 0.0194, 0.0161, and 0.6535%, which are 
also lower than in case of the baseline model. Overall, 
the diagnosis and prediction model proposed in this 
paper can provide real-time future numerical predic-
tions of dissolved gas analysis and monitoring data in 
transformer oil. Furthermore, the research outlines the 
future development trend of monitoring and measure-
ment through application of tensor flow deep learning 
framework in transformer fault diagnosis. The attained 
prediction results are innovative, and could well com-
plete the purpose of actual transformer fault diagnosis 
and early warning.
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1. Introduction

The increasing demand for energy has come 
up with higher technical requirements for the 
safety, reliability, and stability of smart grids, 
as well as higher requirements for the quality 
of power equipment [1]. Transformers are im-
portant equipment in the actual operation of the 
power grid, located at the center of the grid. 
Therefore, the actual operating environment is 
relatively complex, often affected by various 
harsh operating conditions, and once a fault 
occurs, it will cause large-scale power outag-
es [2]. In severe cases, safety accidents such as 
explosions and fires may occur. So, ensuring 
the safe and stable operation of transformers 
not only helps to ensure the safety of person-
nel in the distribution area, but also helps to 
avoid unnecessary maintenance costs and high 
equipment replacement costs [3]. On the basis 
of this, research on transformer fault diagnosis 
(TFD) and prediction technology has become 
particularly important. Wang et al. proposed a 
Gaussian process multi classification method 
on the ground of intelligent fault classification 
algorithms for fault diagnosis of oil immersed 
power transformers. This effectively improves 
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Kullback Leibler divergence (KL); γ represents 
the sparsity parameter, usually set to 0.05 or 
0.1, while îγ  represents the average activation 
level of HLN i for all training data; W rep-
resents the total number of HLN; q represents 
the actual output value; and q̂ represents the 
predicted output value [16]. SAE is essentially 
a shallow learning model, so to obtain deeper 
input data and more informative features, this 
study uses a stack structure to stack the layers 
and construct a stacked coefficient autoencod-
er. On this basis, considering the actual impact 
of noise, this study added noise to the self en-
coder to form a Stacked Sparse Denoising Auto 
Encoder (SSDAE). The schematic diagram of 
the structure of the stacked type sparse noise 
reduction autoencoder is shown in Figure 1.
From Figure 1, it can be seen that the autoen-
coder network is divided into two stages, name-
ly unsupervised pre training and supervised fine 
tuning. The former utilizes unlabeled sample 
data and the first line of equation (1), and adopts 
a layer by layer greedy training strategy and a 
backpropagation algorithm to sequentially train 
the network parameters of each layer of SS-
DAE. The latter removes the decoding layer of 
SSDAE and adds a Softmax classification lay-
er. Based on the cross entropy loss function, the 
backpropagation algorithm is used to optimize 
the network parameters of each layer. General-
ly speaking, the way to increase noise usually 
involves adding small random fluctuations and 
randomly assigning a partial component to zero. 
The former is generally Gaussian white noise 
(GWN), as expressed in Equation (2).

encoder (FLS-SNRA) to diagnose transformer 
faults. It utilizes an incomplete autoencoder 
learning to encode the data distribution, mak-
ing it smaller than the input. If an encoder is 
too large, it cannot be used to obtain any useful 
information. Regular autoencoders can enable 
the model to learn other features by utilizing a 
loss function. When the actual amount of hid-
den nodes outperforms the actual number of 
nodes in the input layer of the autoencoder, it 
is possible to artificially limit the hidden lay-
er [15]. This study adds a penalty factor to the 
loss function to restrict the actual sparsity of 
the sparse autoencoder (SAE) on the bridge, 
thus forming the SAE. Even if the actual ca-
pacity of the diagnostic model is large enough 
to learn many meaningless identity functions, it 
can still obtain some practical details of the data 
distribution. The expression of the relevant cost 
function of SAE is shown in equation (1).
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In equation (1), H(M, c) represents the MSE; α 
represents the sparse penalty coefficient, usual-
ly set to 0.3; n represents the quantity of hidden
layer neurons (HLN); ( )îK γ γ  represents 

the effectiveness and stability of TFD while 
achieving multi class recognition pairs [4]. 
Zhou et al. proposed an oil immersed TFD mod-
el on the basis of the probability neural network 
optimized by the moth flame optimization al-
gorithm for power TFD, which effectively im-
proves the accuracy [5]. Kukker et al. used an 
intelligent genetic algorithm to adjust the fuzzy 
classifier for TFD in response to relevant issues 
in high-precision TFD. This improves classifi-
cation accuracy while ensuring the healthy op-
eration of the transformer [6]. From this, it can 
be concluded that these methods are difficult 
to adopt in the face of more complex operating 
environments, and therefore cannot guarantee 
safety in the event of a failure.
For oil-immersed transformers, the Dissolved 
Gas Analysis (DGA) method is usually used to 
diagnose and detect the actual fault type of the 
transformer [7]. The concentration of relevant 
gases dissolved in oil can effectively reflect 
the actual state of the current transformer, and 
monitoring the content of relevant gases can 
make judgments on the fault status and type of 
the transformer [8]. Ardi et al. addressed the 
issue of incomplete datasets when using DGA 
for TFD and utilized the Tertius algorithm to 
process the missing values in the dataset. This 
approach effectively improves the accuracy of 
monitoring and diagnosing power transformer 
faults [9]. Menezes et al. proposed an inductive 
decision tree method on the ground of computa-
tional intelligence to address the related issues 
of traditional DGA analysis in TFD. This ap-
proach improves the accuracy of the diagnos-
tic model on the basis of effectively extracting 
more information [10]. Zheng et al. conduct-
ed in-depth analysis on the actual generation 
pathway of DGA main products in transformer 
thermal fault analysis using palm oil as raw ma-
terial for its insulation liquid. This provides the-
oretical guidance for transformer thermal fault 
diagnosis [11]. From it, it can be seen that some 
of these methods lack the concept of quantity 
and rely on expert experience, while others lack 
coding and do not involve all coding combina-
tions. The diagnostic accuracy and convergence 
speed of other models make it difficult to meet 
the current practical needs.
Overall, traditional methods have the prob-
lem of incomplete coding and large judgment 
boundaries, resulting in low diagnostic accu-

racy. Many diagnostic methods that integrate 
intelligent algorithms also have problems with 
low diagnostic accuracy and insufficient trend 
prediction ability when the fault categories are 
imbalanced. The reason is that the actual trans-
former fault diagnosis is a multi classification 
problem. Faced with such problems, existing 
intelligent algorithms have cumbersome pa-
rameter settings and the process of constructing 
classifiers is cumbersome. Therefore, the meth-
od of constructing a TFD and prediction model 
(TFD-PM) using the TensorFlow deep learning 
(DL) framework in this study is innovative.

2. Analysis of TFD-PM on the Ground 
of DL

The traditional TFD and prediction methods, 
based on the characteristics of dissolved gases 
in oil, have significant limitations when dealing 
with imbalanced sample data. Thus, this sec-
tion mainly constructs a new TFD-PM on the 
ground of the TensorFlow DL framework.

2.1. TFD Method on the Ground of Sparse 
Noise Reduction Autoencoder

In response to the problems of low diagnos-
tic accuracy and insufficient trend prediction 
ability of current intelligent diagnosis and pre-
diction methods for transformer faults when 
the fault categories are imbalanced, this paper 
constructed a TFD-PM using the TensorFlow 
DL framework. The commonly used DL frame-
works currently have their own shortcomings. 
TensorFlow is an open-source framework de-
veloped by Google that utilizes the idea of data 
flow graphs for large-scale distributed numer-
ical computation. ''Tensor'' represents multidi-
mensional vectors, and ''flow'' represents cal-
culations using data flow graphs. Compared 
to other DL frameworks, TensorFlow itself 
has a high degree of flexibility and consisten-
cy. Meanwhile, it greatly simplifies the actual 
model training process due to its internal au-
tomatic differentiation mechanism. Therefore, 
this study uses it as the basic framework for 
subsequent models [12–14].
Among them, the TFD method mainly uses 
focal loss stacked sparse noise reduction auto- Figure 1. Schematic diagram of the structure of the stacked type sparse noise reduction autoencoder.
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(H2), methane (CH4), ethane (C2H6), ethylene 
(C2H4), and acetylene (C2H2), are usually 
used to determine the type of fault in the trans-
former. Therefore, the basic architecture of the 
TFD model is obtained by applying Figure 1 to 
actual experiments shown in Figure 2.
Figure 3 shows that the TFD model using a 
stacked sparse denoising autoencoder is first-
ly an UPT method that reconstructs the input 
SAE parameters. Secondly, there is a SFT that 
removes the decoding layer of the first step, and 
then adds a softmax classifier to each SAE lay-
er to adjust the parameter through training.

2.2. Construction of Transformer Fault 
Prediction Model on the basis of TPE 
Algorithm

On the basis of TFD, to achieve early warn-
ing of transformer faults, this study proposes 
a Long Short-Term Memory (LSTM) oil dis-
solved gas concentration prediction method 
based on the Tree Structured Parzen Estimator 
(TPE). This model predicts the characteristic 
gas concentration values of transformers for 
events in the future with aim of achieving fault 
diagnosis. In DL algorithms, Bayesian opti-
mization algorithms use the approximation of 
the posterior distribution of unknown objective 
functions to perform hyperparametric optimiza-
tion, which can significantly lift the efficiency 

of search algorithms [18]. Therefore, this study 
comprehensively considers the use of Bayesian 
optimization form for parameter adjustment of 
TPE to optimize the hyperparameters of LSTM 
networks. Among them, the actual criterion for 
TPE selection is expected improvement, which 
is defined as the expectation that the value will 
be less than a certain threshold, and the relevant 
expression is shown in equation (5).

( ) ( ) ( )* ' max * ', 0 ' | ' 'qE p q q x q p dq
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− ∞

= −∫
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In equation (5), E represents the actual standard 
for TPE selection; q* represents the threshold; 
p' represents the input value; q' represents the 
output value; x represents the defined value of 
the total probability density, and the two proba-
bility densities below it are expressed as shown 
in equation (6).
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In equation (6), h( p') and s( p') both represent 
probability density. The TPE selection meth-
od is to select a value at a certain quantile δ of 
{qi*} as the threshold q*, that is, x(q < q*) = δ. 
Due to the inability to directly obtain x(q' | p'), 
corresponding changes were made using the 
Bayesian formula, as expressed in equation (7).

p p ϕψ= +                         (2)

In equation (2), p represents the data after add-
ing noise; p represents raw data; φ represents the 
coefficient; ψ represents a random number that 
follows a normal distribution. SSDAE includes 
unsupervised pre-training (UPT) and supervised 
fine-tuning (SFT) in actual training, which re-
moves the decoding layer of SSDAE and adds 
a maximum soft value (Softmax) classification 
layer [17]. On the basis of the cross-entropy loss 
function (CELF), backpropagation algorithm 
is utilized to perfect the actual parameters of 
each layer of the network. The expression of the 
CELF is shown in equation (3).
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In equation (3), O represents the value of the
CELF; q represents the true label; q represents 
the probability of predicting labels. However, 
when using the CELF in transformer fault data 
samples, it will shift the diagnostic model to-
wards categories with more samples. Therefore, 
this study uses the focal loss function (FLF), 
which is expressed in equation (4).

( ) ( )1 logF q q
κ

β= − −
             

 (4)

In equation (4), F represents the FLF value; β 
is the balance parameter value; and κ represents 
the focusing parameter. This study uses the FLF 

to replace the second line equation in equation 
(1), reducing the loss weight corresponding to 
categories with more samples and increasing 
the loss weight corresponding to categories 
with fewer samples. This allows the model to 
focus more on categories with fewer samples, 
and can rise the model's precision in TFD. 
Therefore, the TFD process using FLS-SNRA 
is shown in Figure 1.
Figure 2 shows that the process mainly includes 
five processes: i.e. data preprocessing, model 
parameter setting (MPS), UPT, SFT, and out-
putting classification results. Among them, data 
preprocessing mainly involves adding Gaussian 
white noise to the input vector after data clean-
ing, which includes outlier handling and miss-
ing value filling. The model parameter setting 
mainly involves setting SSDAE parameters. 
Finally, the diagnostic results will be output 
after completing the SSDAE model training. 
Unsupervised pre training mainly involves re-
constructing the initial values of the underlying 
SAE parameters of the input pre training net-
work. Supervised fine-tuning mainly involves 
discarding the decoding layer of the former and 
adding a softmax classifier. After training, the 
parameters of each SAE layer are adjusted. In 
order to accelerate the training speed, the adap-
tive learning rate adjustment coefficient is set 
to 0.5 and the maximum number of iterations is 
1000. Due to the fact that the transformer used 
in the experiment is an oil-immersed trans-
former, five special gases, namely hydrogen 

Figure 2. TFD process using FLS-SNRA. Figure 3. Basic architecture of TFD model using FLS-SNRA.
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In equation (12), v represents the activation 
vector of the output gate; ϖv and ξv represent 
the parameter matrix of the output gate. Simi-
larly, the expression after updating the cell state 
is shown in equation (13).

( ) ( ) ( )( )tanhg v Bτ τ τ= ∗
             

 (13)

In equation (13), g(τ) represents the output vec-
tor. Therefore, the actual predicted output is ex-
pressed as shown in equation (14).
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In equation (14), ( )q̂ τ  represents the predicted 
output value; θ represents the weight matrix; b  
represents the bias vector. On the basis of this, 
the process of predicting the dissolved gas con-
centration in LSTM oil using TPE algorithm is 
shown in Figure 5.
Figure 5 exhibits the standardizing raw data 
process of LSTM and divides it into training 

and testing sets. Secondly, the training set is in-
troduced into the LSTM, and a dropout layer 
is introduced to avoid overfitting of the model. 
Finally, the concentration prediction results of 
LSTM are output on the entire connected layer 
[19]. In the set parameter search space, the TPE 
algorithm is used to continuously execute the 
entire process until the model reaches its op-
timal performance. Among them, standardiz-
ing the raw data of LSTM essentially converts 
various dissolved gas contents into relative 
contents within the range of [0, 1]. Therefore, 
the expression of the standardization method is 
shown in equation (15).
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In equation (15), ul' represents the concentra-
tion data of the l-th gas after standardization, 
while ul represents the original concentration 
data; ul min and ul max represent the minimum and 
maximum concentrations of gas type l.
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In equation (8), δ represents the quantile. Ac-
cording to equation (8), it can be seen that us-
ing h( p') to calculate the probability is higher, 
while using s( p') to solve for p' with a lower 
probability will increase the value of E. Based 
on TPE, this study focuses on the problem of 
traditional neural networks being hindered in 
model weight optimization due to gradient van-
ishing and chooses to use LSTMs to predict the 
trend of transformer fault characteristic gases. 
The schematic diagram of the internal structure 
of the LSTM memory unit is shown in Figure 4.
From Figure 4, it can be seen that LSTM main-
ly avoids the problem of gradient vanishing by 
adding a gating system and uses this module to 
control useful information and omit useless in-
formation with the aim to solve the long-term 
dependency problem. The most important as-
pect of an LSTM network is the actual state 
of the cells, which contains all the information 
learned by the network at the current point in 
time. For the gate control system, generally an 
S-type nonlinear activation function is utilized, 
and the internal forgetting gate calculation ex-
pression is shown in equation (9).

Figure 4. Schematic diagram of the internal structure of 
LSTM memory unit.
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In equation (9), f   
(τ) represents the forgetting gate 

activation vector at time τ; ρ represents a vector 
with element values (0,1); ϖf and ξf represent 
the parameter matrices of forgetting gates; p''  
represents the input vector; e represents the bias 
matrix. The expression of input gate control is 
shown in equation (10).
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In equation (10), z represents the activation 
vector of the input gate; a represents a new 
candidate value vector; ϖz, ξz, ϖa, and ξa rep-
resent the parameter matrix of the input gate. It 
updates the cell state determined by the input 
gate and forgetting gate in LSTM on the basis 
of equations (9) and (10), and its expression is 
shown in equation (11).

( ) ( ) ( ) ( ) ( )1B f B z aτ τ τ τ τ−= ∗ + ∗           (11)

In equation (11), B represents the cell state. In 
addition, the expression of output gate control 
is shown in equation (12).
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Figure 5. Process flow of the LSTM oil-dissolved gas concentration prediction model using TPE algorithm.
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3. Performance Verification of  
TFD-PM

The validation of TFD-PMs can not only prove 
their performance but also lay a numerical the-
oretical foundation for practical applications. 
Therefore, this study mainly verifies the two 
research models in practice.

3.1. Performance Verification of TFD 
Model

To verify the application performance of the 
constructed TFD-PM, two models were exper-
imentally validated in this study. In the analy-
sis of transformer fault diagnosis models, the 
research takes the DGA fault data of a certain 
power supply company and 370 sets of trans-
former fault diagnosis datasets publicly avail-
able in China as research data. Data collection 
is mainly conducted online, supplemented by 
offline collection. Among them, there are a total 
of 1518 sets of samples, and the typical sample 
data content of different states is shown in Fig-
ure 6.
In Figure 6, A~G represent normal, partial dis-
charge, low energy discharge (LED), high-en-
ergy discharge, low-temperature overheat-
ing, medium temperature overheating, and 
high-temperature overheating (HTO) states. 

Figure 6 shows that the highest concentra-
tions of C2H6 are 16.55μL/L, 79.30μL/L, and 
260.00μL/L under normal, LED, and HTO con-
ditions, respectively. The highest concentration 
of CH4 is 20.00μL/L under partial discharge 
conditions. In practice, there are missing and 
duplicate values in this type of data, so research 
is conducted to handle outliers and fill in the 
missing values [20]. Among them, the nuclear 
density distribution of the original characteris-
tic gas content and the density distribution after 
preprocessing are shown in Figure 7.
Figure 7 shows that there is only a small amount 
of data on the right side and the values are much 
larger than those on the left, so the data on the 
right is processed. The loss value obtained by 
using the random forest filling method is about 
10, which is much lower than for other meth-
ods, that is, using this method for missing val-
ue data processing. Therefore, after detecting 
outliers and filling in missing values, the data 
is more concentrated, roughly distributed be-
tween -250 and 500, indicating that the data 
preprocessing effect is good. Therefore, the ob-
tained characteristic gas concentration values 
are used as inputs, fault type codes are used as 
outputs, and the relevant dataset is modeled and 
analyzed using Python 3.8 and TensorFlow DL 
frameworks. The coding of transformer opera-
tion status and statistical content of fault sam-
ples are shown in Table 1.

Table 1. Encoding of transformer operation status and statistical content of fault samples.

Transformer operation status code

A B C D E F G

Status 
code

(1, 0, 0, 0, 0, 
0, 0)

(0, 1, 0, 0, 0, 
0, 0)

(0, 0, 1, 0, 0, 
0, 0)

(0, 0, 0, 1, 0, 
0, 0)

(0, 0, 0, 0, 1, 
0, 0)

(0, 0, 0, 0, 0, 
1, 0)

(0, 0, 0, 0, 0, 
0, 1)

Fault sample statistics

A B C D E F G

H 275 34 73 109 72 51 85

I 71 11 21 30 21 15 24
Figure 6. Typical sample data content in different states.

Figure 7. The nuclear density distribution of the original characteristic gas content and the density distribution after 
preprocessing.
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the research model. Comparing Figures f and g, 
it can be seen that adding GWN to the origi-
nal data can effectively improve the diagnostic 
performance, but the increase is not significant. 
However, after comparing Figures g and h, it 
can be found that using the FLF instead of the 
CELF can effectively improve the diagnostic 
accuracy of the model. Overall, this study pro-
poses a model of SSDAE+focal loss with high 
diagnostic effectiveness and practicality. The 
three ratio method has fewer fault codes, and 
some faults are difficult to diagnose using the 
three ratio method. Moreover, the judgment cri-
teria of the three ratio method are too absolute, 
resulting in lower accuracy of the three ratio 
method. Adding Gaussian white noise to the 
input vector of the stacked sparse autoencoder 
can avoid overfitting of the model, increase its 
generalization ability, and thus the accuracy of 
the SSDAE model is higher than that of SSAE. 
Imbalanced training samples can easily lead to 
model bias, which in turn affects the model's 
diagnostic performance in the term of faults. 
In the fault diagnosis of transformer, sample 
imbalance cannot be avoided. Therefore, the 
study abandons the cross-entropy loss function 

of traditional classification models and adds the 
focal loss function, which has a significantly 
better diagnostic ability for small samples when 
compared to other models.

3.2. Performance Verification of 
Transformer Fault Prediction Model

On the basis of verifying the performance of di-
agnostic models, we further validate the perfor-
mance of predictive models. In the experiment, 
the actual data collected from the 500kV trans-
former oil related online monitoring device of a 
certain power supply company was used as the 
experimental data, and the dataset was modeled 
and analyzed using the Ubuntu 20.04 operating 
system, Python 3.8 programming language, and 
TensorFlow DL framework [21]. The experi-
mental data was collected from November 26, 
2022 to April 20, 2023, with a sampling fre-
quency of 12 hours. Regarding the dataset split, 
the data before March 22, 2023 was the training 
set sample, and the subsequent data was the test 
set sample. C2H6 was used as an example for 

addition, in the GWN experiment, the accuracy 
has greatly risen after adding 0.001 times the 
GWN. However, the model accuracy signifi-
cantly decreased after exceeding the level of 
0.001 times the GWN. Therefore, this study 
set the Gaussian noise coefficient to 0.001. 
Meanwhile, in the model comparison under 
this setting, the correct number of samples for 
the research model was as high as 167, and the 
fault diagnosis accuracy was as high as 93.30%. 
This result indicates the superiority of the con-
structed diagnostic model. To further verify its 
performance, the confusion matrix results of 
different diagnostic methods were analyzed. 
The confusion matrix results of the 8 diagnostic 
methods are shown in Figure 9.
Figure 9 shows that method 1 has weaker ac-
tual classification ability for samples of the 
same type, such as incorrect sample sizes of 5, 
3, and 5 in states 5, 6, and 7. However, meth-
ods 2, 3, 4, and 5 have improved performance 
compared to method 1, but are still lower than 

In Table 1, H and I represent the numbers of 
training and test samples. Table 1 shows that 
when the transformer is in a certain state, it 
is directly labeled as ''1'', and the other states 
are all marked as ''0''. On this basis, due to the 
impact of HLN and GWN on network perfor-
mance and model precision (the study set the 
hidden layers to 3), the study analyzed both 
effects. Meanwhile, to clarify the SSDAE di-
agnostic performance, this study introduced 
the three ratio method (1), SVM (2), decision 
tree (3), random forest (4), BPNN (5), stacked 
SAE+CELF (6), and SSDAE+CELF (7) to 
compare with the SSDAE+FLF (8) model stud-
ied. We perform an ablation experiment. Thus, 
the results of the three experiments are shown 
in Figure 8.
Figure 8 shows that in the HLN experiment, 
when the real hidden layer is 3 and the neurons 
is 58, the accuracy of model during training and 
testing reaches the maximum value, specifical-
ly reaching 97.5% and 92.5%, respectively. In 

Figure 9. Confusion Matrix Results of 8 TFD Methods.

Figure 8. Three experimental results on the SSDAE model.
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Figure 13 shows that the three error values of 
LSTM in two-step prediction are 0.0194, 0.0161, 
and 0.6535%, respectively. The error values in 
the three-step prediction are 0.0359, 0.0307, 
and 0.7757%, respectively. The error values in 
the 4-step prediction are 0.0502, 0.0469, and 
1.1365%, respectively. Overall, on the basis of 
the implementation data of transformer moni-
toring, the LSTM dissolved gas concentration 
prediction model using TPE algorithm can be 
applied to the proposed TFD method for fault 
diagnosis and early warning. Meanwhile, by 
combining the two models, real-time future nu-
merical predictions can be made on the moni-

toring data of transformer DGA, and the related 
future development trends of monitoring and 
measurement can be monitored to achieve the 
purpose of corresponding diagnosis and early 
warning. Overall, by combining FLS-SNRA 
with LSTM+TPE, real-time future numerical 
prediction of transformer DGA monitoring 
data can be carried out, and the future trend of 
measurements can be monitored to achieve the 
corresponding diagnosis and early warning of 
transformer future faults. Compared to current 
methods, the presented research has higher ef-
fectiveness and practicality.

predictive analysis. In addition, this study intro-
duced artificial neural networks (a), recurrent 
neural networks (b), and gated recurrent units 
(c) to compare with the studied LSTM (d). On 
the basis of this, the time series of C2H6 con-
centration and the hyperparameter content of the 
four prediction models are shown in Figure 10.
Figure 10 shows that the overall concentration 
of C2H6 has a fluctuating growth, maintaining 
values between 3.7μL/L and 4.4μL/L over 300 
cycles. In addition, the learning rate of the opti-
mized model hyperparameters is set to 0.01, the 
HLNs are 51, and the batch size is 16. The three 
parameters of the comparative model are main-
tained between 0.01~0.1, 12~188, and 16~128, 
respectively. On the basis of this, the single step 
prediction and error comparison results of the 
four models are shown in Figure 10.
Figure 11 shows that in the one-step prediction 
results for C2H6 concentration, the LSTM pre-
diction results are closer to the actual results, 
with an error of no more than 0.003. In the er-
ror comparison results, the Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE), 
and Mean Absolute Percentage Error (MAPE) 
of LSTM were 0.0053, 0.0048, and 0.7659%, 
respectively, which were lower than for the 
control model. Overall, the LSTM prediction 
model can effectively capture the time series 
correlation of historical monitoring data of 
transformer characteristic gases and can accu-

rately learn the trend of changes in character-
istic gas concentration. Similarly, the results of 
predicting other gases using the same method 
are shown in Figure 12.
In Figure 12, carbon monoxide (CO) was added 
to the original five characteristic gases. Figure 
12 shows that in the prediction of H2 character-
istic gas, the three error index values of LSTM 
are 0.0562, 0.0465, and 6.8565%, respectively. 
The three error indicators in CH4 prediction 
have values of 0.0699, 0.0540, and 0.8481%, 
respectively. The predicted values in C2H4 are 
0.0257, 0.0217, and 3.0752%, respectively. The 
values in CO are 0.6700, 0.5311, and 1.1320%, 
respectively. The values of CO2 are 3.3622, 
2.4893, and 1.0202%, respectively. Overall, the 
error index values of the LSTM model in pre-
dicting other characteristic gases are lower than 
those of the comparison model, further indicat-
ing that it can accurately learn the time series 
correlation of the actual historical monitoring 
data of each characteristic gas in the trans-
former, and has effectiveness in predicting the 
concentration values of each characteristic gas. 
This can further predict the degree of transform-
er malfunction for the purposes of early warn-
ing. On the basis of a single step prediction, a 
2–4 step extended prediction was conducted on 
the C2H6 concentration to predict its future 1–2 
weather volume concentration, to further veri-
fy the effectiveness of LSTM. The results are 
shown in Figure 13.

Figure 10. C2H6 concentration time series and hyperparameter content of four prediction models.

Figure 11. Single step prediction and error comparison results of four models.
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4. Conclusion

In response to the problems of low diagnos-
tic accuracy and insufficient trend prediction 
ability of current intelligent diagnosis and pre-
diction methods for transformer faults in cases 
when the fault categories are imbalanced, this 
paper proposes a TFD-PM approach built using 
the TensorFlow DL framework, and verified 
through experiments. The data above indicated 
that in the validation of the diagnostic mod-
el, when the actual quantity of HLN is set to 
58, the accuracy of model training and testing 
reaches the maximum values, reaching 97.5% 
and 92.5%, respectively; After adding 0.001 
times GWN, the accuracy was significantly 
perfected, so both parameters were set to 58 
and 0.001. In the comparison of models on the 
ground of this, the fault diagnosis accuracy is 
as high as 93.30%, and the performance indi-
cated by the confusion matrix is higher than 
that of the comparison model. In the validation 
of the prediction model, the one-step predic-
tion results for C2H6 concentration showed 
that the predicted results of the research model 
were closer to the actual results, with an error 
of no more than 0.003, making our approach 
perform better than the comparison model. In 
H2 characteristic gas prediction, the three error 
index values of LSTM are 0.0562, 0.0465, and 
6.8565, respectively, which are lower than for 
the comparison model. Other gases show the 
same results. Overall, the diagnostic and pre-
dictive models proposed in the study have high 
superiority and effectiveness and can facilitate 
diagnosis and early warning of transformer 
DGA faults. The proposed approach effective-
ly solves the problem of incomplete coding 
and large judgment boundaries in traditional 
methods, which lead to low diagnostic accu-
racy, particularly in practical transformer fault 
diagnosis. However, the models constructed in 
the study belong to a class of static models, and 
it is necessary to optimize them for the dynam-
ic environment to achieve dynamic diagnosis 
of transformer faults in the future. At the same 
time, only accuracy indicators were selected 
for research and analysis, and more indicators 
can be added for verification in the future.
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