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Trajectory data contains rich spatio-temporal infor-
mation of moving objects. Directly publishing it for 
mining and analysis will result in severe privacy dis-
closure problems. Most existing clustering-anonymity 
methods cluster trajectories according to either dis-
tance- or direction-based similarities, leading to a high 
information loss. To bridge this gap, in this paper, we 
present a clustering-anonymity approach considering 
both these two types of similarities. As trajectories 
may not be synchronized, we first design a trajectory 
synchronization algorithm to synchronize them. Then, 
two similarity metrics between trajectories are quan-
titatively defined, followed by a comprehensive one. 
Furthermore, a clustering-anonymity algorithm for 
trajectory data publishing with privacy-preserving is 
proposed. It groups trajectories into clusters according 
to the comprehensive similarity metric. These clusters 
are finally anonymized. Experimental results show 
that our algorithm is effective in preserving privacy 
with low information loss.
ACM CCS (2012) Classification: Security and privacy 
→ Database and storage security → Data anonymiza-
tion and sanitization
Security and privacy → Human and societal aspects 
of security and privacy → Privacy protections
Keywords: trajectory data, privacy-preserving, cluster-
ing-anonymity, distance, direction

1. Introduction

With the widespread use of location-aware de-
vices such as GPS-enabled phones, PDAs, and 
cars, location-based services have been devel-
oping very fast in recent years. Users acquire 
these services through the devices listed above 
to orient themselves, generating a large amount 

of spatio-temporal data. The data of a single 
moving object for a continuous period form a 
trajectory. Analyzing and mining trajectory 
data is useful and helpful. For example, analyz-
ing the trajectory data of urban traffic can pro-
vide reliable data support for optimizing traf-
fic lines [2] and urban planning [3]. However, 
without protection mechanisms, mining these 
data can cause harm to people. For instance, 
mining trajectory data of a person can easily 
lead to leakage of his private information such 
as home address, workplace, hobbies, and even 
behavior patterns [4]. For example, according 
to the trajectory of a person who usually trav-
els between locations A and B on working days, 
one can infer that A and B are the locations of 
his home and organization, respectively. Ac-
cording to a person’s medical records, one may 
deduce the disease he or she has got. Thus, it is 
necessary to do some privacy-preserving pro-
cessing over trajectory data before publishing 
to prevent such privacy disclosure.
Gruteser et al. [5] first apply the k-anonymity 
technique to the field of privacy-preserving of 
location data. Based on this work, researchers 
propose a variety of trajectory k-anonymity 
methods for trajectory data publishing. The key 
to these methods lies in the construction of k-an-
onymity clusters of trajectory data [6]. Some of 
the existing k-anonymity methods divide tra-
jectory data into k-anonymity sets according 
to the distance between trajectories, while oth-
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T = {(t1, x1, y1), (t2, x2, y2), ..., (tn, xn, yn)}, 

where (ti, xi, yi) represents the coordinate of this 
moving object at time ti for all i ∈[1, n].
Definition 2 (Trajectory segment). A trajecto-
ry segment is a path between two adjacent lo-
cation samples of a single trajectory. Suppose 
the trajectory of a moving object p is denoted as 

Tp = {(tp
1, xp

1, yp
1), (tp

2, xp
2, yp

2), ...,  
(tp

n, xp
n, yp

n)}. 

Then the path Lp
i that connects (tp

i, xp
i, yp

i
 ) and 

(tp
j, xp

j, yp
j) is a trajectory segment of Tp.

Definition 3 (Synchronized Trajectories). 
Given two trajectories Tp and Tq, they are syn-
chronized trajectories if both have the same 
sampling sequence, i.e., the number of loca-
tion samples and the corresponding sampling 
time of these two trajectories are the same. If 
any pairs of trajectories in a set of trajectories 
are synchronized, then this set is said to be syn-
chronized. 
Suppose that 

Tp = {(tp
1, xp

1, yp
1), (tp

2, xp
2, yp

2), ...,  
(tp

np, xp
np, yp

np)}, 

Tq = {(tq
1, xq

1, yq
1), (tq

2, xq
2, yq

2), ...,  
(tq

nq, xq
nq, yq

nq)}, 

then Tp and Tq are synchronized trajectories if 
np = nq and tpi = tqi for all i ∈[1, np].   = {T1, 
T2, …, TN} is a trajectory set to be published. 
It is synchronized if ∀i, j ∈ [1, N], i ≠ j: Ti and 
Tj are synchronized. Different trajectories are 
often not synchronized, because their sampling 
times and sampling intervals are not the same. 
To apply the clustering-anonymity algorithm 
on them, they should be first synchronized. 
Without a loss of generality, we assume that: 
1. all trajectories in  are consisted of loca-

tion samples that are sampled from the 
same spatio-temporal region; and 

2. the moving object of each trajectory main-
tains a uniform linear motion between ad-
jacent location samples. 

According to assumption (1), all tracks have the 
same starting and ending times. For any two ad-
jacent sampling times ti

j and ti
j

 
+

 
1 on any track Ti, 

the coordinate of a moving object at time t be-

on attackers’ background knowledge. Howev-
er, when the attackers’ background knowledge 
is not mastered, this method cannot effectively 
preserve the privacy of trajectory data [7]. 
k-anonymity is one of the most important gen-
eralization methods. Its basic idea is to divide 
the trajectory data to be published into some 
k-anonymity clusters, with each set having 
k trajectories. Then, location samples of k trajec-
tories in each set with the same sampling time 
are generalized to an anonymous region to pre-
serve privacy. Trajectory clustering is an import-
ant step of trajectory k-anonymity and defining 
a reasonable trajectory similarity metric is a pre-
requisite. Trajectory k-anonymity to minimize 
information loss is a class of NP-hard problems. 
Existing trajectory k-anonymity methods try to 
make all k trajectories within the same k-ano-
nymity set as concentrated in time and as close 
in space as possible.  That is, when designing 
a trajectory k-anonymity algorithm, one should 
focus on how to reasonably define trajectory 
similarity metric and choose appropriate par-
titioning method to ensure that trajectories in 
each k-anonymity cluster are of high similarity. 
For example, Huo et al. [14] measure the trajec-
tory similarity between trajectories according to 
the Euclidean distance metric. They establish a 
graph model to represent relationships between 
trajectories and obtain an anonymity set of tra-
jectories by using graph partitioning techniques. 
Gao et al. [15] define the trajectory similarity 
metric as a function of the angle between tra-
jectories’ direction and construct an anonymi-
ty region according to the trajectory direction. 
However, this trajectory similarity metric ne-
glects the influence of trajectory shapes and re-
sults in low data availability of anonymity set. 
To solve this problem, Wang et al. [16] propose 
a quick and accurate trajectory similarity metric 
taking the trajectory shape into account. As an 
important trajectory privacy-preserving method, 
trajectory k-anonymity has received extensive 
attention from both industry and academia.

3. Concepts of Trajectory  
Clustering-Anonymity

Definition 1 (Trajectory). A trajectory of a 
moving object is a sequence of location sam-
ples denoted as 

ers are divided according to the differences in 
the direction of different trajectories. Although 
these two kinds of methods achieve the goal of 
preserving privacy in different ways, they both 
have the problem of high information loss.
To alleviate this, in this paper, we present a 
clustering-anonymity approach for trajecto-
ry data publishing considering both trajectory 
distance and direction. The approach strikes a 
balance between the privacy-preserving and 
data availability. We first design a trajectory 
synchronization algorithm to synchronize tra-
jectories. Then, we define the distance- and 
direction-based similarity metrics between 
synchronized trajectories. These two similarity 
metrics are combined to form a comprehensive 
one, according to which synchronized trajecto-
ry data are clustered into k-anonymity clusters. 
Finally, all these clusters are anonymized. The 
main contributions of this work are, as follows: 

1. We present a trajectory synchronization 
algorithm. It synchronizes trajectories to 
prepare for k-anonymity clustering. 

2. We propose a comprehensive similarity 
metric to quantify the proximity between 
trajectories. It takes into consideration 
both the trajectory distance and direction.

3. We put forward a k-anonymity clustering 
algorithm. It divides trajectories into k-an-
onymity clusters according to the compre-
hensive similarity metric.

The remaining of this work is organized, as 
follows: Section 2 reviews the related work on 
privacy-preserving methods for trajectory data 
publishing; Section 3 introduces basic concepts 
regarding trajectory k-anonymity. Section 4 
quantitatively defines three similarity metrics 
that measure the proximity between trajecto-
ries. Section 5 presents our trajectory k-ano-
nymity algorithm. Section 6 describes conduct-
ed experiments that demonstrate the method’s 
performance. Section 7 concludes this work 
with future directions.

2. Related Work

Privacy-preserving methods for trajectory data 
publishing include generalization, false data, 
and suppression techniques [4, 6]. General-

ization is a technique for expanding locations 
into regions to prevent privacy disclosure [7]. 
Komishani et al. [8] apply it to the personal-
ized trajectory data and propose a personalized 
privacy-preserving method. Wang et al. [9] use 
this method to solve the problem of preserv-
ing the privacy of uncertain trajectories. These 
trajectories are first generalized into more re-
alistic trajectory regions by using probability 
statistics techniques, where trajectories of high 
similarity are aggregated into equivalent classes 
to hide the information. Then, these classes are 
anonymized and published. Although general-
ization techniques can maintain the authenticity 
of data better, their computational cost is very 
high [6, 7]. False data methods reduce the risk 
of privacy disclosure by adding false trajectory 
data to interfere with the real ones. Their key is 
how to generate false trajectories. Lei et al. [10] 
enhance the trajectory privacy-preserving level 
by increasing the number of crossover points on 
rotated trajectories. Lei et al. [11] reduce the dis-
crimination probability by increasing the simi-
larities between true and false trajectories. They 
propose a privacy-preserving scheme for trajec-
tory data publishing based on the spatio-tempo-
ral correlation. In the process of generation of 
false trajectories, many factors are considered, 
such as the distance between location samples 
and the corresponding time reachability, the 
overall moving direction, and the same in- and 
out-degree of one location sample. False data 
methods are simple and inexpensive, but they 
have the problem of low data availability [6]. 
Suppression is the privacy-preserving technique 
for trajectory data publishing that hides certain 
sensitive or frequently accessed locations. The 
key is how to determine the suppression degree 
that strikes a balance between the privacy-pre-
serving effect and the data availability. Terrovi-
tis et al. [12] measure the sensitivity of a region 
based on the ratio of the number of users in this 
region to the total number of users. Then, all lo-
cations of the sensitive region are suppressed to 
ensure that the risk of privacy disclosure is no 
higher than the threshold set by users. Zhao et 
al. [13] propose two privacy-preserving meth-
ods for trajectory data publishing based on tra-
jectory frequency suppression. With the same 
privacy-preserving strength as other similar 
schemes, the data availability of their methods is 
significantly improved. Suppression is a simple, 
yet effective privacy-preserving method based 
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alistic trajectory regions by using probability 
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similarity are aggregated into equivalent classes 
to hide the information. Then, these classes are 
anonymized and published. Although general-
ization techniques can maintain the authenticity 
of data better, their computational cost is very 
high [6, 7]. False data methods reduce the risk 
of privacy disclosure by adding false trajectory 
data to interfere with the real ones. Their key is 
how to generate false trajectories. Lei et al. [10] 
enhance the trajectory privacy-preserving level 
by increasing the number of crossover points on 
rotated trajectories. Lei et al. [11] reduce the dis-
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larities between true and false trajectories. They 
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ral correlation. In the process of generation of 
false trajectories, many factors are considered, 
such as the distance between location samples 
and the corresponding time reachability, the 
overall moving direction, and the same in- and 
out-degree of one location sample. False data 
methods are simple and inexpensive, but they 
have the problem of low data availability [6]. 
Suppression is the privacy-preserving technique 
for trajectory data publishing that hides certain 
sensitive or frequently accessed locations. The 
key is how to determine the suppression degree 
that strikes a balance between the privacy-pre-
serving effect and the data availability. Terrovi-
tis et al. [12] measure the sensitivity of a region 
based on the ratio of the number of users in this 
region to the total number of users. Then, all lo-
cations of the sensitive region are suppressed to 
ensure that the risk of privacy disclosure is no 
higher than the threshold set by users. Zhao et 
al. [13] propose two privacy-preserving meth-
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privacy-preserving strength as other similar 
schemes, the data availability of their methods is 
significantly improved. Suppression is a simple, 
yet effective privacy-preserving method based 
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chronized trajectories Tp and Tq at sampling 
time i. It can be calculated by the equation be-
low:

( ) ( ) ( )
( ) ( )

,
, 1

i i i
p q si i

p q i i
s s

Dist T T Dist
SimD T T

Dist Dist

−
= −

−



 

(2)
where

 
( ) ( ) ( )2 2

,i i i i i i
p q p q p qDist T T x x y y= − + −

is the distance between location samples 
(ti, xp

i, yp
i ) and (ti, yq

i, yq
i ); 

Dist(s 
i ) = min{Dist(p 

i, q 
i) | p, q ∈s}

Dist(s 
i ) = max{Dist(p 

i, q 
i) | p, q ∈s}.

This metric is a normalized measurement that 
represents the relative distance between any two 
synchronized trajectories at any sampling time 
concerning the maximum distance at that time. 
Thus, we know that SimD(Tp

i, Tq
i ) ∈[0, 1]. The 

larger the SimD(Tp
i, Tq

i ) value is, the closer the 
distance between the two location samples is. 
SimD(Tp

i, Tq
i ) = 0 when their distance equals 

the maximum distance between these two tra-
jectories. SimD(Tp

i, Tq
i ) = 1 when Tp

i and Tq
i 

are the same location sample. Furthermore, we 
define the proximity between two synchronized 
trajectories as the sum of all their location sam-
ples' proximities.

Definition 8 (Distance similarity between 
trajectories). It is a real number used to mea-
sure the degree of proximity between any two 
trajectories in a trajectory synchronized set. 
Suppose that SimD(Tp, Tq) denotes the distance 
similarity between any two trajectories Tp and 
Tq in a trajectory synchronized set . It can be 
calculated as follows:

( )
( )

1
,

,

n
i i
p q

i
p q

SimD T T
SimD T T n

==
∑

,       (3)

where n is the number of location samples of a 
trajectory. It can be seen that SimD(Tp, Tq) is a 
normalized metric representing the relative dis-
tance between any pair of trajectories in  con-
cerning the maximum distance. Thus, we have 
that SimD(Tp, Tq) ∈[0, 1]. The larger the trajec-
tory similarity, the smaller the distance between 
trajectories.
Definition 9 (Trajectory segment-segment 
angle). It is the angle between two trajectory 
segments. These segments come from two dif-
ferent trajectories in a synchronized trajectory 
set with the same starting and ending sampling 
times. 
For any two synchronized trajectories 

Tp = {(t1, xp
1, yp

1), (t2, xp
2, yp

2 ), ..., 
(tn, xp

n, yp
n )} and 

Tq = {(t1, xq
1, yq

1), (t2, xq
2, yq
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(tn, xq

n, yq
n )},

θ 
i is denoted as the segment-segment angle 
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i→
 and  Lq
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 = (xq
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1 - xq

i, yq
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1 - yq

i). 

Then the angle can be calculated by the follow-
ing equation.

cos θ 

i accurately reflects the difference in 
directions of Lp

i→
 and Lq

i→
. The larger cos θ    

i is, the 
smaller θ    

i is and the closer they are. The mean 
values of  θ    

1, θ    

2, ..., θ   
 

n can generally reflect the 
differences in the overall directions of Tp and 
Tq. The greater the mean value, the closer they 
are.
Definition 10 (Direction similarity between 
trajectories). It is a real number used to mea-

tween ti
j and ti

j
 
+

 
1 can be easily calculated based 

on the assumption (2). Then all trajectories in 
 can be synchronized by inserting missing lo-
cations samples. The trajectory synchronization 
algorithm will be discussed in Section 5.

Definition 4 (Trajectory clustering). It is 
the process of dividing all trajectories in the 
synchronized trajectory set into clusters with 
each having k trajectories according to the pre-
defined trajectory similarity metric, where k is 
a constant. 
Trajectory clustering can be represented as a 
mapping 

φ:  = {T1, T2, ..., TN} → {1, 2, ..., m}, 

where φ satisfies the following two require-
ments: 

1. 
1

m

i =
=



   and k ≤ | i | < 2k. m is the number

of trajectory clusters and | i | the number 
of trajectories in cluster i ; 

2. ∀i, j ∈{1, 2, ..., m} and i ≠ j: i ∩ j = ∅.

Definition 5 (Trajectory generalization). It is 
the process of replacing coordinates of location 
samples of all trajectories at each sampling time 
in a synchronized trajectory set with minimum 
regions that contain all the corresponding loca-
tion samples. 
Given a synchronized trajectory set p = {T1, 
..., Tk}, the location region at time tj is denot-
ed as ([ xτp

j, xτp
j], [ yτp

j, yτp
j]). It contains all the

corresponding location samples of T1, ..., Tk at 
tj. According to Definition 5, we know that 

xτp
j = min{xi

j | i = (1, ..., k)},   

xτp
j = max{xi

j | i = (1, ..., k)},  

yτp
j = min{ yi

j | i = (1, ..., k)},  

yτp
j = max{ yi

j | i = (1, ..., k)}.

That is, after trajectory generalization, all tra-
jectories in the synchronized trajectory set p   
will be generalized into an anonymous trajecto-
ry that includes only n location regions. Let this 
anonymous trajectory be denoted as τ̂p, then 

τ̂p={(tj, [ xτp
j, xτp

j], [ yτp
j, yτp

j])}, where j = (1, ..., n).

Trajectory generalization leads to information 
loss. We quantitatively define the information 
loss IL as follows: 
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∑ ∑
   

(1)

Trajectory generalization transforms k con-
crete trajectories into a relatively obscure 
anonymous trajectory by properly amplifying 
the location region. It can effectively reduce 
the privacy disclosure probability by hiding 
the original trajectories. At the same time, this 
method cannot significantly change the statis-
tical properties of original data when k is small 
(typically k is 3 to 5). That is, an anonymous 
trajectory after generalization is still of high 
data availability.
Definition 6 (Trajectory k-anonymity). It is a 
3-step privacy-preserving approach for trajec-
tory data publishing. First, all trajectories in the 
set to be published are synchronized. Second, 
the synchronized set is divided into trajectory 
clusters with a size of k. Finally, all clusters are 
anonymized. 
Trajectory k-anonymity is an important trajec-
tory privacy-preserving method, and its key is 
the trajectory k-clustering. This work presents 
a novel and effective trajectory k-anonymi-
ty algorithm, which converts the to-be-pub-
lished trajectory dataset   = {T1, T2, ..., TN} 
into  = {τ̂1, τ̂2, ..., τ̂m}. The key is to define a 
reasonable trajectory similarity metric to guide 
trajectory clustering. The quality of this metric 
has a significant impact on the performance 
of trajectory k-anonymity algorithms. It is the 
main content of Section 4.

4. Measuring Similarity between  
Trajectories

Definition 7 (Proximity of location samples). 
It is a real number used to measure the degree 
of closeness between any two synchronized tra-
jectories at any sampling time. 

Suppose that SimD(Tp
i , Tq

i ) denotes the loca-
tion sample proximity between any two syn-
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chronized trajectories Tp and Tq at sampling 
time i. It can be calculated by the equation be-
low:

( ) ( ) ( )
( ) ( )

,
, 1

i i i
p q si i

p q i i
s s

Dist T T Dist
SimD T T

Dist Dist

−
= −

−
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is the distance between location samples 
(ti, xp

i, yp
i ) and (ti, yq

i, yq
i ); 

Dist(s 
i ) = min{Dist(p 

i, q 
i) | p, q ∈s}

Dist(s 
i ) = max{Dist(p 

i, q 
i) | p, q ∈s}.

This metric is a normalized measurement that 
represents the relative distance between any two 
synchronized trajectories at any sampling time 
concerning the maximum distance at that time. 
Thus, we know that SimD(Tp

i, Tq
i ) ∈[0, 1]. The 

larger the SimD(Tp
i, Tq

i ) value is, the closer the 
distance between the two location samples is. 
SimD(Tp

i, Tq
i ) = 0 when their distance equals 

the maximum distance between these two tra-
jectories. SimD(Tp

i, Tq
i ) = 1 when Tp

i and Tq
i 

are the same location sample. Furthermore, we 
define the proximity between two synchronized 
trajectories as the sum of all their location sam-
ples' proximities.

Definition 8 (Distance similarity between 
trajectories). It is a real number used to mea-
sure the degree of proximity between any two 
trajectories in a trajectory synchronized set. 
Suppose that SimD(Tp, Tq) denotes the distance 
similarity between any two trajectories Tp and 
Tq in a trajectory synchronized set . It can be 
calculated as follows:
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where n is the number of location samples of a 
trajectory. It can be seen that SimD(Tp, Tq) is a 
normalized metric representing the relative dis-
tance between any pair of trajectories in  con-
cerning the maximum distance. Thus, we have 
that SimD(Tp, Tq) ∈[0, 1]. The larger the trajec-
tory similarity, the smaller the distance between 
trajectories.
Definition 9 (Trajectory segment-segment 
angle). It is the angle between two trajectory 
segments. These segments come from two dif-
ferent trajectories in a synchronized trajectory 
set with the same starting and ending sampling 
times. 
For any two synchronized trajectories 
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Then the angle can be calculated by the follow-
ing equation.

cos θ 

i accurately reflects the difference in 
directions of Lp

i→
 and Lq

i→
. The larger cos θ    

i is, the 
smaller θ    

i is and the closer they are. The mean 
values of  θ    

1, θ    

2, ..., θ   
 

n can generally reflect the 
differences in the overall directions of Tp and 
Tq. The greater the mean value, the closer they 
are.
Definition 10 (Direction similarity between 
trajectories). It is a real number used to mea-

tween ti
j and ti

j
 
+

 
1 can be easily calculated based 

on the assumption (2). Then all trajectories in 
 can be synchronized by inserting missing lo-
cations samples. The trajectory synchronization 
algorithm will be discussed in Section 5.

Definition 4 (Trajectory clustering). It is 
the process of dividing all trajectories in the 
synchronized trajectory set into clusters with 
each having k trajectories according to the pre-
defined trajectory similarity metric, where k is 
a constant. 
Trajectory clustering can be represented as a 
mapping 

φ:  = {T1, T2, ..., TN} → {1, 2, ..., m}, 

where φ satisfies the following two require-
ments: 

1. 
1

m

i =
=



   and k ≤ | i | < 2k. m is the number

of trajectory clusters and | i | the number 
of trajectories in cluster i ; 

2. ∀i, j ∈{1, 2, ..., m} and i ≠ j: i ∩ j = ∅.

Definition 5 (Trajectory generalization). It is 
the process of replacing coordinates of location 
samples of all trajectories at each sampling time 
in a synchronized trajectory set with minimum 
regions that contain all the corresponding loca-
tion samples. 
Given a synchronized trajectory set p = {T1, 
..., Tk}, the location region at time tj is denot-
ed as ([ xτp

j, xτp
j], [ yτp

j, yτp
j]). It contains all the

corresponding location samples of T1, ..., Tk at 
tj. According to Definition 5, we know that 

xτp
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xτp
j = max{xi

j | i = (1, ..., k)},  

yτp
j = min{ yi

j | i = (1, ..., k)},  

yτp
j = max{ yi

j | i = (1, ..., k)}.

That is, after trajectory generalization, all tra-
jectories in the synchronized trajectory set p   
will be generalized into an anonymous trajecto-
ry that includes only n location regions. Let this 
anonymous trajectory be denoted as τ̂p, then 

τ̂p={(tj, [ xτp
j, xτp

j], [ yτp
j, yτp

j])}, where j = (1, ..., n).
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loss. We quantitatively define the information 
loss IL as follows: 
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Trajectory generalization transforms k con-
crete trajectories into a relatively obscure 
anonymous trajectory by properly amplifying 
the location region. It can effectively reduce 
the privacy disclosure probability by hiding 
the original trajectories. At the same time, this 
method cannot significantly change the statis-
tical properties of original data when k is small 
(typically k is 3 to 5). That is, an anonymous 
trajectory after generalization is still of high 
data availability.
Definition 6 (Trajectory k-anonymity). It is a 
3-step privacy-preserving approach for trajec-
tory data publishing. First, all trajectories in the 
set to be published are synchronized. Second, 
the synchronized set is divided into trajectory 
clusters with a size of k. Finally, all clusters are 
anonymized. 
Trajectory k-anonymity is an important trajec-
tory privacy-preserving method, and its key is 
the trajectory k-clustering. This work presents 
a novel and effective trajectory k-anonymi-
ty algorithm, which converts the to-be-pub-
lished trajectory dataset   = {T1, T2, ..., TN} 
into  = {τ̂1, τ̂2, ..., τ̂m}. The key is to define a 
reasonable trajectory similarity metric to guide 
trajectory clustering. The quality of this metric 
has a significant impact on the performance 
of trajectory k-anonymity algorithms. It is the 
main content of Section 4.

4. Measuring Similarity between  
Trajectories

Definition 7 (Proximity of location samples). 
It is a real number used to measure the degree 
of closeness between any two synchronized tra-
jectories at any sampling time. 

Suppose that SimD(Tp
i , Tq

i ) denotes the loca-
tion sample proximity between any two syn-
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i =
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sure the differences in the overall directions of 
any two synchronized trajectories. 
Let SimO(Tp, Tq) denote the trajectory direction 
similarity between any two synchronized tra-
jectories Tp and Tq. It can be calculated by the 
following equation:

( )
1

1

1, cos1
n

i
p q

i
SimO T T n θ

−

=
=

− ∑ ,        (5)

where n is the number of location samples of 
a trajectory. From Equation 3, we know that 
SimO(Tp, Tq) ∈[0, 1]. The larger the SimO(Tp, Tq) 
value, the smaller the difference in the overall 
directions of any two synchronized trajectories. 
Definition 11 (Comprehensive similarity be-
tween trajectories). It is a real number used to 
measure the similarity between any two trajec-
tories considering both trajectory distance and 
direction in a trajectory synchronized set.
Suppose that Sim(Tp, Tq) denotes the compre-
hensive similarity between any two trajectories 
Tp and Tq in a trajectory synchronized set . It 
can be calculated as follows:

Sim(Tp, Tq) = λ SimO(Tp, Tq) + 
+ (1 - λ) SimD(Tp, Tq),             

 (6)

where λ ∈ (0, 1) is a tuning parameter and 
Sim(Tp, Tq) ∈[0, 1]. We can see that the com-
prehensive similarity metric accounts for both 
direction similarity and distance similarity be-
tween trajectories. The value of λ is a trade-off 
between these two similarities and has a great 
impact on the trajectory clustering effect. In 
general, the larger this value, the more the com-
prehensive similarity is based on the direction 
similarity. This is more likely to cluster tra-
jectories whose overall shapes are similar into 
clusters. On the contrary, the smaller the value, 
the more the comprehensive similarity is based 
on the distance similarity. This is more likely to 
cluster trajectories that are closer to each other 
into clusters.

5. Trajectory Clustering-Anonymity 
Algorithm

Based on the comprehensive similarity metric 
and other related concepts discussed above, this 

section puts forward a trajectory k-anonymity 
algorithm, i.e., trajectory clustering-anonymity 
algorithm. According to Definition 6, it con-
sists of 3 steps, each of which is an algorithm 
to perform the corresponding task. They are al-
gorithms of trajectory synchronization, trajec-
tory clustering, and trajectory generalization, 
respectively. Their details are given as follows, 
followed by the complete trajectory k-anonym-
ity algorithm.
Trajectory synchronization algorithm. Sup-
pose the trajectory set to be synchronized is de-
noted as  = {T1, T2, ..., TN}, where 

Ti = {(ti
1, xi

1, yi
1), (ti

2, xi
2, yi

2 ), ..., 
(ti

ni, xi
ni, yi

ni )} 

and ni is the number of location samples of 
Ti (i ∈[1, N]). According to Definition 3, we 
know that 

t1
1 = t2

1= ... = tN
1, 

t1
n1 = t2

n2 = ... = tN
nN. 

Based on the assumption (2) stated in Section 3, 
we can summarize the synchronization process 
of  as follows: 
1. for each Ti, calculate the number and co-

ordinates of location samples needed to be 
interpolated. These samples are with time-
stamp tp that is not on Ti but the other tra-
jectories. 

2. Interpolate these location samples into Ti.
This algorithm's pseudo-code is shown in Al-
gorithm 1.
For the TSynchzing algorithm, its main work is 
done in a two-layer nested loop, of which the in-
nermost operation is step 4 with a cost of O(1). 
The number of iterations in the outer loop is N 
and that of the inner loop is n. Thus, the time 
complexity of TSynchzing algorithm is O(n2).
Trajectory clustering algorithm (TClustering). 
It clusters all N trajectories of  into clusters 
with each having k trajectories according to the 
principle of maximizing the comprehensive 
similarity. To be more specific, suppose m is 
the smallest integer that is equal to or greater 
than N/k. Our proposed TClustering algorithm 
first constructs a seed set r by identifying m (if 
N = m*k) or m - 1 (otherwise) trajectories from 

 according to [17] and then constructs trajec-
tory clusters of size k one-by-one. For each new 
cluster, the TClustering algorithm first initializ-
es it with a single trajectory randomly selected 
from r. Then the algorithm inserts one unclus-
tered trajectory into this cluster every time that 

it has the largest sum of comprehensive sim-
ilarities between it and trajectories within the 
cluster until the cluster size is k. Note that the 
size of the last cluster may be smaller than k. 
The pseudo-code of the TClustering algorithm 
is shown in Agorithm 2.

Input:  = {T1, T2, ..., TN};          // Ti = {(ti
1, xi

1, yi
1), (ti

2, xi
2, yi

2 ), ..., (ti
ni, xi

ni, yi
ni )}, i ∈[1, N] 

Output:  = {T1, T2, ..., TN};          // Ti = {(t1, xi
1, yi

1), (t2, xi
2, yi

2 ), ..., (tn, xi
n, yi

n)} and 
1

n

i
i

SetT t
=

=


1.      for i = 1 to N do 

2.            for j = 1 to |SetT| do          // 
1 1

in n
j

i
i j

SetT t
= =

=
 

3.      if  t ∈(ti
p, ti

p + 1) then          // p ∈{1, ..., ni - 1}

4.            Calculating (xi
t, yi

t ) according to 
( ) ( )

( ) ( )

2 2

1 2 21 1

t p t pp
i i i ii

p p
p p p pi i
i i i i

x x y yt t

t t x x y y
+

+ +

− + −−
=

− − + −
;

5.            Ti = Ti 
∩

 (t, xi
t, yi

t );
6.      end if
7.            end for
8.      end for

Algorithm 1. TSynchzing. 

Input:  = {T1, T2, ..., TN}, where Ti = {(t1, xi
1, yi

1), (t2, xi
2, yi

2 ), ..., (tn, xi
n, yi

n)}; 

Output:  * = {1, 2, ..., m}, where 
1

m

i
i =

=


    and i ∩ j = ∅, i, j ∈{1, ..., m};

1.      r = initial_seed_ selection(, α)          // α = 0.8;
2.       * = ∅, i = 1;  =  - r;
3.      while (| | ≥ k) do          // | | denotes the number of trajectories left in 
4.      ∀ Tp ∈ r; i = {p}; r = r - {p};
5.      while (|i | < k) do
6.            i = i 

∩
 {Tp} where ( )max ,

p q i

p qSim T T
∈ ∈

 
 
 
∑

   

;

7.             =  - {Tp};
8.      end while
9.       * =  * 

∩
 Ti, i = i + 1;

10.    end while
11.    while ( ≠ ∅) do
12.          ∀ Tp ∈ , s = s 

∩
 {Tp} where ( )

*
max ,
s q s

p qSim T T
∈ ∈

 
 
 
∑

   

;

13.           =  - {Tp};
14.    end while

Algorithm 2. TClustering. 
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sure the differences in the overall directions of 
any two synchronized trajectories. 
Let SimO(Tp, Tq) denote the trajectory direction 
similarity between any two synchronized tra-
jectories Tp and Tq. It can be calculated by the 
following equation:

( )
1

1

1, cos1
n

i
p q

i
SimO T T n θ

−

=
=

− ∑ ,        (5)

where n is the number of location samples of 
a trajectory. From Equation 3, we know that 
SimO(Tp, Tq) ∈[0, 1]. The larger the SimO(Tp, Tq) 
value, the smaller the difference in the overall 
directions of any two synchronized trajectories. 
Definition 11 (Comprehensive similarity be-
tween trajectories). It is a real number used to 
measure the similarity between any two trajec-
tories considering both trajectory distance and 
direction in a trajectory synchronized set.
Suppose that Sim(Tp, Tq) denotes the compre-
hensive similarity between any two trajectories 
Tp and Tq in a trajectory synchronized set . It 
can be calculated as follows:

Sim(Tp, Tq) = λ SimO(Tp, Tq) + 
+ (1 - λ) SimD(Tp, Tq),             

 (6)

where λ ∈ (0, 1) is a tuning parameter and 
Sim(Tp, Tq) ∈[0, 1]. We can see that the com-
prehensive similarity metric accounts for both 
direction similarity and distance similarity be-
tween trajectories. The value of λ is a trade-off 
between these two similarities and has a great 
impact on the trajectory clustering effect. In 
general, the larger this value, the more the com-
prehensive similarity is based on the direction 
similarity. This is more likely to cluster tra-
jectories whose overall shapes are similar into 
clusters. On the contrary, the smaller the value, 
the more the comprehensive similarity is based 
on the distance similarity. This is more likely to 
cluster trajectories that are closer to each other 
into clusters.

5. Trajectory Clustering-Anonymity 
Algorithm

Based on the comprehensive similarity metric 
and other related concepts discussed above, this 

section puts forward a trajectory k-anonymity 
algorithm, i.e., trajectory clustering-anonymity 
algorithm. According to Definition 6, it con-
sists of 3 steps, each of which is an algorithm 
to perform the corresponding task. They are al-
gorithms of trajectory synchronization, trajec-
tory clustering, and trajectory generalization, 
respectively. Their details are given as follows, 
followed by the complete trajectory k-anonym-
ity algorithm.
Trajectory synchronization algorithm. Sup-
pose the trajectory set to be synchronized is de-
noted as  = {T1, T2, ..., TN}, where 

Ti = {(ti
1, xi

1, yi
1), (ti

2, xi
2, yi

2 ), ..., 
(ti

ni, xi
ni, yi

ni )} 

and ni is the number of location samples of 
Ti (i ∈[1, N]). According to Definition 3, we 
know that 

t1
1 = t2

1= ... = tN
1, 

t1
n1 = t2

n2 = ... = tN
nN. 

Based on the assumption (2) stated in Section 3, 
we can summarize the synchronization process 
of  as follows: 
1. for each Ti, calculate the number and co-

ordinates of location samples needed to be 
interpolated. These samples are with time-
stamp tp that is not on Ti but the other tra-
jectories. 

2. Interpolate these location samples into Ti.
This algorithm's pseudo-code is shown in Al-
gorithm 1.
For the TSynchzing algorithm, its main work is 
done in a two-layer nested loop, of which the in-
nermost operation is step 4 with a cost of O(1). 
The number of iterations in the outer loop is N 
and that of the inner loop is n. Thus, the time 
complexity of TSynchzing algorithm is O(n2).
Trajectory clustering algorithm (TClustering). 
It clusters all N trajectories of  into clusters 
with each having k trajectories according to the 
principle of maximizing the comprehensive 
similarity. To be more specific, suppose m is 
the smallest integer that is equal to or greater 
than N/k. Our proposed TClustering algorithm 
first constructs a seed set r by identifying m (if 
N = m*k) or m - 1 (otherwise) trajectories from 

 according to [17] and then constructs trajec-
tory clusters of size k one-by-one. For each new 
cluster, the TClustering algorithm first initializ-
es it with a single trajectory randomly selected 
from r. Then the algorithm inserts one unclus-
tered trajectory into this cluster every time that 

it has the largest sum of comprehensive sim-
ilarities between it and trajectories within the 
cluster until the cluster size is k. Note that the 
size of the last cluster may be smaller than k. 
The pseudo-code of the TClustering algorithm 
is shown in Agorithm 2.

Input:  = {T1, T2, ..., TN};          // Ti = {(ti
1, xi

1, yi
1), (ti

2, xi
2, yi

2 ), ..., (ti
ni, xi

ni, yi
ni )}, i ∈[1, N] 

Output:  = {T1, T2, ..., TN};          // Ti = {(t1, xi
1, yi

1), (t2, xi
2, yi

2 ), ..., (tn, xi
n, yi

n)} and 
1

n

i
i

SetT t
=

=


1.      for i = 1 to N do 

2.            for j = 1 to |SetT| do          // 
1 1

in n
j

i
i j

SetT t
= =

=
 

3.      if  t ∈(ti
p, ti

p + 1) then          // p ∈{1, ..., ni - 1}

4.            Calculating (xi
t, yi

t ) according to 
( ) ( )

( ) ( )

2 2

1 2 21 1

t p t pp
i i i ii

p p
p p p pi i
i i i i

x x y yt t

t t x x y y
+

+ +

− + −−
=

− − + −
;

5.            Ti = Ti 
∩

 (t, xi
t, yi

t );
6.      end if
7.            end for
8.      end for

Algorithm 1. TSynchzing. 

Input:  = {T1, T2, ..., TN}, where Ti = {(t1, xi
1, yi

1), (t2, xi
2, yi

2 ), ..., (tn, xi
n, yi

n)}; 

Output:  * = {1, 2, ..., m}, where 
1

m

i
i =

=


    and i ∩ j = ∅, i, j ∈{1, ..., m};

1.      r = initial_seed_ selection(, α)          // α = 0.8;
2.       * = ∅, i = 1;  =  - r;
3.      while (| | ≥ k) do          // | | denotes the number of trajectories left in 
4.      ∀ Tp ∈ r; i = {p}; r = r - {p};
5.      while (|i | < k) do
6.            i = i 

∩
 {Tp} where ( )max ,

p q i

p qSim T T
∈ ∈

 
 
 
∑

   

;

7.             =  - {Tp};
8.      end while
9.       * =  * 

∩
 Ti, i = i + 1;

10.    end while
11.    while ( ≠ ∅) do
12.          ∀ Tp ∈ , s = s 

∩
 {Tp} where ( )

*
max ,
s q s

p qSim T T
∈ ∈

 
 
 
∑

   

;

13.           =  - {Tp};
14.    end while

Algorithm 2. TClustering. 
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Like Algorithm 1, the main work of the TClus-
tering algorithm is done in a two-layer nested 
loop, of which the innermost operation is step 5 
with a cost of O(n). The number of iterations in 
the outer loop is m and that of the inner loop is 
k. Thus, the time complexity of the TClustering 
algorithm is O(n*m*k). Because m*k is approx-
imately equal to n, the time complexity of the 
TClustering algorithm is O(n2). 
Trajectory generalization algorithm (TGen-
eralizing). It anonymizes each cluster of tra-
jectories into an anonymized trajectory consist-
ing of location samples with their coordinates 
denoting regions rather than specific locations 
samples. Each region is the one with the min-
imum area that covers all the location samples
having the same timestamp. Suppose that ^s is 
the anonymized trajectory of s (s ∈ *), then 
the trajectory generalization algorithm can be 
described, as shown in Algorithm 3.
For the TGeneralizing algorithm, its main work 
is done in a three-layer nested loop, of which 
the innermost operations are steps 6–9 with 
each step having a cost of O(1). The number of 
iterations in the three-layer nested loop are m, 
n, and k - 1, respectively. Thus, the time com-
plexity of the TGeneralizing algorithm is O(n2). 

Trajectory Clustering-Anonymization Al-
gorithm (TCAA). It includes three function-
al steps: trajectory synchronization, trajectory 
clustering and trajectory generalization. Based 
on the above three algorithms, the pseudo-code 
of the clustering-anonymity algorithm is given 
in Algorithm 4.
The TCAA algorithm is a k-anonymity scheme 
with the same privacy-preserving strength as 
other trajectory k-anonymity methods. Howev-
er, these methods’ time complexities are higher 
than or equal to ours. In addition, the TCAA al-
gorithm has lower information loss caused by 
trajectory anonymization. This is because the 
highest similarity clustering principle ensures 
that each cluster has the highest cohesiveness. 
We will validate the effectiveness of the TCAA 
algorithm in Section 6.

6. Evaluation Results

This section designs two experiments to vali-
date the effectiveness of the proposed trajecto-
ry clustering anonymization algorithm TCAA. 
As for the dataset, we use the OLEDN dataset 
generated by the Brinkhoff generator [18]. This 
dataset includes 100,000 trajectories, which 
simulate one-day movements of moving ob-

Input:  * = {1, 2, ..., m}, where ∀ Tp ∈i (i = 1, ..., m), Tp = (ti
p, xi

p, yi
p); 

Output:  * = {^1, 
^

2, ..., 
^
m}, where ∀ ^p ∈ *, ^p = {(ti, [ xp

i, xp
i], [ yp

i, yp
i]) | i = (1, ..., n)};

1.      for s = 1 to m do
2.            ^s = ∅, k = |s |;          // s = {T1, ..., Tk}
3.            for j = 1 to n do
4.                  Xmin = x1

j, Xmax = x1
j, Ymin = y1

j, Ymax = y1
j;          // (x1

j, y1
j) denotes the coordinate of T1 at tj

5.                        for i = 2 to k do
6.                              if Xmin > xi

j then Xmin = xi
j;

7.                              if Xmax < xi
j then Xmax = xi

j;
8.                              if Ymin > yi

j then Ymin = yi
j;

9.                              if Ymax < yi
j then Ymax = yi

j;
10.                      end for
11.                      ^s = ^s 

∩
 {(tj, [Xmin, Xmax], [Ymin, Ymax])};

12.          end for
13.           * =  * - s,  * =  * 

∩
 ^s ;

14.    end for

Algorithm 3. TGeneralizing. 

Input:  = {T1, T2, ..., TN}, where Ti = {(ti
1, xi

1, yi
1), (ti

2, xi
2, yi

2 ), ..., (ti
ni, xi

ni, yi
ni )}; 

Output:  * = {^1, 
^

2, ..., 
^
m}, where ∀ ^p ∈ *, ^p = {(ti, [ xp

i, xp
i], [ yp

i, yp
i]) | i = (1, ..., n)};

begin
1.      TSynchzing(,  ' );
2.      TClustering( ',  '' );
3.      TGeneralizing( '',  *);
end

Algorithm 4. TCAA. 

jects on the road network of Oldenburg city of 
Germany. From it, we select 3,000 trajectories 
that are consistent with the assumptions (1) and 
(2).  For comparisons, we select the HTP-GP al-
gorithm [14] and the PAM-AD algorithm [15]. 
They are current, excellent privacy-preserving 
algorithms for trajectory data publishing. All 
these algorithms, including ours, are imple-
mented in C++. All experiments are run on a 
PC with Intel(R) Core (TM) i5-4210U CPU 
@ 1.70GHz (2394 MHz), 4.00 GB RAM, and 
Microsoft Windows 8.1 operating system. All 
experiments are conducted five times and the 
average results are presented.
Experiment 1 (Information loss analysis). 
It is designed to evaluate the performance of 
our algorithm in terms of information loss IL, 
which is calculated according to Definition 1. 
This experiment includes two parts. The first is 
to test the IL of our algorithm concerning k un-
der different values of λ; the second is to test the 
IL of different algorithms concerning k while 
fixing λ to 0.6. Experimental results are shown 
in Figure 1 and Figure 2, respectively.

Figure 1. Variations of ILs of the TCAA concerning k 
under different values of λ.

From Figure 1, we can see that IL increases 
along with k. This is because the increase of k 
means that the number of trajectories includ-
ed in each trajectory cluster becomes larger, 
leading to a larger anonymous region for each 
cluster. The larger the region, the higher the IL. 
Figure 1 also shows that there are slight differ-
ences in IL at different values of λ with k being 
the same. The difference reaches the maximum 
when λ = 0.3 while declines to the minimum 
when λ = 0.5 and λ = 0.7. This implies that the 
direction similarity is more effective than the 
distance similarity in reducing the information 
loss caused by the anonymization when using 
TCAA.

Figure 2. Variations of ILs of three algorithms with 
respect to k while fixing λ to 0.6.

We can see from Figure 2 that the ILs of all 
three algorithms TCAA, HTP-GP, and PAM-
AD, increase quickly with k. The reason is the 
same as in the first part. Figure 2 also shows 
that among the three algorithms, HTP-GP has 
the largest ILs while TCAA has the smallest 
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Like Algorithm 1, the main work of the TClus-
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the outer loop is m and that of the inner loop is 
k. Thus, the time complexity of the TClustering 
algorithm is O(n*m*k). Because m*k is approx-
imately equal to n, the time complexity of the 
TClustering algorithm is O(n2). 
Trajectory generalization algorithm (TGen-
eralizing). It anonymizes each cluster of tra-
jectories into an anonymized trajectory consist-
ing of location samples with their coordinates 
denoting regions rather than specific locations 
samples. Each region is the one with the min-
imum area that covers all the location samples
having the same timestamp. Suppose that ^s is 
the anonymized trajectory of s (s ∈ *), then 
the trajectory generalization algorithm can be 
described, as shown in Algorithm 3.
For the TGeneralizing algorithm, its main work 
is done in a three-layer nested loop, of which 
the innermost operations are steps 6–9 with 
each step having a cost of O(1). The number of 
iterations in the three-layer nested loop are m, 
n, and k - 1, respectively. Thus, the time com-
plexity of the TGeneralizing algorithm is O(n2). 

Trajectory Clustering-Anonymization Al-
gorithm (TCAA). It includes three function-
al steps: trajectory synchronization, trajectory 
clustering and trajectory generalization. Based 
on the above three algorithms, the pseudo-code 
of the clustering-anonymity algorithm is given 
in Algorithm 4.
The TCAA algorithm is a k-anonymity scheme 
with the same privacy-preserving strength as 
other trajectory k-anonymity methods. Howev-
er, these methods’ time complexities are higher 
than or equal to ours. In addition, the TCAA al-
gorithm has lower information loss caused by 
trajectory anonymization. This is because the 
highest similarity clustering principle ensures 
that each cluster has the highest cohesiveness. 
We will validate the effectiveness of the TCAA 
algorithm in Section 6.

6. Evaluation Results

This section designs two experiments to vali-
date the effectiveness of the proposed trajecto-
ry clustering anonymization algorithm TCAA. 
As for the dataset, we use the OLEDN dataset 
generated by the Brinkhoff generator [18]. This 
dataset includes 100,000 trajectories, which 
simulate one-day movements of moving ob-
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2, ..., 
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i, yp
i]) | i = (1, ..., n)};

1.      for s = 1 to m do
2.            ^s = ∅, k = |s |;          // s = {T1, ..., Tk}
3.            for j = 1 to n do
4.                  Xmin = x1

j, Xmax = x1
j, Ymin = y1

j, Ymax = y1
j;          // (x1

j, y1
j) denotes the coordinate of T1 at tj

5.                        for i = 2 to k do
6.                              if Xmin > xi

j then Xmin = xi
j;

7.                              if Xmax < xi
j then Xmax = xi

j;
8.                              if Ymin > yi

j then Ymin = yi
j;

9.                              if Ymax < yi
j then Ymax = yi

j;
10.                      end for
11.                      ^s = ^s 

∩
 {(tj, [Xmin, Xmax], [Ymin, Ymax])};

12.          end for
13.           * =  * - s,  * =  * 

∩
 ^s ;

14.    end for

Algorithm 3. TGeneralizing. 
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2, ..., 
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m}, where ∀ ^p ∈ *, ^p = {(ti, [ xp

i, xp
i], [ yp

i, yp
i]) | i = (1, ..., n)};

begin
1.      TSynchzing(,  ' );
2.      TClustering( ',  '' );
3.      TGeneralizing( '',  *);
end

Algorithm 4. TCAA. 

jects on the road network of Oldenburg city of 
Germany. From it, we select 3,000 trajectories 
that are consistent with the assumptions (1) and 
(2).  For comparisons, we select the HTP-GP al-
gorithm [14] and the PAM-AD algorithm [15]. 
They are current, excellent privacy-preserving 
algorithms for trajectory data publishing. All 
these algorithms, including ours, are imple-
mented in C++. All experiments are run on a 
PC with Intel(R) Core (TM) i5-4210U CPU 
@ 1.70GHz (2394 MHz), 4.00 GB RAM, and 
Microsoft Windows 8.1 operating system. All 
experiments are conducted five times and the 
average results are presented.
Experiment 1 (Information loss analysis). 
It is designed to evaluate the performance of 
our algorithm in terms of information loss IL, 
which is calculated according to Definition 1. 
This experiment includes two parts. The first is 
to test the IL of our algorithm concerning k un-
der different values of λ; the second is to test the 
IL of different algorithms concerning k while 
fixing λ to 0.6. Experimental results are shown 
in Figure 1 and Figure 2, respectively.

Figure 1. Variations of ILs of the TCAA concerning k 
under different values of λ.

From Figure 1, we can see that IL increases 
along with k. This is because the increase of k 
means that the number of trajectories includ-
ed in each trajectory cluster becomes larger, 
leading to a larger anonymous region for each 
cluster. The larger the region, the higher the IL. 
Figure 1 also shows that there are slight differ-
ences in IL at different values of λ with k being 
the same. The difference reaches the maximum 
when λ = 0.3 while declines to the minimum 
when λ = 0.5 and λ = 0.7. This implies that the 
direction similarity is more effective than the 
distance similarity in reducing the information 
loss caused by the anonymization when using 
TCAA.

Figure 2. Variations of ILs of three algorithms with 
respect to k while fixing λ to 0.6.

We can see from Figure 2 that the ILs of all 
three algorithms TCAA, HTP-GP, and PAM-
AD, increase quickly with k. The reason is the 
same as in the first part. Figure 2 also shows 
that among the three algorithms, HTP-GP has 
the largest ILs while TCAA has the smallest 
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The reason is the same as it in the first part of 
this experiment. Figure 4 also shows that, when 
fixing k, the runtimes of HTP-GP, PAM-AD, 
and TCAA increase sequentially. The reason 
is that HTP-GP clusters trajectories only ac-
cording to the distance similarity metric, which 
saves many similarity calculations. Compared 
to HTP-GP, TCAA and PAM-AD spend extra 
time in calculating the direction similarities 
between trajectories, leading to a longer run-
time. The reason why the runtime of TCAA is 
longer than that of PAM-AD is that the cluster 
initialization method and clustering strategy of 
TCAA spend more calculations than PAM-AD.

Figure 4. Variations of runtimes of three algorithms
under different values of concerning k while  

fixing λ to 0.6.

7. Conclusion

To solve the privacy disclosure problem caused 
by trajectory data publishing, we present a clus-
tering-anonymity approach by combining both 
the trajectory distance and direction. A trajec-
tory synchronization algorithm is designed to 
synchronize trajectories. Direction and dis-
tance similarity metrics and a comprehensive 
one combining them are defined. A clustering 
algorithm for dividing trajectories into clusters 
according to the comprehensive similarity met-
ric is proposed. Compared with [14, 15], our 
algorithm preserves privacy better and has a 
lower information loss and a higher runtime 
efficiency. The drawbacks of our work are that 
we make relatively strong assumptions regard-
ing the trajectory data and ignore individual-
ized privacy-preserving requirements. We will 
focus on the drawbacks in our future work.

ILs. This is because HTP-GP only takes into 
consideration the distance similarity without 
considering the direction similarity, leading 
to a poor comprehensive similarity. Thus, the 
anonymous regions of different clusters are 
large, the likelihood of confusing different 
trajectories is high, and the information loss 
is high. Although PAM-AD focuses on the 
direction similarity between trajectories, its 
minimum spanning tree-based similarity met-
ric cannot ensure that k trajectories with the 
maximum similarity are grouped into the same 
cluster. This causes it to have a worse cluster-
ing quality and higher information loss than 
ours.
Experiment 2 (Algorithm efficiency analysis). 
It is designed to evaluate the time efficiency of 
our algorithm in terms of runtime. This exper-
iment also includes two parts. The first part is 
to test the variations of the runtime of our algo-
rithm concerning k under different values of λ. 
The second part is to evaluate the runtime of all 
three algorithms concerning k while fixing λ to 
0.6. Experimental results are shown in Figure 3 
and Figure 4, respectively.

Figure 3. Variations of runtimes of the TCAA 
concerning k.

From Figure 3, we can see that the runtimes 
of TCAA increase with k under three different 
values of λ and they are approximately equal 
when fixing k. The former is because the over-
all workload increases with k even though the 
increase of k is beneficial in reducing the clus-
tering time. The latter is because the workload 
is unchanged under different values of λ.
We can see from Figure 4 that the runtimes of 
the three algorithms all slightly increase with k. 
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The reason is the same as it in the first part of 
this experiment. Figure 4 also shows that, when 
fixing k, the runtimes of HTP-GP, PAM-AD, 
and TCAA increase sequentially. The reason 
is that HTP-GP clusters trajectories only ac-
cording to the distance similarity metric, which 
saves many similarity calculations. Compared 
to HTP-GP, TCAA and PAM-AD spend extra 
time in calculating the direction similarities 
between trajectories, leading to a longer run-
time. The reason why the runtime of TCAA is 
longer than that of PAM-AD is that the cluster 
initialization method and clustering strategy of 
TCAA spend more calculations than PAM-AD.

Figure 4. Variations of runtimes of three algorithms
under different values of concerning k while  

fixing λ to 0.6.

7. Conclusion

To solve the privacy disclosure problem caused 
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tering-anonymity approach by combining both 
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tory synchronization algorithm is designed to 
synchronize trajectories. Direction and dis-
tance similarity metrics and a comprehensive 
one combining them are defined. A clustering 
algorithm for dividing trajectories into clusters 
according to the comprehensive similarity met-
ric is proposed. Compared with [14, 15], our 
algorithm preserves privacy better and has a 
lower information loss and a higher runtime 
efficiency. The drawbacks of our work are that 
we make relatively strong assumptions regard-
ing the trajectory data and ignore individual-
ized privacy-preserving requirements. We will 
focus on the drawbacks in our future work.

ILs. This is because HTP-GP only takes into 
consideration the distance similarity without 
considering the direction similarity, leading 
to a poor comprehensive similarity. Thus, the 
anonymous regions of different clusters are 
large, the likelihood of confusing different 
trajectories is high, and the information loss 
is high. Although PAM-AD focuses on the 
direction similarity between trajectories, its 
minimum spanning tree-based similarity met-
ric cannot ensure that k trajectories with the 
maximum similarity are grouped into the same 
cluster. This causes it to have a worse cluster-
ing quality and higher information loss than 
ours.
Experiment 2 (Algorithm efficiency analysis). 
It is designed to evaluate the time efficiency of 
our algorithm in terms of runtime. This exper-
iment also includes two parts. The first part is 
to test the variations of the runtime of our algo-
rithm concerning k under different values of λ. 
The second part is to evaluate the runtime of all 
three algorithms concerning k while fixing λ to 
0.6. Experimental results are shown in Figure 3 
and Figure 4, respectively.

Figure 3. Variations of runtimes of the TCAA 
concerning k.

From Figure 3, we can see that the runtimes 
of TCAA increase with k under three different 
values of λ and they are approximately equal 
when fixing k. The former is because the over-
all workload increases with k even though the 
increase of k is beneficial in reducing the clus-
tering time. The latter is because the workload 
is unchanged under different values of λ.
We can see from Figure 4 that the runtimes of 
the three algorithms all slightly increase with k. 
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