
41CIT. Journal of Computing and Information Technology, Vol. 27, No. 2, June 2019, 41–54
doi:  10.20532/cit.2019.1004702

Jian Feng1, Lianyang Zou1 and Tianzhu Nan2

1College of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an, China
2Xi’an Fenghuo Software Technology Co., Ltd., Xi’an, China

A Phishing Webpage Detection Method 
Based on Stacked Autoencoder and 
Correlation Coefficients

Phishing is a kind of cyber-attack that targets naive 
online users by tricking them into revealing sensitive 
information. There are many anti-phishing solutions 
proposed to date, such as blacklist or whitelist, heuris-
tic-based and machine learning-based methods. How-
ever, online users are still being trapped into revealing 
sensitive information in phishing websites. In this pa-
per, we propose a novel phishing webpage detection 
model, based on features that are extracted from URL, 
source codes of HTML, and the third-party services to 
represent the basic characters of phishing webpages, 
which uses a deep learning method – Stacked Auto-
encoder (SAE) to detect phishing webpages. To make 
features in the same order of magnitude, three kinds 
of normalization methods are adopted. In particular, 
a method to calculate correlation coefficients between 
weight matrixes of SAE is proposed to determine opti-
mal width of hidden layers, which shows high compu-
tational efficiency and feasibility. Based on the testing 
of a set of phishing and benign webpages, the model 
using SAE achieves the best performance when com-
pared to other algorithms such as Naive Bayes (NB), 
Support Vector Machine (SVM), Convolutional Neu-
ral Networks (CNN), and Recurrent Neural Networks 
(RNN). It indicates that the proposed detection model 
is promising and can be applied effectively to phishing 
detection.
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1. Introduction

Phishing refers to a kind of cyber-attack that 
uses social engineering, technical camouflage 
and other means of attack methods, by send-
ing fraudulent spam, real-time communication 
messages, etc., to trick users into clicking on 
fake phishing pages, in order to entice users to 
disclose sensitive information such as personal-
ly identifiable data and financial accounts. The 
Anti-Phishing Working Group (APWG) reports 
that the total number of phishing attacks in the 
first quarter of 2018 is a 46% increase over the 
last quarter of 2017 [1]. The continued growth 
of phishing attacks has had a huge negative im-
pact on the healthy development of the Internet 
and has become one of the most serious securi-
ty threats on the Internet.
Researchers have proposed a series of de-
tection methods for phishing webpage, in-
cluding blacklist-based detection methods, 
heuristic-based detection methods, visual sim-
ilarity-based detection methods, and machine 
learning-based detection methods. Among 
them, machine learning-based detection meth-
ods have achieved good detection results. How-
ever, with speeding up of phishing webpage up-
date and increasing of the complexity of feature 
data, traditional phishing detection technology 
still needs continuous improvement.
On the other hand, deep learning is a promis-
ing alternative to traditional methods. In recent 
years, deep learning has been applied in vari-
ous fields and has achieved great success. In 
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order to better detect phishing pages, a novel 
detection model for phishing webpages based 
on deep learning is proposed in this paper. Af-
ter summarizing the existing research results, a 
detection model for phishing webpages is pro-
posed. The model extracts the significant fea-
tures of phishing webpages based on analyzing 
a large number of the latest phishing samples, 
and proposes a deep learning-based method 
that combines Stacked Autoencoder (SAE) with 
Softmax by a combination of unsupervised and 
supervised learning modes. Hence, in training 
of model parameters, a method for determining 
the width of hidden layers based on correlation 
coefficient is proposed, which effectively im-
proves the training efficiency.
The main contributions in this paper are sum-
marized as follows:

 ● To characterize phishing pages in all direc-
tions and at multiple levels. Based on the 
analysis of phishing webpages, construct-
ing 52-dimensional feature vectors for 
phishing webpage detection from struc-
tural and lexical features of URL, Whois 
and DNS information, and source codes of 
HTML.

 ● To construct a phishing webpage detection 
model SSM (SAE-Softmax model), which 
is based on SAE and uses Softmax regres-
sion model to make the classification.

 ● To determine the width of hidden layers 
by correlation calculation between weight 
matrices of SAE, so that the width of hid-
den layers can be effectively adjusted.

The remaining sections of this paper are orga-
nized as follows: Section II shows the related 
works. Background work for Autoencoder (AE) 
is shown in Section III. Section IV shows the 
implementation of SSM. Section V describes 
the datasets and the comparative experiments. 
Finally, Section VI draws the conclusion and 
provides some implications for future work on 
phishing detection.

2. Related Works

2.1. Traditional Detection Methods

At present, the mainstream phishing webpage 
detection methods mainly include four catego-
ries.

1. Backlist-based detection methods simply 
match information such as URLs, which 
are easily implemented and have no false 
positives, but cannot identify phishing pag-
es which are not listed on the blacklist [2]. 

2. Heuristic-based detection methods de-
sign and implement heuristic rules based 
on the similarity between phishing pages. 
Typical detection systems include CAN-
TINA+ [3], etc. These methods can detect 
most unreported phishing websites in real 
time, but the premise is that the statistical 
features of phishing pages are unique and 
fuzzy matching technologies are adopted, 
so the false positive rate is high. 

3. Visual similarity-based detection meth-
ods convert the webpages to be detected 
into pictures and then compare the fea-
ture vectors of the tested webpage and the 
targeting webpage by image processing 
technologies. A typical method is EMD al-
gorithm proposed in [4]. This type of tech-
nology is powerless for phishing webpages 
which are not visually similar to the target-
ing webpage. 

4. Machine learning-based detection meth-
ods treat the phishing webpage detection 
as classification or clustering problem and 
then use the corresponding machine learn-
ing algorithms to construct the detection 
models. The clustering method first divides 
the webpage dataset into several clusters, 
and then distinguishes the phishing web-
pages and the normal webpages by marking 
the clusters [5]. The classification method 
constructs classification rules or classifiers 
based on the features of the labeled web-
pages and then maps unknown webpages 
to one of the given categories [6]. Although 
machine learning-based methods have 
good adaptability and extensibility, and 
the detection accuracy is high, tradition-
al machine learning methods are shallow 
level algorithms, and the ability to express 
complex functions is limited in the case 
of finite samples and computational units. 
The generalization ability of complex clas-
sification problems is limited.

Considering a dataset X with n samples and m 
features, the output of encoder Y represents the 
reduced representation of X and the decoder is 
tuned to reconstruct the original X to Z from 
the encoder's representation Y by minimizing 
the difference between X and Z, as illustrated 
in Figure 1. Y is the real outcome, which rep-
resents potential structure and characteristics of 
X. Specifically, the encoder is a function f that 
maps X to its hidden representation Y.

Figure 1. Diagram of the autoencoder.

The process is formulated as:

                 ( ) ( )f XY f X S WX b= = +             (1)

where S f is a nonlinear activation function and 
if it is an identity function, AE will do linear 
projection. The encoder is parameterized by a 
weight matrix W and a bias vector bX  ∈ Rn.
The decoder function g maps hidden represen-
tation Y back to a reconstruction Z:

                 ( ) ( )g YZ g Y S W'X b= = +             (2)

where Sg is activation function of the decoder, 
typically either the identity (yielding linear re-
construction) or a sigmoid. The decoder's pa-
rameters are biased vector bY and weight ma-
trix W', where W' is the inverse matrix of W. In 
this paper, we only explore the case of the tied 
weights when W' = W T.
Training an AE involves finding parameters 

( , , )X YW b bθ =  that minimize the reconstruc-

2.2. Deep Learning-Based Methods

In 2006, Hinton et al. proposed deep learning 
theory and then several deep learning models 
such as Deep Belief Network (DBN), AE, Con-
volutional Neural Networks (CNN), and Recur-
rent Neural Networks (RNN) were proposed. It 
has demonstrated state of the art performance 
in many applications such as speech recogni-
tion, natural language processing, etc. In recent 
years, researchers have applied deep learning to 
phishing webpage detection. For example, the 
literature [7-9] mentions applications of deep 
learning to analyze URLs, and the difference is 
that they use different methods, namely RNN, 
Denoising Autoencoder (DAE) and CNN, re-
spectively. Instead of manually extracting the 
features, all these researches learned represen-
tations from URL in different ways. On the 
other hand, there are some researches which 
focus on the texts on webpages and try to use 
new methods to learn new features represents 
phishing webpages. For example, in [10], fea-
tures were extracted for phishing and benign 
webpages and classified using a Deep Belief 
Network-based detection model, while in [10], 
a series of semantic features were extracted 
through word2vec and used to describe the fea-
tures of phishing webpages. Although all these 
solutions could classify the phishing websites 
precisely, they fail to use traditional phishing 
characters sufficiently. Following these suc-
cesses, we propose a new model based on deep 
learning to solve the problem of webpage phish-
ing detection by SAE and manually extracted 
statistical features, such as known stealing in-
formation and third-party services.

3. Background

3.1. AE

AE is an unsupervised deep learning method. 
The basic framework of AE comprises an in-
put layer, an output layer, and a hidden layer. 
Therein, the input layer and the output layer 
have the same structure, and when the input is 
equal to the output, the hidden layer represents 
potential structure and characteristics of the 
input. The aim of AE is to transform inputs 
into outputs with the least possible amount of 
deviation.
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tion loss on X and Z, the objective function is 
given as:

    min ( , ) min ( , ( ( )))L X Z L X g f X
θ θ

θ = = .    (3)

For linear reconstruction, the reconstruction 
loss (L1) is generally calculated by the squared 
error:

     2 2
1

1 1
( ) ( ( ))

n n

i i i i
i i

L x z x g f xθ
= =

= − = −∑ ∑    (4)

For nonlinear reconstruction, the reconstruction 
loss (L2) is generally from cross-entropy:
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where xi ∈ X, zi ∈ Z and yi ∈ Y.
In SAE, the weight matrix W and the offset b 
are adjusted layer-by-layer by stochastic gradi-
ent descent:

                   ( , )L X ZW W Wη ∂
← −

∂
                  (6)

                       ( , )L X Zb b bη ∂
← −

∂
                      (7)

where η is the learning rate.

3.2. SAE

AE contains only one hidden layer, which is a 
shallow learning model. The limitation of the 
shallow learning model is that the ability to rep-
resent complex functions is limited in the case 
of finite samples and computational units, and 
its generalization ability is constrained for com-
plex problems. A major advantage of AE is that 
it is easy to be stacked for generating different 

levels of new features to represent original ones 
by adding hidden layers. After training to get 
the first AE, take its hidden layer as input, use 
the same method to train the second AE, and 
then train to get multiple AEs. Multiple AEs are 
stacked together to form an SAE model. The 
training process of SAE is shown in Figure 2.
For an SAE with totally H hidden layers, the 
process of encoding is:
                  1( ( ( )))H iY f f f X= ⋅⋅⋅ ⋅ ⋅ ⋅                 (8)
where fi is the encoding function of layer i. The 
corresponding decoding function is:
                  1( ( ( )))H iZ g g g Y= ⋅⋅⋅ ⋅ ⋅ ⋅                 (9)

where gi is the decoding function of layer i and 
the SAE can be trained by a greedy layer-wise 
feed-forward approach.
Finally, SAE is combined with Softmax to 
construct SSM model. The features learned by 
SAE are used as input to the Softmax classifier 
to obtain the final classification result.

4. Proposed Methodology

4.1. Problem Setting and Systematic 
Design

Our goal is to classify a given webpage as ma-
licious or not. We do this by formulating the 
problem as a binary classification task. Consid-
er a set of N webpages, {(P1, L1), ..., (Pi, Li), 
..., (PN, LN)}, where i = 1, ..., N, Pi represents a 
webpage, and Ci ∈ {-1, +1} denotes the label 
of the webpage, with Ci = + 1 being a malicious 
webpage, and Ci = - 1 being a benign webpage. 
The first step in the classification procedure is 
to obtain a feature representation Pi → xi where 
xi ∈ Rm is the m-dimensional feature vector rep-
resenting webpage PN. The next step is to learn 
a prediction function f : Rm → R to predict the 
score of the class assignment for a webpage in-
stance. The prediction made by f is denoted as
� ( ( ))Z sign f p= . The aim is to learn a function
that can minimize the total number of mistakes 
in the entire dataset. This is often achieved by 
minimizing a loss function. In our methodol-
ogy, the function f is represented as an SAE 
network, and the cross-entropy loss function is 
adopted.

The systematic design of the SSM is illustrated 
in Figure 3. The input comprises a set of benign 
webpages and phishing webpages. Selection of 
features and normalization processes are car-
ried out in the feature extraction phase. Then 
the SAE network is used to implement data 
reconstruction, and Softmax is added as a su-
pervised classifier to assist in adjusting the net-
work, and then binary classification of benign 
and phishing webpages is carried out.

4.2. Feature Extraction

The first step of obtaining feature representation 
deals with obtaining useful information from 
URL and webpage that can be stored in a vector 
so that the methods based on machine learning 
can be applied to it. Various types of features 
have been considered. We have classified the 
extracted features into two categories includ-
ing URL related features and HTML based 
features. There is a total of 52 features which 
form a vector of 52 dimensions for a webpage
Pi, namely 0 1 51, , ..., .i i i ix x x x=

4.2.1. URL Related Features

URL related features are divided into URL-based 
features and third-party service features, and 
the third-party service features further include 
DNS-based features, Whois-based features, and 
ranking features.

 ● URL-based features

Table 1 lists some of the typical features ex-
tracted from URLs.

Table 1. URL-based features.

Feature Type Description
Length Numeric Length of a URL

IP address Bool Whether there is IP address in 
URL

Depth Numeric Number of '/' in URL
@ Bool Whether there is @ in URL

 ● DNS-based features
Table 2 lists some of the typical features ex-
tracted from DNS information corresponding 
to the domain in URLs.

Table 2. DNS-based features.

Feature Type Description
Missing  

information Bool Whether there is information 
missing in DNS

A record Numeric Number of A records in DNS
NS record Numeric Number of NS records in DNS

 ● Whois-based features
Whois describes the details of the DNS, includ-
ing whether the domain is registered, by whom 
it was registered, registrar, registration time, 
updated time, destruction time, and so on. Typ-
ical features are shown in Table 3.

Table 3. Whois-based features.

Feature Type Description
Missing  

information Bool Whether there is informa-
tion missing in Whois

End time Numeric
The difference between 

current time and termina-
tion time of the domain

Survival 
time Numeric

The difference between ter-
mination time and creation 

time of the domain

Figure 3. The architecture of SSM.

Figure 2. The schematic structure of SAE.
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 ● Ranking features
The ranking features, shown in Table 4, are 
mainly based on the Alexa Rank, which is also 
known as the page level.

Table 4. Ranking features.

Feature Type Description

Ranking Numeric The comprehensive rank of 
webpages on Alexa Rank

Visiting traffic  
ranking Numeric Visiting rank on Alexa 

Rank

4.2.2. HTML-Based Features

This paper divides the HTML-based features 
into three categories. In order to calculate val-
ues of the first two types of features, here are a 
few symbol definitions: L represents the num-
ber of links in the attribute of current tag. LE 
represents the number of empty links in the at-
tribute of current tag. LC represents the number 
of links pointing to the current domain in the 
attribute of current tag.

 ● Feature of empty links
To count the empty links in the attribute of tags, 
calculate ME:

        

0 if 0
/ if 0
1 Tag does not exist

LE
ME LE L LE

=
= >
 −      

(10)

 ● Feature of pointing to the current domain
To count the links to the current domain in the 
attribute of tags, calculate MC:

       

0 if 0
/ if 0
1 Tag does not exist

LC
MC LC L LC

=
= >
 −      

(11)

 ● The third type of features, including the ti-
tle attribute and the keyword attribute, is 
all Bool.

Table 5 lists some of the typical features ex-
tracted from HTML.

4.3. Normalization

To make features in the same order of magni-
tude, we made the value of the features nor-
malized to [0, 1]. Assuming that the j-th feature 
xi, j of the sample xi is numeric, three kinds of 
normalization algorithms are adopted, namely 
Minimum_Maximum normalization, Statisti-
cal normalization, and Decimal normalization. 
Their respective formula is as follows:

 ● Minimum_Maximum normalization

          

, ,
1 ,

, ,

min( )
( ) max( ) min( )

i j j
i j

j j

x x
f x x x

−
=

−           
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where min(x , j) and max(x , j) are minimum and 
maximum values of the j-th attribute of all sam-
ples, respectively.

 ● Statistical normalization

                   2 , ,( ) ( ) /i j i jf x x µ σ= −              (13)

where µ represents the average of the j-th attri-
bute of all samples, and σ  is the standard devi-
ation.

 ● Decimal normalization

                       3 , ,( ) /10q
i j i jf x x=                 (14)

where q is the smallest integer to enable the 
maximum of the j-th attribute is in the interval 
[0, 1].

4.4. Parameter Optimization of SSM

Experience has shown that the performance of 
deep learning models depends mainly on the 
network structure, especially the width of hid-
den layers. However, the selection of the num-
ber of hidden layer nodes is a very complicated 
problem. For the classification problem, if the 
width of hidden layers is too small, the training 
and testing accuracy will be relatively poor, and 
it is difficult to deal with complicated problems; 
if the width is too large, the training will take 
too long, and the classification performance 
will decrease, resulting in over-fitting. The 
methods for determining the width are mainly 
trial and error method [12], empirical formu-
la method [13], growth method [14], pruning 
method [15], adaptive increase and decrease 
algorithm [16], genetic algorithm [17], etc. 
However, these methods have their limitations. 
The trial and error method is a kind of blindly 
searching algorithm with a large computation-
al overhead. The empirical formula method is 
completely based on experience, as it lacks the 
corresponding theoretical basis. It is effective 
for specific samples but lacks a universal for-
mula. Growth and pruning are the most studied 
methods at present. The growth method starts 
with the fewest number of nodes and then grad-
ually adds new nodes until the network struc-
ture is optimal, and the pruning rule does the 
same in reverse. However, when to terminate 
is a problem for both methods, so the calcula-
tion costs of both algorithms are huge. Genetic 
algorithm is generally used in conjunction with 
the growth method or the pruning method. The 
main problem is that the convergence speed is 
slow and prone to oscillation.
In order to determine the suitable width of hid-
den layers quickly, this paper proposes an adap-
tive optimization algorithm based on weight 
correlation.

4.4.1. Basic Idea

According to the definition of the correlation 
coefficient, the absolute value of the correlation 
coefficient R between the two variables is be-
tween 0 and 1. The closer |R| is to 0, the smaller 
the correlation between the two variables. Ac-
cording to the theory of detection, R between 
the samples has a significant influence on the 

error rate of the classification, and the best ef-
fect of the classification is optimal when R is 
0. SAE is a multi-layered network. If taking 
weights of the nodes in the hidden layer as sam-
ples, then the closer the correlation coefficient 
between these weights is to 0, the larger the 
difference between the nodes, and perhaps the 
better the classification effect will be. Based on 
the above analysis, our goal is to find the net-
work structure that maximizes the gap among 
the hidden layer nodes and select the width of 
hidden layers in this case.
This paper completes this process in two steps. 
The first is to initialize the network structure 
by setting the widths of the input layer and the 
first hidden layer. The number of input neurons 
equals the feature dimension of the input data, 
and the number of nodes in the first hidden lay-
er is set artificially. Because we have not deter-
mined the explicit relationship between the in-
put dimension and the width in the first hidden 
layer, the width in the first hidden layer cannot 
be adjusted automatically, and therefore is only 
set to be less than the input neurons. The second 
step is to determine the width of other hidden 
layers. A method to calculate correlation coeffi-
cient between weight matrices is proposed here, 
and it is used to determine the width of the cur-
rent layer.

4.4.2. Determination of the Width by 
Correlation Coefficient

First, we clarify the concept of weight matrix. 
Weight matrix is a matrix formed by the con-
nection weights among all nodes of the current 
layer and the previous layer.
For example, Figure 4 shows weights between 
two hidden layers. And its weights matrix is 
shown as W.
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The elements in W, while i = 1, 2, ..., m, and 
j = 1, 2, ..., n, represent weight of the connection 
between the i-th neuron of the current layer and 

Table 5. HTML-based features.

Feature Type Description

Input Numeric

Count value L of the input 
tag, and count the number 

of links with sensitive 
words after the input tag, 
recording it as LM, and 

calculate LM/L

Link_ 
empty Numeric ME of link tag

Link Numeric MC of link tag

Title Bool
Whether the attribute of 
the title tag contains the 

domain of the current page
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 ● Ranking features
The ranking features, shown in Table 4, are 
mainly based on the Alexa Rank, which is also 
known as the page level.

Table 4. Ranking features.

Feature Type Description

Ranking Numeric The comprehensive rank of 
webpages on Alexa Rank

Visiting traffic  
ranking Numeric Visiting rank on Alexa 

Rank

4.2.2. HTML-Based Features

This paper divides the HTML-based features 
into three categories. In order to calculate val-
ues of the first two types of features, here are a 
few symbol definitions: L represents the num-
ber of links in the attribute of current tag. LE 
represents the number of empty links in the at-
tribute of current tag. LC represents the number 
of links pointing to the current domain in the 
attribute of current tag.

 ● Feature of empty links
To count the empty links in the attribute of tags, 
calculate ME:

        

0 if 0
/ if 0
1 Tag does not exist
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To count the links to the current domain in the 
attribute of tags, calculate MC:
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 ● The third type of features, including the ti-
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all Bool.

Table 5 lists some of the typical features ex-
tracted from HTML.
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To make features in the same order of magni-
tude, we made the value of the features nor-
malized to [0, 1]. Assuming that the j-th feature 
xi, j of the sample xi is numeric, three kinds of 
normalization algorithms are adopted, namely 
Minimum_Maximum normalization, Statisti-
cal normalization, and Decimal normalization. 
Their respective formula is as follows:
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where min(x , j) and max(x , j) are minimum and 
maximum values of the j-th attribute of all sam-
ples, respectively.
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where µ represents the average of the j-th attri-
bute of all samples, and σ  is the standard devi-
ation.

 ● Decimal normalization

                       3 , ,( ) /10q
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where q is the smallest integer to enable the 
maximum of the j-th attribute is in the interval 
[0, 1].

4.4. Parameter Optimization of SSM

Experience has shown that the performance of 
deep learning models depends mainly on the 
network structure, especially the width of hid-
den layers. However, the selection of the num-
ber of hidden layer nodes is a very complicated 
problem. For the classification problem, if the 
width of hidden layers is too small, the training 
and testing accuracy will be relatively poor, and 
it is difficult to deal with complicated problems; 
if the width is too large, the training will take 
too long, and the classification performance 
will decrease, resulting in over-fitting. The 
methods for determining the width are mainly 
trial and error method [12], empirical formu-
la method [13], growth method [14], pruning 
method [15], adaptive increase and decrease 
algorithm [16], genetic algorithm [17], etc. 
However, these methods have their limitations. 
The trial and error method is a kind of blindly 
searching algorithm with a large computation-
al overhead. The empirical formula method is 
completely based on experience, as it lacks the 
corresponding theoretical basis. It is effective 
for specific samples but lacks a universal for-
mula. Growth and pruning are the most studied 
methods at present. The growth method starts 
with the fewest number of nodes and then grad-
ually adds new nodes until the network struc-
ture is optimal, and the pruning rule does the 
same in reverse. However, when to terminate 
is a problem for both methods, so the calcula-
tion costs of both algorithms are huge. Genetic 
algorithm is generally used in conjunction with 
the growth method or the pruning method. The 
main problem is that the convergence speed is 
slow and prone to oscillation.
In order to determine the suitable width of hid-
den layers quickly, this paper proposes an adap-
tive optimization algorithm based on weight 
correlation.

4.4.1. Basic Idea

According to the definition of the correlation 
coefficient, the absolute value of the correlation 
coefficient R between the two variables is be-
tween 0 and 1. The closer |R| is to 0, the smaller 
the correlation between the two variables. Ac-
cording to the theory of detection, R between 
the samples has a significant influence on the 

error rate of the classification, and the best ef-
fect of the classification is optimal when R is 
0. SAE is a multi-layered network. If taking 
weights of the nodes in the hidden layer as sam-
ples, then the closer the correlation coefficient 
between these weights is to 0, the larger the 
difference between the nodes, and perhaps the 
better the classification effect will be. Based on 
the above analysis, our goal is to find the net-
work structure that maximizes the gap among 
the hidden layer nodes and select the width of 
hidden layers in this case.
This paper completes this process in two steps. 
The first is to initialize the network structure 
by setting the widths of the input layer and the 
first hidden layer. The number of input neurons 
equals the feature dimension of the input data, 
and the number of nodes in the first hidden lay-
er is set artificially. Because we have not deter-
mined the explicit relationship between the in-
put dimension and the width in the first hidden 
layer, the width in the first hidden layer cannot 
be adjusted automatically, and therefore is only 
set to be less than the input neurons. The second 
step is to determine the width of other hidden 
layers. A method to calculate correlation coeffi-
cient between weight matrices is proposed here, 
and it is used to determine the width of the cur-
rent layer.

4.4.2. Determination of the Width by 
Correlation Coefficient

First, we clarify the concept of weight matrix. 
Weight matrix is a matrix formed by the con-
nection weights among all nodes of the current 
layer and the previous layer.
For example, Figure 4 shows weights between 
two hidden layers. And its weights matrix is 
shown as W.
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The elements in W, while i = 1, 2, ..., m, and 
j = 1, 2, ..., n, represent weight of the connection 
between the i-th neuron of the current layer and 

Table 5. HTML-based features.

Feature Type Description

Input Numeric

Count value L of the input 
tag, and count the number 

of links with sensitive 
words after the input tag, 
recording it as LM, and 

calculate LM/L

Link_ 
empty Numeric ME of link tag
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Whether the attribute of 
the title tag contains the 
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the j-th neuron of the previous layer where m is 
the number of neurons in the current layer and 
n is the number of neurons in the previous layer.

When a hidden layer adopts different widths, 
the network structure will change, so the weight 
matrix W will change accordingly. We want to 
determine the optimal width by learning the 
correlation of these weight matrices.

Firstly, we need to get the weight matrices un-
der different network structures. To do this, on 
the basis of the initial width, we increase the 
width of the current hidden layer by the fixed 
nodes (for example, t) each round, until the to-
tal width is greater than or equal to the width of 
the previous layer. A weight matrix between the 
current hidden layer and the previously hidden 
layer will be got each round.

For example, assuming the width of the previ-
ous layer is o, the width of the previous round 
of the current layer is s, and the weight matrix is 
denoted as A; if the width of the current round 
of the current layer is s + t (s + t ≤ o), then the 
weight matrix is denoted as B.
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And then we try to perform correlation analysis 
on these matrices. Here a method for calculat-
ing correlation coefficient between neighboring 
matrices is needed. Take correlation coefficient 
between A and B as example. Since s ≠ s + t, the 
correlation coefficient between A and B cannot 
be calculated directly through traditional meth-
od. We first set the average of the values of the 
same column of each matrix to get two row 
vectors A' and B'. Where:

1 2, , ..., oA' wa wa wa =  

1 2, , ..., ,oB' wb wb wb =    
while:

1, 2, ,...
,j j s j

j
wa wa wa

wa s
+ + +

=

1, 2, ,...
, 1, 2, ..., .j j s t j

j
wb wb wb

wb j os t
++ + +

= =
+

Then average all the elements of the two gener-
ated row vectors to get two mean values:

1 2 ... ,owa wa wawa o
+ + +

=

1 2 ... .owb wb wbwb o
+ + +

=

Bring these values into classical correlation co-
efficient equation to get the correlation coeffi-
cient between the two matrices, see [15]:
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where R is correlation coefficient between 
A and B. After all correlation coefficients for 
neighboring rounds are calculated, we set the 
width to the number of nodes whose absolute 
value of correlation coefficient is nearest to 0.

5. Experimental Results and Analysis

In order to verify the feasibility and effective-
ness of SSM, we designed three sets of exper-
iments.

5.1. Experimental Preparation

5.1.1. Experimental Environment

The experimental development environment is 
shown in Table 6. The fixed hyperparameters 
used in SSM are as follows: learning rate equals 
to 0.1, weight regularization is 0.001, times of 
iterations is 1000, activation function is ReLu, 
and loss function is cross-entropy. The hyper-
parameters adjusted in experiments are the 
number of hidden layers and the width of the 
hidden layer.

Table 6. Development environment.

Operating 
system CPU RAM Development 

environment

Windows 10

IntelCore 
i5-7200U 

CPU 
@2.5GHz

4GB Matlab2016R

5.1.2. Basic Dataset

The basic dataset used in the experiments is ob-
tained from the real network environment. The 
legal webpages come from Alexa. Alexa is a 
dedicated website managed by Amazon to pub-
lish an authoritative ranking of websites, so it 
has a large number of URLs and detailed rank-
ing information. After filtering out some inval-
id, erroneous and duplicate pages, we collected 
8,848 benign webpages from Alexa.
The phishing webpages are from PhishTank.
com, which is an internationally renowned 
website that collects a timely and authoritative 
list of phishing webpages. We collected 11,321 
phishing webpages listed on PhishTank from 
February 2016 to April 2016. In addition, web-
pages that do not conform to grammar rules and 
benign webpages mixed in phishing datasets 
are processed.

We collected and saved URL, HTML source 
file, and a screenshot of each collected page.

5.1.3. Evaluating Indicators

The various evaluating indicators in literature 
were summarized, the most commonly used are 
Accuracy, Recall, True Positive Rate (TPR), 
False Positive Rate (FPR), True Negative Rate 
(TNR) and False Negative Rate (FNR), shown 
in Table 7.

Table 7. Evaluating indicators.

Evaluating indicators Formula

Accuracy (TP+TN) / (TP+TN+FP+FN)

TPR (Recall) TP / (TP + FN)

FPR FP / (TN + FP)

TNR TN / (TN + FP)

FNR FN / (TP + FN)

In Table 7, TP (True Positive) denotes the num-
ber of benign webpages correctly classified as 
benign webpages, FP (False Positive) denotes 
the number of phishing webpages classified as 
benign webpages, TN (True Negative) denotes 
the number of phishing webpages classified as 
phishing webpages, and FN (False Negative) 
denotes the number of benign webpages classi-
fied as phishing webpages.

5.1.4. Baselines

In order to see how well the proposed SSM 
models perform with respect to the existing 
methods for phishing webpage detection, we 
compare SSM with four baseline models: Sup-
port Vector Machines (SVM), Naive Bayes 
(NB), CNN and RNN.

5.2. Result Evaluation

5.2.1. Experiment 1: Determining the Number 
of Hidden Layers

This experiment aims to determine the optimal 
number of hidden layers in SAE. In the begin-

Figure 4. Two hidden layer and weights.
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the j-th neuron of the previous layer where m is 
the number of neurons in the current layer and 
n is the number of neurons in the previous layer.

When a hidden layer adopts different widths, 
the network structure will change, so the weight 
matrix W will change accordingly. We want to 
determine the optimal width by learning the 
correlation of these weight matrices.

Firstly, we need to get the weight matrices un-
der different network structures. To do this, on 
the basis of the initial width, we increase the 
width of the current hidden layer by the fixed 
nodes (for example, t) each round, until the to-
tal width is greater than or equal to the width of 
the previous layer. A weight matrix between the 
current hidden layer and the previously hidden 
layer will be got each round.

For example, assuming the width of the previ-
ous layer is o, the width of the previous round 
of the current layer is s, and the weight matrix is 
denoted as A; if the width of the current round 
of the current layer is s + t (s + t ≤ o), then the 
weight matrix is denoted as B.
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And then we try to perform correlation analysis 
on these matrices. Here a method for calculat-
ing correlation coefficient between neighboring 
matrices is needed. Take correlation coefficient 
between A and B as example. Since s ≠ s + t, the 
correlation coefficient between A and B cannot 
be calculated directly through traditional meth-
od. We first set the average of the values of the 
same column of each matrix to get two row 
vectors A' and B'. Where:
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where R is correlation coefficient between 
A and B. After all correlation coefficients for 
neighboring rounds are calculated, we set the 
width to the number of nodes whose absolute 
value of correlation coefficient is nearest to 0.

5. Experimental Results and Analysis

In order to verify the feasibility and effective-
ness of SSM, we designed three sets of exper-
iments.

5.1. Experimental Preparation

5.1.1. Experimental Environment

The experimental development environment is 
shown in Table 6. The fixed hyperparameters 
used in SSM are as follows: learning rate equals 
to 0.1, weight regularization is 0.001, times of 
iterations is 1000, activation function is ReLu, 
and loss function is cross-entropy. The hyper-
parameters adjusted in experiments are the 
number of hidden layers and the width of the 
hidden layer.

Table 6. Development environment.

Operating 
system CPU RAM Development 

environment

Windows 10

IntelCore 
i5-7200U 

CPU 
@2.5GHz

4GB Matlab2016R

5.1.2. Basic Dataset

The basic dataset used in the experiments is ob-
tained from the real network environment. The 
legal webpages come from Alexa. Alexa is a 
dedicated website managed by Amazon to pub-
lish an authoritative ranking of websites, so it 
has a large number of URLs and detailed rank-
ing information. After filtering out some inval-
id, erroneous and duplicate pages, we collected 
8,848 benign webpages from Alexa.
The phishing webpages are from PhishTank.
com, which is an internationally renowned 
website that collects a timely and authoritative 
list of phishing webpages. We collected 11,321 
phishing webpages listed on PhishTank from 
February 2016 to April 2016. In addition, web-
pages that do not conform to grammar rules and 
benign webpages mixed in phishing datasets 
are processed.

We collected and saved URL, HTML source 
file, and a screenshot of each collected page.

5.1.3. Evaluating Indicators

The various evaluating indicators in literature 
were summarized, the most commonly used are 
Accuracy, Recall, True Positive Rate (TPR), 
False Positive Rate (FPR), True Negative Rate 
(TNR) and False Negative Rate (FNR), shown 
in Table 7.

Table 7. Evaluating indicators.

Evaluating indicators Formula

Accuracy (TP+TN) / (TP+TN+FP+FN)

TPR (Recall) TP / (TP + FN)

FPR FP / (TN + FP)

TNR TN / (TN + FP)
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In Table 7, TP (True Positive) denotes the num-
ber of benign webpages correctly classified as 
benign webpages, FP (False Positive) denotes 
the number of phishing webpages classified as 
benign webpages, TN (True Negative) denotes 
the number of phishing webpages classified as 
phishing webpages, and FN (False Negative) 
denotes the number of benign webpages classi-
fied as phishing webpages.

5.1.4. Baselines

In order to see how well the proposed SSM 
models perform with respect to the existing 
methods for phishing webpage detection, we 
compare SSM with four baseline models: Sup-
port Vector Machines (SVM), Naive Bayes 
(NB), CNN and RNN.

5.2. Result Evaluation

5.2.1. Experiment 1: Determining the Number 
of Hidden Layers

This experiment aims to determine the optimal 
number of hidden layers in SAE. In the begin-

Figure 4. Two hidden layer and weights.
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ning, it sets the number of hidden layers to 2, 
the width of the input and output layer is both 
52 and the width of each layer is 50 and 40, 
respectively. It uses this structure to conduct an 
experiment. Then it adjusts the network struc-
ture in every subsequent experiment by add-
ing one hidden layer and reducing the width of 
hidden layers by 10 each time, and completes 
4 sets of experiments. The results are shown in 
Table 8. It should be noticed that in the fifth 
experiment, the width of the last hidden layer 
is set to 5.

It should be known that the best classification 
results are achieved when the number of hidden 
layers is 2, and the increase of the number of 
hidden layers could not lead to better results. 
Especially, when there are more than 4 layers, 
both phishing and benign webpages are classi-
fied as benign. According to the results, in the 
subsequent experiments, we fixed the number 
of hidden layers to 2.

Table 8. Experimental results.

Network 
structure Accuracy FPR FNR TPR TNR

50-40 0.9989 0.0007 0.0014 0.9985 0.9992

50-40-30 0.9977 0.0016 0.0026 0.9973 0.9983
50-40-30-

20 0.9544 0.0347 0.0150 0.9849 0.9652

50-40-30-
20-10 0.5744 1.0 0.0 1.0 0.0

50-40-30-
20-10-5 0.5744 1.0 0.0 1.0 0.0

5.2.2. Experiment 2: Determining the Width of 
Hidden Layers

 ● Experiment on the basic dataset

The width of the first hidden layer is set to 50, 
and the width of the second hidden layer is cal-
culated by Equation 15. At first, the initial width 
of the second hidden layer is set to 5, and then 5 
nodes are added each round, keeping other hy-
perparameters unchanged. Figure 5 shows the 
correlation coefficients among different widths 
of the second hidden layer, where the correla-
tion coefficients are the absolute values. 

Figure 5. Change of correlation coefficient in the second 
hidden layer on the basic dataset.

Figure 5 shows that the width is 40 when the 
correlation coefficient is minimum. Accord-
ing to our hypothesis, the classification effect 
should be the best when the absolute value of 
the correlation coefficient is the closest to 0. 
To verify this, we calculated the performance 
of SSM under different network structures, as 
shown in Table 9. The two values in the net-
work structure are the width of the first and the 
second hidden layer, respectively.

Table 9. Experimental results on the basic dataset.

Network 
structure Accuracy FPR FNR TPR TNR

50-10 0.9978 0.0015 0.0009 0.9990 0.9984
50-15 0.9983 0.0012 0.0009 0.9990 0.9987
50-20 0.9983 0.0012 0.0009 0.9990 0.9987
50-25 0.9980 0.0014 0.0009 0.9990 0.9985
50-30 0.9976 0.0017 0.0004 0.9995 0.9982
50-35 0.9978 0.0015 0.0009 0.9990 0.9987
50-40 0.9995 0.0012 0.0004 0.9995 0.9987
50-45 0.9971 0.0021 0.0002 0.9997 0.9978

From Table 9, we notice that SSM obtains the 
best classification results when the width of the 
second hidden layer is 40, and this result is in 
line with our expectations.

 ● Experiment on a combined dataset

In order to avoid the contingency and to ensure 
the credibility of the above experiments, we 
repeated the above experiments on two other 
datasets. Firstly, we expand the original dataset 
to form a combined dataset. The dataset is ob-

tained by copying the original data three times, 
and then the training set and the testing set are 
reconstructed for verification by random ex-
traction. The experiment setup is the same as in 
the previous experiments. Figure 6 shows cor-
relation coefficients among different widths of 
the second hidden layer.

Figure 6. Change of correlation coefficient in the second 
hidden layer on the combined dataset.

It can be seen that the width of the second hid-
den layer is 35 when the correlation coefficient 
is minimum, and we calculated the performance 
of SSM under different network structures to 
verify this, as shown in Table 10.

Table 10. Experimental results on the combined dataset.

Network 
structure Accuracy FPR FNR TPR TNR

50-10 0.9997 0.0001 0 1 0.9998
50-15 0.9997 0.0001 0 1 0.9998
50-20 0.9995 0.0003 0 1 0.9996
50-25 0.9997 0.0001 0 1 0.9998
50-30 0.9997 0.0001 0 1 0.9998
50-35 0.9998 0.0001 0 1 0.9999
50-40 0.9995 0.0003 0 1 0.9996
50-45 0.9997 0.0001 0 1 0.9998

As can be seen from Table 10, the best result 
is when the width is 35. Although in this ex-
periment the width is different from the optimal 
width on the basic dataset, the result still sup-
ports our hypothesis.

 ● Experiment on a classic dataset
In order to avoid the contingency caused by the 
particularity of the dataset that we collected, a 

classic dataset for binary classification prob-
lem, GermanCredit [18], was used to check 
our theory. Each sample of GermanCredit has 
24-dimensional features, so the width of the 
first hidden layer is manually set to 20. Because 
the dataset is different from the above two, we 
re-do Experiment 1 to determine the optimal 
number of hidden layers. The experimental re-
sults are shown in Table 11.

Table 11. Determining the number of hidden layers.

Network 
structure Accuracy FPR FNR TPR TNR

20-15 0.5111 0.1885 0.5430 0.4569 0.8114
20-15-12 0.5486 0.2371 0.4503 0.5486 0.7613
20-15-
12-9 0.4940 0.4635 0.5707 0.4292 0.5364

20-15-12-
9-6 0.4560 1.0 0.0 1.0 0.0

20-15-12-
9-6-3 0.4560 1.0 0.0 1.0 0.0

The results show that 3 hidden layers will per-
form the best. So, firstly, we calculate the cor-
relation coefficients between the first and the 
second hidden layers and get Figure 7.

Figure 7. Change of correlation coefficient in the second 
hidden layer on GermanCredit.

Figure 7 shows that the width is 12 when the 
correlation coefficient is minimum. Since it is 
not known at present what width is appropriate 
for the third layer, the experiment below just 
considers two hidden layers. The classification 
result is shown in Table 12.
It can be seen that the performance is optimal 
when the width of the second hidden layer is 
12. We then carry out the same experiment on 
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ning, it sets the number of hidden layers to 2, 
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hidden layers by 10 each time, and completes 
4 sets of experiments. The results are shown in 
Table 8. It should be noticed that in the fifth 
experiment, the width of the last hidden layer 
is set to 5.

It should be known that the best classification 
results are achieved when the number of hidden 
layers is 2, and the increase of the number of 
hidden layers could not lead to better results. 
Especially, when there are more than 4 layers, 
both phishing and benign webpages are classi-
fied as benign. According to the results, in the 
subsequent experiments, we fixed the number 
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 ● Experiment on the basic dataset

The width of the first hidden layer is set to 50, 
and the width of the second hidden layer is cal-
culated by Equation 15. At first, the initial width 
of the second hidden layer is set to 5, and then 5 
nodes are added each round, keeping other hy-
perparameters unchanged. Figure 5 shows the 
correlation coefficients among different widths 
of the second hidden layer, where the correla-
tion coefficients are the absolute values. 

Figure 5. Change of correlation coefficient in the second 
hidden layer on the basic dataset.

Figure 5 shows that the width is 40 when the 
correlation coefficient is minimum. Accord-
ing to our hypothesis, the classification effect 
should be the best when the absolute value of 
the correlation coefficient is the closest to 0. 
To verify this, we calculated the performance 
of SSM under different network structures, as 
shown in Table 9. The two values in the net-
work structure are the width of the first and the 
second hidden layer, respectively.

Table 9. Experimental results on the basic dataset.

Network 
structure Accuracy FPR FNR TPR TNR

50-10 0.9978 0.0015 0.0009 0.9990 0.9984
50-15 0.9983 0.0012 0.0009 0.9990 0.9987
50-20 0.9983 0.0012 0.0009 0.9990 0.9987
50-25 0.9980 0.0014 0.0009 0.9990 0.9985
50-30 0.9976 0.0017 0.0004 0.9995 0.9982
50-35 0.9978 0.0015 0.0009 0.9990 0.9987
50-40 0.9995 0.0012 0.0004 0.9995 0.9987
50-45 0.9971 0.0021 0.0002 0.9997 0.9978

From Table 9, we notice that SSM obtains the 
best classification results when the width of the 
second hidden layer is 40, and this result is in 
line with our expectations.

 ● Experiment on a combined dataset

In order to avoid the contingency and to ensure 
the credibility of the above experiments, we 
repeated the above experiments on two other 
datasets. Firstly, we expand the original dataset 
to form a combined dataset. The dataset is ob-

tained by copying the original data three times, 
and then the training set and the testing set are 
reconstructed for verification by random ex-
traction. The experiment setup is the same as in 
the previous experiments. Figure 6 shows cor-
relation coefficients among different widths of 
the second hidden layer.

Figure 6. Change of correlation coefficient in the second 
hidden layer on the combined dataset.

It can be seen that the width of the second hid-
den layer is 35 when the correlation coefficient 
is minimum, and we calculated the performance 
of SSM under different network structures to 
verify this, as shown in Table 10.

Table 10. Experimental results on the combined dataset.

Network 
structure Accuracy FPR FNR TPR TNR

50-10 0.9997 0.0001 0 1 0.9998
50-15 0.9997 0.0001 0 1 0.9998
50-20 0.9995 0.0003 0 1 0.9996
50-25 0.9997 0.0001 0 1 0.9998
50-30 0.9997 0.0001 0 1 0.9998
50-35 0.9998 0.0001 0 1 0.9999
50-40 0.9995 0.0003 0 1 0.9996
50-45 0.9997 0.0001 0 1 0.9998

As can be seen from Table 10, the best result 
is when the width is 35. Although in this ex-
periment the width is different from the optimal 
width on the basic dataset, the result still sup-
ports our hypothesis.

 ● Experiment on a classic dataset
In order to avoid the contingency caused by the 
particularity of the dataset that we collected, a 

classic dataset for binary classification prob-
lem, GermanCredit [18], was used to check 
our theory. Each sample of GermanCredit has 
24-dimensional features, so the width of the 
first hidden layer is manually set to 20. Because 
the dataset is different from the above two, we 
re-do Experiment 1 to determine the optimal 
number of hidden layers. The experimental re-
sults are shown in Table 11.

Table 11. Determining the number of hidden layers.

Network 
structure Accuracy FPR FNR TPR TNR

20-15 0.5111 0.1885 0.5430 0.4569 0.8114
20-15-12 0.5486 0.2371 0.4503 0.5486 0.7613
20-15-
12-9 0.4940 0.4635 0.5707 0.4292 0.5364

20-15-12-
9-6 0.4560 1.0 0.0 1.0 0.0

20-15-12-
9-6-3 0.4560 1.0 0.0 1.0 0.0

The results show that 3 hidden layers will per-
form the best. So, firstly, we calculate the cor-
relation coefficients between the first and the 
second hidden layers and get Figure 7.

Figure 7. Change of correlation coefficient in the second 
hidden layer on GermanCredit.

Figure 7 shows that the width is 12 when the 
correlation coefficient is minimum. Since it is 
not known at present what width is appropriate 
for the third layer, the experiment below just 
considers two hidden layers. The classification 
result is shown in Table 12.
It can be seen that the performance is optimal 
when the width of the second hidden layer is 
12. We then carry out the same experiment on 
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the third hidden layer. The result is shown in 
Figure 8.
According to Figure 8 and our theory, the width 
of the third hidden layer should be set to 4. To 
verify this, we use SSM on GermanCredit to 
get classification results, as shown in Table 13.

Figure 8. Change of correlation coefficient in the third 
hidden layer on GermanCredit.

Table 13. Experimental results on GermanCredit 
(three hidden layers).

Network 
structure Accuracy FPR FNR TPR TNR

20-12-2 0.4685 0.2171 0.5562 0.4437 0.7828

20-12-4 0.5684 0.1800 0.4503 0.5496 0.8200

20-12-6 0.4580 0.2400 0.5298 0.4701 0.2285

20-12-8 0.5099 0.2514 0.4900 0.5099 0.7485

20-12-10 0.5496 0.2371 0.4503 0.5496 0.7628

Table 12. Experimental results on GermanCredit  
(two hidden layers).

Network 
structure Accuracy FPR FNR TPR TNR

20-3 0.5118 0.4189 0.5695 0.4304 0.8228

20-6 0.4569 0.2000 0.5430 0.4569 0.8000

20-9 0.5267 0.1771 0.5430 0.4569 0.8228

20-12 0.5419 0.1714 0.5298 0.4701 0.8285

20-15 0.5111 0.1885 0.5430 0.4569 0.8114

Integrating all indicators, it is shown that the 
performance is best when the network structure 
is 20-12-4. 
The experiments on three datasets have proved 
that the width of hidden layer can be set when 
the correlation coefficient is the closest to 0.

5.2.3. Experiment 3: Compared with Existing 
Phishing Webpage Detection Methods

Here we compare the classification results of 
SSM (with 2 hidden layers and 50-40 network 
structure) with that of an existing phishing web-
page detection methods. Among them, the main 
hyperparameters of CNN and RNN are the same 
as the SSM model. CNN convolution kernel is 
64, height and width of convolution window are 
both 3, height and width of max-pooling win-
dow are both 2, RNN units are 50. In addition, 
the CNN and RNN models incorporate dropout 
(0.5) to prevent overfitting. The experimental 
results are shown in Table 14. Time of computa-
tion for one iteration is shown in the last column.

Table 14. Comparison with existing detection methods.

Algo-
rithm

Accu-
racy FPR FNR TPR TNR Time 

(s)
SSM 0.9995 0.0012 0.0004 0.9995 0.9987 0.08

SVM 0.9112 0.0552 0.0887 0.9242 0.9112 3.60

NB 0.9441 0.0584 0.0858 0.9205 0.9441 0.45

CNN 0.9952 0.0028 0.0074 0.9925 0.9971 2.12

RNN 0.9962 0.0031 0.0045 0.9954 0.9968 0.49

As can be seen from Table 14, the SSM shows 
a significant improvement in performance 
compared to the traditional machine learning 
methods SVM and NB. Compared to CNN and 
RNN, SSM also achieved the best performance 
in the above configuration. Since we can't rule 
out all the hyperparameters, we don't rule out 
that SSM is not optimal in some cases. In addi-
tion, the SSM model takes the shortest amount 
of time in computing. This may be because we 
only use two hidden layers, but we can still see 
that the SSM algorithm has achieved a certain 
degree of improvement in evaluation indicators 
and computational efficiency. The practice has 
proved that SSM can effectively classify phish-
ing and benign webpages.

6. Conclusion

This paper proposes an SAE-based model for 
phishing webpage detection. SAE-Softmax 
model abstracts a variety of features from URL, 
DNS, Whois, and HTML, and uses SAE-Soft-
max to construct the classifier model. In partic-
ular, a method for determining the width of the 
hidden layer based on correlation coefficient is 
proposed. Experiments show that SAE-Soft-
max model has achieved good performance.
In SAE-Softmax model, the features of the 
phishing webpages are still manually extracted. 
However, with the escalation of offensive and 
defensive competition, some typical features of 
phishing pages are gradually disappearing, new 
features are constantly appearing, and methods 
for discovering new features are time-consum-
ing and laborious. In recent years, researches on 
using deep learning to extract latent features au-
tomatically have emerged. This is also our next 
research focus.
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the third hidden layer. The result is shown in 
Figure 8.
According to Figure 8 and our theory, the width 
of the third hidden layer should be set to 4. To 
verify this, we use SSM on GermanCredit to 
get classification results, as shown in Table 13.

Figure 8. Change of correlation coefficient in the third 
hidden layer on GermanCredit.

Table 13. Experimental results on GermanCredit 
(three hidden layers).

Network 
structure Accuracy FPR FNR TPR TNR

20-12-2 0.4685 0.2171 0.5562 0.4437 0.7828
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Table 12. Experimental results on GermanCredit  
(two hidden layers).

Network 
structure Accuracy FPR FNR TPR TNR

20-3 0.5118 0.4189 0.5695 0.4304 0.8228

20-6 0.4569 0.2000 0.5430 0.4569 0.8000

20-9 0.5267 0.1771 0.5430 0.4569 0.8228

20-12 0.5419 0.1714 0.5298 0.4701 0.8285

20-15 0.5111 0.1885 0.5430 0.4569 0.8114

Integrating all indicators, it is shown that the 
performance is best when the network structure 
is 20-12-4. 
The experiments on three datasets have proved 
that the width of hidden layer can be set when 
the correlation coefficient is the closest to 0.

5.2.3. Experiment 3: Compared with Existing 
Phishing Webpage Detection Methods

Here we compare the classification results of 
SSM (with 2 hidden layers and 50-40 network 
structure) with that of an existing phishing web-
page detection methods. Among them, the main 
hyperparameters of CNN and RNN are the same 
as the SSM model. CNN convolution kernel is 
64, height and width of convolution window are 
both 3, height and width of max-pooling win-
dow are both 2, RNN units are 50. In addition, 
the CNN and RNN models incorporate dropout 
(0.5) to prevent overfitting. The experimental 
results are shown in Table 14. Time of computa-
tion for one iteration is shown in the last column.

Table 14. Comparison with existing detection methods.

Algo-
rithm

Accu-
racy FPR FNR TPR TNR Time 

(s)
SSM 0.9995 0.0012 0.0004 0.9995 0.9987 0.08

SVM 0.9112 0.0552 0.0887 0.9242 0.9112 3.60

NB 0.9441 0.0584 0.0858 0.9205 0.9441 0.45

CNN 0.9952 0.0028 0.0074 0.9925 0.9971 2.12

RNN 0.9962 0.0031 0.0045 0.9954 0.9968 0.49

As can be seen from Table 14, the SSM shows 
a significant improvement in performance 
compared to the traditional machine learning 
methods SVM and NB. Compared to CNN and 
RNN, SSM also achieved the best performance 
in the above configuration. Since we can't rule 
out all the hyperparameters, we don't rule out 
that SSM is not optimal in some cases. In addi-
tion, the SSM model takes the shortest amount 
of time in computing. This may be because we 
only use two hidden layers, but we can still see 
that the SSM algorithm has achieved a certain 
degree of improvement in evaluation indicators 
and computational efficiency. The practice has 
proved that SSM can effectively classify phish-
ing and benign webpages.

6. Conclusion

This paper proposes an SAE-based model for 
phishing webpage detection. SAE-Softmax 
model abstracts a variety of features from URL, 
DNS, Whois, and HTML, and uses SAE-Soft-
max to construct the classifier model. In partic-
ular, a method for determining the width of the 
hidden layer based on correlation coefficient is 
proposed. Experiments show that SAE-Soft-
max model has achieved good performance.
In SAE-Softmax model, the features of the 
phishing webpages are still manually extracted. 
However, with the escalation of offensive and 
defensive competition, some typical features of 
phishing pages are gradually disappearing, new 
features are constantly appearing, and methods 
for discovering new features are time-consum-
ing and laborious. In recent years, researches on 
using deep learning to extract latent features au-
tomatically have emerged. This is also our next 
research focus.
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