
41CIT. Journal of Computing and Information Technology, Vol. 27, No. 2, June 2019, 41–54
doi: 10.20532/cit.2019.1004702

Jian Feng1, Lianyang Zou1 and Tianzhu Nan2

1College of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an, China
2Xi’an Fenghuo Software Technology Co., Ltd., Xi’an, China

A Phishing Webpage Detection Method
Based on Stacked Autoencoder and
Correlation Coefficients

Phishing is a kind of cyber-attack that targets naive
online users by tricking them into revealing sensitive
information. There are many anti-phishing solutions
proposed to date, such as blacklist or whitelist, heuris-
tic-based and machine learning-based methods. How-
ever, online users are still being trapped into revealing
sensitive information in phishing websites. In this pa-
per, we propose a novel phishing webpage detection
model, based on features that are extracted from URL,
source codes of HTML, and the third-party services to
represent the basic characters of phishing webpages,
which uses a deep learning method – Stacked Auto-
encoder (SAE) to detect phishing webpages. To make
features in the same order of magnitude, three kinds
of normalization methods are adopted. In particular,
a method to calculate correlation coefficients between
weight matrixes of SAE is proposed to determine opti-
mal width of hidden layers, which shows high compu-
tational efficiency and feasibility. Based on the testing
of a set of phishing and benign webpages, the model
using SAE achieves the best performance when com-
pared to other algorithms such as Naive Bayes (NB),
Support Vector Machine (SVM), Convolutional Neu-
ral Networks (CNN), and Recurrent Neural Networks
(RNN). It indicates that the proposed detection model
is promising and can be applied effectively to phishing
detection.

ACM CCS (2012) Classification: Security and privacy
→ Software and application security → Web applica-
tion security

Keywords: phishing, deep learning, correlation coef-
ficient

1. Introduction

Phishing refers to a kind of cyber-attack that
uses social engineering, technical camouflage
and other means of attack methods, by send-
ing fraudulent spam, real-time communication
messages, etc., to trick users into clicking on
fake phishing pages, in order to entice users to
disclose sensitive information such as personal-
ly identifiable data and financial accounts. The
Anti-Phishing Working Group (APWG) reports
that the total number of phishing attacks in the
first quarter of 2018 is a 46% increase over the
last quarter of 2017 [1]. The continued growth
of phishing attacks has had a huge negative im-
pact on the healthy development of the Internet
and has become one of the most serious securi-
ty threats on the Internet.
Researchers have proposed a series of de-
tection methods for phishing webpage, in-
cluding blacklist-based detection methods,
heuristic-based detection methods, visual sim-
ilarity-based detection methods, and machine
learning-based detection methods. Among
them, machine learning-based detection meth-
ods have achieved good detection results. How-
ever, with speeding up of phishing webpage up-
date and increasing of the complexity of feature
data, traditional phishing detection technology
still needs continuous improvement.
On the other hand, deep learning is a promis-
ing alternative to traditional methods. In recent
years, deep learning has been applied in vari-
ous fields and has achieved great success. In

42 43J. Feng, L. Zou and T. Nan A Phishing Webpage Detection Method Based on Stacked Autoencoder and Correlation Coefficients

order to better detect phishing pages, a novel
detection model for phishing webpages based
on deep learning is proposed in this paper. Af-
ter summarizing the existing research results, a
detection model for phishing webpages is pro-
posed. The model extracts the significant fea-
tures of phishing webpages based on analyzing
a large number of the latest phishing samples,
and proposes a deep learning-based method
that combines Stacked Autoencoder (SAE) with
Softmax by a combination of unsupervised and
supervised learning modes. Hence, in training
of model parameters, a method for determining
the width of hidden layers based on correlation
coefficient is proposed, which effectively im-
proves the training efficiency.
The main contributions in this paper are sum-
marized as follows:

 ● To characterize phishing pages in all direc-
tions and at multiple levels. Based on the
analysis of phishing webpages, construct-
ing 52-dimensional feature vectors for
phishing webpage detection from struc-
tural and lexical features of URL, Whois
and DNS information, and source codes of
HTML.

 ● To construct a phishing webpage detection
model SSM (SAE-Softmax model), which
is based on SAE and uses Softmax regres-
sion model to make the classification.

 ● To determine the width of hidden layers
by correlation calculation between weight
matrices of SAE, so that the width of hid-
den layers can be effectively adjusted.

The remaining sections of this paper are orga-
nized as follows: Section II shows the related
works. Background work for Autoencoder (AE)
is shown in Section III. Section IV shows the
implementation of SSM. Section V describes
the datasets and the comparative experiments.
Finally, Section VI draws the conclusion and
provides some implications for future work on
phishing detection.

2. Related Works

2.1. Traditional Detection Methods

At present, the mainstream phishing webpage
detection methods mainly include four catego-
ries.

1. Backlist-based detection methods simply
match information such as URLs, which
are easily implemented and have no false
positives, but cannot identify phishing pag-
es which are not listed on the blacklist [2].

2. Heuristic-based detection methods de-
sign and implement heuristic rules based
on the similarity between phishing pages.
Typical detection systems include CAN-
TINA+ [3], etc. These methods can detect
most unreported phishing websites in real
time, but the premise is that the statistical
features of phishing pages are unique and
fuzzy matching technologies are adopted,
so the false positive rate is high.

3. Visual similarity-based detection meth-
ods convert the webpages to be detected
into pictures and then compare the fea-
ture vectors of the tested webpage and the
targeting webpage by image processing
technologies. A typical method is EMD al-
gorithm proposed in [4]. This type of tech-
nology is powerless for phishing webpages
which are not visually similar to the target-
ing webpage.

4. Machine learning-based detection meth-
ods treat the phishing webpage detection
as classification or clustering problem and
then use the corresponding machine learn-
ing algorithms to construct the detection
models. The clustering method first divides
the webpage dataset into several clusters,
and then distinguishes the phishing web-
pages and the normal webpages by marking
the clusters [5]. The classification method
constructs classification rules or classifiers
based on the features of the labeled web-
pages and then maps unknown webpages
to one of the given categories [6]. Although
machine learning-based methods have
good adaptability and extensibility, and
the detection accuracy is high, tradition-
al machine learning methods are shallow
level algorithms, and the ability to express
complex functions is limited in the case
of finite samples and computational units.
The generalization ability of complex clas-
sification problems is limited.

Considering a dataset X with n samples and m
features, the output of encoder Y represents the
reduced representation of X and the decoder is
tuned to reconstruct the original X to Z from
the encoder's representation Y by minimizing
the difference between X and Z, as illustrated
in Figure 1. Y is the real outcome, which rep-
resents potential structure and characteristics of
X. Specifically, the encoder is a function f that
maps X to its hidden representation Y.

Figure 1. Diagram of the autoencoder.

The process is formulated as:

 () ()f XY f X S WX b= = + (1)

where S f is a nonlinear activation function and
if it is an identity function, AE will do linear
projection. The encoder is parameterized by a
weight matrix W and a bias vector bX ∈ Rn.
The decoder function g maps hidden represen-
tation Y back to a reconstruction Z:

 () ()g YZ g Y S W'X b= = + (2)

where Sg is activation function of the decoder,
typically either the identity (yielding linear re-
construction) or a sigmoid. The decoder's pa-
rameters are biased vector bY and weight ma-
trix W', where W' is the inverse matrix of W. In
this paper, we only explore the case of the tied
weights when W' = W T.
Training an AE involves finding parameters

(, ,)X YW b bθ = that minimize the reconstruc-

2.2. Deep Learning-Based Methods

In 2006, Hinton et al. proposed deep learning
theory and then several deep learning models
such as Deep Belief Network (DBN), AE, Con-
volutional Neural Networks (CNN), and Recur-
rent Neural Networks (RNN) were proposed. It
has demonstrated state of the art performance
in many applications such as speech recogni-
tion, natural language processing, etc. In recent
years, researchers have applied deep learning to
phishing webpage detection. For example, the
literature [7-9] mentions applications of deep
learning to analyze URLs, and the difference is
that they use different methods, namely RNN,
Denoising Autoencoder (DAE) and CNN, re-
spectively. Instead of manually extracting the
features, all these researches learned represen-
tations from URL in different ways. On the
other hand, there are some researches which
focus on the texts on webpages and try to use
new methods to learn new features represents
phishing webpages. For example, in [10], fea-
tures were extracted for phishing and benign
webpages and classified using a Deep Belief
Network-based detection model, while in [10],
a series of semantic features were extracted
through word2vec and used to describe the fea-
tures of phishing webpages. Although all these
solutions could classify the phishing websites
precisely, they fail to use traditional phishing
characters sufficiently. Following these suc-
cesses, we propose a new model based on deep
learning to solve the problem of webpage phish-
ing detection by SAE and manually extracted
statistical features, such as known stealing in-
formation and third-party services.

3. Background

3.1. AE

AE is an unsupervised deep learning method.
The basic framework of AE comprises an in-
put layer, an output layer, and a hidden layer.
Therein, the input layer and the output layer
have the same structure, and when the input is
equal to the output, the hidden layer represents
potential structure and characteristics of the
input. The aim of AE is to transform inputs
into outputs with the least possible amount of
deviation.

42 43J. Feng, L. Zou and T. Nan A Phishing Webpage Detection Method Based on Stacked Autoencoder and Correlation Coefficients

order to better detect phishing pages, a novel
detection model for phishing webpages based
on deep learning is proposed in this paper. Af-
ter summarizing the existing research results, a
detection model for phishing webpages is pro-
posed. The model extracts the significant fea-
tures of phishing webpages based on analyzing
a large number of the latest phishing samples,
and proposes a deep learning-based method
that combines Stacked Autoencoder (SAE) with
Softmax by a combination of unsupervised and
supervised learning modes. Hence, in training
of model parameters, a method for determining
the width of hidden layers based on correlation
coefficient is proposed, which effectively im-
proves the training efficiency.
The main contributions in this paper are sum-
marized as follows:

 ● To characterize phishing pages in all direc-
tions and at multiple levels. Based on the
analysis of phishing webpages, construct-
ing 52-dimensional feature vectors for
phishing webpage detection from struc-
tural and lexical features of URL, Whois
and DNS information, and source codes of
HTML.

 ● To construct a phishing webpage detection
model SSM (SAE-Softmax model), which
is based on SAE and uses Softmax regres-
sion model to make the classification.

 ● To determine the width of hidden layers
by correlation calculation between weight
matrices of SAE, so that the width of hid-
den layers can be effectively adjusted.

The remaining sections of this paper are orga-
nized as follows: Section II shows the related
works. Background work for Autoencoder (AE)
is shown in Section III. Section IV shows the
implementation of SSM. Section V describes
the datasets and the comparative experiments.
Finally, Section VI draws the conclusion and
provides some implications for future work on
phishing detection.

2. Related Works

2.1. Traditional Detection Methods

At present, the mainstream phishing webpage
detection methods mainly include four catego-
ries.

1. Backlist-based detection methods simply
match information such as URLs, which
are easily implemented and have no false
positives, but cannot identify phishing pag-
es which are not listed on the blacklist [2].

2. Heuristic-based detection methods de-
sign and implement heuristic rules based
on the similarity between phishing pages.
Typical detection systems include CAN-
TINA+ [3], etc. These methods can detect
most unreported phishing websites in real
time, but the premise is that the statistical
features of phishing pages are unique and
fuzzy matching technologies are adopted,
so the false positive rate is high.

3. Visual similarity-based detection meth-
ods convert the webpages to be detected
into pictures and then compare the fea-
ture vectors of the tested webpage and the
targeting webpage by image processing
technologies. A typical method is EMD al-
gorithm proposed in [4]. This type of tech-
nology is powerless for phishing webpages
which are not visually similar to the target-
ing webpage.

4. Machine learning-based detection meth-
ods treat the phishing webpage detection
as classification or clustering problem and
then use the corresponding machine learn-
ing algorithms to construct the detection
models. The clustering method first divides
the webpage dataset into several clusters,
and then distinguishes the phishing web-
pages and the normal webpages by marking
the clusters [5]. The classification method
constructs classification rules or classifiers
based on the features of the labeled web-
pages and then maps unknown webpages
to one of the given categories [6]. Although
machine learning-based methods have
good adaptability and extensibility, and
the detection accuracy is high, tradition-
al machine learning methods are shallow
level algorithms, and the ability to express
complex functions is limited in the case
of finite samples and computational units.
The generalization ability of complex clas-
sification problems is limited.

Considering a dataset X with n samples and m
features, the output of encoder Y represents the
reduced representation of X and the decoder is
tuned to reconstruct the original X to Z from
the encoder's representation Y by minimizing
the difference between X and Z, as illustrated
in Figure 1. Y is the real outcome, which rep-
resents potential structure and characteristics of
X. Specifically, the encoder is a function f that
maps X to its hidden representation Y.

Figure 1. Diagram of the autoencoder.

The process is formulated as:

 () ()f XY f X S WX b= = + (1)

where S f is a nonlinear activation function and
if it is an identity function, AE will do linear
projection. The encoder is parameterized by a
weight matrix W and a bias vector bX ∈ Rn.
The decoder function g maps hidden represen-
tation Y back to a reconstruction Z:

 () ()g YZ g Y S W'X b= = + (2)

where Sg is activation function of the decoder,
typically either the identity (yielding linear re-
construction) or a sigmoid. The decoder's pa-
rameters are biased vector bY and weight ma-
trix W', where W' is the inverse matrix of W. In
this paper, we only explore the case of the tied
weights when W' = W T.
Training an AE involves finding parameters

(, ,)X YW b bθ = that minimize the reconstruc-

2.2. Deep Learning-Based Methods

In 2006, Hinton et al. proposed deep learning
theory and then several deep learning models
such as Deep Belief Network (DBN), AE, Con-
volutional Neural Networks (CNN), and Recur-
rent Neural Networks (RNN) were proposed. It
has demonstrated state of the art performance
in many applications such as speech recogni-
tion, natural language processing, etc. In recent
years, researchers have applied deep learning to
phishing webpage detection. For example, the
literature [7-9] mentions applications of deep
learning to analyze URLs, and the difference is
that they use different methods, namely RNN,
Denoising Autoencoder (DAE) and CNN, re-
spectively. Instead of manually extracting the
features, all these researches learned represen-
tations from URL in different ways. On the
other hand, there are some researches which
focus on the texts on webpages and try to use
new methods to learn new features represents
phishing webpages. For example, in [10], fea-
tures were extracted for phishing and benign
webpages and classified using a Deep Belief
Network-based detection model, while in [10],
a series of semantic features were extracted
through word2vec and used to describe the fea-
tures of phishing webpages. Although all these
solutions could classify the phishing websites
precisely, they fail to use traditional phishing
characters sufficiently. Following these suc-
cesses, we propose a new model based on deep
learning to solve the problem of webpage phish-
ing detection by SAE and manually extracted
statistical features, such as known stealing in-
formation and third-party services.

3. Background

3.1. AE

AE is an unsupervised deep learning method.
The basic framework of AE comprises an in-
put layer, an output layer, and a hidden layer.
Therein, the input layer and the output layer
have the same structure, and when the input is
equal to the output, the hidden layer represents
potential structure and characteristics of the
input. The aim of AE is to transform inputs
into outputs with the least possible amount of
deviation.

44 45J. Feng, L. Zou and T. Nan A Phishing Webpage Detection Method Based on Stacked Autoencoder and Correlation Coefficients

tion loss on X and Z, the objective function is
given as:

 min (,) min (, (()))L X Z L X g f X
θ θ

θ = = . (3)

For linear reconstruction, the reconstruction
loss (L1) is generally calculated by the squared
error:

 2 2
1

1 1
() (())

n n

i i i i
i i

L x z x g f xθ
= =

= − = −∑ ∑ (4)

For nonlinear reconstruction, the reconstruction
loss (L2) is generally from cross-entropy:

 []2
1

() log() (1) log(1)
n

i i i i
i

L x y x yθ
=

= − + − −∑ (5)

where xi ∈ X, zi ∈ Z and yi ∈ Y.
In SAE, the weight matrix W and the offset b
are adjusted layer-by-layer by stochastic gradi-
ent descent:

 (,)L X ZW W Wη ∂
← −

∂
 (6)

 (,)L X Zb b bη ∂
← −

∂
 (7)

where η is the learning rate.

3.2. SAE

AE contains only one hidden layer, which is a
shallow learning model. The limitation of the
shallow learning model is that the ability to rep-
resent complex functions is limited in the case
of finite samples and computational units, and
its generalization ability is constrained for com-
plex problems. A major advantage of AE is that
it is easy to be stacked for generating different

levels of new features to represent original ones
by adding hidden layers. After training to get
the first AE, take its hidden layer as input, use
the same method to train the second AE, and
then train to get multiple AEs. Multiple AEs are
stacked together to form an SAE model. The
training process of SAE is shown in Figure 2.
For an SAE with totally H hidden layers, the
process of encoding is:
 1((()))H iY f f f X= ⋅⋅⋅ ⋅ ⋅ ⋅ (8)
where fi is the encoding function of layer i. The
corresponding decoding function is:
 1((()))H iZ g g g Y= ⋅⋅⋅ ⋅ ⋅ ⋅ (9)

where gi is the decoding function of layer i and
the SAE can be trained by a greedy layer-wise
feed-forward approach.
Finally, SAE is combined with Softmax to
construct SSM model. The features learned by
SAE are used as input to the Softmax classifier
to obtain the final classification result.

4. Proposed Methodology

4.1. Problem Setting and Systematic
Design

Our goal is to classify a given webpage as ma-
licious or not. We do this by formulating the
problem as a binary classification task. Consid-
er a set of N webpages, {(P1, L1), ..., (Pi, Li),
..., (PN, LN)}, where i = 1, ..., N, Pi represents a
webpage, and Ci ∈ {-1, +1} denotes the label
of the webpage, with Ci = + 1 being a malicious
webpage, and Ci = - 1 being a benign webpage.
The first step in the classification procedure is
to obtain a feature representation Pi → xi where
xi ∈ Rm is the m-dimensional feature vector rep-
resenting webpage PN. The next step is to learn
a prediction function f : Rm → R to predict the
score of the class assignment for a webpage in-
stance. The prediction made by f is denoted as
� (())Z sign f p= . The aim is to learn a function
that can minimize the total number of mistakes
in the entire dataset. This is often achieved by
minimizing a loss function. In our methodol-
ogy, the function f is represented as an SAE
network, and the cross-entropy loss function is
adopted.

The systematic design of the SSM is illustrated
in Figure 3. The input comprises a set of benign
webpages and phishing webpages. Selection of
features and normalization processes are car-
ried out in the feature extraction phase. Then
the SAE network is used to implement data
reconstruction, and Softmax is added as a su-
pervised classifier to assist in adjusting the net-
work, and then binary classification of benign
and phishing webpages is carried out.

4.2. Feature Extraction

The first step of obtaining feature representation
deals with obtaining useful information from
URL and webpage that can be stored in a vector
so that the methods based on machine learning
can be applied to it. Various types of features
have been considered. We have classified the
extracted features into two categories includ-
ing URL related features and HTML based
features. There is a total of 52 features which
form a vector of 52 dimensions for a webpage
Pi, namely 0 1 51, , ..., .i i i ix x x x=

4.2.1. URL Related Features

URL related features are divided into URL-based
features and third-party service features, and
the third-party service features further include
DNS-based features, Whois-based features, and
ranking features.

 ● URL-based features

Table 1 lists some of the typical features ex-
tracted from URLs.

Table 1. URL-based features.

Feature Type Description
Length Numeric Length of a URL

IP address Bool Whether there is IP address in
URL

Depth Numeric Number of '/' in URL
@ Bool Whether there is @ in URL

 ● DNS-based features
Table 2 lists some of the typical features ex-
tracted from DNS information corresponding
to the domain in URLs.

Table 2. DNS-based features.

Feature Type Description
Missing

information Bool Whether there is information
missing in DNS

A record Numeric Number of A records in DNS
NS record Numeric Number of NS records in DNS

 ● Whois-based features
Whois describes the details of the DNS, includ-
ing whether the domain is registered, by whom
it was registered, registrar, registration time,
updated time, destruction time, and so on. Typ-
ical features are shown in Table 3.

Table 3. Whois-based features.

Feature Type Description
Missing

information Bool Whether there is informa-
tion missing in Whois

End time Numeric
The difference between

current time and termina-
tion time of the domain

Survival
time Numeric

The difference between ter-
mination time and creation

time of the domain

Figure 3. The architecture of SSM.

Figure 2. The schematic structure of SAE.

44 45J. Feng, L. Zou and T. Nan A Phishing Webpage Detection Method Based on Stacked Autoencoder and Correlation Coefficients

tion loss on X and Z, the objective function is
given as:

 min (,) min (, (()))L X Z L X g f X
θ θ

θ = = . (3)

For linear reconstruction, the reconstruction
loss (L1) is generally calculated by the squared
error:

 2 2
1

1 1
() (())

n n

i i i i
i i

L x z x g f xθ
= =

= − = −∑ ∑ (4)

For nonlinear reconstruction, the reconstruction
loss (L2) is generally from cross-entropy:

 []2
1

() log() (1) log(1)
n

i i i i
i

L x y x yθ
=

= − + − −∑ (5)

where xi ∈ X, zi ∈ Z and yi ∈ Y.
In SAE, the weight matrix W and the offset b
are adjusted layer-by-layer by stochastic gradi-
ent descent:

 (,)L X ZW W Wη ∂
← −

∂
 (6)

 (,)L X Zb b bη ∂
← −

∂
 (7)

where η is the learning rate.

3.2. SAE

AE contains only one hidden layer, which is a
shallow learning model. The limitation of the
shallow learning model is that the ability to rep-
resent complex functions is limited in the case
of finite samples and computational units, and
its generalization ability is constrained for com-
plex problems. A major advantage of AE is that
it is easy to be stacked for generating different

levels of new features to represent original ones
by adding hidden layers. After training to get
the first AE, take its hidden layer as input, use
the same method to train the second AE, and
then train to get multiple AEs. Multiple AEs are
stacked together to form an SAE model. The
training process of SAE is shown in Figure 2.
For an SAE with totally H hidden layers, the
process of encoding is:
 1((()))H iY f f f X= ⋅⋅⋅ ⋅ ⋅ ⋅ (8)
where fi is the encoding function of layer i. The
corresponding decoding function is:
 1((()))H iZ g g g Y= ⋅⋅⋅ ⋅ ⋅ ⋅ (9)

where gi is the decoding function of layer i and
the SAE can be trained by a greedy layer-wise
feed-forward approach.
Finally, SAE is combined with Softmax to
construct SSM model. The features learned by
SAE are used as input to the Softmax classifier
to obtain the final classification result.

4. Proposed Methodology

4.1. Problem Setting and Systematic
Design

Our goal is to classify a given webpage as ma-
licious or not. We do this by formulating the
problem as a binary classification task. Consid-
er a set of N webpages, {(P1, L1), ..., (Pi, Li),
..., (PN, LN)}, where i = 1, ..., N, Pi represents a
webpage, and Ci ∈ {-1, +1} denotes the label
of the webpage, with Ci = + 1 being a malicious
webpage, and Ci = - 1 being a benign webpage.
The first step in the classification procedure is
to obtain a feature representation Pi → xi where
xi ∈ Rm is the m-dimensional feature vector rep-
resenting webpage PN. The next step is to learn
a prediction function f : Rm → R to predict the
score of the class assignment for a webpage in-
stance. The prediction made by f is denoted as
� (())Z sign f p= . The aim is to learn a function
that can minimize the total number of mistakes
in the entire dataset. This is often achieved by
minimizing a loss function. In our methodol-
ogy, the function f is represented as an SAE
network, and the cross-entropy loss function is
adopted.

The systematic design of the SSM is illustrated
in Figure 3. The input comprises a set of benign
webpages and phishing webpages. Selection of
features and normalization processes are car-
ried out in the feature extraction phase. Then
the SAE network is used to implement data
reconstruction, and Softmax is added as a su-
pervised classifier to assist in adjusting the net-
work, and then binary classification of benign
and phishing webpages is carried out.

4.2. Feature Extraction

The first step of obtaining feature representation
deals with obtaining useful information from
URL and webpage that can be stored in a vector
so that the methods based on machine learning
can be applied to it. Various types of features
have been considered. We have classified the
extracted features into two categories includ-
ing URL related features and HTML based
features. There is a total of 52 features which
form a vector of 52 dimensions for a webpage
Pi, namely 0 1 51, , ..., .i i i ix x x x=

4.2.1. URL Related Features

URL related features are divided into URL-based
features and third-party service features, and
the third-party service features further include
DNS-based features, Whois-based features, and
ranking features.

 ● URL-based features

Table 1 lists some of the typical features ex-
tracted from URLs.

Table 1. URL-based features.

Feature Type Description
Length Numeric Length of a URL

IP address Bool Whether there is IP address in
URL

Depth Numeric Number of '/' in URL
@ Bool Whether there is @ in URL

 ● DNS-based features
Table 2 lists some of the typical features ex-
tracted from DNS information corresponding
to the domain in URLs.

Table 2. DNS-based features.

Feature Type Description
Missing

information Bool Whether there is information
missing in DNS

A record Numeric Number of A records in DNS
NS record Numeric Number of NS records in DNS

 ● Whois-based features
Whois describes the details of the DNS, includ-
ing whether the domain is registered, by whom
it was registered, registrar, registration time,
updated time, destruction time, and so on. Typ-
ical features are shown in Table 3.

Table 3. Whois-based features.

Feature Type Description
Missing

information Bool Whether there is informa-
tion missing in Whois

End time Numeric
The difference between

current time and termina-
tion time of the domain

Survival
time Numeric

The difference between ter-
mination time and creation

time of the domain

Figure 3. The architecture of SSM.

Figure 2. The schematic structure of SAE.

46 47J. Feng, L. Zou and T. Nan A Phishing Webpage Detection Method Based on Stacked Autoencoder and Correlation Coefficients

 ● Ranking features
The ranking features, shown in Table 4, are
mainly based on the Alexa Rank, which is also
known as the page level.

Table 4. Ranking features.

Feature Type Description

Ranking Numeric The comprehensive rank of
webpages on Alexa Rank

Visiting traffic
ranking Numeric Visiting rank on Alexa

Rank

4.2.2. HTML-Based Features

This paper divides the HTML-based features
into three categories. In order to calculate val-
ues of the first two types of features, here are a
few symbol definitions: L represents the num-
ber of links in the attribute of current tag. LE
represents the number of empty links in the at-
tribute of current tag. LC represents the number
of links pointing to the current domain in the
attribute of current tag.

 ● Feature of empty links
To count the empty links in the attribute of tags,
calculate ME:

0 if 0
/ if 0
1 Tag does not exist

LE
ME LE L LE

=
= >
 −

(10)

 ● Feature of pointing to the current domain
To count the links to the current domain in the
attribute of tags, calculate MC:

0 if 0
/ if 0
1 Tag does not exist

LC
MC LC L LC

=
= >
 −

(11)

 ● The third type of features, including the ti-
tle attribute and the keyword attribute, is
all Bool.

Table 5 lists some of the typical features ex-
tracted from HTML.

4.3. Normalization

To make features in the same order of magni-
tude, we made the value of the features nor-
malized to [0, 1]. Assuming that the j-th feature
xi, j of the sample xi is numeric, three kinds of
normalization algorithms are adopted, namely
Minimum_Maximum normalization, Statisti-
cal normalization, and Decimal normalization.
Their respective formula is as follows:

 ● Minimum_Maximum normalization

, ,
1 ,

, ,

min()
() max() min()

i j j
i j

j j

x x
f x x x

−
=

−
(12)

where min(x , j) and max(x , j) are minimum and
maximum values of the j-th attribute of all sam-
ples, respectively.

 ● Statistical normalization

 2 , ,() () /i j i jf x x µ σ= − (13)

where µ represents the average of the j-th attri-
bute of all samples, and σ is the standard devi-
ation.

 ● Decimal normalization

 3 , ,() /10q
i j i jf x x= (14)

where q is the smallest integer to enable the
maximum of the j-th attribute is in the interval
[0, 1].

4.4. Parameter Optimization of SSM

Experience has shown that the performance of
deep learning models depends mainly on the
network structure, especially the width of hid-
den layers. However, the selection of the num-
ber of hidden layer nodes is a very complicated
problem. For the classification problem, if the
width of hidden layers is too small, the training
and testing accuracy will be relatively poor, and
it is difficult to deal with complicated problems;
if the width is too large, the training will take
too long, and the classification performance
will decrease, resulting in over-fitting. The
methods for determining the width are mainly
trial and error method [12], empirical formu-
la method [13], growth method [14], pruning
method [15], adaptive increase and decrease
algorithm [16], genetic algorithm [17], etc.
However, these methods have their limitations.
The trial and error method is a kind of blindly
searching algorithm with a large computation-
al overhead. The empirical formula method is
completely based on experience, as it lacks the
corresponding theoretical basis. It is effective
for specific samples but lacks a universal for-
mula. Growth and pruning are the most studied
methods at present. The growth method starts
with the fewest number of nodes and then grad-
ually adds new nodes until the network struc-
ture is optimal, and the pruning rule does the
same in reverse. However, when to terminate
is a problem for both methods, so the calcula-
tion costs of both algorithms are huge. Genetic
algorithm is generally used in conjunction with
the growth method or the pruning method. The
main problem is that the convergence speed is
slow and prone to oscillation.
In order to determine the suitable width of hid-
den layers quickly, this paper proposes an adap-
tive optimization algorithm based on weight
correlation.

4.4.1. Basic Idea

According to the definition of the correlation
coefficient, the absolute value of the correlation
coefficient R between the two variables is be-
tween 0 and 1. The closer |R| is to 0, the smaller
the correlation between the two variables. Ac-
cording to the theory of detection, R between
the samples has a significant influence on the

error rate of the classification, and the best ef-
fect of the classification is optimal when R is
0. SAE is a multi-layered network. If taking
weights of the nodes in the hidden layer as sam-
ples, then the closer the correlation coefficient
between these weights is to 0, the larger the
difference between the nodes, and perhaps the
better the classification effect will be. Based on
the above analysis, our goal is to find the net-
work structure that maximizes the gap among
the hidden layer nodes and select the width of
hidden layers in this case.
This paper completes this process in two steps.
The first is to initialize the network structure
by setting the widths of the input layer and the
first hidden layer. The number of input neurons
equals the feature dimension of the input data,
and the number of nodes in the first hidden lay-
er is set artificially. Because we have not deter-
mined the explicit relationship between the in-
put dimension and the width in the first hidden
layer, the width in the first hidden layer cannot
be adjusted automatically, and therefore is only
set to be less than the input neurons. The second
step is to determine the width of other hidden
layers. A method to calculate correlation coeffi-
cient between weight matrices is proposed here,
and it is used to determine the width of the cur-
rent layer.

4.4.2. Determination of the Width by
Correlation Coefficient

First, we clarify the concept of weight matrix.
Weight matrix is a matrix formed by the con-
nection weights among all nodes of the current
layer and the previous layer.
For example, Figure 4 shows weights between
two hidden layers. And its weights matrix is
shown as W.

1,1 1, 2 1,

2,1 2, 2 2,

,1 , 2 ,

n

n

m m m n

w w w

w w w
W

w w w

 
 
 =  
 
  

�

�

� � � �
�

The elements in W, while i = 1, 2, ..., m, and
j = 1, 2, ..., n, represent weight of the connection
between the i-th neuron of the current layer and

Table 5. HTML-based features.

Feature Type Description

Input Numeric

Count value L of the input
tag, and count the number

of links with sensitive
words after the input tag,
recording it as LM, and

calculate LM/L

Link_
empty Numeric ME of link tag

Link Numeric MC of link tag

Title Bool
Whether the attribute of
the title tag contains the

domain of the current page

46 47J. Feng, L. Zou and T. Nan A Phishing Webpage Detection Method Based on Stacked Autoencoder and Correlation Coefficients

 ● Ranking features
The ranking features, shown in Table 4, are
mainly based on the Alexa Rank, which is also
known as the page level.

Table 4. Ranking features.

Feature Type Description

Ranking Numeric The comprehensive rank of
webpages on Alexa Rank

Visiting traffic
ranking Numeric Visiting rank on Alexa

Rank

4.2.2. HTML-Based Features

This paper divides the HTML-based features
into three categories. In order to calculate val-
ues of the first two types of features, here are a
few symbol definitions: L represents the num-
ber of links in the attribute of current tag. LE
represents the number of empty links in the at-
tribute of current tag. LC represents the number
of links pointing to the current domain in the
attribute of current tag.

 ● Feature of empty links
To count the empty links in the attribute of tags,
calculate ME:

0 if 0
/ if 0
1 Tag does not exist

LE
ME LE L LE

=
= >
 −

(10)

 ● Feature of pointing to the current domain
To count the links to the current domain in the
attribute of tags, calculate MC:

0 if 0
/ if 0
1 Tag does not exist

LC
MC LC L LC

=
= >
 −

(11)

 ● The third type of features, including the ti-
tle attribute and the keyword attribute, is
all Bool.

Table 5 lists some of the typical features ex-
tracted from HTML.

4.3. Normalization

To make features in the same order of magni-
tude, we made the value of the features nor-
malized to [0, 1]. Assuming that the j-th feature
xi, j of the sample xi is numeric, three kinds of
normalization algorithms are adopted, namely
Minimum_Maximum normalization, Statisti-
cal normalization, and Decimal normalization.
Their respective formula is as follows:

 ● Minimum_Maximum normalization

, ,
1 ,

, ,

min()
() max() min()

i j j
i j

j j

x x
f x x x

−
=

−
(12)

where min(x , j) and max(x , j) are minimum and
maximum values of the j-th attribute of all sam-
ples, respectively.

 ● Statistical normalization

 2 , ,() () /i j i jf x x µ σ= − (13)

where µ represents the average of the j-th attri-
bute of all samples, and σ is the standard devi-
ation.

 ● Decimal normalization

 3 , ,() /10q
i j i jf x x= (14)

where q is the smallest integer to enable the
maximum of the j-th attribute is in the interval
[0, 1].

4.4. Parameter Optimization of SSM

Experience has shown that the performance of
deep learning models depends mainly on the
network structure, especially the width of hid-
den layers. However, the selection of the num-
ber of hidden layer nodes is a very complicated
problem. For the classification problem, if the
width of hidden layers is too small, the training
and testing accuracy will be relatively poor, and
it is difficult to deal with complicated problems;
if the width is too large, the training will take
too long, and the classification performance
will decrease, resulting in over-fitting. The
methods for determining the width are mainly
trial and error method [12], empirical formu-
la method [13], growth method [14], pruning
method [15], adaptive increase and decrease
algorithm [16], genetic algorithm [17], etc.
However, these methods have their limitations.
The trial and error method is a kind of blindly
searching algorithm with a large computation-
al overhead. The empirical formula method is
completely based on experience, as it lacks the
corresponding theoretical basis. It is effective
for specific samples but lacks a universal for-
mula. Growth and pruning are the most studied
methods at present. The growth method starts
with the fewest number of nodes and then grad-
ually adds new nodes until the network struc-
ture is optimal, and the pruning rule does the
same in reverse. However, when to terminate
is a problem for both methods, so the calcula-
tion costs of both algorithms are huge. Genetic
algorithm is generally used in conjunction with
the growth method or the pruning method. The
main problem is that the convergence speed is
slow and prone to oscillation.
In order to determine the suitable width of hid-
den layers quickly, this paper proposes an adap-
tive optimization algorithm based on weight
correlation.

4.4.1. Basic Idea

According to the definition of the correlation
coefficient, the absolute value of the correlation
coefficient R between the two variables is be-
tween 0 and 1. The closer |R| is to 0, the smaller
the correlation between the two variables. Ac-
cording to the theory of detection, R between
the samples has a significant influence on the

error rate of the classification, and the best ef-
fect of the classification is optimal when R is
0. SAE is a multi-layered network. If taking
weights of the nodes in the hidden layer as sam-
ples, then the closer the correlation coefficient
between these weights is to 0, the larger the
difference between the nodes, and perhaps the
better the classification effect will be. Based on
the above analysis, our goal is to find the net-
work structure that maximizes the gap among
the hidden layer nodes and select the width of
hidden layers in this case.
This paper completes this process in two steps.
The first is to initialize the network structure
by setting the widths of the input layer and the
first hidden layer. The number of input neurons
equals the feature dimension of the input data,
and the number of nodes in the first hidden lay-
er is set artificially. Because we have not deter-
mined the explicit relationship between the in-
put dimension and the width in the first hidden
layer, the width in the first hidden layer cannot
be adjusted automatically, and therefore is only
set to be less than the input neurons. The second
step is to determine the width of other hidden
layers. A method to calculate correlation coeffi-
cient between weight matrices is proposed here,
and it is used to determine the width of the cur-
rent layer.

4.4.2. Determination of the Width by
Correlation Coefficient

First, we clarify the concept of weight matrix.
Weight matrix is a matrix formed by the con-
nection weights among all nodes of the current
layer and the previous layer.
For example, Figure 4 shows weights between
two hidden layers. And its weights matrix is
shown as W.

1,1 1, 2 1,

2,1 2, 2 2,

,1 , 2 ,

n

n

m m m n

w w w

w w w
W

w w w

 
 
 =  
 
  

�

�

� � � �
�

The elements in W, while i = 1, 2, ..., m, and
j = 1, 2, ..., n, represent weight of the connection
between the i-th neuron of the current layer and

Table 5. HTML-based features.

Feature Type Description

Input Numeric

Count value L of the input
tag, and count the number

of links with sensitive
words after the input tag,
recording it as LM, and

calculate LM/L

Link_
empty Numeric ME of link tag

Link Numeric MC of link tag

Title Bool
Whether the attribute of
the title tag contains the

domain of the current page

48 49J. Feng, L. Zou and T. Nan A Phishing Webpage Detection Method Based on Stacked Autoencoder and Correlation Coefficients

the j-th neuron of the previous layer where m is
the number of neurons in the current layer and
n is the number of neurons in the previous layer.

When a hidden layer adopts different widths,
the network structure will change, so the weight
matrix W will change accordingly. We want to
determine the optimal width by learning the
correlation of these weight matrices.

Firstly, we need to get the weight matrices un-
der different network structures. To do this, on
the basis of the initial width, we increase the
width of the current hidden layer by the fixed
nodes (for example, t) each round, until the to-
tal width is greater than or equal to the width of
the previous layer. A weight matrix between the
current hidden layer and the previously hidden
layer will be got each round.

For example, assuming the width of the previ-
ous layer is o, the width of the previous round
of the current layer is s, and the weight matrix is
denoted as A; if the width of the current round
of the current layer is s + t (s + t ≤ o), then the
weight matrix is denoted as B.

1,1 1, 2 1,

2,1 2, 2 2,

,1 , 2 ,

o

o

s s s o

wa wa wa

wa wa wa
A

wa wa wa

 
 
 =  
 
  

�

�

� � � �
�

1,1 1, 2 1,

2,1 2, 2 2,

,1 , 2 ,

o

o

s t s t s t o

wb wb wb

wb wb wb
B

wb wb wb+ + +

 
 
 =  
 
  

�

�

� � � �
�

And then we try to perform correlation analysis
on these matrices. Here a method for calculat-
ing correlation coefficient between neighboring
matrices is needed. Take correlation coefficient
between A and B as example. Since s ≠ s + t, the
correlation coefficient between A and B cannot
be calculated directly through traditional meth-
od. We first set the average of the values of the
same column of each matrix to get two row
vectors A' and B'. Where:

1 2, , ..., oA' wa wa wa =  

1 2, , ..., ,oB' wb wb wb =  
while:

1, 2, ,...
,j j s j

j
wa wa wa

wa s
+ + +

=

1, 2, ,...
, 1, 2, ..., .j j s t j

j
wb wb wb

wb j os t
++ + +

= =
+

Then average all the elements of the two gener-
ated row vectors to get two mean values:

1 2 ... ,owa wa wawa o
+ + +

=

1 2owb wb wbwb o
+ + +

=

Bring these values into classical correlation co-
efficient equation to get the correlation coeffi-
cient between the two matrices, see [15]:

()()

() ()
1

2 2

1 1

o

j j
j

o o

j j
j j

wa wa wb wb
R

wa wa wb wb

=

= =

− −
=

− −

∑

∑ ∑

(15)

where R is correlation coefficient between
A and B. After all correlation coefficients for
neighboring rounds are calculated, we set the
width to the number of nodes whose absolute
value of correlation coefficient is nearest to 0.

5. Experimental Results and Analysis

In order to verify the feasibility and effective-
ness of SSM, we designed three sets of exper-
iments.

5.1. Experimental Preparation

5.1.1. Experimental Environment

The experimental development environment is
shown in Table 6. The fixed hyperparameters
used in SSM are as follows: learning rate equals
to 0.1, weight regularization is 0.001, times of
iterations is 1000, activation function is ReLu,
and loss function is cross-entropy. The hyper-
parameters adjusted in experiments are the
number of hidden layers and the width of the
hidden layer.

Table 6. Development environment.

Operating
system CPU RAM Development

environment

Windows 10

IntelCore
i5-7200U

CPU
@2.5GHz

4GB Matlab2016R

5.1.2. Basic Dataset

The basic dataset used in the experiments is ob-
tained from the real network environment. The
legal webpages come from Alexa. Alexa is a
dedicated website managed by Amazon to pub-
lish an authoritative ranking of websites, so it
has a large number of URLs and detailed rank-
ing information. After filtering out some inval-
id, erroneous and duplicate pages, we collected
8,848 benign webpages from Alexa.
The phishing webpages are from PhishTank.
com, which is an internationally renowned
website that collects a timely and authoritative
list of phishing webpages. We collected 11,321
phishing webpages listed on PhishTank from
February 2016 to April 2016. In addition, web-
pages that do not conform to grammar rules and
benign webpages mixed in phishing datasets
are processed.

We collected and saved URL, HTML source
file, and a screenshot of each collected page.

5.1.3. Evaluating Indicators

The various evaluating indicators in literature
were summarized, the most commonly used are
Accuracy, Recall, True Positive Rate (TPR),
False Positive Rate (FPR), True Negative Rate
(TNR) and False Negative Rate (FNR), shown
in Table 7.

Table 7. Evaluating indicators.

Evaluating indicators Formula

Accuracy (TP+TN) / (TP+TN+FP+FN)

TPR (Recall) TP / (TP + FN)

FPR FP / (TN + FP)

TNR TN / (TN + FP)

FNR FN / (TP + FN)

In Table 7, TP (True Positive) denotes the num-
ber of benign webpages correctly classified as
benign webpages, FP (False Positive) denotes
the number of phishing webpages classified as
benign webpages, TN (True Negative) denotes
the number of phishing webpages classified as
phishing webpages, and FN (False Negative)
denotes the number of benign webpages classi-
fied as phishing webpages.

5.1.4. Baselines

In order to see how well the proposed SSM
models perform with respect to the existing
methods for phishing webpage detection, we
compare SSM with four baseline models: Sup-
port Vector Machines (SVM), Naive Bayes
(NB), CNN and RNN.

5.2. Result Evaluation

5.2.1. Experiment 1: Determining the Number
of Hidden Layers

This experiment aims to determine the optimal
number of hidden layers in SAE. In the begin-

Figure 4. Two hidden layer and weights.

48 49J. Feng, L. Zou and T. Nan A Phishing Webpage Detection Method Based on Stacked Autoencoder and Correlation Coefficients

the j-th neuron of the previous layer where m is
the number of neurons in the current layer and
n is the number of neurons in the previous layer.

When a hidden layer adopts different widths,
the network structure will change, so the weight
matrix W will change accordingly. We want to
determine the optimal width by learning the
correlation of these weight matrices.

Firstly, we need to get the weight matrices un-
der different network structures. To do this, on
the basis of the initial width, we increase the
width of the current hidden layer by the fixed
nodes (for example, t) each round, until the to-
tal width is greater than or equal to the width of
the previous layer. A weight matrix between the
current hidden layer and the previously hidden
layer will be got each round.

For example, assuming the width of the previ-
ous layer is o, the width of the previous round
of the current layer is s, and the weight matrix is
denoted as A; if the width of the current round
of the current layer is s + t (s + t ≤ o), then the
weight matrix is denoted as B.

1,1 1, 2 1,

2,1 2, 2 2,

,1 , 2 ,

o

o

s s s o

wa wa wa

wa wa wa
A

wa wa wa

 
 
 =  
 
  

�

�

� � � �
�

1,1 1, 2 1,

2,1 2, 2 2,

,1 , 2 ,

o

o

s t s t s t o

wb wb wb

wb wb wb
B

wb wb wb+ + +

 
 
 =  
 
  

�

�

� � � �
�

And then we try to perform correlation analysis
on these matrices. Here a method for calculat-
ing correlation coefficient between neighboring
matrices is needed. Take correlation coefficient
between A and B as example. Since s ≠ s + t, the
correlation coefficient between A and B cannot
be calculated directly through traditional meth-
od. We first set the average of the values of the
same column of each matrix to get two row
vectors A' and B'. Where:

1 2, , ..., oA' wa wa wa =  

1 2, , ..., ,oB' wb wb wb =  
while:

1, 2, ,...
,j j s j

j
wa wa wa

wa s
+ + +

=

1, 2, ,...
, 1, 2, ..., .j j s t j

j
wb wb wb

wb j os t
++ + +

= =
+

Then average all the elements of the two gener-
ated row vectors to get two mean values:

1 2 ... ,owa wa wawa o
+ + +

=

1 2owb wb wbwb o
+ + +

=

Bring these values into classical correlation co-
efficient equation to get the correlation coeffi-
cient between the two matrices, see [15]:

()()

() ()
1

2 2

1 1

o

j j
j

o o

j j
j j

wa wa wb wb
R

wa wa wb wb

=

= =

− −
=

− −

∑

∑ ∑

(15)

where R is correlation coefficient between
A and B. After all correlation coefficients for
neighboring rounds are calculated, we set the
width to the number of nodes whose absolute
value of correlation coefficient is nearest to 0.

5. Experimental Results and Analysis

In order to verify the feasibility and effective-
ness of SSM, we designed three sets of exper-
iments.

5.1. Experimental Preparation

5.1.1. Experimental Environment

The experimental development environment is
shown in Table 6. The fixed hyperparameters
used in SSM are as follows: learning rate equals
to 0.1, weight regularization is 0.001, times of
iterations is 1000, activation function is ReLu,
and loss function is cross-entropy. The hyper-
parameters adjusted in experiments are the
number of hidden layers and the width of the
hidden layer.

Table 6. Development environment.

Operating
system CPU RAM Development

environment

Windows 10

IntelCore
i5-7200U

CPU
@2.5GHz

4GB Matlab2016R

5.1.2. Basic Dataset

The basic dataset used in the experiments is ob-
tained from the real network environment. The
legal webpages come from Alexa. Alexa is a
dedicated website managed by Amazon to pub-
lish an authoritative ranking of websites, so it
has a large number of URLs and detailed rank-
ing information. After filtering out some inval-
id, erroneous and duplicate pages, we collected
8,848 benign webpages from Alexa.
The phishing webpages are from PhishTank.
com, which is an internationally renowned
website that collects a timely and authoritative
list of phishing webpages. We collected 11,321
phishing webpages listed on PhishTank from
February 2016 to April 2016. In addition, web-
pages that do not conform to grammar rules and
benign webpages mixed in phishing datasets
are processed.

We collected and saved URL, HTML source
file, and a screenshot of each collected page.

5.1.3. Evaluating Indicators

The various evaluating indicators in literature
were summarized, the most commonly used are
Accuracy, Recall, True Positive Rate (TPR),
False Positive Rate (FPR), True Negative Rate
(TNR) and False Negative Rate (FNR), shown
in Table 7.

Table 7. Evaluating indicators.

Evaluating indicators Formula

Accuracy (TP+TN) / (TP+TN+FP+FN)

TPR (Recall) TP / (TP + FN)

FPR FP / (TN + FP)

TNR TN / (TN + FP)

FNR FN / (TP + FN)

In Table 7, TP (True Positive) denotes the num-
ber of benign webpages correctly classified as
benign webpages, FP (False Positive) denotes
the number of phishing webpages classified as
benign webpages, TN (True Negative) denotes
the number of phishing webpages classified as
phishing webpages, and FN (False Negative)
denotes the number of benign webpages classi-
fied as phishing webpages.

5.1.4. Baselines

In order to see how well the proposed SSM
models perform with respect to the existing
methods for phishing webpage detection, we
compare SSM with four baseline models: Sup-
port Vector Machines (SVM), Naive Bayes
(NB), CNN and RNN.

5.2. Result Evaluation

5.2.1. Experiment 1: Determining the Number
of Hidden Layers

This experiment aims to determine the optimal
number of hidden layers in SAE. In the begin-

Figure 4. Two hidden layer and weights.

50 51J. Feng, L. Zou and T. Nan A Phishing Webpage Detection Method Based on Stacked Autoencoder and Correlation Coefficients

ning, it sets the number of hidden layers to 2,
the width of the input and output layer is both
52 and the width of each layer is 50 and 40,
respectively. It uses this structure to conduct an
experiment. Then it adjusts the network struc-
ture in every subsequent experiment by add-
ing one hidden layer and reducing the width of
hidden layers by 10 each time, and completes
4 sets of experiments. The results are shown in
Table 8. It should be noticed that in the fifth
experiment, the width of the last hidden layer
is set to 5.

It should be known that the best classification
results are achieved when the number of hidden
layers is 2, and the increase of the number of
hidden layers could not lead to better results.
Especially, when there are more than 4 layers,
both phishing and benign webpages are classi-
fied as benign. According to the results, in the
subsequent experiments, we fixed the number
of hidden layers to 2.

Table 8. Experimental results.

Network
structure Accuracy FPR FNR TPR TNR

50-40 0.9989 0.0007 0.0014 0.9985 0.9992

50-40-30 0.9977 0.0016 0.0026 0.9973 0.9983
50-40-30-

20 0.9544 0.0347 0.0150 0.9849 0.9652

50-40-30-
20-10 0.5744 1.0 0.0 1.0 0.0

50-40-30-
20-10-5 0.5744 1.0 0.0 1.0 0.0

5.2.2. Experiment 2: Determining the Width of
Hidden Layers

 ● Experiment on the basic dataset

The width of the first hidden layer is set to 50,
and the width of the second hidden layer is cal-
culated by Equation 15. At first, the initial width
of the second hidden layer is set to 5, and then 5
nodes are added each round, keeping other hy-
perparameters unchanged. Figure 5 shows the
correlation coefficients among different widths
of the second hidden layer, where the correla-
tion coefficients are the absolute values.

Figure 5. Change of correlation coefficient in the second
hidden layer on the basic dataset.

Figure 5 shows that the width is 40 when the
correlation coefficient is minimum. Accord-
ing to our hypothesis, the classification effect
should be the best when the absolute value of
the correlation coefficient is the closest to 0.
To verify this, we calculated the performance
of SSM under different network structures, as
shown in Table 9. The two values in the net-
work structure are the width of the first and the
second hidden layer, respectively.

Table 9. Experimental results on the basic dataset.

Network
structure Accuracy FPR FNR TPR TNR

50-10 0.9978 0.0015 0.0009 0.9990 0.9984
50-15 0.9983 0.0012 0.0009 0.9990 0.9987
50-20 0.9983 0.0012 0.0009 0.9990 0.9987
50-25 0.9980 0.0014 0.0009 0.9990 0.9985
50-30 0.9976 0.0017 0.0004 0.9995 0.9982
50-35 0.9978 0.0015 0.0009 0.9990 0.9987
50-40 0.9995 0.0012 0.0004 0.9995 0.9987
50-45 0.9971 0.0021 0.0002 0.9997 0.9978

From Table 9, we notice that SSM obtains the
best classification results when the width of the
second hidden layer is 40, and this result is in
line with our expectations.

 ● Experiment on a combined dataset

In order to avoid the contingency and to ensure
the credibility of the above experiments, we
repeated the above experiments on two other
datasets. Firstly, we expand the original dataset
to form a combined dataset. The dataset is ob-

tained by copying the original data three times,
and then the training set and the testing set are
reconstructed for verification by random ex-
traction. The experiment setup is the same as in
the previous experiments. Figure 6 shows cor-
relation coefficients among different widths of
the second hidden layer.

Figure 6. Change of correlation coefficient in the second
hidden layer on the combined dataset.

It can be seen that the width of the second hid-
den layer is 35 when the correlation coefficient
is minimum, and we calculated the performance
of SSM under different network structures to
verify this, as shown in Table 10.

Table 10. Experimental results on the combined dataset.

Network
structure Accuracy FPR FNR TPR TNR

50-10 0.9997 0.0001 0 1 0.9998
50-15 0.9997 0.0001 0 1 0.9998
50-20 0.9995 0.0003 0 1 0.9996
50-25 0.9997 0.0001 0 1 0.9998
50-30 0.9997 0.0001 0 1 0.9998
50-35 0.9998 0.0001 0 1 0.9999
50-40 0.9995 0.0003 0 1 0.9996
50-45 0.9997 0.0001 0 1 0.9998

As can be seen from Table 10, the best result
is when the width is 35. Although in this ex-
periment the width is different from the optimal
width on the basic dataset, the result still sup-
ports our hypothesis.

 ● Experiment on a classic dataset
In order to avoid the contingency caused by the
particularity of the dataset that we collected, a

classic dataset for binary classification prob-
lem, GermanCredit [18], was used to check
our theory. Each sample of GermanCredit has
24-dimensional features, so the width of the
first hidden layer is manually set to 20. Because
the dataset is different from the above two, we
re-do Experiment 1 to determine the optimal
number of hidden layers. The experimental re-
sults are shown in Table 11.

Table 11. Determining the number of hidden layers.

Network
structure Accuracy FPR FNR TPR TNR

20-15 0.5111 0.1885 0.5430 0.4569 0.8114
20-15-12 0.5486 0.2371 0.4503 0.5486 0.7613
20-15-
12-9 0.4940 0.4635 0.5707 0.4292 0.5364

20-15-12-
9-6 0.4560 1.0 0.0 1.0 0.0

20-15-12-
9-6-3 0.4560 1.0 0.0 1.0 0.0

The results show that 3 hidden layers will per-
form the best. So, firstly, we calculate the cor-
relation coefficients between the first and the
second hidden layers and get Figure 7.

Figure 7. Change of correlation coefficient in the second
hidden layer on GermanCredit.

Figure 7 shows that the width is 12 when the
correlation coefficient is minimum. Since it is
not known at present what width is appropriate
for the third layer, the experiment below just
considers two hidden layers. The classification
result is shown in Table 12.
It can be seen that the performance is optimal
when the width of the second hidden layer is
12. We then carry out the same experiment on

50 51J. Feng, L. Zou and T. Nan A Phishing Webpage Detection Method Based on Stacked Autoencoder and Correlation Coefficients

ning, it sets the number of hidden layers to 2,
the width of the input and output layer is both
52 and the width of each layer is 50 and 40,
respectively. It uses this structure to conduct an
experiment. Then it adjusts the network struc-
ture in every subsequent experiment by add-
ing one hidden layer and reducing the width of
hidden layers by 10 each time, and completes
4 sets of experiments. The results are shown in
Table 8. It should be noticed that in the fifth
experiment, the width of the last hidden layer
is set to 5.

It should be known that the best classification
results are achieved when the number of hidden
layers is 2, and the increase of the number of
hidden layers could not lead to better results.
Especially, when there are more than 4 layers,
both phishing and benign webpages are classi-
fied as benign. According to the results, in the
subsequent experiments, we fixed the number
of hidden layers to 2.

Table 8. Experimental results.

Network
structure Accuracy FPR FNR TPR TNR

50-40 0.9989 0.0007 0.0014 0.9985 0.9992

50-40-30 0.9977 0.0016 0.0026 0.9973 0.9983
50-40-30-

20 0.9544 0.0347 0.0150 0.9849 0.9652

50-40-30-
20-10 0.5744 1.0 0.0 1.0 0.0

50-40-30-
20-10-5 0.5744 1.0 0.0 1.0 0.0

5.2.2. Experiment 2: Determining the Width of
Hidden Layers

 ● Experiment on the basic dataset

The width of the first hidden layer is set to 50,
and the width of the second hidden layer is cal-
culated by Equation 15. At first, the initial width
of the second hidden layer is set to 5, and then 5
nodes are added each round, keeping other hy-
perparameters unchanged. Figure 5 shows the
correlation coefficients among different widths
of the second hidden layer, where the correla-
tion coefficients are the absolute values.

Figure 5. Change of correlation coefficient in the second
hidden layer on the basic dataset.

Figure 5 shows that the width is 40 when the
correlation coefficient is minimum. Accord-
ing to our hypothesis, the classification effect
should be the best when the absolute value of
the correlation coefficient is the closest to 0.
To verify this, we calculated the performance
of SSM under different network structures, as
shown in Table 9. The two values in the net-
work structure are the width of the first and the
second hidden layer, respectively.

Table 9. Experimental results on the basic dataset.

Network
structure Accuracy FPR FNR TPR TNR

50-10 0.9978 0.0015 0.0009 0.9990 0.9984
50-15 0.9983 0.0012 0.0009 0.9990 0.9987
50-20 0.9983 0.0012 0.0009 0.9990 0.9987
50-25 0.9980 0.0014 0.0009 0.9990 0.9985
50-30 0.9976 0.0017 0.0004 0.9995 0.9982
50-35 0.9978 0.0015 0.0009 0.9990 0.9987
50-40 0.9995 0.0012 0.0004 0.9995 0.9987
50-45 0.9971 0.0021 0.0002 0.9997 0.9978

From Table 9, we notice that SSM obtains the
best classification results when the width of the
second hidden layer is 40, and this result is in
line with our expectations.

 ● Experiment on a combined dataset

In order to avoid the contingency and to ensure
the credibility of the above experiments, we
repeated the above experiments on two other
datasets. Firstly, we expand the original dataset
to form a combined dataset. The dataset is ob-

tained by copying the original data three times,
and then the training set and the testing set are
reconstructed for verification by random ex-
traction. The experiment setup is the same as in
the previous experiments. Figure 6 shows cor-
relation coefficients among different widths of
the second hidden layer.

Figure 6. Change of correlation coefficient in the second
hidden layer on the combined dataset.

It can be seen that the width of the second hid-
den layer is 35 when the correlation coefficient
is minimum, and we calculated the performance
of SSM under different network structures to
verify this, as shown in Table 10.

Table 10. Experimental results on the combined dataset.

Network
structure Accuracy FPR FNR TPR TNR

50-10 0.9997 0.0001 0 1 0.9998
50-15 0.9997 0.0001 0 1 0.9998
50-20 0.9995 0.0003 0 1 0.9996
50-25 0.9997 0.0001 0 1 0.9998
50-30 0.9997 0.0001 0 1 0.9998
50-35 0.9998 0.0001 0 1 0.9999
50-40 0.9995 0.0003 0 1 0.9996
50-45 0.9997 0.0001 0 1 0.9998

As can be seen from Table 10, the best result
is when the width is 35. Although in this ex-
periment the width is different from the optimal
width on the basic dataset, the result still sup-
ports our hypothesis.

 ● Experiment on a classic dataset
In order to avoid the contingency caused by the
particularity of the dataset that we collected, a

classic dataset for binary classification prob-
lem, GermanCredit [18], was used to check
our theory. Each sample of GermanCredit has
24-dimensional features, so the width of the
first hidden layer is manually set to 20. Because
the dataset is different from the above two, we
re-do Experiment 1 to determine the optimal
number of hidden layers. The experimental re-
sults are shown in Table 11.

Table 11. Determining the number of hidden layers.

Network
structure Accuracy FPR FNR TPR TNR

20-15 0.5111 0.1885 0.5430 0.4569 0.8114
20-15-12 0.5486 0.2371 0.4503 0.5486 0.7613
20-15-
12-9 0.4940 0.4635 0.5707 0.4292 0.5364

20-15-12-
9-6 0.4560 1.0 0.0 1.0 0.0

20-15-12-
9-6-3 0.4560 1.0 0.0 1.0 0.0

The results show that 3 hidden layers will per-
form the best. So, firstly, we calculate the cor-
relation coefficients between the first and the
second hidden layers and get Figure 7.

Figure 7. Change of correlation coefficient in the second
hidden layer on GermanCredit.

Figure 7 shows that the width is 12 when the
correlation coefficient is minimum. Since it is
not known at present what width is appropriate
for the third layer, the experiment below just
considers two hidden layers. The classification
result is shown in Table 12.
It can be seen that the performance is optimal
when the width of the second hidden layer is
12. We then carry out the same experiment on

52 53J. Feng, L. Zou and T. Nan A Phishing Webpage Detection Method Based on Stacked Autoencoder and Correlation Coefficients

the third hidden layer. The result is shown in
Figure 8.
According to Figure 8 and our theory, the width
of the third hidden layer should be set to 4. To
verify this, we use SSM on GermanCredit to
get classification results, as shown in Table 13.

Figure 8. Change of correlation coefficient in the third
hidden layer on GermanCredit.

Table 13. Experimental results on GermanCredit
(three hidden layers).

Network
structure Accuracy FPR FNR TPR TNR

20-12-2 0.4685 0.2171 0.5562 0.4437 0.7828

20-12-4 0.5684 0.1800 0.4503 0.5496 0.8200

20-12-6 0.4580 0.2400 0.5298 0.4701 0.2285

20-12-8 0.5099 0.2514 0.4900 0.5099 0.7485

20-12-10 0.5496 0.2371 0.4503 0.5496 0.7628

Table 12. Experimental results on GermanCredit
(two hidden layers).

Network
structure Accuracy FPR FNR TPR TNR

20-3 0.5118 0.4189 0.5695 0.4304 0.8228

20-6 0.4569 0.2000 0.5430 0.4569 0.8000

20-9 0.5267 0.1771 0.5430 0.4569 0.8228

20-12 0.5419 0.1714 0.5298 0.4701 0.8285

20-15 0.5111 0.1885 0.5430 0.4569 0.8114

Integrating all indicators, it is shown that the
performance is best when the network structure
is 20-12-4.
The experiments on three datasets have proved
that the width of hidden layer can be set when
the correlation coefficient is the closest to 0.

5.2.3. Experiment 3: Compared with Existing
Phishing Webpage Detection Methods

Here we compare the classification results of
SSM (with 2 hidden layers and 50-40 network
structure) with that of an existing phishing web-
page detection methods. Among them, the main
hyperparameters of CNN and RNN are the same
as the SSM model. CNN convolution kernel is
64, height and width of convolution window are
both 3, height and width of max-pooling win-
dow are both 2, RNN units are 50. In addition,
the CNN and RNN models incorporate dropout
(0.5) to prevent overfitting. The experimental
results are shown in Table 14. Time of computa-
tion for one iteration is shown in the last column.

Table 14. Comparison with existing detection methods.

Algo-
rithm

Accu-
racy FPR FNR TPR TNR Time

(s)
SSM 0.9995 0.0012 0.0004 0.9995 0.9987 0.08

SVM 0.9112 0.0552 0.0887 0.9242 0.9112 3.60

NB 0.9441 0.0584 0.0858 0.9205 0.9441 0.45

CNN 0.9952 0.0028 0.0074 0.9925 0.9971 2.12

RNN 0.9962 0.0031 0.0045 0.9954 0.9968 0.49

As can be seen from Table 14, the SSM shows
a significant improvement in performance
compared to the traditional machine learning
methods SVM and NB. Compared to CNN and
RNN, SSM also achieved the best performance
in the above configuration. Since we can't rule
out all the hyperparameters, we don't rule out
that SSM is not optimal in some cases. In addi-
tion, the SSM model takes the shortest amount
of time in computing. This may be because we
only use two hidden layers, but we can still see
that the SSM algorithm has achieved a certain
degree of improvement in evaluation indicators
and computational efficiency. The practice has
proved that SSM can effectively classify phish-
ing and benign webpages.

6. Conclusion

This paper proposes an SAE-based model for
phishing webpage detection. SAE-Softmax
model abstracts a variety of features from URL,
DNS, Whois, and HTML, and uses SAE-Soft-
max to construct the classifier model. In partic-
ular, a method for determining the width of the
hidden layer based on correlation coefficient is
proposed. Experiments show that SAE-Soft-
max model has achieved good performance.
In SAE-Softmax model, the features of the
phishing webpages are still manually extracted.
However, with the escalation of offensive and
defensive competition, some typical features of
phishing pages are gradually disappearing, new
features are constantly appearing, and methods
for discovering new features are time-consum-
ing and laborious. In recent years, researches on
using deep learning to extract latent features au-
tomatically have emerged. This is also our next
research focus.

Acknowledgement

This work is supported by Shaanxi Provin-
cial Natural Science Foundation Project (No.
2017JQ6053 and No. 2018JQ5095).

References

[1] ''Phishing Activity Trends Report, 1st Quarter
2018'', Anti-Phishing Working Group, Inc., Tech.
Rep., July 2018.

[2] P. Prakash et al., ''PhishNet: Predictive Black-
listing to Detect Phishing Attacks'', in Proc. 29th
IEEE Int. Conf. Comput. Commun., 2010, pp. 1‒5.
http://dx.doi.org/10.1109/INFCOM.2010.5462216

[3] G. Xiang et al., ''CANTINA+: A Feature-rich Ma-
chine Learning Framework for Detecting Phish-
ing Web Sites'', ACM Trans. Inform. and System
Security, vol. 14, no. 2, pp. 1‒28, 2011.
http://dx.doi.org/10.1145/2019599.2019606

[4] A. Y. Fu et al., ''Detecting Phishing Web Pag-
es with Visual Similarity Assessment Based on
Earth Mover's Distance (EMD)'', IEEE Trans.
Dependable and Secure Computing, vol. 3, no. 4,
pp. 301‒311, 2006.
https://doi.org/10.1109/TDSC.2006.50

[5] G. Liu et al., ''Automatic Detection of Phishing
Target from Phishing Webpage'', in Proc. 20th

Int. Conf. Pattern Recognition, Istanbul, Turkey,
2010, pp. 4153‒4156.
https://doi.org/10.1109/ICPR.2010.1010

[6] S. Lee and J. Kim, ''WarningBird: A Near Re-
al-Time Detection System for Suspicious URLs
in Twitter Stream'', IEEE Trans. Dependable and
Secure Computing (TDSC), vol. 10, no. 3, pp.
183‒195, 2013.
https://doi.org/10.1109/TDSC.2013.3

[7] A. C. Bahnsen et al., ''Classifying Phishing
URLs Using Recurrent Neural Networks'', in
2017 APWG Symp. on Electron. Crime Research
(eCrime). IEEE, Scottsdale, AZ, USA, 2017, pp.
1‒8.
http://dx.doi.org/10.1109/ECRIME.2017.7945048

[8] S. Douzi et al., ''Advanced Phishing Filter Using
Autoencoder and Denoising Autoencoder'', in
Proc. Int. Conf. Big Data and Internet of Thing.
ACM, London, United Kingdom, 2017, pp.
125‒129.
https://doi.org/10.1145/3175684.3175690

[9] R. Vinayakumar et al., ''Evaluating Deep Learn-
ing Approaches to Characterize and Classify Ma-
licious URL's'', J. of Intelligent & Fuzzy Systems,
vol. 34, no. 3, pp. 1333‒1343, 2018.
https://doi.org/10.3233/JIFS-169429

[10] P. Yi et al., ''Web Phishing Detection Using a
Deep Learning Framework'', Wireless Commun.
and Mobile Computing, vol. 2018, pp. 9.
https://doi.org/10.1155/2018/4678746

[11] X. Zhang et al., ''Boosting the Phishing Detection
Performance by Semantic Analysis'', in Big Data,
2017 IEEE Int. Conf. IEEE, Boston, MA, USA,
2017, pp. 1063‒1070.
http://dx.doi.org/10.1109/BigData.2017.8258030

[12] P. G. Benardos and G. C. Vosniakos, ''Optimizing
Feedforward Artificial neural Network Architec-
ture'', Eng. Applicat. of Artificial Intell., vol. 20,
no. 3, pp. 365‒382, 2007.
http://dx.doi.org/10.1016/j.engappai.2006.06.005

[13] D. Gao and S. Wu, ''An Optimization Method
for the Topological Structures of Feed-forward
Multi-layer Neural Networks'', Pattern Recogni-
tion, vol. 31, no. 9, pp. 1337‒1342, 1998.
https://doi.org/10.1016/S0031-3203(97)00160-X

[14] M. Islam et al., ''A Constructive Algorithm for
Training Cooperative Neural Network Ensem-
bles'', IEEE Trans. Neural Networks, vol. 14, no.
4, pp. 820‒834, 2003.
http://dx.doi.org/10.1109/TNN.2003.813832

[15] J. F. Qiao et al., ''A Fast Pruning Algorithm for
Neural Network'', Acta Electron. Sinica, vol. 38,
no. 4, pp. 830‒834, 2010. (in Chinese)

[16] M. M. Islam et al., ''A New Adaptive Merging and
Growing Algorithm for Designing Artificial Neu-
ral Networks'', IEEE Trans. on Systems, Man, and

http://dx.doi.org/10.1109/INFCOM.2010.5462216
http://dx.doi.org/10.1145/2019599.2019606
https://doi.org/10.1109/TDSC.2006.50
https://doi.org/10.1109/ICPR.2010.1010
https://doi.org/10.1109/TDSC.2013.3
http://dx.doi.org/10.1109/ECRIME.2017.7945048
https://doi.org/10.1145/3175684.3175690
https://doi.org/10.3233/JIFS-169429
https://doi.org/10.1155/2018/4678746
http://dx.doi.org/10.1109/BigData.2017.8258030
http://dx.doi.org/10.1016/j.engappai.2006.06.005
https://doi.org/10.1016/S0031-3203(97)00160-X
http://dx.doi.org/10.1109/TNN.2003.813832

52 53J. Feng, L. Zou and T. Nan A Phishing Webpage Detection Method Based on Stacked Autoencoder and Correlation Coefficients

the third hidden layer. The result is shown in
Figure 8.
According to Figure 8 and our theory, the width
of the third hidden layer should be set to 4. To
verify this, we use SSM on GermanCredit to
get classification results, as shown in Table 13.

Figure 8. Change of correlation coefficient in the third
hidden layer on GermanCredit.

Table 13. Experimental results on GermanCredit
(three hidden layers).

Network
structure Accuracy FPR FNR TPR TNR

20-12-2 0.4685 0.2171 0.5562 0.4437 0.7828

20-12-4 0.5684 0.1800 0.4503 0.5496 0.8200

20-12-6 0.4580 0.2400 0.5298 0.4701 0.2285

20-12-8 0.5099 0.2514 0.4900 0.5099 0.7485

20-12-10 0.5496 0.2371 0.4503 0.5496 0.7628

Table 12. Experimental results on GermanCredit
(two hidden layers).

Network
structure Accuracy FPR FNR TPR TNR

20-3 0.5118 0.4189 0.5695 0.4304 0.8228

20-6 0.4569 0.2000 0.5430 0.4569 0.8000

20-9 0.5267 0.1771 0.5430 0.4569 0.8228

20-12 0.5419 0.1714 0.5298 0.4701 0.8285

20-15 0.5111 0.1885 0.5430 0.4569 0.8114

Integrating all indicators, it is shown that the
performance is best when the network structure
is 20-12-4.
The experiments on three datasets have proved
that the width of hidden layer can be set when
the correlation coefficient is the closest to 0.

5.2.3. Experiment 3: Compared with Existing
Phishing Webpage Detection Methods

Here we compare the classification results of
SSM (with 2 hidden layers and 50-40 network
structure) with that of an existing phishing web-
page detection methods. Among them, the main
hyperparameters of CNN and RNN are the same
as the SSM model. CNN convolution kernel is
64, height and width of convolution window are
both 3, height and width of max-pooling win-
dow are both 2, RNN units are 50. In addition,
the CNN and RNN models incorporate dropout
(0.5) to prevent overfitting. The experimental
results are shown in Table 14. Time of computa-
tion for one iteration is shown in the last column.

Table 14. Comparison with existing detection methods.

Algo-
rithm

Accu-
racy FPR FNR TPR TNR Time

(s)
SSM 0.9995 0.0012 0.0004 0.9995 0.9987 0.08

SVM 0.9112 0.0552 0.0887 0.9242 0.9112 3.60

NB 0.9441 0.0584 0.0858 0.9205 0.9441 0.45

CNN 0.9952 0.0028 0.0074 0.9925 0.9971 2.12

RNN 0.9962 0.0031 0.0045 0.9954 0.9968 0.49

As can be seen from Table 14, the SSM shows
a significant improvement in performance
compared to the traditional machine learning
methods SVM and NB. Compared to CNN and
RNN, SSM also achieved the best performance
in the above configuration. Since we can't rule
out all the hyperparameters, we don't rule out
that SSM is not optimal in some cases. In addi-
tion, the SSM model takes the shortest amount
of time in computing. This may be because we
only use two hidden layers, but we can still see
that the SSM algorithm has achieved a certain
degree of improvement in evaluation indicators
and computational efficiency. The practice has
proved that SSM can effectively classify phish-
ing and benign webpages.

6. Conclusion

This paper proposes an SAE-based model for
phishing webpage detection. SAE-Softmax
model abstracts a variety of features from URL,
DNS, Whois, and HTML, and uses SAE-Soft-
max to construct the classifier model. In partic-
ular, a method for determining the width of the
hidden layer based on correlation coefficient is
proposed. Experiments show that SAE-Soft-
max model has achieved good performance.
In SAE-Softmax model, the features of the
phishing webpages are still manually extracted.
However, with the escalation of offensive and
defensive competition, some typical features of
phishing pages are gradually disappearing, new
features are constantly appearing, and methods
for discovering new features are time-consum-
ing and laborious. In recent years, researches on
using deep learning to extract latent features au-
tomatically have emerged. This is also our next
research focus.

Acknowledgement

This work is supported by Shaanxi Provin-
cial Natural Science Foundation Project (No.
2017JQ6053 and No. 2018JQ5095).

References

[1] ''Phishing Activity Trends Report, 1st Quarter
2018'', Anti-Phishing Working Group, Inc., Tech.
Rep., July 2018.

[2] P. Prakash et al., ''PhishNet: Predictive Black-
listing to Detect Phishing Attacks'', in Proc. 29th
IEEE Int. Conf. Comput. Commun., 2010, pp. 1‒5.
http://dx.doi.org/10.1109/INFCOM.2010.5462216

[3] G. Xiang et al., ''CANTINA+: A Feature-rich Ma-
chine Learning Framework for Detecting Phish-
ing Web Sites'', ACM Trans. Inform. and System
Security, vol. 14, no. 2, pp. 1‒28, 2011.
http://dx.doi.org/10.1145/2019599.2019606

[4] A. Y. Fu et al., ''Detecting Phishing Web Pag-
es with Visual Similarity Assessment Based on
Earth Mover's Distance (EMD)'', IEEE Trans.
Dependable and Secure Computing, vol. 3, no. 4,
pp. 301‒311, 2006.
https://doi.org/10.1109/TDSC.2006.50

[5] G. Liu et al., ''Automatic Detection of Phishing
Target from Phishing Webpage'', in Proc. 20th

Int. Conf. Pattern Recognition, Istanbul, Turkey,
2010, pp. 4153‒4156.
https://doi.org/10.1109/ICPR.2010.1010

[6] S. Lee and J. Kim, ''WarningBird: A Near Re-
al-Time Detection System for Suspicious URLs
in Twitter Stream'', IEEE Trans. Dependable and
Secure Computing (TDSC), vol. 10, no. 3, pp.
183‒195, 2013.
https://doi.org/10.1109/TDSC.2013.3

[7] A. C. Bahnsen et al., ''Classifying Phishing
URLs Using Recurrent Neural Networks'', in
2017 APWG Symp. on Electron. Crime Research
(eCrime). IEEE, Scottsdale, AZ, USA, 2017, pp.
1‒8.
http://dx.doi.org/10.1109/ECRIME.2017.7945048

[8] S. Douzi et al., ''Advanced Phishing Filter Using
Autoencoder and Denoising Autoencoder'', in
Proc. Int. Conf. Big Data and Internet of Thing.
ACM, London, United Kingdom, 2017, pp.
125‒129.
https://doi.org/10.1145/3175684.3175690

[9] R. Vinayakumar et al., ''Evaluating Deep Learn-
ing Approaches to Characterize and Classify Ma-
licious URL's'', J. of Intelligent & Fuzzy Systems,
vol. 34, no. 3, pp. 1333‒1343, 2018.
https://doi.org/10.3233/JIFS-169429

[10] P. Yi et al., ''Web Phishing Detection Using a
Deep Learning Framework'', Wireless Commun.
and Mobile Computing, vol. 2018, pp. 9.
https://doi.org/10.1155/2018/4678746

[11] X. Zhang et al., ''Boosting the Phishing Detection
Performance by Semantic Analysis'', in Big Data,
2017 IEEE Int. Conf. IEEE, Boston, MA, USA,
2017, pp. 1063‒1070.
http://dx.doi.org/10.1109/BigData.2017.8258030

[12] P. G. Benardos and G. C. Vosniakos, ''Optimizing
Feedforward Artificial neural Network Architec-
ture'', Eng. Applicat. of Artificial Intell., vol. 20,
no. 3, pp. 365‒382, 2007.
http://dx.doi.org/10.1016/j.engappai.2006.06.005

[13] D. Gao and S. Wu, ''An Optimization Method
for the Topological Structures of Feed-forward
Multi-layer Neural Networks'', Pattern Recogni-
tion, vol. 31, no. 9, pp. 1337‒1342, 1998.
https://doi.org/10.1016/S0031-3203(97)00160-X

[14] M. Islam et al., ''A Constructive Algorithm for
Training Cooperative Neural Network Ensem-
bles'', IEEE Trans. Neural Networks, vol. 14, no.
4, pp. 820‒834, 2003.
http://dx.doi.org/10.1109/TNN.2003.813832

[15] J. F. Qiao et al., ''A Fast Pruning Algorithm for
Neural Network'', Acta Electron. Sinica, vol. 38,
no. 4, pp. 830‒834, 2010. (in Chinese)

[16] M. M. Islam et al., ''A New Adaptive Merging and
Growing Algorithm for Designing Artificial Neu-
ral Networks'', IEEE Trans. on Systems, Man, and

http://dx.doi.org/10.1109/INFCOM.2010.5462216
http://dx.doi.org/10.1145/2019599.2019606
https://doi.org/10.1109/TDSC.2006.50
https://doi.org/10.1109/ICPR.2010.1010
https://doi.org/10.1109/TDSC.2013.3
http://dx.doi.org/10.1109/ECRIME.2017.7945048
https://doi.org/10.1145/3175684.3175690
https://doi.org/10.3233/JIFS-169429
https://doi.org/10.1155/2018/4678746
http://dx.doi.org/10.1109/BigData.2017.8258030
http://dx.doi.org/10.1016/j.engappai.2006.06.005
https://doi.org/10.1016/S0031-3203(97)00160-X
http://dx.doi.org/10.1109/TNN.2003.813832

54 J. Feng, L. Zou and T. Nan

Cybernetics, Part B (Cybernetics), vol. 39, no. 3,
pp. 705‒722, 2009.
http://dx.doi.org/10.1109/TSMCB.2008.2008724

[17] W. Y. Deng et al., ''Research on Extreme Learning
of Neural Networks'', Chinese J. of Comput., vol.
33, no. 2, 2010. (in Chinese)
http://dx.doi.org/10.3724/SP.J.1016.2010.00279

[18] D. Dua et al., ''German Credit Data'', UCI Ma-
chine Learning Repository, 1994.
http://archive.ics.uci.edu/ml

Received: March 2019
Revised: July 2019

Accepted: July 2019

Contact addresses:
Jian Feng

College of Computer Science and Technology
Xi'an University of Science and Technology

Xi'an
China

e-mail: fengjian@xust.edu.cn

Lianyang Zou
College of Computer Science and Technology

Xi'an University of Science and Technology
Xi'an

China
e-mail: 951625257@qq.com

Tianzhu Nan
Xi'an Fenghuo Software Technology Co., Ltd.

Xi'an
China

e-mail: 453629859@qq.com

Jian Feng was born in Xi'an, Shaanxi, China, in 1973. She received her
BSc degree in printing technology from Beijing Institute of Graphic
Communication, Beijing, China, in 1994; the MSc degree in printing
engineering from Xi'an University of Technology, Xi'an, China, in 2001;
and the doctoral degree in Computer Software and Theory from North-
west University, Xi'an, China, in 2008. In 2008, she joined as a Lecturer
the Department of Network Engineering of the College of Computer
Science & Technology, Xi'an University of Science and Technology, and
was in 2010 promoted to the position of Assistant Professor. Dr. Feng is
the author of two books and more than 30 papers. Her research interests
include computer networks and communication, network security, and
distributed computing. She also holds three patents.

Lianyang Zou was born in Hunan, China, in 1994. He received the BSc
degree in computer science and technology from Xinxiang University,
China in 2017. He is currently pursuing the MSc degree in computer
science and technology at the Xi'an University of Science and Technol-
ogy, China. Since 2017 he has researched phishing webpages detection.
His research areas include network security and web mining. Mr. Zou's
awards and honors include the Academy Scholarship, the National In-
spirational Scholarship, and the Second Prize for the China Graduate
Electronic Design Competition (Business Plan Special Competition).

TianZhu nan was born in Shaanxi, China, in 1991. He received both the
BSc degree in software engineering and the MSc degree in computer
application technology from Xi'an University of Science and Technol-
ogy, Xi'an, Shaanxi, in 2015 and 2018, respectively. In 2008, he joined
Xi'an Fenghuo Software Technology Co., Ltd. as a software develop-
ment engineer for wireless network systems. His research areas include
network security and web mining. He authored two papers. Mr. Nan's
awards and honors include the Academy Scholarships.

http://dx.doi.org/10.1109/TSMCB.2008.2008724
http://dx.doi.org/10.3724/SP.J.1016.2010.00279
http://archive.ics.uci.edu/ml

 HistoryItem_V1
 Shuffle

 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 1
 1
 1
 1
 1
 1
 1
 1
 0
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 1
 1
 1
 1 1
 747
 281
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

