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Diagnostic tests are used to determine anomalies in 
complex systems such as organisms or built structures. 
Once a set of tests is performed, the experts interpret 
their results and make decisions based on them. This 
process is named diagnostic reasoning. In diagnostic 
reasoning a decision is established by using both rules 
and general knowledge on the tests and the domain. 
The artificial intelligence community has focused on 
devising and automating different methods of diagno-
sis for medicine and engineering, but, to the best of 
our knowledge, the decision process in logical terms 
has not yet been investigated thoroughly. The automa-
tion of the diagnostic process would be helpful in a 
number of contexts, in particular when the number of 
test sets to make decision is too wide to be dealt with 
manually. To tackle such challenges, we shall study 
logical frameworks for diagnostic reasoning, automa-
tion methods and their computational properties and 
technologies implementing these methods. In this pa-
per, we present the formalization of a hybrid reasoning 
framework Tℒ that hosts tests and deduction rules on 
tests, and an algorithm that transforms a Tℒ theory into 
defeasible logic, for which an implemented automat-
ed deduction technology (called Spindle) exists. We 
evaluate the methodology by means of a real-world 
example related to the Open Web Application Security 
Project requisites. The full diagnostic process is driven 
from the definition of the issue to the decision.
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1. Introduction

Diagnostic reasoning is the process of eval-
uating the results of operations (questions or 
practical actions) in order to establish which 
specific conditions hold on an individual or, 
generically, a sample. This class of operations 
are usually called tests. A number of scientific 
fields exploit test-based knowledge acquisition: 
computer science, engineering, earth sciences, 
biology, medicine and many others.
A test commonly reveals a property, usually in 
search of anomalies, with a margin of error, and 
provides information about causes of the anom-
aly. As a consequence, by establishing ''cause 
and effect'' relationships, tests provide informa-
tion about possible solutions. Consider medical 
diagnosis: specific symptoms suggest which 
tests are to be done, and the results of such tests 
help the specialists in identifying which dis-
ease is currently on and, consequently, which 
therapies are needed. The steps of this process 
are test-driven and knowledge-driven decisions 
and, therefore, hybrid reasoning processes.
The result of a test is not exact. Tests are prone 
to errors, for they reveal a property without 
proving it in a logical way. This is in contrast 
to what happens in deductive systems, where a 
reasoning process starts from premises consid-
ered true and, through derivation rules, infers 
consequences. In other words, tests reveal truth 
on tested conditions in a provisional way.
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The diagnostic reasoning processes that we 
mentioned above are commonly executed on a 
huge number of data for several specific diag-
nostic processes, for instance:
1. In information security, when vast system 

logs and security data are issued and tested.
2. In geology, where the process of testing 

data for decisions related to anti-earth-
quake protections are named with the port-
manteau word geognostic investigations.

3. In medicine, especially in epidemic con-
trol population tests, where the number of 
tests executed and controlled is wide.

In the situations listed above, the decisions to 
be made are complex and the diagnostic pro-
cesses per se can be time-consuming. It would 
be therefore worth to assist the specialist (infor-
mation engineer, earth scientist, medical scien-
tist, etc.) in the process with a computer-assist-
ed diagnostic reasoning system.
In particular, when a diagnostic test is per-
formed, there are numerous configurations 
of the results that may be complex to treat si-
multaneously, for a medical doctor or another 
specialist, and basic automated learning tech-
niques, such as data mining ones, cannot be 
used for this purpose satisfactorily. Being able 
to employ reasoning techniques for computer- 
assisted diagnosis has been one of the main 
goals of the research efforts on AI in medicine 
(see [19, 29, 34, 6] for references and spe-
cific approaches). In these cases, it would be 
useful to assist the medical doctor or another 
specialist in decision making by providing an 
automated tool able to decide about the logical 
consistency and the logical consequences of a 
set of test results, on top of general issues of 
those tests themselves, including statistical be-
haviors, temporal relationships and revealing 
capabilities.
To tackle these challenges, we started a research 
program that comprises the development of a 
mechanized reasoning technology, able to de-
cide the validity of test sets, the assessment of 
the technology on real-world cases and the com-
parison with human behaviors in these cases. In 
this paper, we move the first steps in the research 
cycle, providing both the definition of a logical 
framework for the diagnostic reasoning, the Tℒ 
logic, and the development of an architecture 

that applies the reasoning process of Tℒ to a re-
al-world case study in information security.
We use the expressiveness of Labelled Modal 
Logic [10], [11], [38], [43], with temporal and 
statistical information added to a basic propo-
sitional language. Experiments are modeled in 
terms of tests viewed as Bayesian classifiers, 
which reveal one or more properties of a sample.
We define the syntax of formulae and relation-
al rules between labels in Tℒ and sketch ideas 
about a full deduction systems la Prawitz, by 
presenting the deduction rules; however, we do 
not provide soundness and completeness results 
as these are beyond the scope of this paper. We 
propose examples of how Tℒ works and provide 
technical issues in the construction of the men-
tioned experimental technology; we also show 
how to build an architecture to host the devel-
oped mechanization of reasoning.
The remainder of the paper is organized as fol-
lows. Section 2 discusses some background of 
this research. Section 3 reviews relevant relat-
ed literature. Section 4 introduces the logic Tℒ, 
defining the basic alphabets, the syntax of for-
mulae, test labels (procedures applied during an 
experiment), and labelled formulae. In partic-
ular, Section 4.2 formalizes central notions of 
the diagnostic-based reasoning, provides a spe-
cific analysis of the non-monotonic aspects of 
the logic itself and focuses also on the relations 
between tests. In Section 5, we investigate the 
structure of an architecture for diagnostic rea-
soning that we further discuss in a real world 
setting in Section 6. We conclude with Section 7 
by summarizing research, discussing some open 
problems, and sketching future lines of research.

2. Background

In this section, we briefly recall some basic no-
tions from statistical information retrieval and 
learning [25], and we discuss concrete exam-
ples of diagnostic procedure.
From a mathematical perspective, a test is nat-
urally interpreted as a statistical classifier, i.e., 
a function f that, fed with an input a, is able to 
predict a probability distribution over a set of 
classes. Oversimplifying, f assigns to a a label 
y that represents the answer (the classification 
of a). This classification is not exact and there-

is determined by the application of the test in 
a manner that can be considered without false 
negatives. Western-Blot, however, has a num-
ber of false positives. In contrast, the Elisa test 
(or, simply, Elisa) analogously lacks false neg-
atives but it exhibits a larger number of false 
positives than Western-Blot when applied to the 
same pathogenic factor.
Usually, the sequence of tests depends upon 
their cost more than their reliability. For in-
stance, Elisa is a cheaper procedure than West-
ern-Blot, and thus Elisa is typically applied be-
fore than Western-Blot.
To illustrate this, assume that Elisa answers 
positively on a given sample. We cannot con-
clude with certainty that the pathogenic factor 
is present in the tested organism, due to the 
high number of false positives exhibited by 
Elisa. Thus, we apply the Western-Blot test to 
confirm the validity of Elisa's result. We now 
derive a negative answer. Since it is assumed 
that Western-Blot is without false negatives, we 
can conclude that the pathogenic factor is not 
present in the organism, against the evidence 
provided by Elisa.
Example 1 shows a way of deriving truth from 
tests that is common in those systems. It is 
straightforward to see that tests with no false 
negatives that give a negative answer, as well as 
tests with no false positives that give a positive 
answer, are always truthful.

3. Related Work

The notion of assisted diagnosis and the usage 
of intelligent systems in medicine for diagnostic 
purposes have been a mainstream research topic 
in artificial intelligence in medicine. Since the 
pioneering works of Reiter [34] and Davis [19] 
these studies have been focusing on two meth-
ods: case-based reasoning (see [29] for several 
recent references to this approach) and statisti-

fore the answer given by the classifier can be 
wrong. For example, if f encodes the problem 
''Does x enjoy property P?'', the answer ''Yes'' 
to this question classifies a as an element of the 
set of objects that enjoy P, and this can be de-
scribed by an assertion such as f: P(x). There is 
an implicit epistemic meaning of this assertion, 
corresponding to the ability of f to assert P(x) as 
happens, for instance, in announcement logics 
or in Agent Communication Languages, where 
agents make assertions, or in the pure epistem-
ic interpretation of the classical modal logic K, 
where agents know (or believe) assertions. Also 
in those systems, truth of sentences may not be 
guaranteed by the assertion, belief or knowl-
edge of the sentences. Someone may assert, 
believe or know something, but this something 
might actually be false.
A large taxonomy of probabilistic classifiers 
has been developed. In this paper, we focus 
on the simplest type of classifiers, called (Na-
ive) Bayes (or Bayesian) classifiers, which ex-
ploit some strong statistical assumptions [35]. 
Bayesian classifiers work well in many com-
plex real-world situations and thus represent 
the execution of tests in an acceptable way.
Classifiers are prone to error. In this context, er-
rors are described either as false positive results, 
or false negative results1. In the remainder of 
this paper, we omit the word result(s) whenever 
it is clear from context; we also speak of true 
positive and true negative for those answers that 
coincide with the answers given by a logical 
formula. Scientific research in this area aims to 
reduce errors in Bayesian classifiers, obtaining 
better methods to derive knowledge from exper-
iments. The following example both provides a 
concrete instance of diagnostic reasoning and 
permits us to introduce the notions of error, and 
their taxonomy, based on the relation between 
properties and the revelation of them. 
Example 1. Western-Blot is a technique used 
in biology to confirm the existence of antibod-
ies against a particular pathogenic factor. This 

1False positives and false negatives are concepts analogous to type I and type II errors in statistical hypothesis 
testing, where a positive result corresponds to rejecting the null hypothesis and a negative result corresponds to not 
rejecting the null hypothesis. Roughly speaking, a false positive, commonly called a ''false alarm'', is a result that 
indicates that a given condition exists while in fact it does not, whereas a false negative is a test result that indicates 
that a condition does not hold while in fact it does. In principle, tests can be considered without false negatives 
when the number of false negative results is irrelevant to the decision process as happens, for instance, for those 
tests that present 1 case of false negative in 1 million. For the purpose of our logical framework, we can assume 
that this means that there are no false negatives.
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cal methods applied to reasoning (inspired by 
the original work of Johnson et al. [21]; see [23, 
28] for recent investigations). The nature of er-
rors in tests for diagnostic reasoning has been 
studied to support the idea that a test has some 
intrinsic probability of revealing the property it 
has been devised for. Therefore, the majority of 
these investigations have focused upon the ideas 
that a test can be erroneous in making decisions 
and that, based on a potentially erroneous deci-
sion, we have a tree of possible decisions that 
have a degree of validity, depending strictly on 
the validity of the starting decision. There is a 
long stream of investigations based upon fuzzy 
and probabilistic reasoning methods of comput-
er science applied to medicine, started by Pis et 
al. in [32] and followed by many other inves-
tigations, notably [7] in rheumatology. There 
have also been some comparative studies, such 
as [6] and [31]. These methodological studies 
have given rise to a series of architectural pro-
posals making use of probabilistic methods (see, 
e.g., [8] and [24]).

4. Focusing on Experimental  
Knowledge: The Logic Tℒ

We introduce logic Tℒ that is devised to per-
form approximate reasoning on tests. Informal-
ly, a (well-formed) formula of Tℒ represents a 
property of a sample (or individual) that can be 
revealed, with a margin of error, by a suitable 
experiment, built out from a sequence of tests. 
Information about tests is represented by labels, 
which are metalinguistic logical objects that 
''adorn'' the pure syntactical level of formulae.

4.1. Syntax of Tℒ

The alphabet of Tℒ is built out of the variable 
symbol x, a denumerable set of symbols for 
constants each denoted by lowercase Latin let-
ters (possibly indexed), and a denumerable set 
of unary predicates, denoted by capital Latin 
letters P, Q ..., possibly indexed.
Predicates represent properties. When applied 
to an individual constant, a predicate returns an 
ele ment of a given domain. Properties are re-
vealed by tests, which are not included in the 
syntax of formulae; rather, we introduce tests in 
the syntax of labels that we give below.

A ground atomic formula (ground formula, 
hereafter) is an atomic formula of the form 
P(c), where c is a constant. We write gF to de-
note the set of ground formulae.
Formulae in Tℒ are built from the set of atomic 
formulae by means of the usual logical connec-
tives: ^, ¬, ˄, →. 
Formally, the set aF of well-formed assertion 
formulae is the smallest set such that:
(i) gF ⊆ aF,
(ii)  ^ ∈ aF, 
(iii) if A ∈ aF then ¬A ∈ aF,
(iv) if A, B ∈ aF then (A ˄ B) ∈ aF, and 
(v) if A, B ∈ aF then (A → B) ∈ aF.
We denote well-formed assertion formulae by 
, , ..., possibly indexed, and call them for-
mulae or assertions for short.
Basic literals are formed by letters or negations 
of letters, applied to constants, i.e., P(c) and 
¬P(c). For example, if Fever is a predicate and 
John is a constant, then Fever(John) is a literal.
Following the tradition of labelled deduction 
systems [38, 26, 27], we extend the syntax above 
by introducing a class of labels that represent 
experiments, i.e., instants of time in which tests 
of properties are performed on a sample, under 
some environmental conditions. Labels are built 
from a set  of symbols for tests denoted by 
variables and possibly indexed. Tests in label 
symbols carry information about the execution 
time (the instant in which the test is performed) 
and the experimental condition (condition, for 
short), which is the history of actions performed 
during the experiment and (possibly) additional 
information provided/known during the diag-
nostic process. This reflects the fact that a par-
ticular test can be conditioned by a specific situ-
ation (like the environment, a medical condition, 
etc.). For instance, when a geologist conducts a 
forecast of the position of underground water, 
among other examinations there is an extraction 
of a vertical cylinder of ground: if the terrain is 
very humid, then the stratification of the under-
ground can be different than usual, leading to a 
change in the forecast itself.
To formalize these ideas, we introduce the set  
of symbols for time instants t, possibly indexed, 
and the set  of experimental conditions denot-

ed by φ, possibly indexed. In this paper, which 
provides a first investigation, we define  sim-
ply as the set that contains finite compositional 
sequences of tests τ1...τk, where we assume that 
τi+1 ∈  has been applied after τi ∈  on the 
same sample. Clearly, we can have φ = ∅.
Given a fixed denumerable set LabT of labels 
of the form τ(t;φ), where τ is a test able to reveal 
one or more properties, t represents a time in-
stant (of a given timeline) and φ is the experi-
mental condition. Labels are denoted by l and 
r, possibly indexed. A test label is a construct 
that is more expressive than a test symbol: a test 
label represents a test put into a context, i.e., 
equipped with additional information such as 
its time (when it is applied) and the history of 
the experiment, i.e., the trace of previously ap-
plied tests (in the same experiment).
In this paper, we focus on diagnostic reasoning 
about ground formulae and leave the extension 
to propositional or first-order logic to future 
work (see Section 7).
We define labelled formulae as follows. A la-
beled (well-formed) formula is a formula of the 
form τ(t;φ): A, where A ∈ gF.
Intuitively, τ(t;φ): P(c) denotes the assertion 
''τ reveals P at time t on the sample c, un-
der conditions φ''. For instance, we can write 
Elisa(Monday;Fever): Ebola(John) to express that 
we execute the Elisa test on a sample on Mon-
day, with the patient John having a Fever, to re-
veal the existence of an infection of Ebola.
Ground facts are ground formulae without la-
bels. We need to introduce one epistemic nega-
tion to denote the fact that a formula is not re-
vealed by a test, which is conceptually different 
than stating that a test reveals the negation of a 
formula. We thus introduce the negation ? that 
ranges over labelled formulae, in contrast to 
the logical connective ¬ that we already intro-
duced above. Note that neither τ(t;φ): A implies 
τ(t;φ): ¬A, nor τ(t;φ) : ¬A implies τ(t;φ) : A.

4.2. Orders and Relation for Tests and 
Observable Properties

We now discuss the mechanization of experi-
mental reasoning and how to provide a logical 
foundation of test-based knowledge. In this 

paper, we mainly focus on test labels and on 
the reasoning processes performed during a 
procedure that aims at extracting experimen-
tal knowledge from some resources (typically, 
a sample).  We can define a partial order be-
tween two test labels, both related to temporal 
information and statistical measures for test 
performances. We start by defining some tem-
poral orders between labels. We write t1 < t2 to 
denote the usual temporal order between time 
instants, and φ1◁ φ2 to denote the order between 
conditions. We state that φ1◁ φ2 indicates that 
φ1 is a prefix of φ2. Following the tradition of 
labelled deduction systems [26], [27], [38], we 
define relational formulae by lifting the orders 
to labels.
Definition 1. (Temporal Relational Formulae).

 ● τ1
(t1,φ1) 

 τ2
(t2,φ2) iff t1 < t2 and φ1 ◁ φ2

 ● τ1
(t1,φ1) 

 τ2
(t2,φ2) iff t1 < t2, 2 1 1ϕ ϕ τ= ⋅  and 

there is no t  such that 1 2t t t< < ,
where '' 1ϕ τ⋅ '' denotes the condition obtained by 
performing τ1 after the  events described in φ1. 
Note that we are modeling the notion of tem-
poral composition of tests. In particular, 
  represents a general temporal application 
sequence, whereas τ1  τ2 represents the ex-
ecution of the test τ2 immediately after the ex-
ecution of the test τ1. Note also that the above 
formula requires the introduction of a logic with 
branching future time (see Section 7).
With a slight abuse of notation, we write τ1  τ2 
to denote the test obtained by composing τ1 and 
τ2; we treat τ1  τ2 as a symbol in , and we 
then use it as a label. We now introduce three 
orders based on test metrics for elements in LabT.
Definition 2. (Metric-based Relational Formu-
lae). We write 

 ● (τ1
(t1,φ1) >a τ2

(t2,φ2)) [A] if τ1 at time t1 and un-
der condition φ1 is more accurate in reveal-
ing A than τ2 at time t2 under condition φ2.

 ● (τ1
(t1,φ1) >p τ2

(t2,φ2)) [A] if τ1 at time t1 and un-
der condition φ1 is more precise in reveal-
ing A than τ2 at time  t2 under condition φ2.

 ● (τ1
(t1,φ1) >r τ2

(t2,φ2))[A] if τ1 at time t1 and un-
der condition φ1 has greater recall in reveal-
ing A than τ2 at time t2 under condition  φ2.

The base of empirical reasoning about tests is 
the deduction of truth on tests that are correct 
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the original work of Johnson et al. [21]; see [23, 
28] for recent investigations). The nature of er-
rors in tests for diagnostic reasoning has been 
studied to support the idea that a test has some 
intrinsic probability of revealing the property it 
has been devised for. Therefore, the majority of 
these investigations have focused upon the ideas 
that a test can be erroneous in making decisions 
and that, based on a potentially erroneous deci-
sion, we have a tree of possible decisions that 
have a degree of validity, depending strictly on 
the validity of the starting decision. There is a 
long stream of investigations based upon fuzzy 
and probabilistic reasoning methods of comput-
er science applied to medicine, started by Pis et 
al. in [32] and followed by many other inves-
tigations, notably [7] in rheumatology. There 
have also been some comparative studies, such 
as [6] and [31]. These methodological studies 
have given rise to a series of architectural pro-
posals making use of probabilistic methods (see, 
e.g., [8] and [24]).

4. Focusing on Experimental  
Knowledge: The Logic Tℒ

We introduce logic Tℒ that is devised to per-
form approximate reasoning on tests. Informal-
ly, a (well-formed) formula of Tℒ represents a 
property of a sample (or individual) that can be 
revealed, with a margin of error, by a suitable 
experiment, built out from a sequence of tests. 
Information about tests is represented by labels, 
which are metalinguistic logical objects that 
''adorn'' the pure syntactical level of formulae.

4.1. Syntax of Tℒ

The alphabet of Tℒ is built out of the variable 
symbol x, a denumerable set of symbols for 
constants each denoted by lowercase Latin let-
ters (possibly indexed), and a denumerable set 
of unary predicates, denoted by capital Latin 
letters P, Q ..., possibly indexed.
Predicates represent properties. When applied 
to an individual constant, a predicate returns an 
ele ment of a given domain. Properties are re-
vealed by tests, which are not included in the 
syntax of formulae; rather, we introduce tests in 
the syntax of labels that we give below.

A ground atomic formula (ground formula, 
hereafter) is an atomic formula of the form 
P(c), where c is a constant. We write gF to de-
note the set of ground formulae.
Formulae in Tℒ are built from the set of atomic 
formulae by means of the usual logical connec-
tives: ^, ¬, ˄, →. 
Formally, the set aF of well-formed assertion 
formulae is the smallest set such that:
(i) gF ⊆ aF,
(ii)  ^ ∈ aF, 
(iii) if A ∈ aF then ¬A ∈ aF,
(iv) if A, B ∈ aF then (A ˄ B) ∈ aF, and 
(v) if A, B ∈ aF then (A → B) ∈ aF.
We denote well-formed assertion formulae by 
, , ..., possibly indexed, and call them for-
mulae or assertions for short.
Basic literals are formed by letters or negations 
of letters, applied to constants, i.e., P(c) and 
¬P(c). For example, if Fever is a predicate and 
John is a constant, then Fever(John) is a literal.
Following the tradition of labelled deduction 
systems [38, 26, 27], we extend the syntax above 
by introducing a class of labels that represent 
experiments, i.e., instants of time in which tests 
of properties are performed on a sample, under 
some environmental conditions. Labels are built 
from a set  of symbols for tests denoted by 
variables and possibly indexed. Tests in label 
symbols carry information about the execution 
time (the instant in which the test is performed) 
and the experimental condition (condition, for 
short), which is the history of actions performed 
during the experiment and (possibly) additional 
information provided/known during the diag-
nostic process. This reflects the fact that a par-
ticular test can be conditioned by a specific situ-
ation (like the environment, a medical condition, 
etc.). For instance, when a geologist conducts a 
forecast of the position of underground water, 
among other examinations there is an extraction 
of a vertical cylinder of ground: if the terrain is 
very humid, then the stratification of the under-
ground can be different than usual, leading to a 
change in the forecast itself.
To formalize these ideas, we introduce the set  
of symbols for time instants t, possibly indexed, 
and the set  of experimental conditions denot-

ed by φ, possibly indexed. In this paper, which 
provides a first investigation, we define  sim-
ply as the set that contains finite compositional 
sequences of tests τ1...τk, where we assume that 
τi+1 ∈  has been applied after τi ∈  on the 
same sample. Clearly, we can have φ = ∅.
Given a fixed denumerable set LabT of labels 
of the form τ(t;φ), where τ is a test able to reveal 
one or more properties, t represents a time in-
stant (of a given timeline) and φ is the experi-
mental condition. Labels are denoted by l and 
r, possibly indexed. A test label is a construct 
that is more expressive than a test symbol: a test 
label represents a test put into a context, i.e., 
equipped with additional information such as 
its time (when it is applied) and the history of 
the experiment, i.e., the trace of previously ap-
plied tests (in the same experiment).
In this paper, we focus on diagnostic reasoning 
about ground formulae and leave the extension 
to propositional or first-order logic to future 
work (see Section 7).
We define labelled formulae as follows. A la-
beled (well-formed) formula is a formula of the 
form τ(t;φ): A, where A ∈ gF.
Intuitively, τ(t;φ): P(c) denotes the assertion 
''τ reveals P at time t on the sample c, un-
der conditions φ''. For instance, we can write 
Elisa(Monday;Fever): Ebola(John) to express that 
we execute the Elisa test on a sample on Mon-
day, with the patient John having a Fever, to re-
veal the existence of an infection of Ebola.
Ground facts are ground formulae without la-
bels. We need to introduce one epistemic nega-
tion to denote the fact that a formula is not re-
vealed by a test, which is conceptually different 
than stating that a test reveals the negation of a 
formula. We thus introduce the negation ? that 
ranges over labelled formulae, in contrast to 
the logical connective ¬ that we already intro-
duced above. Note that neither τ(t;φ): A implies 
τ(t;φ): ¬A, nor τ(t;φ) : ¬A implies τ(t;φ) : A.

4.2. Orders and Relation for Tests and 
Observable Properties

We now discuss the mechanization of experi-
mental reasoning and how to provide a logical 
foundation of test-based knowledge. In this 

paper, we mainly focus on test labels and on 
the reasoning processes performed during a 
procedure that aims at extracting experimen-
tal knowledge from some resources (typically, 
a sample).  We can define a partial order be-
tween two test labels, both related to temporal 
information and statistical measures for test 
performances. We start by defining some tem-
poral orders between labels. We write t1 < t2 to 
denote the usual temporal order between time 
instants, and φ1◁ φ2 to denote the order between 
conditions. We state that φ1◁ φ2 indicates that 
φ1 is a prefix of φ2. Following the tradition of 
labelled deduction systems [26], [27], [38], we 
define relational formulae by lifting the orders 
to labels.
Definition 1. (Temporal Relational Formulae).

 ● τ1
(t1,φ1) 

 τ2
(t2,φ2) iff t1 < t2 and φ1 ◁ φ2

 ● τ1
(t1,φ1) 

 τ2
(t2,φ2) iff t1 < t2, 2 1 1ϕ ϕ τ= ⋅  and 

there is no t  such that 1 2t t t< < ,
where '' 1ϕ τ⋅ '' denotes the condition obtained by 
performing τ1 after the  events described in φ1. 
Note that we are modeling the notion of tem-
poral composition of tests. In particular, 
  represents a general temporal application 
sequence, whereas τ1  τ2 represents the ex-
ecution of the test τ2 immediately after the ex-
ecution of the test τ1. Note also that the above 
formula requires the introduction of a logic with 
branching future time (see Section 7).
With a slight abuse of notation, we write τ1  τ2 
to denote the test obtained by composing τ1 and 
τ2; we treat τ1  τ2 as a symbol in , and we 
then use it as a label. We now introduce three 
orders based on test metrics for elements in LabT.
Definition 2. (Metric-based Relational Formu-
lae). We write 

 ● (τ1
(t1,φ1) >a τ2

(t2,φ2)) [A] if τ1 at time t1 and un-
der condition φ1 is more accurate in reveal-
ing A than τ2 at time t2 under condition φ2.

 ● (τ1
(t1,φ1) >p τ2

(t2,φ2)) [A] if τ1 at time t1 and un-
der condition φ1 is more precise in reveal-
ing A than τ2 at time  t2 under condition φ2.

 ● (τ1
(t1,φ1) >r τ2

(t2,φ2))[A] if τ1 at time t1 and un-
der condition φ1 has greater recall in reveal-
ing A than τ2 at time t2 under condition  φ2.

The base of empirical reasoning about tests is 
the deduction of truth on tests that are correct 
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(with no false positives) or complete (with no 
false negatives). We introduce the modal oper-
ator □+ to denote the fact that a test has no false 
positives, and the modal operator □- to denote 
that it has no false negatives. The modal opera-
tors □+ and □- relate to accuracy, precision and 
recall. We use these terms in the usual meaning 
they have in machine learning and specifically 
in the theory of Bayesian classifiers. Accuracy 
is the probabilistic complement of error rate of 
a test, precision is the probabilistic complement 
of negative error rate (namely the probability of 
the test giving a correct positive answer), and 
recall is the probabilistic complement of posi-
tive error rate (thus the probability of a test giv-
ing a correct negative answer). If a test is both 
correct and complete, then so is the property 
it reveals. This can be expressed by means of 
logical rules. For example, when two tests are 
differently accurate, and both lack false pos-
itives, then they are also ordered in the same 
way by precision. Analogously, when they lack 
false negatives, they are also ordered in the 
same way with respect to recall. We formalize 
these concepts as follows, where MAR stands 
for Map Accuracy to Recall, and MAP stands 
for Map Accuracy to Precision:
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Interference between (τ1
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tions and (τ1

(t,φ) >p τ2
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is managed by means of rules like the  following 
one:
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This rule can be reproduced, analogously, for 
the accuracy as related to recall and to precision.
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The modal interplay between different metrics 
is an interesting problem from both the proof 
theoretical viewpoint and the practical one (re-
lated to the software design). We leave to fu-
ture work the implementation of the interplay 
between different metrics. In Example 2 we in-
troduce the key idea that we will exploit in the 
following: the result of a test is measured by 
the accuracy hypothesis we assume for the test. 
For instance, when a test is valued 0.8 accurate, 
we mean that we believe the test result is true in 
80% of the cases, whilst we think that the test 
gives a wrong answer in 20% of the cases.
Example 2. Assume that we execute Elisa (Eli) 
on sample John (J) to test for HIV. We execute 
the test on Monday (Mon), under the history 
of no previous test. The test results are pos-
itive. Now, since Elisa has no false negatives 
but has false positives (and is not particularly 
accurate), we execute Western-Blot (WB) on 
Tuesday (Tue) to confirm/refute Elisas result. 
Western-Blot, obviously is executed with the 
history of Elisa, which does not interfere with 
it. The test results are negative. Now, since 
Western-Blot has not false negatives, we con-
clude that the sample is HIV-free.
Western-Blot is more accurate than Elisa, so 
WB(Tue,Eli) >a Eli(Mon,∅).
The example shows that the best accuracy of a 
test τi with respect to a test τj induces a first, in-
tuitive notion of prevalence: if revealed formu-
lae are contradictory, we trust the more reliable 
experiment. This will become central in Section 
3.3, when we move toward defeasible theories.

It is well known that, when using tests for re-
vealing properties employed in empirical sci-
ences, a given test can interfere with the result 

of other tests. For instance, certain therapeutic 
tests (such as the attempt at solving a dangerous 
potential bacterial infection by the prophylaxis 
with antibiotics) can make the results of other 
tests unreliable.
We say that test τ1 obfuscates test τ2 if perform-
ing τ1 on a sample before τ2 diminishes τ2's abil-
ity to reveal a given property.
On the other hand, τ1 gifts a property on a test τ2 
when its application extends the ability of τ2 to 
reveal the property itself.
This reasoning is based on the application of 
tests in sequence, which is the reason why we 
have introduced an implicit notion of time. We 
assume that time is discrete, and that tests are 
executed at a given instant of time. We intro-
duce a notion of absolute time and associate di-
rectly temporal instants to test execution only. 
Partial obfuscation and partial gift can be intui-
tively described as follows:

 ● We say that a test τ1 (for a property A) 
a-obfuscates ( ↓a) the test τ2 of a property 
B if, when τ1 is executed before τ2, then the 
accuracy of τ2 : B is less than it would have 
been if the test τ1 on A was not executed.

 ● We say that that a test τ1 (for a property A) 
a-gifts (↑ a) a property B if τ1 : B, when, 
contrary to a-obfuscation, the accuracy of 
the test for B increases.

We can similarly define p-obfuscation, p-gift, 
r-obfuscation and r-gift referring to obfusca-
tion and gift for precision and recall, instead of 
accuracy. More formally, we can provide the 
following relation, exploiting metric-based re-
lational formulae (Definition 2).
Definition 3. Obfuscation and Gift

 ● (τ1
(t1,φ1) ↓a τ2

(t2,φ2))[B] iff t1 < t2 and 
τ2

(t,φ) >a τ2
(t2,φ2) for t < t1 or for φ s.t. τ1 ∉ φ.

 ● (τ1
(t1,φ1) ↑ a τ2

(t2,φ2))[B] iff t1 < t2 and 
τ2

(t2,φ2) >a τ2
(t,φ) for t < t1 or for φ s.t. τ1 ∉ φ.

Similar rules for recall and precision can be ob-
tained by replacing relations ↑ a and ↓a with 
the counterparts ↑ p, ↑ r, ↓p and ↓r.
Total obfuscation and total gift have a specific 
logical interpretation. A test τ1 (revealing a prop-
erty A) totally obfuscates another test τ2 (reveal-
ing a property B). After the execution of τ1 it is 
no longer possible to reveal B by means of τ2:
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Dually, a test τ1 (revealing a property A) total-
ly gifts another test τ2 (revealing a property B). 
After the execution of τ1 it is no longer neces-
sary to reveal B, since the information that B 
holds for the sample is obtained as a side effect 
of the execution of τ1. Since B does not require 
to be revealed but, after the execution of τ1, it 
became a ground knowledge, we can classify B 
as a fact.
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From now on, for the sake of simplicity, in total 
gift and total obfuscation symbols we omit to 
specify the ''a'' symbol so that ↓a and ↑a will 
simply be ↓ and ↑.
Clinical diagnostic is a useful setting to show 
what kind of hybrid knowledge we are model-
ing, but it is not the only context in which this 
knowledge can be found. 
We discuss here an example related to infor-
mation security. In particular, we consider 
the Open Web Application Security Project 
(OWASP)3, Top Ten Most Critical Web Ap-
plication Security Risks. OWASPÕs Top Ten 
is updated regularly and the latest edition in-
cludes A1-Injection, A2-Broken Authentication, 
A3-Sensitive Data Exposure, A4-XML External 
Entities (XXE), A5-Broken Access Control, 
A6-Security Misconfiguration, A7-Cross-Site 
Scripting (XSS), A8-Insecure Deserialization, 
A9-Using Components with Known Vulnera-
bilities, A10-Insufficient Logging and Monitor-
ing. These risks are not independent from each 
other; being exposed to one risk sometimes en-
tails being also exposed to another one in the 
list. Being exposed to Injection (A1) means that 
untrusted data is sent to an interpreter as part 
of a command or query and this data can trick 
the interpreter into executing unintended com-
mands or accessing data without proper autho-
rization; this can imply also to be exposed to 
the risk of Broken Authentication (A2). In the 
following example, we interpret vulnerability 
scanning tools as a test to reveal a given risk of 
the OWASP Top Ten.
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(with no false positives) or complete (with no 
false negatives). We introduce the modal oper-
ator □+ to denote the fact that a test has no false 
positives, and the modal operator □- to denote 
that it has no false negatives. The modal opera-
tors □+ and □- relate to accuracy, precision and 
recall. We use these terms in the usual meaning 
they have in machine learning and specifically 
in the theory of Bayesian classifiers. Accuracy 
is the probabilistic complement of error rate of 
a test, precision is the probabilistic complement 
of negative error rate (namely the probability of 
the test giving a correct positive answer), and 
recall is the probabilistic complement of posi-
tive error rate (thus the probability of a test giv-
ing a correct negative answer). If a test is both 
correct and complete, then so is the property 
it reveals. This can be expressed by means of 
logical rules. For example, when two tests are 
differently accurate, and both lack false pos-
itives, then they are also ordered in the same 
way by precision. Analogously, when they lack 
false negatives, they are also ordered in the 
same way with respect to recall. We formalize 
these concepts as follows, where MAR stands 
for Map Accuracy to Recall, and MAP stands 
for Map Accuracy to Precision:
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is managed by means of rules like the  following 
one:
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This rule can be reproduced, analogously, for 
the accuracy as related to recall and to precision.
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The modal interplay between different metrics 
is an interesting problem from both the proof 
theoretical viewpoint and the practical one (re-
lated to the software design). We leave to fu-
ture work the implementation of the interplay 
between different metrics. In Example 2 we in-
troduce the key idea that we will exploit in the 
following: the result of a test is measured by 
the accuracy hypothesis we assume for the test. 
For instance, when a test is valued 0.8 accurate, 
we mean that we believe the test result is true in 
80% of the cases, whilst we think that the test 
gives a wrong answer in 20% of the cases.
Example 2. Assume that we execute Elisa (Eli) 
on sample John (J) to test for HIV. We execute 
the test on Monday (Mon), under the history 
of no previous test. The test results are pos-
itive. Now, since Elisa has no false negatives 
but has false positives (and is not particularly 
accurate), we execute Western-Blot (WB) on 
Tuesday (Tue) to confirm/refute Elisas result. 
Western-Blot, obviously is executed with the 
history of Elisa, which does not interfere with 
it. The test results are negative. Now, since 
Western-Blot has not false negatives, we con-
clude that the sample is HIV-free.
Western-Blot is more accurate than Elisa, so 
WB(Tue,Eli) >a Eli(Mon,∅).
The example shows that the best accuracy of a 
test τi with respect to a test τj induces a first, in-
tuitive notion of prevalence: if revealed formu-
lae are contradictory, we trust the more reliable 
experiment. This will become central in Section 
3.3, when we move toward defeasible theories.

It is well known that, when using tests for re-
vealing properties employed in empirical sci-
ences, a given test can interfere with the result 

of other tests. For instance, certain therapeutic 
tests (such as the attempt at solving a dangerous 
potential bacterial infection by the prophylaxis 
with antibiotics) can make the results of other 
tests unreliable.
We say that test τ1 obfuscates test τ2 if perform-
ing τ1 on a sample before τ2 diminishes τ2's abil-
ity to reveal a given property.
On the other hand, τ1 gifts a property on a test τ2 
when its application extends the ability of τ2 to 
reveal the property itself.
This reasoning is based on the application of 
tests in sequence, which is the reason why we 
have introduced an implicit notion of time. We 
assume that time is discrete, and that tests are 
executed at a given instant of time. We intro-
duce a notion of absolute time and associate di-
rectly temporal instants to test execution only. 
Partial obfuscation and partial gift can be intui-
tively described as follows:

 ● We say that a test τ1 (for a property A) 
a-obfuscates ( ↓a) the test τ2 of a property 
B if, when τ1 is executed before τ2, then the 
accuracy of τ2 : B is less than it would have 
been if the test τ1 on A was not executed.

 ● We say that that a test τ1 (for a property A) 
a-gifts (↑ a) a property B if τ1 : B, when, 
contrary to a-obfuscation, the accuracy of 
the test for B increases.

We can similarly define p-obfuscation, p-gift, 
r-obfuscation and r-gift referring to obfusca-
tion and gift for precision and recall, instead of 
accuracy. More formally, we can provide the 
following relation, exploiting metric-based re-
lational formulae (Definition 2).
Definition 3. Obfuscation and Gift

 ● (τ1
(t1,φ1) ↓a τ2

(t2,φ2))[B] iff t1 < t2 and 
τ2

(t,φ) >a τ2
(t2,φ2) for t < t1 or for φ s.t. τ1 ∉ φ.

 ● (τ1
(t1,φ1) ↑ a τ2

(t2,φ2))[B] iff t1 < t2 and 
τ2

(t2,φ2) >a τ2
(t,φ) for t < t1 or for φ s.t. τ1 ∉ φ.

Similar rules for recall and precision can be ob-
tained by replacing relations ↑ a and ↓a with 
the counterparts ↑ p, ↑ r, ↓p and ↓r.
Total obfuscation and total gift have a specific 
logical interpretation. A test τ1 (revealing a prop-
erty A) totally obfuscates another test τ2 (reveal-
ing a property B). After the execution of τ1 it is 
no longer possible to reveal B by means of τ2:
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Dually, a test τ1 (revealing a property A) total-
ly gifts another test τ2 (revealing a property B). 
After the execution of τ1 it is no longer neces-
sary to reveal B, since the information that B 
holds for the sample is obtained as a side effect 
of the execution of τ1. Since B does not require 
to be revealed but, after the execution of τ1, it 
became a ground knowledge, we can classify B 
as a fact.
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From now on, for the sake of simplicity, in total 
gift and total obfuscation symbols we omit to 
specify the ''a'' symbol so that ↓a and ↑a will 
simply be ↓ and ↑.
Clinical diagnostic is a useful setting to show 
what kind of hybrid knowledge we are model-
ing, but it is not the only context in which this 
knowledge can be found. 
We discuss here an example related to infor-
mation security. In particular, we consider 
the Open Web Application Security Project 
(OWASP)3, Top Ten Most Critical Web Ap-
plication Security Risks. OWASPÕs Top Ten 
is updated regularly and the latest edition in-
cludes A1-Injection, A2-Broken Authentication, 
A3-Sensitive Data Exposure, A4-XML External 
Entities (XXE), A5-Broken Access Control, 
A6-Security Misconfiguration, A7-Cross-Site 
Scripting (XSS), A8-Insecure Deserialization, 
A9-Using Components with Known Vulnera-
bilities, A10-Insufficient Logging and Monitor-
ing. These risks are not independent from each 
other; being exposed to one risk sometimes en-
tails being also exposed to another one in the 
list. Being exposed to Injection (A1) means that 
untrusted data is sent to an interpreter as part 
of a command or query and this data can trick 
the interpreter into executing unintended com-
mands or accessing data without proper autho-
rization; this can imply also to be exposed to 
the risk of Broken Authentication (A2). In the 
following example, we interpret vulnerability 
scanning tools as a test to reveal a given risk of 
the OWASP Top Ten.
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We write ( , )
( )
t
Ai
ϕτ  to say that the security risk Ai is 

revealed by a test (a suitable scanning tool) τ(Ai). 
To classify test/scanning tools, i.e., to measure 
software performances, we adopt the standard 
binary classification of algorithm behaviour.
Example 3. Total obfuscation
Let be C a web application. Risk A9 (Using 
Components with Known Vulnerabilities) ob-
fuscates risk A10 (Insufficient Logging and 
Monitoring).
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Example 4. Total gift
Let C be a web application. Risk A1 (Injection) 
totally gifts risk A2 (Broken Authentication).
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An interference between tests τ1 and τ2 may oc-
cur. We write τ1 ^ τ2 if τ1 and τ2 are non-inter-
fering, i.e., if they do not obfuscate or gift each 
other in either direction.

4.3. Defeasible Logic and Diagnostic 
Reasoning

One of the most characterising aspects of the 
experiment-based reasoning is the possibility 
that a property revealed positively by a test is 
revealed negatively by another test. Generally 
speaking, we want to devise a method of rea-
soning that allows us to accommodate contra-
dictory assertions, in a non- monotonic fashion. 
In [14], [15], [16], [17], [18], [37], some of us 
have investigated the use of Defeasible Logic 
as a means for managing data coming from ex-
ternal sources and validated by means of data 
mining methods. Non-monotonic reasoning ac-
commodates conclusions when dealing with po-
tential conflicts. When derivations may lead to 
potentially contradictory conclusions, we may 

typically have two strategies to avoid incon-
sistencies. In a credulous approach, we branch 
by creating two distinct sets of conclusions: 
one for each of the contradictory conclusions. 
Opposite, with a skeptical approach, we need 
a (preference) mechanism to establish wheth-
er one conclusion is preferred to the other one 
(in literature, this is typically referred to as a 
superiority, or preference relation; see [20] for 
a systematic analysis). If such a mechanism is 
not able to solve the conflict, no conclusion is 
derived unless exceptions are given. Exceptions 
can be seen as particular conditions preventing 
to draw a specific conclusion2. In this paper, we 
shall not consider credulous settings. The for-
malism that we employ here to convert intrinsic 
non-monotonic aspects of Tℒ logic is Defeasible 
Logic (DL), a skeptical non-monotonic reason-
ing framework that accommodates assertions, 
priorities and negative exceptions as introduced 
above.
There are three distinct sources of non-monoto-
nicity when reasoning about tests:

 ● Two different tests may give out different 
results on the same sample.

 ● One test cannot be used to conclude a di-
agnosis, because another test has modified 
the sample or created a condition that pre-
vents the use of the sample.

 ● One test can be used to conclude diagno-
sis, because another test has modified the 
sample or created a condition that allows 
the use of the sample for concluding on the 
diagnosis without performing the test at all.

We emphasize these aspects in Section 5, where 
we introduce a rewriting algorithm that trans-
forms a set of labelled Tℒ rules into a defeasible 
theory that can be processed, in turn, by a defea-
sible engine.
In this perspective, DL can be viewed as a me-
ta-logic: its rules habilitate the expression of di-
agnostic reasoning in a natural way and, thanks 
to the rewriting algorithm, a defeasible theory 
is produced. Once we have produced such a 
defeasible theory, we can process the theory by 
means of the reasoning technology SPINdle. In 
Defeasible Logic [3], [30], we indeed have rules 

for opposite derivations, although not all con-
cluded. In the situation where rules for opposite 
literals are activated the logic does not produce 
any inconsistency but does not draw any con-
clusion unless a preference (or superiority) rela-
tion states that one rule prevails over the other. 
A defeasible theory D is defined as a structure 
(F, R, >), where:

 ● F is the set of facts, a set of atomic asser-
tions (literals) considered to be always true 
(e.g., a fact is that ''the stove is ON'', for-
mally ''stove ON''),

 ● R is the set of rules, which in turn con-
tains three finite sets of rules: strict rules 
(denoted by ⇒) , defeasible rules (denoted 
by symbol →), and defeaters (denoted by 
symbol �).

●● > is a binary relation over R, restricted on 
defeasible rules with opposite conclusions.

A defeasible rule can be defeated by contrary 
evidence; defeaters are special rules whose only 
purpose is to defeat defeasible rules by produc-
ing contrary evidence. Our framework does not 
use strict rules or defeaters, but only defeasible 
rules. The superiority relation establishes that 
some rules override the conclusion of another 
one with the opposite conclusion. Like in [3], 
we consider only a version of this logic that can 
be reduced to a propositional theory and does 
not contain defeaters. In DL, a proof P of length 
n is a finite sequence P(1), ..., P(n) of tagged 
literals of the type ± Δp and ± ∂p. The idea is 
that, at every step of the derivation, a literal is 
either proven or disproven. The set of positive 
and negative conclusions is called extension. 
The meanings of tagged literals is as follows
●● +Δq, which means that there is a definite 

proof for q in D; such a proof uses strict 
rules and facts only.

●● -Δq which means that q is not definitely 
provable in D.

●● +∂q which means that q is defeasibly prov-
able in D.

●● -∂q which means that q is refuted, or not 
defeasibly provable in D.

Formalisation of the proof tags is out of the 
scope of the present paper. An idea of how the 
derivation mechanism works is proposed in the 
following Example 5.

Example 5.
Let D = (a, b, , >) be a defeasible theory such 
that 
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Then we derive +Δc via r1 and +∂d since r2 is 
stronger than r3.
Note that it does not matter whether the an-
tecedents of a rule have been proven as strict 
conclusions: if such literals are used to allow a 
defeasible rule to fire (as for r2), the conclusion 
will be defeasible.

5. An Architecture for Diagnostic 
Reasoning

5.1. An Algorithm for Transforming Tℒ 
Assertions onto Defeasible Theories

In this section, we define an algorithm that 
translates diagnostic results in a DL theory. 
We employ three kinds of objects: (a) facts, (b) 
rules and (c) priorities, namely superiority re-
lations that establish which rule prevails when 
conflicting conclusions arise. We treat Tℒ as 
formed by two layers, the first formed by the 
defeasible objects and the second formed by 
meta-rules, establishing how to deal with the 
rules themselves. Essentially, we consider the 
facts as known truths, incontrovertible data, 
such as the results of tests without errors, or di-
rect anamnestic data, for instance the age of a 
patient. Rules are instead the central part of the 
logical structure and relate the tests to the diag-
nosis, providing defeasible derivations.
The relations between tests, both temporal and 
evaluation ones, including gift and obfuscation, 
are treated as meta-rules, namely rules provid-
ing room for derived priorities. In the applica-
tion of the translation algorithm we show that 
the meta-rules can be synchronized, translated 
into defeasible rules, and then used to make a 
decision about the meaning of a Tℒ theory in 

2Such exceptions are known as negative exceptions. In credulous settings, another type of exceptions is possible: 
positive exceptions, whose purpose is to force a particular derivation.
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We write ( , )
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Ai
ϕτ  to say that the security risk Ai is 

revealed by a test (a suitable scanning tool) τ(Ai). 
To classify test/scanning tools, i.e., to measure 
software performances, we adopt the standard 
binary classification of algorithm behaviour.
Example 3. Total obfuscation
Let be C a web application. Risk A9 (Using 
Components with Known Vulnerabilities) ob-
fuscates risk A10 (Insufficient Logging and 
Monitoring).
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Example 4. Total gift
Let C be a web application. Risk A1 (Injection) 
totally gifts risk A2 (Broken Authentication).
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An interference between tests τ1 and τ2 may oc-
cur. We write τ1 ^ τ2 if τ1 and τ2 are non-inter-
fering, i.e., if they do not obfuscate or gift each 
other in either direction.

4.3. Defeasible Logic and Diagnostic 
Reasoning

One of the most characterising aspects of the 
experiment-based reasoning is the possibility 
that a property revealed positively by a test is 
revealed negatively by another test. Generally 
speaking, we want to devise a method of rea-
soning that allows us to accommodate contra-
dictory assertions, in a non- monotonic fashion. 
In [14], [15], [16], [17], [18], [37], some of us 
have investigated the use of Defeasible Logic 
as a means for managing data coming from ex-
ternal sources and validated by means of data 
mining methods. Non-monotonic reasoning ac-
commodates conclusions when dealing with po-
tential conflicts. When derivations may lead to 
potentially contradictory conclusions, we may 

typically have two strategies to avoid incon-
sistencies. In a credulous approach, we branch 
by creating two distinct sets of conclusions: 
one for each of the contradictory conclusions. 
Opposite, with a skeptical approach, we need 
a (preference) mechanism to establish wheth-
er one conclusion is preferred to the other one 
(in literature, this is typically referred to as a 
superiority, or preference relation; see [20] for 
a systematic analysis). If such a mechanism is 
not able to solve the conflict, no conclusion is 
derived unless exceptions are given. Exceptions 
can be seen as particular conditions preventing 
to draw a specific conclusion2. In this paper, we 
shall not consider credulous settings. The for-
malism that we employ here to convert intrinsic 
non-monotonic aspects of Tℒ logic is Defeasible 
Logic (DL), a skeptical non-monotonic reason-
ing framework that accommodates assertions, 
priorities and negative exceptions as introduced 
above.
There are three distinct sources of non-monoto-
nicity when reasoning about tests:

 ● Two different tests may give out different 
results on the same sample.

 ● One test cannot be used to conclude a di-
agnosis, because another test has modified 
the sample or created a condition that pre-
vents the use of the sample.

 ● One test can be used to conclude diagno-
sis, because another test has modified the 
sample or created a condition that allows 
the use of the sample for concluding on the 
diagnosis without performing the test at all.

We emphasize these aspects in Section 5, where 
we introduce a rewriting algorithm that trans-
forms a set of labelled Tℒ rules into a defeasible 
theory that can be processed, in turn, by a defea-
sible engine.
In this perspective, DL can be viewed as a me-
ta-logic: its rules habilitate the expression of di-
agnostic reasoning in a natural way and, thanks 
to the rewriting algorithm, a defeasible theory 
is produced. Once we have produced such a 
defeasible theory, we can process the theory by 
means of the reasoning technology SPINdle. In 
Defeasible Logic [3], [30], we indeed have rules 

for opposite derivations, although not all con-
cluded. In the situation where rules for opposite 
literals are activated the logic does not produce 
any inconsistency but does not draw any con-
clusion unless a preference (or superiority) rela-
tion states that one rule prevails over the other. 
A defeasible theory D is defined as a structure 
(F, R, >), where:

 ● F is the set of facts, a set of atomic asser-
tions (literals) considered to be always true 
(e.g., a fact is that ''the stove is ON'', for-
mally ''stove ON''),

 ● R is the set of rules, which in turn con-
tains three finite sets of rules: strict rules 
(denoted by ⇒) , defeasible rules (denoted 
by symbol →), and defeaters (denoted by 
symbol �).

●● > is a binary relation over R, restricted on 
defeasible rules with opposite conclusions.

A defeasible rule can be defeated by contrary 
evidence; defeaters are special rules whose only 
purpose is to defeat defeasible rules by produc-
ing contrary evidence. Our framework does not 
use strict rules or defeaters, but only defeasible 
rules. The superiority relation establishes that 
some rules override the conclusion of another 
one with the opposite conclusion. Like in [3], 
we consider only a version of this logic that can 
be reduced to a propositional theory and does 
not contain defeaters. In DL, a proof P of length 
n is a finite sequence P(1), ..., P(n) of tagged 
literals of the type ± Δp and ± ∂p. The idea is 
that, at every step of the derivation, a literal is 
either proven or disproven. The set of positive 
and negative conclusions is called extension. 
The meanings of tagged literals is as follows
●● +Δq, which means that there is a definite 

proof for q in D; such a proof uses strict 
rules and facts only.

●● -Δq which means that q is not definitely 
provable in D.

●● +∂q which means that q is defeasibly prov-
able in D.

●● -∂q which means that q is refuted, or not 
defeasibly provable in D.

Formalisation of the proof tags is out of the 
scope of the present paper. An idea of how the 
derivation mechanism works is proposed in the 
following Example 5.
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Let D = (a, b, , >) be a defeasible theory such 
that 
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Then we derive +Δc via r1 and +∂d since r2 is 
stronger than r3.
Note that it does not matter whether the an-
tecedents of a rule have been proven as strict 
conclusions: if such literals are used to allow a 
defeasible rule to fire (as for r2), the conclusion 
will be defeasible.

5. An Architecture for Diagnostic 
Reasoning

5.1. An Algorithm for Transforming Tℒ 
Assertions onto Defeasible Theories

In this section, we define an algorithm that 
translates diagnostic results in a DL theory. 
We employ three kinds of objects: (a) facts, (b) 
rules and (c) priorities, namely superiority re-
lations that establish which rule prevails when 
conflicting conclusions arise. We treat Tℒ as 
formed by two layers, the first formed by the 
defeasible objects and the second formed by 
meta-rules, establishing how to deal with the 
rules themselves. Essentially, we consider the 
facts as known truths, incontrovertible data, 
such as the results of tests without errors, or di-
rect anamnestic data, for instance the age of a 
patient. Rules are instead the central part of the 
logical structure and relate the tests to the diag-
nosis, providing defeasible derivations.
The relations between tests, both temporal and 
evaluation ones, including gift and obfuscation, 
are treated as meta-rules, namely rules provid-
ing room for derived priorities. In the applica-
tion of the translation algorithm we show that 
the meta-rules can be synchronized, translated 
into defeasible rules, and then used to make a 
decision about the meaning of a Tℒ theory in 

2Such exceptions are known as negative exceptions. In credulous settings, another type of exceptions is possible: 
positive exceptions, whose purpose is to force a particular derivation.
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linear time. First of all, we introduce the intend-
ed meaning of the elements of the system. This 
architecture of the solution is specified in detail 
in Section 5.2.
Meta-rules are written with two constraints: 
time and experimental evaluation. In particu-
lar, these rules are transformed into defeasible 
rules, extended with a temporal label express-
ing the initial time instant t of the (open) inter-
val in which the rule is available to be put be-
fore the literals appearing in the rule itself and 
criteria based on measures, again mapped onto 
labels in the form p+ or p− above the derivation 
operation sign. The transformation algorithm 
SincroCutII is introduced below, Algorithm 1. 
The algorithm takes as input a set of meta-rules 
and a set of evaluations of an experiment and 
transforms them into a defeasible theory by 
checking the temporal constraints, interference, 
and modal relations among tests. The result of 
the algorithm is a defeasible theory. The model 
of these meta-rules is inspired by studies of one 
of the authors [12]. We now describe how the 
algorithm works. It takes as input a finite set of 
Tℒ assertions, and gives, as output, a defeasi-
ble theory. The first cycle initializes basic data 
structures, used to host the converted tokens. 
The second cycle of the algorithm computes the 
facts in the theory, and therefore determines the 
base for the subsequent derivations by the Spin-
dle reasoner. The third cycle reads meta-rules 
and priorities and translates them into the de-
feasible theory under construction.
Notation r : t extracts the temporal information 
of a rule. The procedure evalExperiment ex-
tracts the result of an experiment. The proce-
dure createNewRule creates a new empty rule.
Observe, moreover, that obfuscation and gift, 
the relations between rules that are providing 
room for temporal re-processing of rules them-
selves, are treated as modals in the second cycle 
of the algorithm itself.
A certain rule is a candidate for rewriting only 
if the synchronizer has acknowledged that its 
clock time falls within the validity interval of 
the rule when the rule has a validity interval ex-
plicitly specified, or at the exact instant of the 
rule if the rule is not tagged so and therefore is 
considered instantaneous.
The algorithm executes the translation. At 
this stage of our research, we do not provide 

proofs of soundness and completeness of the 
deduction system introduced in Section 4, and, 
consequently we will not discuss properties 
of correctness and completeness of the imple-
mented solution. All these investigations are 
left to future work, along with the discussion 
of the semantics of the logical framework, and 

the corresponding canonical models. Being the 
framework based on DL, clearly the semantics 
of the former depends upon the semantics of 
the latter into which the Tℒ assertions are trans-
lated. 
What we can prove here is the complexity of 
the method, which is independent of the issues 
discussed above (soundness of the Tℒ deduction 
rules, semantics of Tℒ, completeness, canonical 
models, correctness of the algorithm, complete-
ness of the algorithm). In fact, the algorithm is 
linear in the number of literals appearing in the 
Tℒ set of assertions given as input to the algo-
rithm, since the limited number of cycles that 
can be executed is the number of literals.

5.2. Architecture of a System  
Implementing Tℒ Transformation

In this section, we briefly introduce an architec-
ture for diagnostic reasoning that is based on four 
modules, some documented in this paper, some 

yet to come. The architecture, shown in Figure 1, 
is described in terms of functions of the modules. 
We introduce here the DILP module, a module 
used to perform recommendations on the rules to 
introduce that is based upon the Machine Learn-
ing methods of Inductive Logic Programming, 
an approach that is also applied to DL.

 ● User Interface: allows the user to input 
''meta rules'' and provides visualization of 
all data coming from the DILP module;

 ● Transformer: takes as input a set of  ''meta 
rules'' and gives as output a set of defea-

sible rules to be used by the Reasoner, in 
accordance with the time given by its in-
ternal clock mechanism and an evaluation 
algorithm;

 ● Reasoner: uses the rules and determines 
the ''should be'' conclusions; Preliminary 
Output: is responsible for the delivery to 
the user;

 ● DILP: gathers data and makes analysis 
delivering summaries and possible rules to 
be displayed by the User Interface (future 
extension).

The output of the User Interface is an ordered 
set of  ''Meta rules'' which are one of the input 
of the Transformer that runs continuously and 
at given times uses the algorithm SincroCutII to 
produce a set of defeasible rules.

These rules are given to the Reasoner whose 
output is using the +@ conclusion given the set 
of rules coming from the Transformer. The De-
feasible Logic rule engine used is a Prolog-like 
engine called SPINdle [22]. At different times 
different conclusions are possible, due to the 
work of the Transformer. We now show how 
the algorithm works by means of a detailed ex-
ample.

6. Case Study

We use a concrete example to show how our 
model can fit a real-life scenario. We consider 
a web application of a bank, located in Italy, 
which had to be tested against the OWASP Top 
Ten risks that we listed above.

The analysis is split between two different con-
tractors, namely subjects in charge of analyzing 
a subset of the list. Contractor α uses a combi-
nation of automated testing and human vali-
dation and can cover risk {A1, A3, A4, A5, A10} 
while contractor β performs only automated 
testing and can cover risk {A2, A4, A6, A7, A8, 
A9, A10}; α is considered to perform tests with 
a higher accuracy than the ones delivered by 
β. Both execute the tests sequentially one per 
day and α has been engaged after β has com-
pleted its task. For the sake of space in the 
rest of this example we will write Ai instead of 
Ai(BankApp) to describe the ground formulas 
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Algorithm 1. Transformation algorithm SincroCutII.

Input: an ordered set of Metarules Θ, current time t and 
a set of evaluations of the experiments Ψ;
Output: a defeasible theory , ,F R P=  (facts, rules, 
priorities);
Ψ' ← Ψ
repeat
  m ← pop(Ψ'); l ← evalExperiment(m); 
  // l is in the form ( , )( ) : ( ) : ( )i it

i kA l C l P Cϕτ=
  L ← push(l, L);
until Ψ' = ∅;
F ← ∅; L' ← L;
repeat
  if l.t1 ≤ t then
      f ← A(l).φ;    F ← push(f, F);
      r' ← ' ⇒' +●C(l);    R ← push(r', R);
  end if
until L' = ∅
repeat
  r ← pop(Θ);
  if type(r) = priority then
      P ← push(r, P);
  else
      if r.t1 ≤ t then
          η ← ∅;    L' ← L;
          repeat
              l' ← pop(F');
              if l' ∈ A(r) then
                  η ← (A(r) - l');
              end if
          until (L' = ∅ or η ≠ ∅);
          if η ≠ ∅ then
              r' ← createNewRule();
              if η   ↓ then
                  r' ←    ⇒ Pk(C);    r'' ←    ⇒∼ Pk(C);
                  R ← push(r', R);    R ← push(r'', R);
              else if η   ↑ then
                  r' ←    ⇒ Pk(C);
                 R ← push(r', R);
              else
                 A(r') ← η;  C(r') ← C(r);  R ← push(r', R);
              end if
          end if
      end if
  end if
until Θ = ∅;
return ; 

Figure 1. Architecture for Diagnostic Reasoning 
System.
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linear time. First of all, we introduce the intend-
ed meaning of the elements of the system. This 
architecture of the solution is specified in detail 
in Section 5.2.
Meta-rules are written with two constraints: 
time and experimental evaluation. In particu-
lar, these rules are transformed into defeasible 
rules, extended with a temporal label express-
ing the initial time instant t of the (open) inter-
val in which the rule is available to be put be-
fore the literals appearing in the rule itself and 
criteria based on measures, again mapped onto 
labels in the form p+ or p− above the derivation 
operation sign. The transformation algorithm 
SincroCutII is introduced below, Algorithm 1. 
The algorithm takes as input a set of meta-rules 
and a set of evaluations of an experiment and 
transforms them into a defeasible theory by 
checking the temporal constraints, interference, 
and modal relations among tests. The result of 
the algorithm is a defeasible theory. The model 
of these meta-rules is inspired by studies of one 
of the authors [12]. We now describe how the 
algorithm works. It takes as input a finite set of 
Tℒ assertions, and gives, as output, a defeasi-
ble theory. The first cycle initializes basic data 
structures, used to host the converted tokens. 
The second cycle of the algorithm computes the 
facts in the theory, and therefore determines the 
base for the subsequent derivations by the Spin-
dle reasoner. The third cycle reads meta-rules 
and priorities and translates them into the de-
feasible theory under construction.
Notation r : t extracts the temporal information 
of a rule. The procedure evalExperiment ex-
tracts the result of an experiment. The proce-
dure createNewRule creates a new empty rule.
Observe, moreover, that obfuscation and gift, 
the relations between rules that are providing 
room for temporal re-processing of rules them-
selves, are treated as modals in the second cycle 
of the algorithm itself.
A certain rule is a candidate for rewriting only 
if the synchronizer has acknowledged that its 
clock time falls within the validity interval of 
the rule when the rule has a validity interval ex-
plicitly specified, or at the exact instant of the 
rule if the rule is not tagged so and therefore is 
considered instantaneous.
The algorithm executes the translation. At 
this stage of our research, we do not provide 

proofs of soundness and completeness of the 
deduction system introduced in Section 4, and, 
consequently we will not discuss properties 
of correctness and completeness of the imple-
mented solution. All these investigations are 
left to future work, along with the discussion 
of the semantics of the logical framework, and 

the corresponding canonical models. Being the 
framework based on DL, clearly the semantics 
of the former depends upon the semantics of 
the latter into which the Tℒ assertions are trans-
lated. 
What we can prove here is the complexity of 
the method, which is independent of the issues 
discussed above (soundness of the Tℒ deduction 
rules, semantics of Tℒ, completeness, canonical 
models, correctness of the algorithm, complete-
ness of the algorithm). In fact, the algorithm is 
linear in the number of literals appearing in the 
Tℒ set of assertions given as input to the algo-
rithm, since the limited number of cycles that 
can be executed is the number of literals.

5.2. Architecture of a System  
Implementing Tℒ Transformation

In this section, we briefly introduce an architec-
ture for diagnostic reasoning that is based on four 
modules, some documented in this paper, some 

yet to come. The architecture, shown in Figure 1, 
is described in terms of functions of the modules. 
We introduce here the DILP module, a module 
used to perform recommendations on the rules to 
introduce that is based upon the Machine Learn-
ing methods of Inductive Logic Programming, 
an approach that is also applied to DL.

 ● User Interface: allows the user to input 
''meta rules'' and provides visualization of 
all data coming from the DILP module;

 ● Transformer: takes as input a set of  ''meta 
rules'' and gives as output a set of defea-

sible rules to be used by the Reasoner, in 
accordance with the time given by its in-
ternal clock mechanism and an evaluation 
algorithm;

 ● Reasoner: uses the rules and determines 
the ''should be'' conclusions; Preliminary 
Output: is responsible for the delivery to 
the user;

 ● DILP: gathers data and makes analysis 
delivering summaries and possible rules to 
be displayed by the User Interface (future 
extension).

The output of the User Interface is an ordered 
set of  ''Meta rules'' which are one of the input 
of the Transformer that runs continuously and 
at given times uses the algorithm SincroCutII to 
produce a set of defeasible rules.

These rules are given to the Reasoner whose 
output is using the +@ conclusion given the set 
of rules coming from the Transformer. The De-
feasible Logic rule engine used is a Prolog-like 
engine called SPINdle [22]. At different times 
different conclusions are possible, due to the 
work of the Transformer. We now show how 
the algorithm works by means of a detailed ex-
ample.

6. Case Study

We use a concrete example to show how our 
model can fit a real-life scenario. We consider 
a web application of a bank, located in Italy, 
which had to be tested against the OWASP Top 
Ten risks that we listed above.

The analysis is split between two different con-
tractors, namely subjects in charge of analyzing 
a subset of the list. Contractor α uses a combi-
nation of automated testing and human vali-
dation and can cover risk {A1, A3, A4, A5, A10} 
while contractor β performs only automated 
testing and can cover risk {A2, A4, A6, A7, A8, 
A9, A10}; α is considered to perform tests with 
a higher accuracy than the ones delivered by 
β. Both execute the tests sequentially one per 
day and α has been engaged after β has com-
pleted its task. For the sake of space in the 
rest of this example we will write Ai instead of 
Ai(BankApp) to describe the ground formulas 

Preliminary Output

Reasoner

Transformer

User Interface

DILP

Meta rules

Defeasible rules

Configuration
Data

Reports

Algorithm 1. Transformation algorithm SincroCutII.

Input: an ordered set of Metarules Θ, current time t and 
a set of evaluations of the experiments Ψ;
Output: a defeasible theory , ,F R P=  (facts, rules, 
priorities);
Ψ' ← Ψ
repeat
  m ← pop(Ψ'); l ← evalExperiment(m); 
  // l is in the form ( , )( ) : ( ) : ( )i it

i kA l C l P Cϕτ=
  L ← push(l, L);
until Ψ' = ∅;
F ← ∅; L' ← L;
repeat
  if l.t1 ≤ t then
      f ← A(l).φ;    F ← push(f, F);
      r' ← ' ⇒' +●C(l);    R ← push(r', R);
  end if
until L' = ∅
repeat
  r ← pop(Θ);
  if type(r) = priority then
      P ← push(r, P);
  else
      if r.t1 ≤ t then
          η ← ∅;    L' ← L;
          repeat
              l' ← pop(F');
              if l' ∈ A(r) then
                  η ← (A(r) - l');
              end if
          until (L' = ∅ or η ≠ ∅);
          if η ≠ ∅ then
              r' ← createNewRule();
              if η   ↓ then
                  r' ←    ⇒ Pk(C);    r'' ←    ⇒∼ Pk(C);
                  R ← push(r', R);    R ← push(r'', R);
              else if η   ↑ then
                  r' ←    ⇒ Pk(C);
                 R ← push(r', R);
              else
                 A(r') ← η;  C(r') ← C(r);  R ← push(r', R);
              end if
          end if
      end if
  end if
until Θ = ∅;
return ; 

Figure 1. Architecture for Diagnostic Reasoning 
System.
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We also state that α : A1 > β : A1, α : A4 > β : A4 
and α : A10 > β : A10 by knowledge on the accu-
racy of tests and α : A2 > β : A2 because of the 
gift specified above. The results are:
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This is therefore the set of meta-rules. Once 
the Translator has performed Algorithm Sin-
croCutII we have, at any time after all the tests 
have been executed (t > 12):

→● ϕ1, → ϕ2, → ϕ3, → ϕ4, → ϕ5, → ϕ6, → ϕ7,   
→ ϕ8, → ϕ9, → ϕ10, → ϕ11, → ϕ12
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Given that theory, the Reasoner concludes 
+∂A1, +∂A2, +∂ ¬A3, +∂ ¬A4, +∂ ¬A5, +∂ ¬A6, 
+∂ ¬A7, +∂ ¬A8, +∂ ¬A9, +∂ ¬A10, as shown in 
Appendix A.
We can therefore conclude that the application 
is subject to risks A1-Injection, A2-Broken Au-
thentication, A6-Security Misconfiguration, 
A8-Insecure Deserialization, A9-Using Com-
ponents with Known Vulnerabilities, A10-In-
sufficient Logging and Monitoring, but not to 
A3-Sensitive Data Exposure, A4-XML External 
Entities (XXE), A5-Broken Access Control, A7 
Cross-Site Scripting (XSS).

7. Discussion and Conclusions

In this paper, we have developed the logic Tℒ 
[17], which is able to formalize a form of diag-
nostic reasoning based both on deduction and on 
experimental knowledge. We introduced some 
notions about experiment-based deduction, fol-
lowing a perspective clearly oriented to reason-
ing mechanization. In comparison with [17], we 
also focused on the (natural) defeasible aspects 
of diagnostic knowledge. To this end, we intro-
duced a rewriting algorithm SincroCutII, that 
takes as input Tℒ formulas and transforms them 
into a defeasible theory by checking temporal, 
accuracy and interference constraints between 
tests. The result of the SincroCutII is a defea-
sible theory. By means of an example from a 
real-life scenario, we carried out a case study 
using the defeasible engine SPINdle. We are 
currently working in three directions. First, the 
system Tℒ can be improved as a (stand-alone) 
labelled temporal logic framework, and its proof 
theory seems to be a challenging and interesting 
task. On the semantic side, we observed that the 
natural interpretation for Tℒ is related to some 
interpretations of the branching time logic UB 
[9]. The most suitable style is Prawitz' natural 
deduction [4], [5], [33]. Following [13], [39], 
[40], we are developing a labelled, non-mono-
tonic natural deduction system. Second, the 
defeasible flavor we pointed out in this paper 

seems to be the right perspective to move to-
ward a more expressive automatic reasoner. In 
particular, we aim to extend the deduction sys-
tem both to include more refined quantitative 
information about tests and to address more 
complex diagnostic based deduction, including 
multi-level defeasible mechanisms.
Finally, there is a strong relation between tests 
and resources. In a more refined framework, 
a test could reasonably consume a resource in 
revealing a property. This reflects what effec-
tively happens in a number of laboratory ex-
periments and we plan to investigate whether 
this could be captured by means of an approach 
inspired by Linear Logic [1].
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We also state that α : A1 > β : A1, α : A4 > β : A4 
and α : A10 > β : A10 by knowledge on the accu-
racy of tests and α : A2 > β : A2 because of the 
gift specified above. The results are:
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This is therefore the set of meta-rules. Once 
the Translator has performed Algorithm Sin-
croCutII we have, at any time after all the tests 
have been executed (t > 12):
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Given that theory, the Reasoner concludes 
+∂A1, +∂A2, +∂ ¬A3, +∂ ¬A4, +∂ ¬A5, +∂ ¬A6, 
+∂ ¬A7, +∂ ¬A8, +∂ ¬A9, +∂ ¬A10, as shown in 
Appendix A.
We can therefore conclude that the application 
is subject to risks A1-Injection, A2-Broken Au-
thentication, A6-Security Misconfiguration, 
A8-Insecure Deserialization, A9-Using Com-
ponents with Known Vulnerabilities, A10-In-
sufficient Logging and Monitoring, but not to 
A3-Sensitive Data Exposure, A4-XML External 
Entities (XXE), A5-Broken Access Control, A7 
Cross-Site Scripting (XSS).

7. Discussion and Conclusions

In this paper, we have developed the logic Tℒ 
[17], which is able to formalize a form of diag-
nostic reasoning based both on deduction and on 
experimental knowledge. We introduced some 
notions about experiment-based deduction, fol-
lowing a perspective clearly oriented to reason-
ing mechanization. In comparison with [17], we 
also focused on the (natural) defeasible aspects 
of diagnostic knowledge. To this end, we intro-
duced a rewriting algorithm SincroCutII, that 
takes as input Tℒ formulas and transforms them 
into a defeasible theory by checking temporal, 
accuracy and interference constraints between 
tests. The result of the SincroCutII is a defea-
sible theory. By means of an example from a 
real-life scenario, we carried out a case study 
using the defeasible engine SPINdle. We are 
currently working in three directions. First, the 
system Tℒ can be improved as a (stand-alone) 
labelled temporal logic framework, and its proof 
theory seems to be a challenging and interesting 
task. On the semantic side, we observed that the 
natural interpretation for Tℒ is related to some 
interpretations of the branching time logic UB 
[9]. The most suitable style is Prawitz' natural 
deduction [4], [5], [33]. Following [13], [39], 
[40], we are developing a labelled, non-mono-
tonic natural deduction system. Second, the 
defeasible flavor we pointed out in this paper 

seems to be the right perspective to move to-
ward a more expressive automatic reasoner. In 
particular, we aim to extend the deduction sys-
tem both to include more refined quantitative 
information about tests and to address more 
complex diagnostic based deduction, including 
multi-level defeasible mechanisms.
Finally, there is a strong relation between tests 
and resources. In a more refined framework, 
a test could reasonably consume a resource in 
revealing a property. This reflects what effec-
tively happens in a number of laboratory ex-
periments and we plan to investigate whether 
this could be captured by means of an approach 
inspired by Linear Logic [1].
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