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To measure uncertain time series similarity effectively 
and efficiently, in this paper, we propose a weighted 
DTW distance-based approach for uncertain time se-
ries with the expected distance. We introduce a weight 
function to assign weights to a reference point and a 
testing point. With this function and the WDTW, the 
accuracy of calculating uncertain time series similarity 
can be improved. Also, to reduce the storage space and 
time-consuming, we extend the lower bound function 
LB_Keogh for DTW into ULB_Keogh for our ap-
proach.

ACM CCS (2012) Classification: Mathematics of 
computing → Probability and statistics → Statistical 
paradigms → Time series analysis
Information systems → Information retrieval → Re-
trieval models and ranking → Similarity measures
Information systems → Data management systems 
→ Database design and models → Data model exten-
sions → Uncertainty

Keywords: uncertain time series, similarity matching, 
dynamic time warping (DTW), weighted DTW

1. Introduction

Time series is an ordered sequence of data and 
each element of the time series is indexed by a 
point in time [1]. Time series data widely exist 
in many application domains such as finance, 
meteorology [1], biological science [3], [4], as-
tronomy [5], [6] and so on. The commonly ob-
tained time series are daily stock price changes 
in the stock market, daily temperature readings 
of a weather forecast, one's heartbeat changes 
and the audio or image of multimedia that is 
transformed into time series data.

With the widespread applications of computer 
technology in various fields, such data is ap-
pearing more and more. Therefore, it is of cru-
cial importance to effectively and efficiently 
manage and use time series data. Time series 
data processing has attracted much more atten-
tion, and much work has been put into providing 
a more efficient solution to analyze time series 
data. This is especially true in the fields of sci-
entific and engineering applications. Here we 
give an example of a recent job. In [5], [6], cor-
onal mass ejection (CME) data are modeled as 
time series, and the problem of magnetic cloud 
(MC) or non-MC distinction in CME data is 
solved by analyzing a time series data in which 
clustering and visualization of the time series 
data are investigated. For clustering, the results 
from the popular hierarchical agglomerative 
clustering technique to a distance density clus-
tering heuristic in [7] are compared. For visual-
ization, decision trees are applied to aggregate 
single-dimensional clustering results to form 
a multidimensional time series decision tree, 
with averaged time series to present each deci-
sion. Similarly, a data-driven approach is pro-
posed in [8] to address the problem of flare pre-
diction from a multivariate time series analysis 
perspective. The authors in [8] cluster potential 
flaring active regions by applying Distance 
Density clustering on individual parameters 
and further organize the clustering results into a 
multivariate time series decision tree.
Many problems have been studied in the litera-
ture for the analysis of time series data. Among 
these issues, the similarity matching problem 
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of time series is the most basic and most im-
portant problem. The similarity of time series is 
not only directly used for similarity search [9] 
and clustering [10], [8] of time series, but also 
provides fundamental support for outlier detec-
tion, pattern discovery [11], classification [12], 
segmentation [9] and so on. As a subtask of 
these technologies, the similarity problem can 
provide powerful help for time series prediction 
and analysis.
In time series, it is usually assumed that all val-
ues at timestamps are reliable and clear. But 
this assumption is not always satisfied. In many 
practical situations, the value at each time point 
is indeterminate and is described by an indeter-
minate value. A time series with uncertain data 
is called an uncertain time series [13]. There are 
two major reasons for the uncertainty of time 
series. The first is related to the physical collec-
tion device of time series data. For example, the 
accuracy of data obtained from wireless sensors 
is associated with a certain error distribution. 
The second is related to privacy preservation 
of time series data. For this purpose, a certain 
degree of uncertainty is sometimes intentional-
ly introduced into a time series. Uncertain time 
series widely exists in various applications such 
as data recording of moving objects, weather 
forecast and sensor network monitoring.
Like classical time series, the similarity match-
ing is also a fundamental and crucial issue in 
the analysis of uncertain time series data [14], 
[15]. Some efforts have been made to give solu-
tions to similarity measurements of uncertain 
time series based on different models of uncer-
tain time series (i.e., [13], [16], [17]). Uncertain 
time series matching algorithms can be applied 
in processing data (skyline queries on uncertain 
time series [18] and in solving some application 
problems (e.g., CPU utilization time patterns of 
several MapReduce applications in [19].
Dynamic time warping (DTW) [20], [1] and 
Euclidean distance [9] are two representative 
distance measures for classical time series. 
But they do not work for uncertain time series 
data. To exactly measure similarity of uncer-
tain time series, in this paper, we follow the 
step of [10] and propose an uncertain weighted 
DTW (UWDTW) distance for uncertain time se-
ries based on the expected distance. We give a 
function for weighting between two points and 
introduce the weight into the distance calcula-
tion of the corresponding two points, so that the 

similar true points is not replaced by the inter-
ference data. With the UWDTW, the accuracy 
of calculating the similarity of uncertain time 
series can be improved. Also, to reduce the stor-
age space and time-consuming, we extend the 
lower bound function LBKeogh [21] for DTW and 
get the ULBKeogh for the UWDTW.
We organize the rest of this paper as follows. In 
Section 2, we review the related work. We pro-
pose a new similarity matching algorithm for 
uncertain time series in Section 3. In Section 4, 
we evaluate our approach with experiments. We 
conclude this paper and give our future work in 
Section 5.

2. Related Work

2.1. Similarity of Time Series

The Euclidean distance is first used in the time 
series matching algorithm in [9]. It is easy to 
understand, simple to calculate, and efficient. 
The drawback is the lock-step feature, which 
means that only two points with the same time-
stamp can be calculated and the two-time se-
ries need to be of the same length. Berndt and 
Clifford first introduced the DTW into time se-
ries classification in [11]. The DTW overcomes 
the problem that Euclidean distance cannot be 
matched due to time series distortion. After the 
introduction of DTW, a large number of time 
series studies were performed based on DTW. 
The results show that the DTW has good per-
formance in time series data analysis [11], [12]. 
Note that the DTW does not take into account 
the effect of time series bending and shifting 
on distance calculations and this leads to mis-
classification. This is especially true in the ap-
plications where the shape similarity between 
two sequences is a primary consideration for 
accurate identification. So, in [22], a novel dis-
tance measure called weighted DTW (WDTW) 
is proposed. WDTW is a penalty-based DTW, 
which can penalize the points with a higher 
phase difference between two points to prevent 
minimum distance distortion caused by outli-
ers. Considering the point values and deriva-
tives without extra parameters, Shen et al. [23] 
propose the summation dynamic time series 
warping (SDTW in [23]). They integrate piece-

regular time series TSs and the time-consuming 
in the distance calculation is high. Second, not 
all application domains can provide multiple 
sample points for each time slot.
Yeh et al. use a different data model than [13] 
and propose an approach named PROUD to 
deal with the uncertain time series in [16] In-
stead of using sample points for each element, 
the elements of each timestamp are treated as 
random variables with means and deviations. 
The distance between two points is represented 
by Euclidean distance. According to the Cen-
tral Limit Theorem [25], the entire distance be-
tween two uncertain time series is considered 
as a normal distribution. Like the approach in 
[13], the values of τ and ε are provided by a 
human and affect similarity calculation greatly. 
But it is generally difficult for humans to give 
these values.
A new theoretical framework is proposed in 
[17], which summarizes the concept of similar-
ity between uncertain time series. The proposed 
algorithm DUST is an approach for computing 
the exact distance between two uncertain time 
series. The DUST is mainly used in such cas-
es when different points in the same uncertain 
time series obey different probability distribu-
tions. Although DUST can give an intuitive 
answer, it degenerates into the Euclidean dis-
tance when whole points in one time series hold 
the same distribution. In this case, the use of a 
sophisticated distance measure that accommo-
dates uncertainty is not necessary. Given the 
special conditions, DUST cannot be applied to 
most time series.
In [13], each point of an uncertain time series 
is considered as a discrete random variable. In 
an uncertain time series, one or several certain 
time series can be extracted to represent the 
original uncertain time series. Then the distance 
calculation between uncertain time series turns 
to the distance calculation between certain time 
series.
Several major similarity measures for uncer-
tain time series (including the PROUD, MU-
NICH and DUST), were analyzed and eval-
uated in [14], [15]. It is shown that they have 
very different performances depending on the 
amount of preliminary information (i.e., a pri-
ori knowledge of the characteristics of the time 
series values and the errors of uncertain time 

wise linear approximation (PLA) and SDTW as 
PLA-SDTW to reduce the time consumption of 
SDTW. It exhibits superiority in time complex-
ity, and the similarity measure is demonstrated.  
In [24], Roggen et al. present and evaluate a 
microcontroller-optimized limited-memory im-
plementation of a Warping Longest Common 
Subsequence algorithm (Warping LCSS). The 
distance refers to the minimum number of edit 
operations that make conversion between two 
series, including character substitution, inser-
tion, and deletion. When two-time series have 
similar patterns in most of the time periods, in 
other words, two-time series have distortions 
and breakpoints only in small ranges, LCSS 
distance measurement can be used.

2.2. Similarity of Uncertain Time Series

Uncertainty in time series observed in daily 
life is prevalent. There is a growing interest in 
studying uncertain time series. Distance mea-
surements for uncertain time series are rare 
[13], [14], [15], [16], [17]. The issue of prob-
abilistic bounded range query (PBRQ) for 
uncertain time series data is first discussed in 
[10]. Given a distance bound ε and a probability 
threshold τ, two uncertain time series are con-
sidered to be similar if the probability that the 
distance between them is less than or equal to ε 
is greater than or equal to τ. This can be formal-
ly described as follows.
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Here DB is a set of uncertain time series, and 
DIST () means a distance measurement. Note 
that the approaches in [13], [16] have different 
definitions for DIST ().
Aßfalg et al. [13] use several observations to 
represent the uncertainty of each point of the 
time series. Given an uncertain time series T, 
they calculate the regular time series TS in the 
way of picking one observation for each ele-
ment of T. Then the distance measurement is 
defined as a set of distances between all com-
binations from two TSs. There are two major 
problems in their method. First, an uncertain 
time series T generally corresponds to some 
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series). Therefore, similarity measures for un-
certain time series is still an open issue. Based 
on the DTW, we propose the UWDTW, which 
works for the probabilistic distribution data 
model. The UWDTW is similar to the MINICH 
constructed for multiset–based uncertain data 
and it only requires the means and variations 
at each time point of uncertain time series. This 
article will show that the UWDTW performs 
better than Euclidean distances.

3. Weighted DTW for Uncertain Time 
Series Similarity

Let Q = [q1, q2 ,…, qi, …, qn] and R = [r1, r2, 
…, rj, …, rm] be two-time series with length of 
n and m, respectively. The distance between Q 
and R is defined as follows [21]:
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Here wk represents the k-th element of a warp-
ing path W. This warping path can be found by 
dynamic programming and its dynamic pro-
gramming recursively evaluates
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Here dist (qi, cj) = (qi – cj)p is the distance be-
tween two points responding to (i-th, j-th) 
points of the distance matrix. The best distance 
measure is related to the selection of p. Even 
though an optimal p depends on applications, l1 
and l2 are usually good choices to classify time 
series dataset [21]. To find the best match be-
tween these two sequences, we retrieve a path 
through the matrix that minimizes the total cu-
mulative distance between them. In particular, 
the optimal path is the path that minimizes the 
warping cost.

3.1. Expected Distance

In this section, we propose a new distance mea-
sure for uncertain time series. We use a gen-
eral uncertain time series model in [16], [17], 

in which the value of uncertain time series at a 
time point is considered as a random variable. 
For a random variable at a time point, it con-
tains a mean and a deviation.
An uncertain time series Qu is a time series that 
contains uncertain data at time points. Given a 
time point j, the value of the uncertain time se-
ries at the time point j is represented by Qu [j] 
and formally defined as Qu [j] = quj + euj. Here 
quj is the true value and euj is the error. The er-
ror function could be any arbitrary probability 
distribution. Hence, at each time point j, the el-
ement is a random variable with the mean μuj 
and deviation σuj.
The real distributions are generally unknown 
and the random variables at different time-
stamps are assumed to be independent. It is 
showed that the DTW is hard to be defeated 
[20]. If the DTW is applied to calculate the dis-
tance between uncertain time series with the 
observed values, the distance accuracy cannot 
be guaranteed with the increasing errors. In this 
article, we propose a new distance measure-
ment based on DTW, which uses the means and 
variances of all time points to calculate the dis-
tance between uncertain time series. According 
to [10], we use expected distance to represent 
uncertain time series distance.
Theorem 1. Let Q and R be two independent 
uncertain time series. The distance between 
Q and R is defined as dist (Q, R) = ED (Q, R). 
Then we have the following expected distance 
ED (Q, R).

( ) ( ) ( )( ) ( ) ( )2,ED Q R E Q E R Var Q Var R= − + +

(3)

Here E () and Var () mean the expected value 
and variance, respectively.
We use the probability calculation method to 
get the result of ED (Q, R). We get:
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The ''independent'' in the above theorem (The-
orem 1) means that the random variables of 
all timestamps are independent. Therefore, 
fQ,R (q, r) = fQ (q) f (r) is satisfied when calculat-
ing the distance because the two subjects have 
unrelated probabilistic density. Then,
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 According to the distributive law of multiplica-
tion, the equation can be decomposed into three 
parts for summation. It turns out as:
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Solving the definite integral of 
( ) ( )2 ,Q Rq f q f r dqdr∫∫  because there are 

no other factors concerning r, the result of 
( )rf r dr∫  is easily obtained, which is 1, then 

the integral is equal to 1 times ( )2 ,qq f q dq∫  
which can be replaced by E (Q2). Similarly, the 
answer to the second part is easy to obtain. As 
for the third part, it can be split into two indi-
vidual products, each of which meets the defi-
nition of the expected value, namely E (Q) and 
E (R). Finally, we get the polynomial

E (Q2) + E (R2) – 2E (Q) E (R).

It is well known that there is a frequent-
ly used relationship between E (Q2) and 

( )( ) ( ) ( ) ( )( )2 22, .E Q Var Q E Q E Q= −  So the 
final answer is:

( ) ( ) ( )( ) ( ) ( )2, .ED Q R E Q E R Var Q Var R= − + +

It can be intuitively observed from the above 
fomula that the expected distance can reflect 
data uncertainty well. First, (E (Q) – E (R))2 is 
becoming smaller along with the decreasing 
distance difference. Second, Var (Q) + Var (R) 
indicates that the distance between two points 
is becoming larger along with the increasing er-
rors in the uncertain time series. It is shown in 
the above proof that the expected distance con-
siders both the mean and variance that are two 
important parameters of uncertain time series 
data. It is feasible to describe uncertain time se-
ries data with the expectation and variance of 
uncertain data.

3.2. Weight Function

In the DTW, a matrix is used to obtain a cumu-
lative value as the final distance. In this paper, 

considering the uncertainty of time series, we 
provide a weight value for each point of this 
distance matrix. For two uncertain time series, 
a weight function assigns a weight value to 
each element on the matrix based on the dif-
ference between the two corresponding points. 
The differences between the points of these two 
uncertain time series determine their distance. 
The smaller the difference, the smaller the dis-
tance, and vice versa. In uncertain time series, 
the value at a time point may be uncertain. We 
argue that in an uncertain time series, the possi-
ble values at a time point generally differ from 
the mean by a small deviation. So, the weight 
is mostly determined by the difference in the 
mean.
One of the most popular classical symmet-
ric functions that use only one equation is the 
logistic function [22]. However, the standard 
form of the logistic function is not flexible in 
setting bounds on weights. Therefore, we modi-
fy the standard logistic weight function to make 
it possible to give weights to the alignments of 
the matrix. We have:

       

( )
( )( )

max, .
1 exp | i j

wweight i j
g q r

=
+ − −

    
(4)

Here wmax means the maximum value of weight 
and g is an empirical constant that controls the 
slope of the function. The value of g could be 
from zero to infinity.
In the probabilistic bounded range query [16], 
[13], the range of distance limit is (0, 1). In 
the following experiments the data will be 
disturbed and the deviation is roughly in the 
range of (0, 2). In the case of a deviation of 2, 
the maximum value of the distance is 2. So, the 
value of |qi – rj| varies from 0 to 2. We select 
[0, 0.25, 0.5, 1] as a set of decimal values for 
g, observe the curve change of the function, 
then select [1, 3, 5, 7, 9] as a set of integer val-
ues of g, and observe the curve change of the 
function. In Figure 1, we give the values of 
several g and obtain the corresponding graph-
ics. We determine that the value of g is set to 
3 to 5, which can provide appropriate weights 
to efficiently perform the similarity calculation. 
The results show that too small g values form 
a gentle curve, resulting in similar weights for 
all points, and too large g values form a steeper 
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Let Q = [q1, q2 ,…, qi, …, qn] and R = [r1, r2, 
…, rj, …, rm] be two-time series with length of 
n and m, respectively. The distance between Q 
and R is defined as follows [21]:
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Here wk represents the k-th element of a warp-
ing path W. This warping path can be found by 
dynamic programming and its dynamic pro-
gramming recursively evaluates
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Here dist (qi, cj) = (qi – cj)p is the distance be-
tween two points responding to (i-th, j-th) 
points of the distance matrix. The best distance 
measure is related to the selection of p. Even 
though an optimal p depends on applications, l1 
and l2 are usually good choices to classify time 
series dataset [21]. To find the best match be-
tween these two sequences, we retrieve a path 
through the matrix that minimizes the total cu-
mulative distance between them. In particular, 
the optimal path is the path that minimizes the 
warping cost.

3.1. Expected Distance

In this section, we propose a new distance mea-
sure for uncertain time series. We use a gen-
eral uncertain time series model in [16], [17], 

in which the value of uncertain time series at a 
time point is considered as a random variable. 
For a random variable at a time point, it con-
tains a mean and a deviation.
An uncertain time series Qu is a time series that 
contains uncertain data at time points. Given a 
time point j, the value of the uncertain time se-
ries at the time point j is represented by Qu [j] 
and formally defined as Qu [j] = quj + euj. Here 
quj is the true value and euj is the error. The er-
ror function could be any arbitrary probability 
distribution. Hence, at each time point j, the el-
ement is a random variable with the mean μuj 
and deviation σuj.
The real distributions are generally unknown 
and the random variables at different time-
stamps are assumed to be independent. It is 
showed that the DTW is hard to be defeated 
[20]. If the DTW is applied to calculate the dis-
tance between uncertain time series with the 
observed values, the distance accuracy cannot 
be guaranteed with the increasing errors. In this 
article, we propose a new distance measure-
ment based on DTW, which uses the means and 
variances of all time points to calculate the dis-
tance between uncertain time series. According 
to [10], we use expected distance to represent 
uncertain time series distance.
Theorem 1. Let Q and R be two independent 
uncertain time series. The distance between 
Q and R is defined as dist (Q, R) = ED (Q, R). 
Then we have the following expected distance 
ED (Q, R).

( ) ( ) ( )( ) ( ) ( )2,ED Q R E Q E R Var Q Var R= − + +

(3)

Here E () and Var () mean the expected value 
and variance, respectively.
We use the probability calculation method to 
get the result of ED (Q, R). We get:

( ) ( ) ( )2
,, , .Q RED Q R q r f q r dqdr= −∫∫

The ''independent'' in the above theorem (The-
orem 1) means that the random variables of 
all timestamps are independent. Therefore, 
fQ,R (q, r) = fQ (q) f (r) is satisfied when calculat-
ing the distance because the two subjects have 
unrelated probabilistic density. Then,
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∫∫

 According to the distributive law of multiplica-
tion, the equation can be decomposed into three 
parts for summation. It turns out as:
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Solving the definite integral of 
( ) ( )2 ,Q Rq f q f r dqdr∫∫  because there are 

no other factors concerning r, the result of 
( )rf r dr∫  is easily obtained, which is 1, then 

the integral is equal to 1 times ( )2 ,qq f q dq∫  
which can be replaced by E (Q2). Similarly, the 
answer to the second part is easy to obtain. As 
for the third part, it can be split into two indi-
vidual products, each of which meets the defi-
nition of the expected value, namely E (Q) and 
E (R). Finally, we get the polynomial

E (Q2) + E (R2) – 2E (Q) E (R).

It is well known that there is a frequent-
ly used relationship between E (Q2) and 

( )( ) ( ) ( ) ( )( )2 22, .E Q Var Q E Q E Q= −  So the 
final answer is:

( ) ( ) ( )( ) ( ) ( )2, .ED Q R E Q E R Var Q Var R= − + +

It can be intuitively observed from the above 
fomula that the expected distance can reflect 
data uncertainty well. First, (E (Q) – E (R))2 is 
becoming smaller along with the decreasing 
distance difference. Second, Var (Q) + Var (R) 
indicates that the distance between two points 
is becoming larger along with the increasing er-
rors in the uncertain time series. It is shown in 
the above proof that the expected distance con-
siders both the mean and variance that are two 
important parameters of uncertain time series 
data. It is feasible to describe uncertain time se-
ries data with the expectation and variance of 
uncertain data.

3.2. Weight Function

In the DTW, a matrix is used to obtain a cumu-
lative value as the final distance. In this paper, 

considering the uncertainty of time series, we 
provide a weight value for each point of this 
distance matrix. For two uncertain time series, 
a weight function assigns a weight value to 
each element on the matrix based on the dif-
ference between the two corresponding points. 
The differences between the points of these two 
uncertain time series determine their distance. 
The smaller the difference, the smaller the dis-
tance, and vice versa. In uncertain time series, 
the value at a time point may be uncertain. We 
argue that in an uncertain time series, the possi-
ble values at a time point generally differ from 
the mean by a small deviation. So, the weight 
is mostly determined by the difference in the 
mean.
One of the most popular classical symmet-
ric functions that use only one equation is the 
logistic function [22]. However, the standard 
form of the logistic function is not flexible in 
setting bounds on weights. Therefore, we modi-
fy the standard logistic weight function to make 
it possible to give weights to the alignments of 
the matrix. We have:
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1 exp | i j

wweight i j
g q r

=
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(4)

Here wmax means the maximum value of weight 
and g is an empirical constant that controls the 
slope of the function. The value of g could be 
from zero to infinity.
In the probabilistic bounded range query [16], 
[13], the range of distance limit is (0, 1). In 
the following experiments the data will be 
disturbed and the deviation is roughly in the 
range of (0, 2). In the case of a deviation of 2, 
the maximum value of the distance is 2. So, the 
value of |qi – rj| varies from 0 to 2. We select 
[0, 0.25, 0.5, 1] as a set of decimal values for 
g, observe the curve change of the function, 
then select [1, 3, 5, 7, 9] as a set of integer val-
ues of g, and observe the curve change of the 
function. In Figure 1, we give the values of 
several g and obtain the corresponding graph-
ics. We determine that the value of g is set to 
3 to 5, which can provide appropriate weights 
to efficiently perform the similarity calculation. 
The results show that too small g values form 
a gentle curve, resulting in similar weights for 
all points, and too large g values form a steeper 
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curve, resulting in a sharp increase in weights. 
In the second case, the weights cannot make too 
much contribution.

3.3. Uncertain Weighted DTW

Combining the weight function with the ex-
pected distance, the optimal distance between 
two uncertain sequences is defined as follows:

( ) ( )
( ) ( ) ( ){ }
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min 1, , , 1 , 1, 1 ,
n mUWDTW Q R dist q r

n m n m n mγ γ γ
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γ

γ γ γ

=

+ − − − −

(6)

       ( ) ( ) ( ), , , .i j i jdist q r weight i j ED q r=
    (7)

When i = n and j = m, the cumulative distance 
γ (i, j) is the dynamic time warping distance that 
equals to UWDTW (Q, R). As we know, when 
the deviations of the random variances are 
large, the use of observed values to calculate 
uncertain time series distance results in a large 
error. Here we use the means and variances to 
represent the random variances and then the 
calculation results are not greatly affected by 
the errors.

In the UWDTW, two parameters should be 
pre-assigned before evaluating test perfor-
mance. Different Wmax will not affect its perfor-
mance. So, we set Wmax to 1 in the paper. Also, 
we choose 3 as the optimal g to give appropri-
ate effective weight. The independent variable 
in weight function is the absolute difference 
of means. We use the difference between the 
mean values to weight each candidate point in 
the distance matrix. We believe that the average 
represents the real value. Each point included 
in the path is intended to minimize the warping 
cost during the iterative process. The weight 
has a positive correlation with the indepen-
dent variable. When the distance between two 
points is small, the weight will also be small, 
and the probability that the candidate points are 
included in the path is greater. Therefore, we 
can ensure that the candidate points will not be 
replaced by other points.

3.4. Uncertain LBKeogh (ULBKeogh)

Large-scaled time series available can result 
in high computational cost of processing time 
series data. To reduce the number of paths to 
be considered in the calculation process, sev-
eral well-known constraints are applied to lim-
it the movement that can be made from any 
point in the path, including Boundary Condi-
tions, Continuity condition, Monotonic condi-
tion, and Adjustment Window Condition [20].
Two most common global constrains are Sa-
koe-Chiba Band and Itakura Parallelogram. 
The Sakoe-Chiba Band uses a pre-set bending 
radius r value to construct a strip-shaped area as 
a curved window. The width of this constraint 
is often set to 10% of the length of the time 
series. The Itakura Parallelogram uses a fixed 
algorithm to locate two points in the matrix ac-
cording to the length of the two-time series and 
constructs a diamond-shaped area as a curved 
window, globally limiting the dynamic time 
curve path.
Based on the warping window, to significant-
ly accelerate the DTW calculation, a fast lower 
bounding technique is used in [20], [21], which 
can prune sequences that are unlikely to be the 
best match. For certain time series, there are 
many lower bound functions of DTW distance. 
Among them, the most famous is LBKeogh pro-
posed by Eammon in [21]. Given two-time se-

ries Q and R with the same length n, the LBKeogh 
of the two-time series Q and R is defined as fol-
lows:
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Here { } { }i-rmax mi, n: :  i r i ri i riU Q Q L Q Q+ − += =   
and r is the warp window of DTW.
In the context of uncertain time series, we try to 
introduce a lower bound function to efficiently 
perform uncertain time series similarity calcu-
lations. We calculate the lower bound function 
distance of two sequences. If the distance is 
greater than the minimum distance, this can-
didate can be omitted and the WDTW distance 
between the two uncertain time series does not 
need to be calculated. This can reduce the com-
putational cost to some extent. 
Based on the expected distance, we propose a 
novel ULBKeogh function for uncertain time se-
ries as follows:

Here

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }
( ) ( ){ } ( )

max : ,  

min : ,

min : ,

min : , , .

i i r i r

i i r i r

i i r i r

i i r i r i

U E Q E Q

L E Q E Q

V Var Q Var Q

W W Q W Q W weight i i

− +

− +

− +

− +

=

=

=

= =

The expected value of sequence R falls into the 
closure of U and L. The square of the distance 
from E (R) to U or L is less than the distance 
between E (R) and E (Q). The sum of the vari-
ance Var (Q) and Var (R) is greater than the sum 
of the lower bound V and Var (R). Therefore, 
ULBKeogh (Q, R) is a lower bound function for 
UWDTW (Q, R).

Theorem 2. Let Q and R be two uncertain time 
series. For any constrained curved path j – r ≤ i 
≤ j + r, we have

       ULBKeogh (Q, R) ≤ UWDTW (Q, R)       (10)

Proof.
First, we have 
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It is known from the UWDTW that K ≥ n. Ac-
cording to the nature of the warping path, for 
any i (1 ≤ i ≤ n), there is at least one of the ele-
ments of W that is of the form wk = (i, j)k,

wk = ED (Qi, Rj) 
     = (E(Qi) – (E(Rj))2 + Var (Qi) + Var (Rj).

For each i, we find a corresponding element wk 
in the warping path. For i with multiple match-
ing j, we choose the element with the smallest 
j. Suppose that these elements constitute a set 
named A and the rest of elements of wk consti-
tute a set named B. Then we have:
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Figure 1. Graphics of weight function with different 
g (wmax = 1).
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curve, resulting in a sharp increase in weights. 
In the second case, the weights cannot make too 
much contribution.

3.3. Uncertain Weighted DTW

Combining the weight function with the ex-
pected distance, the optimal distance between 
two uncertain sequences is defined as follows:
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When i = n and j = m, the cumulative distance 
γ (i, j) is the dynamic time warping distance that 
equals to UWDTW (Q, R). As we know, when 
the deviations of the random variances are 
large, the use of observed values to calculate 
uncertain time series distance results in a large 
error. Here we use the means and variances to 
represent the random variances and then the 
calculation results are not greatly affected by 
the errors.

In the UWDTW, two parameters should be 
pre-assigned before evaluating test perfor-
mance. Different Wmax will not affect its perfor-
mance. So, we set Wmax to 1 in the paper. Also, 
we choose 3 as the optimal g to give appropri-
ate effective weight. The independent variable 
in weight function is the absolute difference 
of means. We use the difference between the 
mean values to weight each candidate point in 
the distance matrix. We believe that the average 
represents the real value. Each point included 
in the path is intended to minimize the warping 
cost during the iterative process. The weight 
has a positive correlation with the indepen-
dent variable. When the distance between two 
points is small, the weight will also be small, 
and the probability that the candidate points are 
included in the path is greater. Therefore, we 
can ensure that the candidate points will not be 
replaced by other points.

3.4. Uncertain LBKeogh (ULBKeogh)

Large-scaled time series available can result 
in high computational cost of processing time 
series data. To reduce the number of paths to 
be considered in the calculation process, sev-
eral well-known constraints are applied to lim-
it the movement that can be made from any 
point in the path, including Boundary Condi-
tions, Continuity condition, Monotonic condi-
tion, and Adjustment Window Condition [20].
Two most common global constrains are Sa-
koe-Chiba Band and Itakura Parallelogram. 
The Sakoe-Chiba Band uses a pre-set bending 
radius r value to construct a strip-shaped area as 
a curved window. The width of this constraint 
is often set to 10% of the length of the time 
series. The Itakura Parallelogram uses a fixed 
algorithm to locate two points in the matrix ac-
cording to the length of the two-time series and 
constructs a diamond-shaped area as a curved 
window, globally limiting the dynamic time 
curve path.
Based on the warping window, to significant-
ly accelerate the DTW calculation, a fast lower 
bounding technique is used in [20], [21], which 
can prune sequences that are unlikely to be the 
best match. For certain time series, there are 
many lower bound functions of DTW distance. 
Among them, the most famous is LBKeogh pro-
posed by Eammon in [21]. Given two-time se-

ries Q and R with the same length n, the LBKeogh 
of the two-time series Q and R is defined as fol-
lows:
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Here { } { }i-rmax mi, n: :  i r i ri i riU Q Q L Q Q+ − += =   
and r is the warp window of DTW.
In the context of uncertain time series, we try to 
introduce a lower bound function to efficiently 
perform uncertain time series similarity calcu-
lations. We calculate the lower bound function 
distance of two sequences. If the distance is 
greater than the minimum distance, this can-
didate can be omitted and the WDTW distance 
between the two uncertain time series does not 
need to be calculated. This can reduce the com-
putational cost to some extent. 
Based on the expected distance, we propose a 
novel ULBKeogh function for uncertain time se-
ries as follows:
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The expected value of sequence R falls into the 
closure of U and L. The square of the distance 
from E (R) to U or L is less than the distance 
between E (R) and E (Q). The sum of the vari-
ance Var (Q) and Var (R) is greater than the sum 
of the lower bound V and Var (R). Therefore, 
ULBKeogh (Q, R) is a lower bound function for 
UWDTW (Q, R).

Theorem 2. Let Q and R be two uncertain time 
series. For any constrained curved path j – r ≤ i 
≤ j + r, we have

       ULBKeogh (Q, R) ≤ UWDTW (Q, R)       (10)

Proof.
First, we have 
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It is known from the UWDTW that K ≥ n. Ac-
cording to the nature of the warping path, for 
any i (1 ≤ i ≤ n), there is at least one of the ele-
ments of W that is of the form wk = (i, j)k,

wk = ED (Qi, Rj) 
     = (E(Qi) – (E(Rj))2 + Var (Qi) + Var (Rj).

For each i, we find a corresponding element wk 
in the warping path. For i with multiple match-
ing j, we choose the element with the smallest 
j. Suppose that these elements constitute a set 
named A and the rest of elements of wk consti-
tute a set named B. Then we have:
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Figure 1. Graphics of weight function with different 
g (wmax = 1).
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Second, assume that E (Ri) > Ui, for j – r ≤ i ≤ 
j + r, then i – r ≤ j ≤ i + r, E (Qj) ≤ Ui ≤ E (Ri), 
Var (Qj) ≥ Vi, W (Qj) ≥ Wi. Then we have:
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Similarly, for E (Ri) < Li, we have:
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For other cases, we have:
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Clearly, it conflicts with the original hypothe-
sis.
The lower bound is used based on global con-
straints. Being different from the probabilistic 
approaches proposed in [16], [13], the lower 
bound is obtained automatically by the func-
tion. The thresholds in the probabilistic ap-
proaches are provided manually.

4. Experimental Results

In this section, we use the 1NN-classification 
which is identified as the most appropriate ap-
proach for assessing the efficiency of similarity 
measures [14]. We evaluate our approach on the 
data sets from ''UCR Time Series Data Mining 
Archive'' [26], which is available online. All 
data sets (including real-life time series, syn-
thetic time series, and generic time series) come 
from different application domains. These data-
sets represent time series data, and the time se-
ries have been classified into several categories. 
For each dataset, there is a training set and a 
testing set. The objective is to perform a 1-NN 
classification on the testing set to find the near-
est time series in the training set. All our exper-
iments are conducted on a PC with a 1.60 GHz 
CPU and 8 GB of RAM implemented in Java. 
Referring to the previous work [2], [4], we ar-
tificially add interference to the UCR data to 
obtain uncertain data. The same processing is 
performed for all sequences. For the first 10% 
of the values, we use the normal error function 
of the standard deviation σ and use the standard 
deviation of σ/2 for the next 10%. First, we ran-
domly sample time series, calculate their stan-
dard deviations and average them to obtain σ'. 
Then we multiply each of [0.01, 0.02, 0.05, 0.1, 
0.2, 0.5, 1, 2] by σ' as the deviation of uncer-
tainty σu. Given a σu, for each timestamp j, we 
randomly extract a number from a normal dis-
tribution or a uniform distribution as the uncer-
tain value Qu, where the mean is equal to Qu [j] 
and the deviation is equal to σu.
We evaluate our approach on 17 datasets and 
compare the error ratios of our approach to 
several other approaches, including the tradi-
tional DTW on original time series (i.e., no er-
ror-DTW), the DTW on perturbed time series, 
the DTW based on DUST (DUSTDTW) and the 
DUST on perturbed data. We compute their 
similarity results for the maximum standard de-
viation that is 2. We also analyze and compare 
the computation time of the UWDTW with the 
DTW and DUST. We present the results in Table 
1, which illustrates the similarity error rates of 
the five different approaches for each dataset. 
In this work, the error rate is calculated as fol-
lows:

1 total number of correctly classified data
Error rate

total number of testing data
= −

     
 

    

(11)

For all the other benchmarks, there is a loss rate 
of close to 10 – 20% in accuracy between the 
no error-DTW and the DTW. It can be seen from 
the table that, for the data sets of Synthetic Con-
trol, Face (all), Trace and Light7, our approach 
has a similar error rate to the DUSTDTW and per-
forms better than the DUSTDTW on other data 
sets. Except for the data sets of Synthetic Con-
trol, ECG and Light7, for all the other data sets, 
the UWDTW has quite lower error rates than the 
DUST.
In Table 1, the average similarity error ratio is 
0.23 for the case of no error DTW, 0.24 for the 
UWDTW, 0.29 for the DUST and DUSTDTW, 
and 0.34 for the DTW. We conclude that the 
UWDTW makes more accuracy than the other 
approaches. In Table 1, we also observe that for 
the data sets of Coffee and Wafer, the UWDTW 
performs quite well and almost completely 
makes up for the introduced error.

ULBKeogh is applied in the classification process 
to reduce the time cost. To classify a time series 
without a classification label (called unlabeled), 
we need to make a candidate (called reference) 
for data items in the dataset being classified. 
Before calculating the distance between the se-
quences, we first calculate the lower bound be-
tween them and then compare the value to the 
threshold. The initial threshold is set to be infin-
ity and then gradually replaced with a smaller 
value. If the lower bound distance is less than 
the threshold, we continue to calculate the dis-
tance between the two uncertain time series, 
and again compare the distance with the thresh-
old. If it is less than the threshold, we determine 
that the unlabeled time series and the reference 
time series have the same label. At the same 
time, we replace the threshold with this small-
er distance value. We select all the elements in 
the dataset to perform the above process and get 
the final result. If the lower bound distance is 
greater than the threshold, the candidate will be 
directly eliminated without further calculation. 
In this way, many candidates can be trimmed in 

Table 1.  Summary of classification performance.

Name Number of 
classes

Size of 
training set

Size of 
testing set

Time series 
Length

DTW-No 
Error (r) UWDTW DUSTDTW

DTW DUST

Syn_Con 6 300 300 60 0.017 (6) 0.19(3) 0.12 0.2 0.18

GunPoint 2 50 150 150 0.087 (0) 0.160(7) 0.16 0.25 0.18

CBF 3 30 900 128 0.004 (11) 0.07(8) 0.09 0.2 0.2

Face (all) 14 560 1690 131 0.192 (3) 0.32(4) 0.29 0.42 0.35

OSU Leaf 6 200 242 427 0.388 (7) 0.39(7) 0.46 0.48 0.49

Swe_Leaf 15 500 625 128 0.154 (2) 0.3(3) 0.34 0.51 0.3

50Words 50 450 455 270 0.242 (6) 0.30(8) 0.34 0.38 0.39

Trace 4 100 100 275 0.010 (3) 0.18(11) 0.13 0.2 0.22

Two_Patt 4 1000 4000 128 0.002 (4) 0.05(6) 0.08 0.31 0.2

Wafer 2 1000 6174 152 0.005 (1) 0.02(3) 0.15 0.019 0.02

Light-2 2 60 61 637 0.131 (6) 0.22(12) 0.28 0.22 0.22

Light-7 7 70 73 319 0.288 (5) 0.39(2) 0.37 0.39 0.385

ECG 2 100 100 96 0.120(0) 0.17(4) 0.17 0.22 0.12

Adiac 37 390 391 176 0.391 (3) 0.59(1) 0.78 0.83 0.6

Yoga 2 300 3000 426 0.155 (2) 0.20(5) 0.29 0.32 0.22

Beef 5 30 30 470 0.333 (0) 0.46(2) 0.57 0.5 0.6

Coffee 2 28 28 286 0.000 (0) 0.10(8) 0.35 0.42 0.3
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Clearly, it conflicts with the original hypothe-
sis.
The lower bound is used based on global con-
straints. Being different from the probabilistic 
approaches proposed in [16], [13], the lower 
bound is obtained automatically by the func-
tion. The thresholds in the probabilistic ap-
proaches are provided manually.

4. Experimental Results

In this section, we use the 1NN-classification 
which is identified as the most appropriate ap-
proach for assessing the efficiency of similarity 
measures [14]. We evaluate our approach on the 
data sets from ''UCR Time Series Data Mining 
Archive'' [26], which is available online. All 
data sets (including real-life time series, syn-
thetic time series, and generic time series) come 
from different application domains. These data-
sets represent time series data, and the time se-
ries have been classified into several categories. 
For each dataset, there is a training set and a 
testing set. The objective is to perform a 1-NN 
classification on the testing set to find the near-
est time series in the training set. All our exper-
iments are conducted on a PC with a 1.60 GHz 
CPU and 8 GB of RAM implemented in Java. 
Referring to the previous work [2], [4], we ar-
tificially add interference to the UCR data to 
obtain uncertain data. The same processing is 
performed for all sequences. For the first 10% 
of the values, we use the normal error function 
of the standard deviation σ and use the standard 
deviation of σ/2 for the next 10%. First, we ran-
domly sample time series, calculate their stan-
dard deviations and average them to obtain σ'. 
Then we multiply each of [0.01, 0.02, 0.05, 0.1, 
0.2, 0.5, 1, 2] by σ' as the deviation of uncer-
tainty σu. Given a σu, for each timestamp j, we 
randomly extract a number from a normal dis-
tribution or a uniform distribution as the uncer-
tain value Qu, where the mean is equal to Qu [j] 
and the deviation is equal to σu.
We evaluate our approach on 17 datasets and 
compare the error ratios of our approach to 
several other approaches, including the tradi-
tional DTW on original time series (i.e., no er-
ror-DTW), the DTW on perturbed time series, 
the DTW based on DUST (DUSTDTW) and the 
DUST on perturbed data. We compute their 
similarity results for the maximum standard de-
viation that is 2. We also analyze and compare 
the computation time of the UWDTW with the 
DTW and DUST. We present the results in Table 
1, which illustrates the similarity error rates of 
the five different approaches for each dataset. 
In this work, the error rate is calculated as fol-
lows:

1 total number of correctly classified data
Error rate

total number of testing data
= −
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For all the other benchmarks, there is a loss rate 
of close to 10 – 20% in accuracy between the 
no error-DTW and the DTW. It can be seen from 
the table that, for the data sets of Synthetic Con-
trol, Face (all), Trace and Light7, our approach 
has a similar error rate to the DUSTDTW and per-
forms better than the DUSTDTW on other data 
sets. Except for the data sets of Synthetic Con-
trol, ECG and Light7, for all the other data sets, 
the UWDTW has quite lower error rates than the 
DUST.
In Table 1, the average similarity error ratio is 
0.23 for the case of no error DTW, 0.24 for the 
UWDTW, 0.29 for the DUST and DUSTDTW, 
and 0.34 for the DTW. We conclude that the 
UWDTW makes more accuracy than the other 
approaches. In Table 1, we also observe that for 
the data sets of Coffee and Wafer, the UWDTW 
performs quite well and almost completely 
makes up for the introduced error.

ULBKeogh is applied in the classification process 
to reduce the time cost. To classify a time series 
without a classification label (called unlabeled), 
we need to make a candidate (called reference) 
for data items in the dataset being classified. 
Before calculating the distance between the se-
quences, we first calculate the lower bound be-
tween them and then compare the value to the 
threshold. The initial threshold is set to be infin-
ity and then gradually replaced with a smaller 
value. If the lower bound distance is less than 
the threshold, we continue to calculate the dis-
tance between the two uncertain time series, 
and again compare the distance with the thresh-
old. If it is less than the threshold, we determine 
that the unlabeled time series and the reference 
time series have the same label. At the same 
time, we replace the threshold with this small-
er distance value. We select all the elements in 
the dataset to perform the above process and get 
the final result. If the lower bound distance is 
greater than the threshold, the candidate will be 
directly eliminated without further calculation. 
In this way, many candidates can be trimmed in 

Table 1.  Summary of classification performance.

Name Number of 
classes

Size of 
training set

Size of 
testing set

Time series 
Length

DTW-No 
Error (r) UWDTW DUSTDTW

DTW DUST

Syn_Con 6 300 300 60 0.017 (6) 0.19(3) 0.12 0.2 0.18

GunPoint 2 50 150 150 0.087 (0) 0.160(7) 0.16 0.25 0.18

CBF 3 30 900 128 0.004 (11) 0.07(8) 0.09 0.2 0.2

Face (all) 14 560 1690 131 0.192 (3) 0.32(4) 0.29 0.42 0.35

OSU Leaf 6 200 242 427 0.388 (7) 0.39(7) 0.46 0.48 0.49

Swe_Leaf 15 500 625 128 0.154 (2) 0.3(3) 0.34 0.51 0.3

50Words 50 450 455 270 0.242 (6) 0.30(8) 0.34 0.38 0.39

Trace 4 100 100 275 0.010 (3) 0.18(11) 0.13 0.2 0.22

Two_Patt 4 1000 4000 128 0.002 (4) 0.05(6) 0.08 0.31 0.2

Wafer 2 1000 6174 152 0.005 (1) 0.02(3) 0.15 0.019 0.02

Light-2 2 60 61 637 0.131 (6) 0.22(12) 0.28 0.22 0.22

Light-7 7 70 73 319 0.288 (5) 0.39(2) 0.37 0.39 0.385

ECG 2 100 100 96 0.120(0) 0.17(4) 0.17 0.22 0.12

Adiac 37 390 391 176 0.391 (3) 0.59(1) 0.78 0.83 0.6

Yoga 2 300 3000 426 0.155 (2) 0.20(5) 0.29 0.32 0.22

Beef 5 30 30 470 0.333 (0) 0.46(2) 0.57 0.5 0.6

Coffee 2 28 28 286 0.000 (0) 0.10(8) 0.35 0.42 0.3
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advance, and unnecessary distance calculations 
can be reduced during the calculation. With the 
ULBKeogh function, the calculation time in the 
classification process can be well reduced.
We compare the executive time of three ap-
proaches: the UWDTW, DTW and DUST. We 
use the same σu as above to randomly extract 
a number from an exponential distribution to 
represent the uncertain value. Performing clas-
sification of these data and analyzing the time 
costs, Figure 2 reports the average running 
time of all data sets for the normal error distri-
bution when the error standard deviation is in 
the range [0.2, 2.0]. Uniform and exponential 
distributions have similar results and we do not 
present these results for brevity. It is shown in 
Figure 2 that the standard deviation of normal 
distribution slightly affects performance of the 
DUST. Execution time of the UWDTW is not 

affected at all when the standard deviation for 
the error of uncertain time series varies. So, the 
UWDTW has the best time performance in all 
three approaches.
To evaluate the resilient of our approach, we 
compare the error rates of the UWDTW, DTW 
and DUST in Figure 3, in which the deviations 
vary from 0 to 4. It can be seen from Figure 
3 that, for the DUST and DTW, the error rate 
becomes larger as the error increases. For the 
UWDTW, there is little influence on its ratios. 
It means that our approach is of a good resilient 
to the variations.

5. Conclusion

In this paper, we propose a novel DTW-based 
distance approach UWDTW to measure un-
certain time series similarity. We introduce a 
weight function to improve the efficiency of 
this approach. Compared to DUST and other 
probabilistic approaches, UWDTW requires 
less preliminary information and can be easily 
obtained. The experimental results show that 
the approach proposed in this paper has better 
accuracy than the existing uncertain time series 
similarity methods. Even in the worse cases, 
when the deviation of uncertain time series is 
very large, the UWDTW can maintain stable ac-
curacy. Also, due to the use of a lower bound 
function in our approach, the execution time of 
UWDTW does not change much. We evaluate 
our approach with real data sets and synthet-
ic data sets. As a future work, we will use our 
approach to classify uncertain time series. We 
will also explore probabilistic similarity queries 
on uncertain time series, such as probabilistic 
nearest neighbor queries.
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advance, and unnecessary distance calculations 
can be reduced during the calculation. With the 
ULBKeogh function, the calculation time in the 
classification process can be well reduced.
We compare the executive time of three ap-
proaches: the UWDTW, DTW and DUST. We 
use the same σu as above to randomly extract 
a number from an exponential distribution to 
represent the uncertain value. Performing clas-
sification of these data and analyzing the time 
costs, Figure 2 reports the average running 
time of all data sets for the normal error distri-
bution when the error standard deviation is in 
the range [0.2, 2.0]. Uniform and exponential 
distributions have similar results and we do not 
present these results for brevity. It is shown in 
Figure 2 that the standard deviation of normal 
distribution slightly affects performance of the 
DUST. Execution time of the UWDTW is not 

affected at all when the standard deviation for 
the error of uncertain time series varies. So, the 
UWDTW has the best time performance in all 
three approaches.
To evaluate the resilient of our approach, we 
compare the error rates of the UWDTW, DTW 
and DUST in Figure 3, in which the deviations 
vary from 0 to 4. It can be seen from Figure 
3 that, for the DUST and DTW, the error rate 
becomes larger as the error increases. For the 
UWDTW, there is little influence on its ratios. 
It means that our approach is of a good resilient 
to the variations.

5. Conclusion

In this paper, we propose a novel DTW-based 
distance approach UWDTW to measure un-
certain time series similarity. We introduce a 
weight function to improve the efficiency of 
this approach. Compared to DUST and other 
probabilistic approaches, UWDTW requires 
less preliminary information and can be easily 
obtained. The experimental results show that 
the approach proposed in this paper has better 
accuracy than the existing uncertain time series 
similarity methods. Even in the worse cases, 
when the deviation of uncertain time series is 
very large, the UWDTW can maintain stable ac-
curacy. Also, due to the use of a lower bound 
function in our approach, the execution time of 
UWDTW does not change much. We evaluate 
our approach with real data sets and synthet-
ic data sets. As a future work, we will use our 
approach to classify uncertain time series. We 
will also explore probabilistic similarity queries 
on uncertain time series, such as probabilistic 
nearest neighbor queries.
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