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Heterogeneous Embedded Systems

We extend an approach to component allocation on 
heterogeneous embedded systems using Coloured 
Petri Nets (CPNs). We improve the CPN model for 
the embedded systems and outline a technique that 
exploits CPN Tools, a well-known CPN tool, to ef-
ficiently analyze embedded system's state space and 
find optimal allocations. The approach is model-based 
and represents an advancement towards a model-driv-
en engineering view of the component allocation 
problem. We incorporate communication costs be-
tween components by extending the CPN formalism 
with a non-trivial technique to analyze the generated 
state space. We also suggest a technique to improve 
the state space generation time by using the branch-
ing options supported in CPN Tools. In the evaluation, 
we demonstrate that this technique significantly cuts 
down the size of the generated state space and thereby 
reduces the runtime of state space generation and thus 
the time to find an optimal allocation.
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1. Introduction and Related Work

Designers of embedded systems today face 
new challenges due to the high heterogeneity 
that characterizes such systems [1]. An em-
bedded system may consist of several types of 
processors (or computational units) varying in 

terms of their performance, including Central 
Processing units (CPUs), Graphical Process-
ing Units (GPUs), and Field Programmable 
Gate Arrays (FPGAs). Also, the software com-
ponents which need to be allocated on top of 
the hardware computational units may differ in 
terms of their resource usage. Such kind of het-
erogeneity presents a challenge to the designers 
when deciding about the placement of software 
components on top of the computational units 
[2].
The component allocation problem finds op-
timal allocations or mappings of the software 
components to the computational units [3]. 
While several allocations can be functionally 
correct in terms of being feasible, one or more 
of these allocations can have better non-func-
tional (quality) aspects than the remaining allo-
cations. Finding the allocation that is function-
ally correct and that maximizes a certain quality 
metric is at the heart of solution methods to the 
component allocation problem. The component 
allocation problem can be formulated as an 
integer linear programming problem and thus 
there are several solution methods in mathe-
matical optimization to the component alloca-
tion problem [4], [5].
In the conference version of this paper [6], we 
proposed an approach to address the compo-
nent allocation problem by using Coloured Pe-
tri Nets (CPNs) to model the embedded system. 
The CPN model can be dynamically analyzed 
by searching through its state space to deter-
mine an optimal allocation. CPNs have a very 
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rich set of supporting theory and automated 
tools for model analysis [7], [8]. In this paper, 
we extend the work presented in [6]. The new 
contributions of this paper are summarized as 
follows:
1. We incorporate the communication costs 

between software components in the prob-
lem definition and the CPN model. In [6], 
the communication costs were not included.

2. We make several changes to the CPN mod-
el in order to improve the state space gen-
eration time.

3. We modify the CPN model and the CPN 
ML queries to incorporate the communica-
tion costs. This is not trivial, since it can-
not be directly accounted for in the CPN 
body similar to the non-communication 
resource costs.

4. We run several more experiments to veri-
fy the optimal allocations found using our 
CPN approach.

5. We suggest a technique to scale the CPN 
approach to larger systems by using the 
branching options in CPN ML state space 
generation tool. This is presented in Sub-
section 3.3.

The use of a model-based approach has several 
benefits. For example, the same CPN model can 
be used to address the optimal allocations for 
other types of non-functional analysis, includ-
ing security and dependability. CPNs have been 
applied extensively in analyzing non-function-
al aspects of systems [9], [10]. Furthermore, 
models of the embedded system in different 
notations can be automatically transformed into 
equivalent CPN models. Thus, the main con-
tribution of devising a CPN model to address 
the component allocation problem in heteroge-
neous embedded systems is the application of a 
model-driven engineering (MDE) approach to 
the problem.
MDE advocates the use of models in systems 
analysis and design [11], [12], [13]. The use of 
models permits various types of analysis to be 
performed on the models before the actual sys-
tem is implemented. This can be done at a high 
level of abstraction and in an automated fashion. 
In [14], the authors propose an approach for the 
automatic transformation from an Ecore-based 
model of a component allocation problem into 

an equivalent CPN model. The resulting CPN 
model can be analyzed using the method pre-
sented in this paper. This allows to identify a 
component allocation problem and to solve it 
without having to know about CPNs.
The authors of [3] apply a genetic algorithm 
to find optimal solutions to the component al-
location problem. Our model that defines the 
component allocation problem is based on the 
model presented in [3]. The authors also apply 
analytical hierarchical process to calculate the 
trade-off vector. Genetic algorithms usually 
find good solutions; however, generally speak-
ing, there is no guarantee that these solutions 
are the optimal solutions. A prototype tool that 
implements the genetic algorithm is presented 
in [15]. The tool is named SCALL (Software 
Component ALLocator for Heterogeneous 
Embedded Systems). SCALL is developed as 
an Eclipse plugin utilizing Eclipse Modeling 
Framework (EMF) and Graphical Modeling 
Project (GMP). SCALL is based on using a 
metamodel for the software component alloca-
tion problem specified in Ecore notation. The 
user of SCALL can create a model for a soft-
ware component allocation problem in a drag-
and-drop fashion from a palette. SCALL then 
returns an optimal allocation computed using 
the genetic algorithm presented in [3].
A model-driven engineering approach for com-
ponent allocation is presented in [16]. The ap-
proach allows to specify allocation constrains 
in ASL (Allocation Specification Language) 
that uses OCL operations. Then, the feasible al-
locations can be derived automatically without 
having to know how to encode and solve the 
allocation problem as an integer linear program 
(ILP). This is achieved by using model-to-mod-
el transformation that generates models for 
ILPs solvable by an ILP solver.
Another method for solving the component 
allocation problem is presented in [17]. The 
method uses branch-and-bound and forward 
checking mechanisms. The method was imple-
mented in the Automatic Integration of Reus-
able Embedded Software (AIRS) toolkit [18].
A generic framework aimed at finding the most 
appropriate deployment architecture (mapping 
of software components onto hardware resourc-
es) for a distributed software system is present-
ed in [2]. The framework formally defines the 

tive networked embedded systems. The compo-
nents communicate with each other via signals 
that can be periodic or sporadic. The presented 
algorithms minimize the total communication 
cost only and are based on graph partitioning 
theory. Our component model does not include 
signals. The CPN approach presented in this 
paper minimizes an objective cost function that 
includes multiple resources, including commu-
nication.
The organization of the paper is as follows. In 
Section 2, we define the component allocation 
problem more formally. We illustrate our ap-
proach in Section 3. In Section 4, we evaluate 
our CPN based approach. Section 5 concludes 
the paper and outlines future work.

2. Problem Definition

Consider a software system consisting of n 
components. Every component needs to be as-
signed to a computational unit on a hardware 
platform consisting of m computational units. 
The computational units offer a number of re-
sources l (for example, computation, memory, 
and energy resources). Our model for the com-
ponent allocation problem is based on [3].
The Component Resource Consumption Matrix 
T = [tijk](n × m × l) defines the amount of resourc-
es each component requires. The element tijk 
represents the necessary amount of the k-th re-
source required by the i-th software component 
when allocated on the j-th computational unit.
The Computational Unit Resource Capaci-
ty Matrix R = [rjk](m × l) defines the amount of 
resources that each computational unit can 
provide. The element rjk represents the k-th re-
source capacity of a j-th computational unit.
To incorporate the cost of communication be-
tween the software components, we define two 
matrices. The first is the Communication Inten-
sity Matrix K = [kij](n × n), where kij represents 
the communication intensity between the i-th 
and j-th components. If the components i and 
j are not communicating, then kij = 0. Also, no-
tice that the matrix K is symmetric since the 
direction of communication is assumed to be 
not relevant. In addition, the diagonal elements 
of k are all equal to zero. The second matrix 
is the Platform Communication Cost Matrix 

component allocation problem and provides 
a set of applicable algorithms for solving the 
problem. In addition, a tool suite is developed 
to enable the use of the proposed framework. 
The component allocation problem presented 
in this paper can be thought of as a particular 
instantiation of the framework. In addition, the 
CPN based approach can supplement the solu-
tion algorithms presented in [2].
Another framework for modeling and analyz-
ing the component allocation problem in het-
erogeneous computing systems is presented in 
[19]. The framework is called LOSECO (an al-
location of parallel software to heterogeneous 
computing platform framework). In LOSE-
CO, the software execution units, which corre-
spond to components in our model, can have 
precedence relationships amongst each other. 
Our component model assumes that the com-
ponents are independent. The authors propose 
a partitioning based allocation heuristic which 
partitions the graph representing the software 
execution units and their dependencies into 
multiple smaller subgraphs. Subsequently, each 
subgraph is solved using heuristics such as ge-
netic algorithms.
The authors of [1] present a formal model for 
allocation optimization of embedded systems 
which contain a mix of CPU and GPU process-
ing nodes. The authors use mixed-integer non-
linear programming as the optimization model. 
In addition, the authors translate the model into 
a solver using a standard format called MPS 
(Mathematical Programming System) that can 
be interpreted using most solvers. The authors 
make the observation that the mixed-integer 
nonlinear programming solvers do not scale 
well for medium and large size problems.
Several approaches exist for component alloca-
tion in real-time embedded systems [11], [20], 
[21], [22]. In real-time embedded systems, 
components (tasks) have additional attributes 
such as completion time, period, and deadline. 
The allocation problem for real-time embedded 
systems needs to ensure that tasks are com-
pleted before their deadlines. Our CPN based 
approach uses a different component model 
which does not take these timing properties into 
account.
In [23], graph theory is used to address the soft-
ware component allocation problem in automo-
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rich set of supporting theory and automated 
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C = [cij](m × m), where cij represents the commu-
nication cost between the i-th and j-th compu-
tational units. For i = j, cij = 0. The inclusion of 
both matrices is necessary since the total com-
munication cost depends on the communication 
intensity between the components in addition 
to the platform characteristics of the commu-
nication channels connecting the computational 
units.
An allocation to the components maps each 
software component to one of the m compu-
tational units. One or more components can 
be allocated on the same computational unit. 
From a mathematical viewpoint, an allocation 
represents a permutation with repetition which 
assigns one computational unit to each software 
component. Note that there are mn possible al-
locations, which implies that the search space 
increases exponentially with the number of 
components and computational units.
Consider an allocation (p1, ..., pn), where com-
ponent i is assigned to computational unit pi. 
An allocation is called feasible if the resources 
consumed by the software components allocat-
ed to any computational unit do not exceed the 
resource capacities that the computational unit 
provides. More formally, for any computational 
unit j, a feasible allocation satisfies the condi-
tion:

                        
( )

,
ik

i
ip jk

i p j
t r

=
≤∑

                      
(1)

for all resources k.
In addition to satisfying (1), we might consider 
additional constraints that need to be satisfied 
by a feasible allocation. In this paper, we con-
sider the system architectural constraint that 
in a feasible allocation a particular component 
should (or should not) be allocated to a set of 
computational units. There could be several of 
such architectural constraints that a feasible al-
location needs to satisfy.
Given an allocation (p1, ..., pn), its cost can be 
computed using the following cost function:

           1 1
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Here, fk represents a trade-off factor whose pur-
pose is to specify the weights of each resource 
in the cost function. This allows to differentiate 

the importance of different resources. Similar-
ly, fc is the communication trade-off factor.
The component allocation problem is to find 
an optimal allocation. An optimal allocation 
is a feasible allocation that has the smallest w 
amongst all feasible allocations. Thus, the cho-
sen allocation needs to satisfy (1) (in addition 
to possibly additional constraints) and has the 
smallest cost w which is defined by (2).
The component allocation problem can be for-
mulated as a 0 − 1 integer linear programming 
problem which is NP-complete [24]. For exact 
solutions and small problem sizes (the problem 
size is based on the number of components and 
computational units), one can use traditional 
integer programming techniques. However, for 
large problem sizes, one needs to resort to heu-
ristics which find good approximations through 
large space search methods.

3. Approach

In this section, we apply the CPN based ap-
proach to solve a component allocation prob-
lem using parameters of a realistic system bor-
rowed from [3]. Subsection 3.1 gives a brief 
description of the system. In Subsection 3.2, 
we develop a CPN model of the system and in 
Subsection 3.3, we describe the generation and 
analysis of the state space using CPN Tools. 
Subsection 3.4 summarizes the approach.

3.1. Case Study

To demonstrate our approach, we borrow the 
same parameters used to develop a component 
allocation problem from [3]. The system con-
sidered is a software system that handles and 
interprets vision data on an autonomous under-
water vehicle (AUV), while simultaneously in-
teracting with them in real time. That system 
is being developed as a part of RALF3 project 
[25].
The system consists of n = 11 components. 
These are: 1-UI User Interface, 2-CH Commu-
nication Handler, 3-MP Message Parser, 4-MD 
Manual Drive, 5-MM Mission Manager, 6-MC 
Movement Control, 7-V Vision, 8-AC Actuator 
Control, 9-SI Sensors Layer 1, 10-S2 Sensors 
Layer 2, and 11-SF Stream Filtering compo-

nents. The hardware platform consists of m = 4 
computational units. These are: 1-mCPU Mul-
ticore CPU, 2-FPGA FPGA I, 3-FPGA FPGA 
II, and 4-GPU GPU. There are l = 3 resources: 
average execution time (measured in millisec-
onds), memory (measured in megabytes), and 
average energy consumption (measured in mil-
liamperes per hour).
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Figure 1 shows the component resource con-
sumptions (i.e., the elements of the matrix T). 
Since T is three-dimensional (components, 
computational units, resources), we use three 
matrices to display three different resources 

(i.e., the third dimension):
a) average execution time,
b) memory, and
c) average energy consumption.
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Figure 2 shows the communication intensity 
matrix. The platform communication cost ma-
trix is given by:
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To compute the cost of an allocation in (2), we 
use the trade-off vector:

[ ]0.1557 0.0856 0.7095 0.0491F =

Here, the k-th element in vector F represents 
the trade-off factor fk. The trade-off factors are 

Figure 1. The component resource consumptions.

Figure 2. The communication intensity matrix K.
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the importance of different resources. Similar-
ly, fc is the communication trade-off factor.
The component allocation problem is to find 
an optimal allocation. An optimal allocation 
is a feasible allocation that has the smallest w 
amongst all feasible allocations. Thus, the cho-
sen allocation needs to satisfy (1) (in addition 
to possibly additional constraints) and has the 
smallest cost w which is defined by (2).
The component allocation problem can be for-
mulated as a 0 − 1 integer linear programming 
problem which is NP-complete [24]. For exact 
solutions and small problem sizes (the problem 
size is based on the number of components and 
computational units), one can use traditional 
integer programming techniques. However, for 
large problem sizes, one needs to resort to heu-
ristics which find good approximations through 
large space search methods.

3. Approach

In this section, we apply the CPN based ap-
proach to solve a component allocation prob-
lem using parameters of a realistic system bor-
rowed from [3]. Subsection 3.1 gives a brief 
description of the system. In Subsection 3.2, 
we develop a CPN model of the system and in 
Subsection 3.3, we describe the generation and 
analysis of the state space using CPN Tools. 
Subsection 3.4 summarizes the approach.

3.1. Case Study

To demonstrate our approach, we borrow the 
same parameters used to develop a component 
allocation problem from [3]. The system con-
sidered is a software system that handles and 
interprets vision data on an autonomous under-
water vehicle (AUV), while simultaneously in-
teracting with them in real time. That system 
is being developed as a part of RALF3 project 
[25].
The system consists of n = 11 components. 
These are: 1-UI User Interface, 2-CH Commu-
nication Handler, 3-MP Message Parser, 4-MD 
Manual Drive, 5-MM Mission Manager, 6-MC 
Movement Control, 7-V Vision, 8-AC Actuator 
Control, 9-SI Sensors Layer 1, 10-S2 Sensors 
Layer 2, and 11-SF Stream Filtering compo-

nents. The hardware platform consists of m = 4 
computational units. These are: 1-mCPU Mul-
ticore CPU, 2-FPGA FPGA I, 3-FPGA FPGA 
II, and 4-GPU GPU. There are l = 3 resources: 
average execution time (measured in millisec-
onds), memory (measured in megabytes), and 
average energy consumption (measured in mil-
liamperes per hour).
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Figure 1 shows the component resource con-
sumptions (i.e., the elements of the matrix T). 
Since T is three-dimensional (components, 
computational units, resources), we use three 
matrices to display three different resources 

(i.e., the third dimension):
a) average execution time,
b) memory, and
c) average energy consumption.

The computational unit resource capacity ma-
trix is given by:
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Figure 2 shows the communication intensity 
matrix. The platform communication cost ma-
trix is given by:
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To compute the cost of an allocation in (2), we 
use the trade-off vector:

[ ]0.1557 0.0856 0.7095 0.0491F =

Here, the k-th element in vector F represents 
the trade-off factor fk. The trade-off factors are 

Figure 1. The component resource consumptions.

Figure 2. The communication intensity matrix K.
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computed using Analytic Hierarchy Process 
(AHP) [26]. The last element in F is the com-
munication trade-off factor fc. The details are 
given in [3].
We will consider two additional constraints:

 ● Constraint I: Component 7-V should be 
allocated to 4-GPU.

 ● Constraint II: Component 4-MD should 
not be allocated to 1-mCPU.

3.2. The CPN Model

The CPN model is shown in Figure 3. The CPN 
contains four places. Here, we briefly describe 
each place. The place Components holds tokens 
which represent the components. The place 
CompUnits holds tokens representing the com-
putational units. Each token records the avail-
able resources that the corresponding computa-
tional unit currently has. The place Allocations 
holds tokens which represent the allocations of 
components to computational units. The place 
Cost holds a single token which records the 
total cost of the allocated components, exclud-
ing the communication costs. There is only one 
transition in the CPN. Firing the transition allo-
cate corresponds to assigning a component to 
one of the computational units.
The colour sets are defined as follows:

The colour set CompUnit is defined as the prod-
uct of four integer colour sets. This is the colour 
set for the place CompUnits holding tokens that 
record the available resources in each computa-
tional unit. In each such token, the colours are 
ordered as follows: the computational unit id, 
the available average execution time resource, 
the available memory resource, and the avail-
able average energy consumption resource.
The variables are declared as follows:

The variables c and cu hold the component and 
computational unit ids, respectively. The vari-
able co holds the total cost of the allocated com-
ponents, excluding the communication costs. 
The variables a_cpu, a_mem, and a_pwr hold 

the available average execution time, memory, 
and average energy consumption resources, re-
spectively.
To encode the component resource consump-
tion matrix T, we define three two-dimension-
al arrays: cp_cons, mem_cons, and ener_cons. 
This is done by using the function fromList de-
fined on Array2 structures in SML library. For 
example, the array cpu_cons is defined using 
the following:

Components are allocated one by one, in or-
der of their ids. This is valid, since the order 
of assigning components to computational units 
does not matter with respect to the feasibility 
condition (see (1)). The assignment of compo-
nents is controlled by the value of the token re-
siding in place Components. Note that the com-
ponent ids and the computational unit ids start 
from zero. Thus, for example, the component 

with id = 0 corresponds to the component 1-UI 
and the computational unit with id = 0 corre-
sponds to the computational unit 1-mCPU.
The constraints are included in the CPN model 
by using the guard of transition allocate. For ex-
ample, in Constraint I, Component 7-V should 
be allocated on 4-GPU. Thus, a feasible alloca-
tion of components should satisfy the condition 
that (c = 6) → (cu = 3) which is logically equiv-
alent to ¬ (c = 6) ˅ (cu = 3). For Constraint II, 
Component 4-MD should not be allocated to 
1-mCPU. Thus, a feasible allocation of com-
ponents should also satisfy the condition that 
¬ ((c = 3) ˄  (cu = 0)). Both conditions are added 
to the guard of transition allocate.
When a component is allocated to a computa-
tional unit, the corresponding cost needs to be 
added to the total cost (the colour of the token 
in place Cost). This is modeled by using the arc 
from transition allocate to place Cost. Note the 
trade-off factors fk in the arc expression.

3.3. State Space Generation and Analysis

We use the state space tool of CPN Tools Ver-
sion 4.0 to find an optimal component alloca-
tion. CPN Tools Version 4.0 adds the support 
for real colorsets. Figure 4 shows the query 
functions used to generate and search through 
the state space. These queries are written in the 
CPN ML programming language (presented in 
Chapter 3 in [8]). For a given marking repre-

Figure 3. The CPN model for the system of the case study.
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[c<= 10 andalso a_cpu>= Array2.sub(cpu_cons,c,cu) andalso
a_mem>= Array2.sub(mem_cons,c,cu) andalso
a_pwr>=Array2.sub(ener_cons,c,cu) andalso
(not (c=6) orelse cu=3) andalso not (c=3 andalso cu=0)]

c (cu,a_cpu,a_mem,a_pwr)

(c,cu)

(cu,a_cpu-Array2.sub(cpu_cons,c,cu),a_mem-Array2.sub(mem_cons,c,cu),a_pwr-Array2.sub(ener_cons,c,cu) )

co

co+0.1557*(Real.fromInt (Array2.sub(cpu_cons,c,cu)))+
0.0856*(Real.fromInt (Array2.sub(mem_cons,c,cu)) )+
0.7095*(Real.fromInt (Array2.sub(ener_cons,c,cu)) )

c+1

acolset UNIT = unit;
colset INT = int;
colset REAL = real;
colset BOOL = bool;
colset STRING = string;
colset Component = int;
colset CompUnit = product INT * INT 
                * INT * INT;
colset Allocation = product INT * INT;

avar c,cu: INT;
var co:REAL;
var a_cpu,a_mem,a_pwr: INT;

aval cpu_cons = Array2.fromList(
[[10; 90; 90; 55];
[50; 20; 20; 72];
[30; 20; 20; 72];
[10; 40; 40; 72];
[20; 40; 40; 72];
[20; 50; 50; 55];
[90; 20; 20; 15];
[20; 10; 10; 70];
[20; 10; 10; 70];
[20; 15; 15; 70];
[90; 10; 10; 33]]);

Figure 4. The CPN ML queries used to generate and search through the state space for the CPN model in Figure 3.

val max_val: real = 2000.0;

fun alloc (x,y) = y;

fun comm_cost n = 
let
val allocation = ext_col alloc (Mark.model'Allocations 1 n);
val allocation_list = ms_to_list(allocation);
val comm_cost = Array2.array(11,11,0);
val reg = {base=comm_cost, row=0, col=0, nrows=NONE, ncols=NONE};
fun c(i,j,k) = Array2.sub(comp_comm2,i,j)*Array2.sub(unit_comm_cost, List.nth(allocation_list,i),  List.nth(allocation_list,j) );
val u = Array2.modifyi Array2.RowMajor c reg;
fun s(a,b) = a+b;
in
Array2.fold Array2.RowMajor s 0 comm_cost
end;

fun tot_cost n =
let
val accCostsToken = Mark.model'Cost 1 n;
in
hd(accCostsToken) + 0.0491*Real.fromInt(comm_cost(n))
end;

fun DesiredTerminal1 n = (Mark.model'Components 1 n == 1`11);
val x = SearchNodes(EntireGraph, DesiredTerminal1, NoLimit, tot_cost,max_val,Real.min);

fun DesiredTerminal2 n = DesiredTerminal1(n) andalso tot_cost(n) = x;
val y = SearchNodes(EntireGraph, DesiredTerminal2, NoLimit, fn n => n,[],op ::);
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computed using Analytic Hierarchy Process 
(AHP) [26]. The last element in F is the com-
munication trade-off factor fc. The details are 
given in [3].
We will consider two additional constraints:

 ● Constraint I: Component 7-V should be 
allocated to 4-GPU.

 ● Constraint II: Component 4-MD should 
not be allocated to 1-mCPU.

3.2. The CPN Model

The CPN model is shown in Figure 3. The CPN 
contains four places. Here, we briefly describe 
each place. The place Components holds tokens 
which represent the components. The place 
CompUnits holds tokens representing the com-
putational units. Each token records the avail-
able resources that the corresponding computa-
tional unit currently has. The place Allocations 
holds tokens which represent the allocations of 
components to computational units. The place 
Cost holds a single token which records the 
total cost of the allocated components, exclud-
ing the communication costs. There is only one 
transition in the CPN. Firing the transition allo-
cate corresponds to assigning a component to 
one of the computational units.
The colour sets are defined as follows:

The colour set CompUnit is defined as the prod-
uct of four integer colour sets. This is the colour 
set for the place CompUnits holding tokens that 
record the available resources in each computa-
tional unit. In each such token, the colours are 
ordered as follows: the computational unit id, 
the available average execution time resource, 
the available memory resource, and the avail-
able average energy consumption resource.
The variables are declared as follows:

The variables c and cu hold the component and 
computational unit ids, respectively. The vari-
able co holds the total cost of the allocated com-
ponents, excluding the communication costs. 
The variables a_cpu, a_mem, and a_pwr hold 

the available average execution time, memory, 
and average energy consumption resources, re-
spectively.
To encode the component resource consump-
tion matrix T, we define three two-dimension-
al arrays: cp_cons, mem_cons, and ener_cons. 
This is done by using the function fromList de-
fined on Array2 structures in SML library. For 
example, the array cpu_cons is defined using 
the following:

Components are allocated one by one, in or-
der of their ids. This is valid, since the order 
of assigning components to computational units 
does not matter with respect to the feasibility 
condition (see (1)). The assignment of compo-
nents is controlled by the value of the token re-
siding in place Components. Note that the com-
ponent ids and the computational unit ids start 
from zero. Thus, for example, the component 

with id = 0 corresponds to the component 1-UI 
and the computational unit with id = 0 corre-
sponds to the computational unit 1-mCPU.
The constraints are included in the CPN model 
by using the guard of transition allocate. For ex-
ample, in Constraint I, Component 7-V should 
be allocated on 4-GPU. Thus, a feasible alloca-
tion of components should satisfy the condition 
that (c = 6) → (cu = 3) which is logically equiv-
alent to ¬ (c = 6) ˅ (cu = 3). For Constraint II, 
Component 4-MD should not be allocated to 
1-mCPU. Thus, a feasible allocation of com-
ponents should also satisfy the condition that 
¬ ((c = 3) ˄  (cu = 0)). Both conditions are added 
to the guard of transition allocate.
When a component is allocated to a computa-
tional unit, the corresponding cost needs to be 
added to the total cost (the colour of the token 
in place Cost). This is modeled by using the arc 
from transition allocate to place Cost. Note the 
trade-off factors fk in the arc expression.

3.3. State Space Generation and Analysis

We use the state space tool of CPN Tools Ver-
sion 4.0 to find an optimal component alloca-
tion. CPN Tools Version 4.0 adds the support 
for real colorsets. Figure 4 shows the query 
functions used to generate and search through 
the state space. These queries are written in the 
CPN ML programming language (presented in 
Chapter 3 in [8]). For a given marking repre-
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Figure 4. The CPN ML queries used to generate and search through the state space for the CPN model in Figure 3.

val max_val: real = 2000.0;

fun alloc (x,y) = y;

fun comm_cost n = 
let
val allocation = ext_col alloc (Mark.model'Allocations 1 n);
val allocation_list = ms_to_list(allocation);
val comm_cost = Array2.array(11,11,0);
val reg = {base=comm_cost, row=0, col=0, nrows=NONE, ncols=NONE};
fun c(i,j,k) = Array2.sub(comp_comm2,i,j)*Array2.sub(unit_comm_cost, List.nth(allocation_list,i),  List.nth(allocation_list,j) );
val u = Array2.modifyi Array2.RowMajor c reg;
fun s(a,b) = a+b;
in
Array2.fold Array2.RowMajor s 0 comm_cost
end;

fun tot_cost n =
let
val accCostsToken = Mark.model'Cost 1 n;
in
hd(accCostsToken) + 0.0491*Real.fromInt(comm_cost(n))
end;

fun DesiredTerminal1 n = (Mark.model'Components 1 n == 1`11);
val x = SearchNodes(EntireGraph, DesiredTerminal1, NoLimit, tot_cost,max_val,Real.min);

fun DesiredTerminal2 n = DesiredTerminal1(n) andalso tot_cost(n) = x;
val y = SearchNodes(EntireGraph, DesiredTerminal2, NoLimit, fn n => n,[],op ::);
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sented by n, the function tot_cost returns the 
total cost of the assigned components which is 
equal to the value (colour) of the token in place 
Cost plus the total communication cost multi-
plied by the communication trade-off factor 
fc = 0.0491.
The function comm_cost returns the total com-
munication cost for an allocation. This is im-
plemented in three steps. First, the allocation 
corresponding to the marking n is determined. 
Note that the place Allocations contains tokens 
of colour set Allocation which is defined as 
the product of two integer colour sets. Thus, 
each token is a tuple containing two integers: 
one representing the component and one rep-
resenting its assigned computational unit. By 
applying the linear extension of the function 
alloc to the marking of place Allocations and 
converting the resulting multi-set to list, allo-
cation_list is determined. Second, the elements 
of the two-dimensional array comm_cost are 
determined. Each element [i, j], where i < j rep-
resents the communication cost between com-
ponents i and j (all other elements are set to 
zero). It is calculated using the standard SML 
function Array2.modifyi which applies the 
function c to each element of comm_cost. Note 
that the two-dimensional array comp_comm2 is 
defined as the strictly lower triangular version 
of the matrix K, while the two-dimensional ar-
ray unit_comm_cost is defined as the matrix C. 
Finally, communication costs are summed up 
using the function Array2.fold which folds the 
function s over the elements of comm_cost to 

compute the total communication cost.
To find the optimal allocations, we use the CPN 
ML defined function SearchNodes twice. First, 
we use it to find the minimum value for the total 
allocation cost over all markings which satisfy 
the predicate DesiredTerminal1. The predicate 
DesiredTerminal1 returns true if and only if the 
marking represented by n satisfies the condition 
that the token in place Components has value 

11 (hence, all components have been assigned). 
Thus, the variable x stores the minimum total 
component allocation cost. The constant max_
val is a large real number useful in the start for 
applying the combination function Real.min of 
SearchNodes. The constant max_val can be set 
to any large real number, but one should ensure 
that it is larger than the cost of a single allocation 
chosen at random. Second, we use SearchNodes 
to find the markings which satisfy DesiredTer-
minal2. The predicate DesiredTerminal2 re-
turns true if and only if the marking represented 
by n satisfies DesiredTerminal1 and that if total 
allocation cost is equal to x. Thus, the output of 
the second SearchNodes (stored in variable y) 
is the list of all markings corresponding to the 
optimal allocations. The optimal allocations are 
determined by examining the tokens in place 
Allocations in any of such markings.
One technique to scale the applicability of the 
CPN approach is to determine an upper bound 
on the total cost and only generate markings 
having total cost less than this upper bound. 
This is possible in CPN ML by using the OGSet.
BranchingOptions function as in the following 
example:
The branching options are used to specify the 
conditions under which the successors of a 
node (marking) are calculated. In this example, 
if a marking corresponds to an allocation with 
a total cost that exceeds 150.88, the successors 
of this marking are not calculated. The ratio-
nale of the use of this upper bound (150.88) is 
to be explained shortly. The effect is that only 
the allocations whose total cost does not exceed 
the upper bound are explored. This results in 
significant reduction in the size of the generated 
state space. Applicable heuristics can be used 
to determine appropriate values for the upper 
bound. For example, we use the genetic algo-
rithm developed in [3]. We note that heuristics 
provide approximate solutions and may not 
converge into an optimal solution. This should 
not pose a problem when setting the branching 
options, since the upper bound needs not be the 
optimal solution.

3.4. Summary

The following summarizes the main steps de-
veloped in this section:

1. Creating the CPN model: The modeler can 
use the CPN model in Figure 3, but (only) 
after updating the trade-off factors in the 
expression of the arc from place Cost to 
transition allocate, the additional con-
straints and number of components in the 
guard of transition allocate, and the tokens 
in place CompUnits to match the computa-
tional units' resource capacities.

2. Generating the corresponding state space 
using CPN Tools: The modeler first needs 
to define the arrays cpu_cons, mem_cons, 
and ener_cons as explained earlier.

3. Running CPN ML queries to search 
through the state space in order to find an 
optimal allocation: The modeler can use 
the CPN ML queries presented in Figure 
4, but (only) after updating the communi-
cation trade-off factor in the body of the 
function tot_cost. The modeler first needs 
to define the arrays unit_comm_cost and 
comp_comm2 as explained earlier.

4. Evaluation

In this section, we first compare the approach 
presented in this paper with the original ap-
proach in [6]. Then, we show the improvement 
in performance when using the branching op-
tions as outlined at the end of Subsection 3.3. 
Finally, we show the results of applying our ap-
proach on eight different component allocation 
problems.
First, in Table 1, we compare the original ap-
proach presented in [6] with the approach 
presented in this paper. Since the original ap-
proach does not consider communication cost, 

we exclude it when evaluating the cost of the 
allocations. To have a fair comparison, the 
branching options are not used when applying 
the approach described in this paper. The table 
also includes the cost of an optimal component 
allocation computed by an exhaustive search. 
We have implemented the exhaustive search 
in a Java program that computes the cost of all 
feasible allocations and returns one that has the 
minimum total allocation cost. In addition, the 
table shows the optimal component allocation 
computed using the CPN based approach, its 
cost w, the number of markings generated by 
CPN Tools, and the time (in seconds) it took for 
the CPN Tools to generate the state space (the 
markings). The last two results are obtained 
by using the CPN ML functions: NoOfNodes() 
and NoOfSecs(). Note that the state space gen-
eration was done on a Dell desktop computer 
equipped with a 3.00 GHz dual-core processor 
and 2 GB RAM.
The table validates the CPN approach in the 
case study, since the returned component allo-
cation is optimal (i.e., feasible and its cost is 
equal to that of the optimal allocation returned 
by the exhaustive search). In addition, although 
the same number of markings are generated in 
both approaches, the table shows that there is 
almost 18% improvement in terms of the time it 
took to generate the state space. This is a result 
of reducing the memory footprint of each mark-
ing by using an optimized scheme for encoding 
the resource consumption matrix and the com-
ponents.
Second, the next three tables show the perfor-
mance improvement of using the branching op-
tions, while applying the approach presented in 
this paper. Table 2 shows the evaluation results 
when using the component allocation problem 

Table 1.  Evaluation results including both constraints − no communication cost and no branching options.

Optimal Cost − Exhaustive Search 141.01
Runtime in Seconds − Exhaustive Search 1.78

Optimal Allocation − CPN Approach (1, 3, 1, 3, 1, 1, 4, 3, 3, 2, 2)
Optimal Cost − CPN Approach 141.01

Number of Markings − original CPN Approach 16813
Number of Seconds − original CPN Approach 44

Number of Markings - CPN Approach as presented in this paper 16813
Number of Seconds - CPN Approach as presented in this paper 36

OGSet.BranchingOptions{
TransInsts = NoLimit, Bindings =
NoLimit,
Predicate = fn n => (tot_cost(n) <=
150.88)};
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sented by n, the function tot_cost returns the 
total cost of the assigned components which is 
equal to the value (colour) of the token in place 
Cost plus the total communication cost multi-
plied by the communication trade-off factor 
fc = 0.0491.
The function comm_cost returns the total com-
munication cost for an allocation. This is im-
plemented in three steps. First, the allocation 
corresponding to the marking n is determined. 
Note that the place Allocations contains tokens 
of colour set Allocation which is defined as 
the product of two integer colour sets. Thus, 
each token is a tuple containing two integers: 
one representing the component and one rep-
resenting its assigned computational unit. By 
applying the linear extension of the function 
alloc to the marking of place Allocations and 
converting the resulting multi-set to list, allo-
cation_list is determined. Second, the elements 
of the two-dimensional array comm_cost are 
determined. Each element [i, j], where i < j rep-
resents the communication cost between com-
ponents i and j (all other elements are set to 
zero). It is calculated using the standard SML 
function Array2.modifyi which applies the 
function c to each element of comm_cost. Note 
that the two-dimensional array comp_comm2 is 
defined as the strictly lower triangular version 
of the matrix K, while the two-dimensional ar-
ray unit_comm_cost is defined as the matrix C. 
Finally, communication costs are summed up 
using the function Array2.fold which folds the 
function s over the elements of comm_cost to 

compute the total communication cost.
To find the optimal allocations, we use the CPN 
ML defined function SearchNodes twice. First, 
we use it to find the minimum value for the total 
allocation cost over all markings which satisfy 
the predicate DesiredTerminal1. The predicate 
DesiredTerminal1 returns true if and only if the 
marking represented by n satisfies the condition 
that the token in place Components has value 

11 (hence, all components have been assigned). 
Thus, the variable x stores the minimum total 
component allocation cost. The constant max_
val is a large real number useful in the start for 
applying the combination function Real.min of 
SearchNodes. The constant max_val can be set 
to any large real number, but one should ensure 
that it is larger than the cost of a single allocation 
chosen at random. Second, we use SearchNodes 
to find the markings which satisfy DesiredTer-
minal2. The predicate DesiredTerminal2 re-
turns true if and only if the marking represented 
by n satisfies DesiredTerminal1 and that if total 
allocation cost is equal to x. Thus, the output of 
the second SearchNodes (stored in variable y) 
is the list of all markings corresponding to the 
optimal allocations. The optimal allocations are 
determined by examining the tokens in place 
Allocations in any of such markings.
One technique to scale the applicability of the 
CPN approach is to determine an upper bound 
on the total cost and only generate markings 
having total cost less than this upper bound. 
This is possible in CPN ML by using the OGSet.
BranchingOptions function as in the following 
example:
The branching options are used to specify the 
conditions under which the successors of a 
node (marking) are calculated. In this example, 
if a marking corresponds to an allocation with 
a total cost that exceeds 150.88, the successors 
of this marking are not calculated. The ratio-
nale of the use of this upper bound (150.88) is 
to be explained shortly. The effect is that only 
the allocations whose total cost does not exceed 
the upper bound are explored. This results in 
significant reduction in the size of the generated 
state space. Applicable heuristics can be used 
to determine appropriate values for the upper 
bound. For example, we use the genetic algo-
rithm developed in [3]. We note that heuristics 
provide approximate solutions and may not 
converge into an optimal solution. This should 
not pose a problem when setting the branching 
options, since the upper bound needs not be the 
optimal solution.

3.4. Summary

The following summarizes the main steps de-
veloped in this section:

1. Creating the CPN model: The modeler can 
use the CPN model in Figure 3, but (only) 
after updating the trade-off factors in the 
expression of the arc from place Cost to 
transition allocate, the additional con-
straints and number of components in the 
guard of transition allocate, and the tokens 
in place CompUnits to match the computa-
tional units' resource capacities.

2. Generating the corresponding state space 
using CPN Tools: The modeler first needs 
to define the arrays cpu_cons, mem_cons, 
and ener_cons as explained earlier.

3. Running CPN ML queries to search 
through the state space in order to find an 
optimal allocation: The modeler can use 
the CPN ML queries presented in Figure 
4, but (only) after updating the communi-
cation trade-off factor in the body of the 
function tot_cost. The modeler first needs 
to define the arrays unit_comm_cost and 
comp_comm2 as explained earlier.

4. Evaluation

In this section, we first compare the approach 
presented in this paper with the original ap-
proach in [6]. Then, we show the improvement 
in performance when using the branching op-
tions as outlined at the end of Subsection 3.3. 
Finally, we show the results of applying our ap-
proach on eight different component allocation 
problems.
First, in Table 1, we compare the original ap-
proach presented in [6] with the approach 
presented in this paper. Since the original ap-
proach does not consider communication cost, 

we exclude it when evaluating the cost of the 
allocations. To have a fair comparison, the 
branching options are not used when applying 
the approach described in this paper. The table 
also includes the cost of an optimal component 
allocation computed by an exhaustive search. 
We have implemented the exhaustive search 
in a Java program that computes the cost of all 
feasible allocations and returns one that has the 
minimum total allocation cost. In addition, the 
table shows the optimal component allocation 
computed using the CPN based approach, its 
cost w, the number of markings generated by 
CPN Tools, and the time (in seconds) it took for 
the CPN Tools to generate the state space (the 
markings). The last two results are obtained 
by using the CPN ML functions: NoOfNodes() 
and NoOfSecs(). Note that the state space gen-
eration was done on a Dell desktop computer 
equipped with a 3.00 GHz dual-core processor 
and 2 GB RAM.
The table validates the CPN approach in the 
case study, since the returned component allo-
cation is optimal (i.e., feasible and its cost is 
equal to that of the optimal allocation returned 
by the exhaustive search). In addition, although 
the same number of markings are generated in 
both approaches, the table shows that there is 
almost 18% improvement in terms of the time it 
took to generate the state space. This is a result 
of reducing the memory footprint of each mark-
ing by using an optimized scheme for encoding 
the resource consumption matrix and the com-
ponents.
Second, the next three tables show the perfor-
mance improvement of using the branching op-
tions, while applying the approach presented in 
this paper. Table 2 shows the evaluation results 
when using the component allocation problem 

Table 1.  Evaluation results including both constraints − no communication cost and no branching options.

Optimal Cost − Exhaustive Search 141.01
Runtime in Seconds − Exhaustive Search 1.78

Optimal Allocation − CPN Approach (1, 3, 1, 3, 1, 1, 4, 3, 3, 2, 2)
Optimal Cost − CPN Approach 141.01

Number of Markings − original CPN Approach 16813
Number of Seconds − original CPN Approach 44

Number of Markings - CPN Approach as presented in this paper 16813
Number of Seconds - CPN Approach as presented in this paper 36

OGSet.BranchingOptions{
TransInsts = NoLimit, Bindings =
NoLimit,
Predicate = fn n => (tot_cost(n) <=
150.88)};
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presented in Subsection 3.1. Table 3 shows 
the evaluation results from the same alloca-
tion problem, but excluding Constraint II. To 
exclude this constraint, we remove the corre-
sponding condition from the guard of transition 
allocate. The evaluation results, when exclud-
ing both constraints, are shown in Table 4.
In order to set the upper bound necessary when 
using the branching options, applicable heuris-
tics can be used to determine appropriate val-
ues for the upper bound. We use the genetic 
algorithm developed in [3]. Each execution of 

the algorithm can have a different result. The 
algorithm is run five times, and we choose the 
smallest optimal cost as an upper bound in the 
setting of the branching options. 
We can make three conclusions when analyz-
ing the results. First, the optimal cost found by 
the CPN approach is equal to that found by the 
exhaustive search. This validates the CPN ap-
proach. Second, the generated state space ex-
ponentially increases when the size of the com-
ponent allocation problem is increased. This is 
evident by comparing the different numbers of 

markings when including both constraints, ex-
cluding a constraint, and excluding both con-
straints. Third, the tables show significant im-
provement in terms of the generated number 
of markings and the time to generate the state 
space when utilizing the branching options. For 
example, Table 4 shows that the time to gen-
erate the state space when using the branching 
options is almost 366 times quicker than when 
not using them for the case of excluding both 
constraints.
As Table 4 shows, the CPN-based approach 
with branching options is slower than the ex-
haustive search. This is due to the overhead 
incurred when using the CPN-based approach. 
The exhaustive search is implemented directly 
in Java, while the CPN-based approach uses 
CPN Tools simulation which incurs some over-
head when constructing and analyzing the state 
space. However, the results in terms of run-
time might be different for larger problems for 
which the branching options severely cut down 
the generated state space.
Lastly, we show the results of applying our ap-
proach on several system instances. The system 
instances were obtained by random shuffling 
of the elements of the matrices T and K of the 
case study in Subsection 3.1. The details of the 
system instances can be obtained by contacting 
the author. Table 5 shows the optimal costs ob-
tained using the CPN approach for eight system 
instances. For each instance, the table shows the 
optimal cost when including both constraints 
(case A) and when excluding Constraint II 
(case B). We verified the results by comparing 
them with the optimal costs obtained when us-
ing exhaustive search. Note that for the instanc-
es 3.A and 3.B, there is no feasible allocation. In 
such cases, the list of markings that are returned 
by the second application of SearchNodes (see 
Figure 4) is empty. For this part of the evalua-
tion, we did not use the branching options.

5. Conclusion and Future Work

In this paper, we presented several improve-
ments to the CPN-based approach for software 
component allocation on heterogeneous sys-
tems. We incorporated the costs of communi-
cation between the software components in the 
CPN model. Also, we explored the use of the 

branching options in the CPN ML state space 
generation tool to scale the CPN approach to 
larger systems.
One potential limitation of the CPN-based ap-
proach is the exponential increase in the gener-
ated state space for larger systems. In this paper, 
we suggested a technique to determine an upper 
bound on the cost and only generate the states 
having cost less than this upper bound. The up-
per bound can be determined using heuristics 
such as genetic algorithms. This significantly 
cuts down the generated state space. 
However, the generated state space can become 
intractable for larger systems. Thus, it is of in-
terest to explore the ways to generate and ana-
lyze the state space more intelligently. For ex-
ample, the work of [27] surveys several parallel 
algorithms to solve discrete optimization prob-
lems such as the component allocation prob-
lem. A discrete optimization problem is often 
formulated as the problem of finding a path in 
a graph (the state space graph) from a designat-
ed initial node to one of several possible final 
nodes. The authors review several techniques 
to search the state space and discuss how these 

Table 2.  Evaluation results including both constraints.

Optimal Cost − Exhaustive Search 153.43
Runtime in Seconds − Exhaustive Search 1.52

Optimal Allocation − CPN Approach (1, 3, 1, 3, 1, 1, 4, 3, 3, 2, 2)
Optimal Cost − CPN Approach 153.43

Number of Markings − CPN Approach − No Branching Options 16813
Number of Seconds − CPN Approach − No Branching Options 36

Number of Markings - CPN Approach − With Branching Options 2313
Number of Seconds - CPN Approach − With Branching Options 1

Table 3.  Evaluation results excluding constraints II.

Optimal Cost − Exhaustive Search 144.50
Runtime in Seconds − Exhaustive Search 1.50

Optimal Allocation − CPN Approach (1, 2, 1, 1, 1, 4, 4, 2, 2, 3, 2)
Optimal Cost − CPN Approach 144.50

Number of Markings − CPN Approach − No Branching Options 27745
Number of Seconds − CPN Approach − No Branching Options 109

Number of Markings - CPN Approach − With Branching Options 3703
Number of Seconds - CPN Approach − With Branching Options 1

Table 4.  Evaluation results excluding both constraints.

Optimal Cost − Exhaustive Search 144.50
Runtime in Seconds − Exhaustive Search 1.54

Optimal Allocation − CPN Approach (1, 2, 1, 1, 1, 4, 4, 2, 2, 2, 2)
Optimal Cost − CPN Approach 144.50

Number of Markings − CPN Approach − No Branching Options 103863
Number of Seconds − CPN Approach − No Branching Options 2193

Number of Markings - CPN Approach − With Branching Options 8741
Number of Seconds - CPN Approach − With Branching Options 6

Table 5.  Evaluation results for different system 
instances.

Instance 
Number

Optimal 
Cost

Number of 
Markings

Number of 
Seconds

1.A 188.40 1853 0
1.B 188.40 2152 1
2.A 169.30 2272 1
2.B 169.30 3082 1
3.A None 906 0
3.B None 1297 0
4.A 198.00 1556 0
4.B 198.00 2340 0
5.A 208.54 608 0
5.B 208.53 672 0
6.A 218.43 1320 0
6.B 218.43 1945 0
7.A 195.48 2423 0
7.B 195.48 2546 1
8.A 161.72 5743 4
8.B 161.72 6565 7
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The exhaustive search is implemented directly 
in Java, while the CPN-based approach uses 
CPN Tools simulation which incurs some over-
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space. However, the results in terms of run-
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tained using the CPN approach for eight system 
instances. For each instance, the table shows the 
optimal cost when including both constraints 
(case A) and when excluding Constraint II 
(case B). We verified the results by comparing 
them with the optimal costs obtained when us-
ing exhaustive search. Note that for the instanc-
es 3.A and 3.B, there is no feasible allocation. In 
such cases, the list of markings that are returned 
by the second application of SearchNodes (see 
Figure 4) is empty. For this part of the evalua-
tion, we did not use the branching options.

5. Conclusion and Future Work

In this paper, we presented several improve-
ments to the CPN-based approach for software 
component allocation on heterogeneous sys-
tems. We incorporated the costs of communi-
cation between the software components in the 
CPN model. Also, we explored the use of the 

branching options in the CPN ML state space 
generation tool to scale the CPN approach to 
larger systems.
One potential limitation of the CPN-based ap-
proach is the exponential increase in the gener-
ated state space for larger systems. In this paper, 
we suggested a technique to determine an upper 
bound on the cost and only generate the states 
having cost less than this upper bound. The up-
per bound can be determined using heuristics 
such as genetic algorithms. This significantly 
cuts down the generated state space. 
However, the generated state space can become 
intractable for larger systems. Thus, it is of in-
terest to explore the ways to generate and ana-
lyze the state space more intelligently. For ex-
ample, the work of [27] surveys several parallel 
algorithms to solve discrete optimization prob-
lems such as the component allocation prob-
lem. A discrete optimization problem is often 
formulated as the problem of finding a path in 
a graph (the state space graph) from a designat-
ed initial node to one of several possible final 
nodes. The authors review several techniques 
to search the state space and discuss how these 
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algorithms can be parallelized. CPN Tools in-
clude limited functionality to control how the 
state space is generated. However, in order to 
scale our approach to larger systems, it is of in-
terest to explore the use of these techniques in 
the context of our CPN approach.
Part of our future work should also concentrate 
on automated methods for model transforma-
tion to/from other modeling languages, includ-
ing the UML Profile for Modeling and Analysis 
of Real-Time and Embedded systems (MAR-
TE) [28]. Finally, the CPN models need to be 
analyzed in terms of other non-functional prop-
erties such as security and dependability.
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algorithms can be parallelized. CPN Tools in-
clude limited functionality to control how the 
state space is generated. However, in order to 
scale our approach to larger systems, it is of in-
terest to explore the use of these techniques in 
the context of our CPN approach.
Part of our future work should also concentrate 
on automated methods for model transforma-
tion to/from other modeling languages, includ-
ing the UML Profile for Modeling and Analysis 
of Real-Time and Embedded systems (MAR-
TE) [28]. Finally, the CPN models need to be 
analyzed in terms of other non-functional prop-
erties such as security and dependability.
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