
211CIT. Journal of Computing and Information Technology, Vol. 25, No. 3, September 2017, 211–225
doi: 10.20532/cit.2017.1003557

Dhanalekshmi Gopinathan and Krishna Asawa
Department of Computer Science, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India

New Path Based Index Structure
for Processing CAS Queries over
XML Database

Querying nested data has become one of the most
challenging issues for retrieving desired information
from the Web. Today diverse applications generate
a tremendous amount of data in different formats.
These data and information exchanged on the Web are
commonly expressed as nested representation such
as XML, JSON, etc. Unlike the traditional database
system, they do not possess a rigid schema. In gen-
eral, the nested data is managed by storing data and its
structures separately which significantly reduces the
performance of data retrieving. Ensuring efficiency of
processing queries which locates the exact positions
of the elements has become a big challenging issue.
There are different indexing structures which have
been proposed in the literature to improve the perfor-
mance of the query processing on the nested structure.
Most of the past researches on nested structure con-
centrate on the structure alone. This paper proposes
new index structure which combines siblings of the
terminal nodes as one path which efficiently processes
twig queries with less number of lookups and joins.
The proposed approach is compared with some of the
existing approaches. The results also show that they
are processed with better performance compared to
the existing ones.

ACM CCS (2012) Classification: → Information
systems → Data management systems → Query lan-
guage
Information systems → World Wide Web → Web
searching and information discovery → Web search
engines → Web indexing

Keywords: XML, query processing, CAS query,
WWW, index, XPath, database storage

1. Introduction

The extensible Markup Language (XML) is a
popular representation structure for expressing

nested data. And, it is the accepted standard to
represent and transport data on the World Wide
Web (WWW). As the number of XML docu-
ments on the WWW is growing, there arises a
need of an effective way to retrieve data quickly
and easily. To retrieve the desired information
from the nested structure in an efficient and ac-
curate way is one crucial issue in XML query
processing. Database indexing gives a boost
for data querying. It helps to find the data in
an XML document without traversing the en-
tire document. Hence, it is necessary to develop
an effective structure, which indexes the nested
structure and content efficiently and supports
query processing with high performance.
There are various indexing schemes proposed
in the literature. Most of these schemes address
different issues of the query processing. In [1],
the indexing scheme processes the simple path
query without branches. The indexing scheme
[2] supports structural queries without any
value predicates. The indexing scheme with
Root Path and Data Path indexes [3] evaluates
XML twig queries with value predicates. The
Root Path index stores the prefix, root-to-leaf
paths along with the leaf value and reversed
schema path. The disadvantage of this scheme
is the storage size of the index. There are sev-
eral other indexes [4] – [6] which have been
proposed to answer path queries. But these in-
dexing schemes suffer from some drawbacks
such as their increased size, designed for an-
swering only a certain type of queries like only
path query without value predicates, and their
inefficiency in processing branch query etc.

212 213D. Gopinathan and K. Asawa New Path Based Index Structure for Processing CAS Queries Over XML Database

The objective of this study is to propose an in-
dex structure for efficient processing of content
and structure queries over nested data stored in
XML format. The proposed index structure in
this work can handle single path query and twig
(branch) queries with or without predicates in
a single lookup of the index. The proposed in-
dex structure has two indices, namely path in-
dex and path combined index. In the first index
(path index), all the available root-to-leaf paths
are stored as a search key. The second index
(path combined index) combines terminal sib-
lings at the same level into one path. This com-
bined path is stored as the search key. The ob-
jective of this is to reduce the number of joins
when processing the branch query compared to
other path based index structures [1] – [3]. A
series of experiments are conducted to evaluate
the performance of the query evaluation based
on the proposed index in terms of two perfor-
mance metrics – number of elements retrieved
and query execution time.
The rest of the paper is organized as follows.
Section 2 briefly recalls the preliminary con-
cepts and Section 3 elaborates the proposed
system architecture. Section 4 focuses on the
experimentation results and their implications
are discussed. Section 5 gives the related work
and finally, Section 6 concludes the study.

2. Preliminary Study

XML documents are modeled as rooted labeled
tree, where trees nodes represent document ele-
ments, attributes, and character data. The edges
represent the relationship among the nodes of
the XML tree. Query processing on XML doc-
ument is performed by searching the relevant
nodes and structural relationships that satisfy
the constraints specified by the query. Due to
the nested structure of the XML documents, the
queries on these documents are expressed as the
tree patterns that efficiently capture the struc-
ture and content information on the documents.
XML query languages like XPath [7], XQuery
[8] are expressed as path expressions which can
query element nodes and values of the XML
documents by specifying structural constraints
and value constraints in a predicate form. The
structural constraints in the XML query can be
specified in the form of a tree, which can be

single path query or a twig query (branch) and
the value constraints can be specified as value
predicates as shown in Figure 1. For example,
the XML Query/book [title = ''XML''] is a sin-
gle path Content and Structure Query (CAS)
which retrieves all the books with title ''XML''.

The structure constraint is specified by the path
expression – /book/title and the content con-
straints are specified by the value predicate –
title = ''XML''. The query/book [title = ''XML'']/
authors [name = ''Serge Abiteboul''] is a branch
query. This query selects all authors' elements
from the book that has a title ''XML'' and whose
author is named ''Serge Abiteboul''.
To illustrate the working of the proposed ap-
proach, the sample XML document shown be-
low is considered in this paper. Figure 3 shows
the labeled tree representation of the sample
document. Each node ''v'' is assigned a unique

2.1.2. Recursive Query

It is a partial match query of the form sep1 no-
detest1 sep2 nodetest2 ... sepn nodetestn, where
sepi denotes ''/'' or ''//'' and nodetest1 denotes the
root of the tree. This type of query will contain
at least one A-D relationship (//). For example,
the query Q2: book//section/title. The query re-
trieves all the titles under the section element
which has book as an ancestor element. It con-
tains one A-D relationship ''book//section''.

2.1.3. Branch Query

It is a complex query of the form sep1 node-
test1 [pred1] sep2 nodetest2 [pred2] ... sepn node-
testn [predn], where sepi can be either ''/'' or ''//''
and predi can be simple path query or recursive
query or queries with some predicate values.
For example, the query Q3: /book/section [title
= ''Web''] retrieves all the titles of the section
which contains a keyword ''Web'' in its descrip-
tion.
Table 1 shows the type of sample queries pro-
cessed by the proposed system. The queries in
column 2 represent the content and structure
queries which select the elements by match-
ing the attribute values specified as a predicate
value. Column 3 represents the structure que-
ries where elements are selected by name.
The next section elaborates the System Archi-
tecture of the proposed approach.

identifier known as a label (v). The labels are
useful to easily identify the structural relation-
ships among the nodes in the tree. The extended
Dewey labeling [9] is used to label each node.
Any prefix labeling scheme such as [10] can
also be used to label each node in the tree.

2.1. Query Model

This section explains the query model used in
the proposed approach. It mainly focuses on
three types of queries structures, namely simple
path query, recursive query, and branch query.
Each of these queries is processed under two
query conditions such as ''selecting element by
name'' and, ''selecting element by matching at-
tribute value''.
The first one is a structured query where it
matches the tag elements in the XML docu-
ment. And, the second one is referred to as a
content and structure query where it matches
the structural part as well as the content part of
the query.

2.1.1. Simple Path Query

This type of query contains only parent-child
relationship. For example, the Q1: /book/sec-
tion/title retrieves all the titles under the section
element whose parent is a book.

Figure 1. Query tree.

Figure 2. Sample XML document.

Figure 3. XML tree for the sample document.

212 213D. Gopinathan and K. Asawa New Path Based Index Structure for Processing CAS Queries Over XML Database

The objective of this study is to propose an in-
dex structure for efficient processing of content
and structure queries over nested data stored in
XML format. The proposed index structure in
this work can handle single path query and twig
(branch) queries with or without predicates in
a single lookup of the index. The proposed in-
dex structure has two indices, namely path in-
dex and path combined index. In the first index
(path index), all the available root-to-leaf paths
are stored as a search key. The second index
(path combined index) combines terminal sib-
lings at the same level into one path. This com-
bined path is stored as the search key. The ob-
jective of this is to reduce the number of joins
when processing the branch query compared to
other path based index structures [1] – [3]. A
series of experiments are conducted to evaluate
the performance of the query evaluation based
on the proposed index in terms of two perfor-
mance metrics – number of elements retrieved
and query execution time.
The rest of the paper is organized as follows.
Section 2 briefly recalls the preliminary con-
cepts and Section 3 elaborates the proposed
system architecture. Section 4 focuses on the
experimentation results and their implications
are discussed. Section 5 gives the related work
and finally, Section 6 concludes the study.

2. Preliminary Study

XML documents are modeled as rooted labeled
tree, where trees nodes represent document ele-
ments, attributes, and character data. The edges
represent the relationship among the nodes of
the XML tree. Query processing on XML doc-
ument is performed by searching the relevant
nodes and structural relationships that satisfy
the constraints specified by the query. Due to
the nested structure of the XML documents, the
queries on these documents are expressed as the
tree patterns that efficiently capture the struc-
ture and content information on the documents.
XML query languages like XPath [7], XQuery
[8] are expressed as path expressions which can
query element nodes and values of the XML
documents by specifying structural constraints
and value constraints in a predicate form. The
structural constraints in the XML query can be
specified in the form of a tree, which can be

single path query or a twig query (branch) and
the value constraints can be specified as value
predicates as shown in Figure 1. For example,
the XML Query/book [title = ''XML''] is a sin-
gle path Content and Structure Query (CAS)
which retrieves all the books with title ''XML''.

The structure constraint is specified by the path
expression – /book/title and the content con-
straints are specified by the value predicate –
title = ''XML''. The query/book [title = ''XML'']/
authors [name = ''Serge Abiteboul''] is a branch
query. This query selects all authors' elements
from the book that has a title ''XML'' and whose
author is named ''Serge Abiteboul''.
To illustrate the working of the proposed ap-
proach, the sample XML document shown be-
low is considered in this paper. Figure 3 shows
the labeled tree representation of the sample
document. Each node ''v'' is assigned a unique

2.1.2. Recursive Query

It is a partial match query of the form sep1 no-
detest1 sep2 nodetest2 ... sepn nodetestn, where
sepi denotes ''/'' or ''//'' and nodetest1 denotes the
root of the tree. This type of query will contain
at least one A-D relationship (//). For example,
the query Q2: book//section/title. The query re-
trieves all the titles under the section element
which has book as an ancestor element. It con-
tains one A-D relationship ''book//section''.

2.1.3. Branch Query

It is a complex query of the form sep1 node-
test1 [pred1] sep2 nodetest2 [pred2] ... sepn node-
testn [predn], where sepi can be either ''/'' or ''//''
and predi can be simple path query or recursive
query or queries with some predicate values.
For example, the query Q3: /book/section [title
= ''Web''] retrieves all the titles of the section
which contains a keyword ''Web'' in its descrip-
tion.
Table 1 shows the type of sample queries pro-
cessed by the proposed system. The queries in
column 2 represent the content and structure
queries which select the elements by match-
ing the attribute values specified as a predicate
value. Column 3 represents the structure que-
ries where elements are selected by name.
The next section elaborates the System Archi-
tecture of the proposed approach.

identifier known as a label (v). The labels are
useful to easily identify the structural relation-
ships among the nodes in the tree. The extended
Dewey labeling [9] is used to label each node.
Any prefix labeling scheme such as [10] can
also be used to label each node in the tree.

2.1. Query Model

This section explains the query model used in
the proposed approach. It mainly focuses on
three types of queries structures, namely simple
path query, recursive query, and branch query.
Each of these queries is processed under two
query conditions such as ''selecting element by
name'' and, ''selecting element by matching at-
tribute value''.
The first one is a structured query where it
matches the tag elements in the XML docu-
ment. And, the second one is referred to as a
content and structure query where it matches
the structural part as well as the content part of
the query.

2.1.1. Simple Path Query

This type of query contains only parent-child
relationship. For example, the Q1: /book/sec-
tion/title retrieves all the titles under the section
element whose parent is a book.

Figure 1. Query tree.

Figure 2. Sample XML document.

Figure 3. XML tree for the sample document.

214 215D. Gopinathan and K. Asawa New Path Based Index Structure for Processing CAS Queries Over XML Database

3. System Architecture

The overall architecture of the proposed system
is shown in Figure 4. The proposed system has
two main components. The first one is an Index
Engine and the second is a Query Evaluation
Engine.

The first component, index engine, parses
the XML documents and creates two indices,
namely path index (p_index) and path com-
bined index (pc_index). The p_index stores all
possible root-to-leaf paths of the XML docu-
ment. And, the pc_index is constructed by com-
bining terminal sibling nodes of the root-to-leaf
paths which have the same ancestor path. It is to
be noted that, in general, the branch queries are
processed by decomposing them into simple

path queries. And, each subquery is processed
separately. Finally, the results are merged to
obtain the result. By using the path combined
index, the proposed approach guarantees that
the number of decompositions will be lesser
compared to the conventional approach. Both
indices have an extended posting list which
stores content (or data value) of the document.
The construction of the index is explained in
subsection 3.1.
Now, the second component of the proposed
system – Query Evaluation Engine – takes the
query as the input. It first analyses the query
structure and constructs a query evaluation plan
as per the query criteria present in the input
query. It then consults the Index engine to ob-
tain the required result. The query model pro-
cessed by this engine is explained in subsection
2.1.

3.1. Construction of Index

In general, the indices are defined as the data
structures that help to locate specific parts of
information form a collection of data. Also it
speeds up the query evaluation process. It is
noted that an accelerated query evaluation may
have to pay additional cost. That is, the index
may require additional storage space. And the
choice of data structure involved may become
significant to create an index structure since it
may take less storage space, allow efficient disk
access etc.
This section explains the construction of an in-
dex of the proposed system. As noted above, it
has two indices such as path index (p_index)
and path combined index (pc_index). The pro-
posed system uses integration of data structures
B+ Tree and HashMap to construct the indices.
The Hash Map stores the structural component
of the XML document and an offset to the B+
Tree. And the B+ tree stores the content infor-
mation in the XML document.
The Hash Map of the index engine in p_index
stores the root-to-leaf path in the XML docu-
ments in each bucket, while the pc_index stores
the combined terminal sibling path in each
bucket. And the second component – B+ Tree
– stores the content information present in the
XML document matching the structural part of
the query as a posting list. This posting list in-
cludes the content information as tuples in the
format (NodeName, NodeValue, NodeId).

The formal algorithm to construct the index en-
gine is given in Algorithm 1.

Now, to construct the path index, the parser
stores all possible root-to-leaf paths as a search
key in the Hash Map. And, the extended posting
list serves as a value index for the proposed ap-
proach. It consists of tuples with the information
(Node Value, Node id). Here, the Node value
and Node id represent the leaf node in the XML
tree. Table 2 shows the path index constructed
for the sample document given in this paper.
Next, the second index, path combined index
(pc_index) is constructed by combining the ter-
minal siblings with same ancestor paths into a
single path. This combined path is the search
key. And it has an extended posting list which
stores content information of the XML docu-
ment. Table 3 shows the path combined index
(pc_index) for the sample XML document.

Figure 4. Overall system architecture.

Table 1. Types of queries processed
by the proposed system.

Query With value
predicate

Without value
predicate

Simple
Path

Query

/book [title = ''XML'']
/book/section [title =
''Introduction'']
/book/section/section
[title = ''Web Analysis'']

/book/title
/book/section/id
/book/section/title

Recursive
Query

//title = "Web Analysis"
/book//section/figure
[title = ''Traditional
client/server
architecture'']

//section /book
//section//title

Branch
Query

/book [title = "XML'']
/[author = "Serge'']
/book [title = "Web'']
//author
/book//section [title =
''Web'']/figure

/book[title]/author
/book[title]/author
/book/section[id]
/title

Figure 5. Architecture of the index engine.

Algorithm 1. ConstructIndex (I).

Input: XML Document D
Output: Index I (Path index and Path_combined
Index)
Begin
 For each root-to-leaf path rp in D do
 If rp exists in I then
 Add the node ids into the posting list;
 Else
 create a new entry for the path as a search key;
 End if
 End for
End

Table 2. Path index of the sample document.

Path With value predicate
\book\title
\book\author
\book\section\id
\book\section\title
\book\section\section\title

\book\section\section\figure\title

{(''XML'',0.0)}
{(''Serge Abiteboul'',0.1)}
{(''intro difficulty = easy'', 0.2.0)}
{(''Introduction'' ,0.2.1)}
{''Web Analysis'', 0.2.2.0), (''Web Data and the Two cultures'',0.2.3.0)}
{(''Traditional client/server architecture'', 0.2.2.1.0)}

Table 3. Path combined index of the sample document.

Path Posting List
\book\(title |author)
\book\section\(id|title)
\book\section\section\title

\book\section\section\figure\title

{<title, ''XML'', 0.0><author, ''SergeAbiteboul'' ,0.1>}
{<id, ''intro difficulty = easy'', 0.2.0> <title, ''Introduction'', 0.2.1>}
{<title, ''Web Analysis'' .2.2.0>, <title, ''Web Data and the Two Cultures'', 0.2.3.0>}
{<title, ''Traditional client/server architecture'', 0.2.2.1.0>}

214 215D. Gopinathan and K. Asawa New Path Based Index Structure for Processing CAS Queries Over XML Database

3. System Architecture

The overall architecture of the proposed system
is shown in Figure 4. The proposed system has
two main components. The first one is an Index
Engine and the second is a Query Evaluation
Engine.

The first component, index engine, parses
the XML documents and creates two indices,
namely path index (p_index) and path com-
bined index (pc_index). The p_index stores all
possible root-to-leaf paths of the XML docu-
ment. And, the pc_index is constructed by com-
bining terminal sibling nodes of the root-to-leaf
paths which have the same ancestor path. It is to
be noted that, in general, the branch queries are
processed by decomposing them into simple

path queries. And, each subquery is processed
separately. Finally, the results are merged to
obtain the result. By using the path combined
index, the proposed approach guarantees that
the number of decompositions will be lesser
compared to the conventional approach. Both
indices have an extended posting list which
stores content (or data value) of the document.
The construction of the index is explained in
subsection 3.1.
Now, the second component of the proposed
system – Query Evaluation Engine – takes the
query as the input. It first analyses the query
structure and constructs a query evaluation plan
as per the query criteria present in the input
query. It then consults the Index engine to ob-
tain the required result. The query model pro-
cessed by this engine is explained in subsection
2.1.

3.1. Construction of Index

In general, the indices are defined as the data
structures that help to locate specific parts of
information form a collection of data. Also it
speeds up the query evaluation process. It is
noted that an accelerated query evaluation may
have to pay additional cost. That is, the index
may require additional storage space. And the
choice of data structure involved may become
significant to create an index structure since it
may take less storage space, allow efficient disk
access etc.
This section explains the construction of an in-
dex of the proposed system. As noted above, it
has two indices such as path index (p_index)
and path combined index (pc_index). The pro-
posed system uses integration of data structures
B+ Tree and HashMap to construct the indices.
The Hash Map stores the structural component
of the XML document and an offset to the B+
Tree. And the B+ tree stores the content infor-
mation in the XML document.
The Hash Map of the index engine in p_index
stores the root-to-leaf path in the XML docu-
ments in each bucket, while the pc_index stores
the combined terminal sibling path in each
bucket. And the second component – B+ Tree
– stores the content information present in the
XML document matching the structural part of
the query as a posting list. This posting list in-
cludes the content information as tuples in the
format (NodeName, NodeValue, NodeId).

The formal algorithm to construct the index en-
gine is given in Algorithm 1.

Now, to construct the path index, the parser
stores all possible root-to-leaf paths as a search
key in the Hash Map. And, the extended posting
list serves as a value index for the proposed ap-
proach. It consists of tuples with the information
(Node Value, Node id). Here, the Node value
and Node id represent the leaf node in the XML
tree. Table 2 shows the path index constructed
for the sample document given in this paper.
Next, the second index, path combined index
(pc_index) is constructed by combining the ter-
minal siblings with same ancestor paths into a
single path. This combined path is the search
key. And it has an extended posting list which
stores content information of the XML docu-
ment. Table 3 shows the path combined index
(pc_index) for the sample XML document.

Figure 4. Overall system architecture.

Table 1. Types of queries processed
by the proposed system.

Query With value
predicate

Without value
predicate

Simple
Path

Query

/book [title = ''XML'']
/book/section [title =
''Introduction'']
/book/section/section
[title = ''Web Analysis'']

/book/title
/book/section/id
/book/section/title

Recursive
Query

//title = "Web Analysis"
/book//section/figure
[title = ''Traditional
client/server
architecture'']

//section /book
//section//title

Branch
Query

/book [title = "XML'']
/[author = "Serge'']
/book [title = "Web'']
//author
/book//section [title =
''Web'']/figure

/book[title]/author
/book[title]/author
/book/section[id]
/title

Figure 5. Architecture of the index engine.

Algorithm 1. ConstructIndex (I).

Input: XML Document D
Output: Index I (Path index and Path_combined
Index)
Begin
 For each root-to-leaf path rp in D do
 If rp exists in I then
 Add the node ids into the posting list;
 Else
 create a new entry for the path as a search key;
 End if
 End for
End

Table 2. Path index of the sample document.

Path With value predicate
\book\title
\book\author
\book\section\id
\book\section\title
\book\section\section\title

\book\section\section\figure\title

{(''XML'',0.0)}
{(''Serge Abiteboul'',0.1)}
{(''intro difficulty = easy'', 0.2.0)}
{(''Introduction'' ,0.2.1)}
{''Web Analysis'', 0.2.2.0), (''Web Data and the Two cultures'',0.2.3.0)}
{(''Traditional client/server architecture'', 0.2.2.1.0)}

Table 3. Path combined index of the sample document.

Path Posting List
\book\(title |author)
\book\section\(id|title)
\book\section\section\title

\book\section\section\figure\title

{<title, ''XML'', 0.0><author, ''SergeAbiteboul'' ,0.1>}
{<id, ''intro difficulty = easy'', 0.2.0> <title, ''Introduction'', 0.2.1>}
{<title, ''Web Analysis'' .2.2.0>, <title, ''Web Data and the Two Cultures'', 0.2.3.0>}
{<title, ''Traditional client/server architecture'', 0.2.2.1.0>}

216 217D. Gopinathan and K. Asawa New Path Based Index Structure for Processing CAS Queries Over XML Database

Advantages of storing root-to-leaf path and
combined root-to-leaf paths are:

 ● it reduces the space cost of the index in
comparison with other existing approaches
[1], [3], [11],

 ● a single lookup into p_index is sufficient to
answer single path query,

 ● prefix queries (the queries which do not
come up to the end of the leaf nodes) of
any length is also solved efficiently.

This can be done by using a simple string
matching operation with the help of wildcard
regular expressions patterns rather than by stor-
ing all the prefix paths.
Recursive queries are solved by rewriting them
into single path queries and by considering
the p_index. Hence, to process all such types
of queries it requires only a single look-up of
the p_index. The next section elaborates how
the path combined index is constructed for the
given document.

3.1.1. Path Combining Module

This section discusses how the root-to-leaf
paths are pooled to get the combined sibling
path. The sample XML Tree shown in Figure
2 is considered for illustrating this concept. All
available root-to-leaf paths of this document are
listed in column 1 of Table 4. The first two paths
in column 1 ''/book/title'' and ''/book/author''
differ only in the end nodes and they share a
sibling relationship (between them). Hence,
these sibling relationships are combined into
a single path as ''/book/(title|author)''. Simi-
larly, the next two paths ''/book/section/id'' and
''/book/section/title'' differ in the end node. And
it is combined as ''/book/section(id|title)''. The
last two paths are not sharing any terminal sib-

ling relationships. Hence, they are stored in the
same way in pc_index.
It is observed that combining the nodes which
share the same sibling relationships as above re-
duces the number of paths to be stored in the in-
dex. Thus, instead of storing seven paths, in this
case, only four paths are required to be stored in
the index. The next section illustrates how the
queries are processed over this proposed index
structure.

3.2. Query Evaluation Engine

This section elaborates the various phases of
the Query Evaluation Engine(QEE) of the pro-
posed system. In this approach, the user query
is taken in the form of XPATH query as de-
fined in the query model in Section 2. The QEE
has four components (see Figure10): analysis
phase, translator phase, plan generator phase
and, execution phase.
Each phase takes the input in one representation
and produces output in another format.

3.2.1. Analysis Phase

This phase takes the user input in XPATH query
form. It analyses the structure of the query by
invoking a method called analyseQuery (Q)
(explained in the next section). It returns the
query structure into a variable called Query
Structure Tree (QST). The QST tells whether
the user query is a simple path query, recursive
query or a branch query.

3.2.2. Translator Module/Rewriting Module

The input to this module is the QST variable,
which is generated by the Analysis Phase. The

QST denotes whether the user query is simple
path query, recursive query or a branch query.
Handling Simple Path Query. As a first step,
it checks whether it is structural query or a
content and structure query. If it is a structural
query, then it passes the query to the Plan Gen-
erator Module. And, if it is content and structure
query(CAS), then the rewriter module rewrites
the query by decomposing it into two subque-
ries. The first is a structural subquery and the
second is a content query. This rewritten query
is passed to the Plan Generator module to gen-
erate the query evaluation plan.
Handling Recursive Query. Rewriter Mod-
ule handles the recursive queries by invoking a
method called rewriteADQuery (Q) (explained
in the next section). It then passes the rewritten
query into Plan Generator Module.
Handling Branch Query. This module han-
dles the branch query by rewriting it into mul-
tiple simple path queries with only parent-child
edges. Each subquery is evaluated separately.
And, finally, the results of each subquery are
merged to obtain the required result.

3.2.3. Plan Generator

This module takes the input from the previous
phase and generates the query evaluation plan

to execute the query. This module consults the
index engine to obtain the required result for
the query.

3.2.4. Execution

This is the last phase of the query evaluation
engine. It executes the query evaluation plan
generated by the plan generator. And, the re-
sults are returned to the user.
The formal algorithm for the query evaluation
is presented in Section 4. The next section elab-
orates how the index engine is processing the
queries specified in the query model of the pro-
posed system.

3.3. Formal Algorithm to Processing the
Queries

This section explains the formal algorithm and
how different types of queries specified in the
query model are processed. The main algorithm
is processQuery (Q), it receives the input from
the user and gives to the analysis phase. It uses
a method called analyseQuery (Q). This method
analyses the structure of the query and returns
the type of a query structure tree (QST) to a
variable with a value in the set{''S'',''A'',''B''},
where ''S'' denotes the simple path query, ''A''
denotes recursive query and ''B'' denotes a
branch query. If the input query, ''Q'' contains
only Parent-Child (P-C) edges (/), then it re-
turns the type as ''S''. And, if ''Q'' contains at
least one Ancestor-descendant (A-D) edge (//),
the status is returned as ''A'' to Qtype. Finally, if

Table 4. Combined terminal sibling root-to-leaf path.

Root-to-leaf path Combined Terminal root-to-leaf path
/book/title

/book/(title|author)
/book/author
/book/section/id

/book/section/(id|title)
/book/section/title
/book/section/section/title /book/section/section/(title)
/book/section/section/figure/title /book/section/section/figure/(title)

Figure 6. Phases of qurery processing engine of the
proposed approach.

Algorithm 2. processQuery (I, Q).

Input: Index I, Query Q
Output: All nodes id's that satisfy the query Q.
Begin
Qtype = analyseQuery (Q);
 If Qtype == 'S' then
 processPCQuery (Q);
 Else if Qtype == 'A' then
 processADQuery (Q);
 Else if Qtype == 'B' then
 processBranchQuery (Q);
 End if
End

216 217D. Gopinathan and K. Asawa New Path Based Index Structure for Processing CAS Queries Over XML Database

Advantages of storing root-to-leaf path and
combined root-to-leaf paths are:

 ● it reduces the space cost of the index in
comparison with other existing approaches
[1], [3], [11],

 ● a single lookup into p_index is sufficient to
answer single path query,

 ● prefix queries (the queries which do not
come up to the end of the leaf nodes) of
any length is also solved efficiently.

This can be done by using a simple string
matching operation with the help of wildcard
regular expressions patterns rather than by stor-
ing all the prefix paths.
Recursive queries are solved by rewriting them
into single path queries and by considering
the p_index. Hence, to process all such types
of queries it requires only a single look-up of
the p_index. The next section elaborates how
the path combined index is constructed for the
given document.

3.1.1. Path Combining Module

This section discusses how the root-to-leaf
paths are pooled to get the combined sibling
path. The sample XML Tree shown in Figure
2 is considered for illustrating this concept. All
available root-to-leaf paths of this document are
listed in column 1 of Table 4. The first two paths
in column 1 ''/book/title'' and ''/book/author''
differ only in the end nodes and they share a
sibling relationship (between them). Hence,
these sibling relationships are combined into
a single path as ''/book/(title|author)''. Simi-
larly, the next two paths ''/book/section/id'' and
''/book/section/title'' differ in the end node. And
it is combined as ''/book/section(id|title)''. The
last two paths are not sharing any terminal sib-

ling relationships. Hence, they are stored in the
same way in pc_index.
It is observed that combining the nodes which
share the same sibling relationships as above re-
duces the number of paths to be stored in the in-
dex. Thus, instead of storing seven paths, in this
case, only four paths are required to be stored in
the index. The next section illustrates how the
queries are processed over this proposed index
structure.

3.2. Query Evaluation Engine

This section elaborates the various phases of
the Query Evaluation Engine(QEE) of the pro-
posed system. In this approach, the user query
is taken in the form of XPATH query as de-
fined in the query model in Section 2. The QEE
has four components (see Figure10): analysis
phase, translator phase, plan generator phase
and, execution phase.
Each phase takes the input in one representation
and produces output in another format.

3.2.1. Analysis Phase

This phase takes the user input in XPATH query
form. It analyses the structure of the query by
invoking a method called analyseQuery (Q)
(explained in the next section). It returns the
query structure into a variable called Query
Structure Tree (QST). The QST tells whether
the user query is a simple path query, recursive
query or a branch query.

3.2.2. Translator Module/Rewriting Module

The input to this module is the QST variable,
which is generated by the Analysis Phase. The

QST denotes whether the user query is simple
path query, recursive query or a branch query.
Handling Simple Path Query. As a first step,
it checks whether it is structural query or a
content and structure query. If it is a structural
query, then it passes the query to the Plan Gen-
erator Module. And, if it is content and structure
query(CAS), then the rewriter module rewrites
the query by decomposing it into two subque-
ries. The first is a structural subquery and the
second is a content query. This rewritten query
is passed to the Plan Generator module to gen-
erate the query evaluation plan.
Handling Recursive Query. Rewriter Mod-
ule handles the recursive queries by invoking a
method called rewriteADQuery (Q) (explained
in the next section). It then passes the rewritten
query into Plan Generator Module.
Handling Branch Query. This module han-
dles the branch query by rewriting it into mul-
tiple simple path queries with only parent-child
edges. Each subquery is evaluated separately.
And, finally, the results of each subquery are
merged to obtain the required result.

3.2.3. Plan Generator

This module takes the input from the previous
phase and generates the query evaluation plan

to execute the query. This module consults the
index engine to obtain the required result for
the query.

3.2.4. Execution

This is the last phase of the query evaluation
engine. It executes the query evaluation plan
generated by the plan generator. And, the re-
sults are returned to the user.
The formal algorithm for the query evaluation
is presented in Section 4. The next section elab-
orates how the index engine is processing the
queries specified in the query model of the pro-
posed system.

3.3. Formal Algorithm to Processing the
Queries

This section explains the formal algorithm and
how different types of queries specified in the
query model are processed. The main algorithm
is processQuery (Q), it receives the input from
the user and gives to the analysis phase. It uses
a method called analyseQuery (Q). This method
analyses the structure of the query and returns
the type of a query structure tree (QST) to a
variable with a value in the set{''S'',''A'',''B''},
where ''S'' denotes the simple path query, ''A''
denotes recursive query and ''B'' denotes a
branch query. If the input query, ''Q'' contains
only Parent-Child (P-C) edges (/), then it re-
turns the type as ''S''. And, if ''Q'' contains at
least one Ancestor-descendant (A-D) edge (//),
the status is returned as ''A'' to Qtype. Finally, if

Table 4. Combined terminal sibling root-to-leaf path.

Root-to-leaf path Combined Terminal root-to-leaf path
/book/title

/book/(title|author)
/book/author
/book/section/id

/book/section/(id|title)
/book/section/title
/book/section/section/title /book/section/section/(title)
/book/section/section/figure/title /book/section/section/figure/(title)

Figure 6. Phases of qurery processing engine of the
proposed approach.

Algorithm 2. processQuery (I, Q).

Input: Index I, Query Q
Output: All nodes id's that satisfy the query Q.
Begin
Qtype = analyseQuery (Q);
 If Qtype == 'S' then
 processPCQuery (Q);
 Else if Qtype == 'A' then
 processADQuery (Q);
 Else if Qtype == 'B' then
 processBranchQuery (Q);
 End if
End

218 219D. Gopinathan and K. Asawa New Path Based Index Structure for Processing CAS Queries Over XML Database

''Q'' is a branch query, it returns ''B'' to Q type.
After the analysis phase, the main algorithm re-
turns the QST to the next phase, which in turn
calls the required sub algorithm to execute the
diverse types of queries.
The processing of each type of queries are ex-
plained in the next section.

3.3.1. Processing of Path Query

The proposed system considers two types of
queries under the path query. The first is simple
path query with only parent-child (P-C) edges.
The second one is a recursive query with at
least one (A-D) edge. In both cases, it considers
the query with or without value predicates. The
queries with value predicates are called con-
tent and structural (CAS) queries. Simple path
query without value predicate is basically a
structural query. The proposed approach makes
use of p_index to process the path query.
Algorithm to process simple path query.
The method rewrite(Q), rewrites the CAS query
by decomposing it into structural part and con-
tent part. It stores the result in an array called
subQ, where subQ[0] is the structural query and
subQ[1] is the content part of the CAS query.
The method processQ (Q), processes Q by con-
sulting p_index. If p_index has a matching path
stored in it, it returns the corresponding records
as the resultSet.
The method searchResultset(Q, resultSet) sear-
ches the content part from the matched path's
posting list which is stored as an extension and
implemented as a B+ tree in the p_index.

Here, subQ is an array to store the subqueries
returned by rewrite(Q) is stored.
For example, consider the query ''Q1: /book/
section/section/title''. This is a structural query
with structural constraint ''/book/section/title''.
If p_index has a structural match for the given
query, then it returns the record values of the
element as a query result. In this case, it returns
{(title, ''Web Analysis'', 0.2.2.0), (title, ''Web
Data and the Two Cultures'', 0.2.3.0)} as the
query result.
Now, consider the CAS query ''Q2: /book [title
= ''XML'']. It is a CAS query. The translator/Re-
writing module rewrites the query Q2 into sub-
queries Q2a = ''/book/title'' and Q2b = ''XML'',
where ''Q2a'' denotes the structural part and
''Q2b'' denotes the content part.
Algorithm to process recursive query.

The method rewriteADQuery(Q), rewrites the
recursive query into simple path query with
only P-C edges. For this, as a first step it re-
places the A-D edge (//) with P-C edges as (/#).
Then, in the next step, it replaces each query
node which starts with # into a regular expres-
sion wildcard character (.)*t, where t denotes
the query node. And, as the last step, it rebuilds
the query into a new query with only parent-
child edges in it.
In general, if the query is t1//t2/t3, then, as a first
step, it is rewritten as t1/#t2/t3. Next, the query
node t2 is replaced as (.)*t2. And, as a last step,
it rebuilds the new query as t1/(.)*t2/t3. Now,
this new query is processed in the same way the
P-C query is processed.
For example, consider the query ''//section''
which retrieves all the section elements of the
XML documents. To process this query, the
query is rewritten as Qi = /#section. The result
query Qi is again rewritten as Qii: (.)*/section.

The term (.)*/section are searched in the path
index. All the entries matching the term are re-
trieved and merged to obtain the result. Once
the search key is matched, the associated post-
ing list is searched for the required result. The
next section elaborates the algorithm for pro-
cessing branch query.

3.3.2. Processing of Branch Query

The proposed approach processes the branch
queries under two scenarios.
Scenario 1: all the queries nodes are at the
same level, and
Scenario 2: queried nodes may lie at different
levels.
For example, to illustrate this, consider the
XML data tree in Figure 7, and the query tree
for the branch query ''/A[/B][/C][/D]'' in Figure
8. It is observed that, here all the queries nodes
are terminal sibling nodes and are at the same
level.
The first scenario checks whether all the que-
ries nodes are terminal, and they lie at the same
level or not. The method checkSiblinglevel(Q)
returns the value True, if it is at the same
level. And then it invokes rewriteCombine(Q)
method. This method rebuilds the query tree by
combining all queried terminal sibling nodes in
the query into a single path expression. In this
case, it rebuilds the query tree as ''/A(B|C|D)''.
In conventional approaches, the branch queries
are processed by decomposing them into mul-
tiple simple path queries. And each sub queries
are evaluated and then merged to obtain the re-
sult.
The advantage of the proposed approach is
that, if all the queried nodes are terminal and

lie at the same level, the query need not be de-
composed into multiple queries. The combined
path expression can be searched for a structural
match in the pc_index. Hence it reduces the
number of expensive join operation compared
to other existing path index approaches.
To illustrate the second scenario is processed
in existing approaches and the proposed ap-
proach considers an example query like
''/book[/title]//author[/first name][/last name]''
where the queried nodes title, first name and
last name lie at different levels as shown in Fig-
ure 9. In conventional approaches, this query is
decomposed into multiple simple path queries
as:
a) /book/title,
b) /book//author/first name and
c) /book//author/last name.Algorithm 3. processPCQuery(I, Q).

Input: Index I, Query Q
Output: All nodes id's that satisfy the query Q.
Begin
 If (Q is CASQuery) then
 subQ = rewrite(Q);
 resultSet = processQ(subQ[0]);
 return (searchResultset(subQ[1], resultSet));
 Else
 resultSet = processQ(Q);
 return resultSet;
 End if
End

Algorithm 4. processADQuery (I,Q).

Input: Index I, Query Q
Output: All nodes id's that satisfy the query Q.
Begin
 newQ = rewriteADQuery(Q);
 processPCQuery(newQ);
End

Figure 7. XML data tree.

Figure 8. Query tree of /A[B]/[C]/[D].

Figure 9. Processing of branch query in scenario2by existing approaches.

218 219D. Gopinathan and K. Asawa New Path Based Index Structure for Processing CAS Queries Over XML Database

''Q'' is a branch query, it returns ''B'' to Q type.
After the analysis phase, the main algorithm re-
turns the QST to the next phase, which in turn
calls the required sub algorithm to execute the
diverse types of queries.
The processing of each type of queries are ex-
plained in the next section.

3.3.1. Processing of Path Query

The proposed system considers two types of
queries under the path query. The first is simple
path query with only parent-child (P-C) edges.
The second one is a recursive query with at
least one (A-D) edge. In both cases, it considers
the query with or without value predicates. The
queries with value predicates are called con-
tent and structural (CAS) queries. Simple path
query without value predicate is basically a
structural query. The proposed approach makes
use of p_index to process the path query.
Algorithm to process simple path query.
The method rewrite(Q), rewrites the CAS query
by decomposing it into structural part and con-
tent part. It stores the result in an array called
subQ, where subQ[0] is the structural query and
subQ[1] is the content part of the CAS query.
The method processQ (Q), processes Q by con-
sulting p_index. If p_index has a matching path
stored in it, it returns the corresponding records
as the resultSet.
The method searchResultset(Q, resultSet) sear-
ches the content part from the matched path's
posting list which is stored as an extension and
implemented as a B+ tree in the p_index.

Here, subQ is an array to store the subqueries
returned by rewrite(Q) is stored.
For example, consider the query ''Q1: /book/
section/section/title''. This is a structural query
with structural constraint ''/book/section/title''.
If p_index has a structural match for the given
query, then it returns the record values of the
element as a query result. In this case, it returns
{(title, ''Web Analysis'', 0.2.2.0), (title, ''Web
Data and the Two Cultures'', 0.2.3.0)} as the
query result.
Now, consider the CAS query ''Q2: /book [title
= ''XML'']. It is a CAS query. The translator/Re-
writing module rewrites the query Q2 into sub-
queries Q2a = ''/book/title'' and Q2b = ''XML'',
where ''Q2a'' denotes the structural part and
''Q2b'' denotes the content part.
Algorithm to process recursive query.

The method rewriteADQuery(Q), rewrites the
recursive query into simple path query with
only P-C edges. For this, as a first step it re-
places the A-D edge (//) with P-C edges as (/#).
Then, in the next step, it replaces each query
node which starts with # into a regular expres-
sion wildcard character (.)*t, where t denotes
the query node. And, as the last step, it rebuilds
the query into a new query with only parent-
child edges in it.
In general, if the query is t1//t2/t3, then, as a first
step, it is rewritten as t1/#t2/t3. Next, the query
node t2 is replaced as (.)*t2. And, as a last step,
it rebuilds the new query as t1/(.)*t2/t3. Now,
this new query is processed in the same way the
P-C query is processed.
For example, consider the query ''//section''
which retrieves all the section elements of the
XML documents. To process this query, the
query is rewritten as Qi = /#section. The result
query Qi is again rewritten as Qii: (.)*/section.

The term (.)*/section are searched in the path
index. All the entries matching the term are re-
trieved and merged to obtain the result. Once
the search key is matched, the associated post-
ing list is searched for the required result. The
next section elaborates the algorithm for pro-
cessing branch query.

3.3.2. Processing of Branch Query

The proposed approach processes the branch
queries under two scenarios.
Scenario 1: all the queries nodes are at the
same level, and
Scenario 2: queried nodes may lie at different
levels.
For example, to illustrate this, consider the
XML data tree in Figure 7, and the query tree
for the branch query ''/A[/B][/C][/D]'' in Figure
8. It is observed that, here all the queries nodes
are terminal sibling nodes and are at the same
level.
The first scenario checks whether all the que-
ries nodes are terminal, and they lie at the same
level or not. The method checkSiblinglevel(Q)
returns the value True, if it is at the same
level. And then it invokes rewriteCombine(Q)
method. This method rebuilds the query tree by
combining all queried terminal sibling nodes in
the query into a single path expression. In this
case, it rebuilds the query tree as ''/A(B|C|D)''.
In conventional approaches, the branch queries
are processed by decomposing them into mul-
tiple simple path queries. And each sub queries
are evaluated and then merged to obtain the re-
sult.
The advantage of the proposed approach is
that, if all the queried nodes are terminal and

lie at the same level, the query need not be de-
composed into multiple queries. The combined
path expression can be searched for a structural
match in the pc_index. Hence it reduces the
number of expensive join operation compared
to other existing path index approaches.
To illustrate the second scenario is processed
in existing approaches and the proposed ap-
proach considers an example query like
''/book[/title]//author[/first name][/last name]''
where the queried nodes title, first name and
last name lie at different levels as shown in Fig-
ure 9. In conventional approaches, this query is
decomposed into multiple simple path queries
as:
a) /book/title,
b) /book//author/first name and
c) /book//author/last name.Algorithm 3. processPCQuery(I, Q).

Input: Index I, Query Q
Output: All nodes id's that satisfy the query Q.
Begin
 If (Q is CASQuery) then
 subQ = rewrite(Q);
 resultSet = processQ(subQ[0]);
 return (searchResultset(subQ[1], resultSet));
 Else
 resultSet = processQ(Q);
 return resultSet;
 End if
End

Algorithm 4. processADQuery (I,Q).

Input: Index I, Query Q
Output: All nodes id's that satisfy the query Q.
Begin
 newQ = rewriteADQuery(Q);
 processPCQuery(newQ);
End

Figure 7. XML data tree.

Figure 8. Query tree of /A[B]/[C]/[D].

Figure 9. Processing of branch query in scenario2by existing approaches.

220 221D. Gopinathan and K. Asawa New Path Based Index Structure for Processing CAS Queries Over XML Database

These three sub queries are processed sepa-
rately. And, the results of each sub query are
merged together to obtain the result. So, it takes
three joins to process this branch query, as
shown. Each of these sub-queries can be a path
query or a branch query. And, each sub query is
evaluated separately to obtain the intermediate
results. These intermediate results are merged
together to obtain the final result.
Whereas, the proposed approach decomposes
the above query as (see Table 1):
a) /book/title and
b) /book//author[/first name][/last name].

It can be observed that the number of decom-
positions is less in comparison with the existing
approaches. This is due to the fact that the pro-
posed approach has the combined path in the
pc_index as a search key. Hence, even though,
the proposed approach also decomposes the
branch query into multiple subqueries, it guar-
antees that the number of expensive join oper-
ations is less in comparison with the existing
approaches.

The method rewriteCombineQ(Q) combines all
the query nodes which lie at the same level into
single path expression. And, the new rewritten
path expression is searched in the pc_index to
process the branch query.

4. Experiments and Result Analysis

The experiments are conducted to evaluate the
performance of the proposed approach on a
Core i7–3610QM processor with 3GB of max-
imum available memory for the Java Runtime
Environment. The performance of the proposed
algorithms is evaluated considering two met-
rics. The first metric is the average execution
time for the different types of queries. The sec-
ond metric is the number of scanned elements
returned as an answer to the query. This met-
ric measures the efficiency of the index being
constructed as part of the proposed scheme. To
evaluate the structural queries, the queries with
Parent-Child (P-C), Ancestor-Descendant (A-
D) queries and the combination of P-C and A-D
queries are considered. To evaluate the value
part, queries with simple linear path query with
value predicate at the end, at any position and
A-D queries with value predicate at the end and
at any position is considered. The experiments
are also conducted by varying the path length
of full match query and partial match queries.
The query evaluation time with an existing ap-
proach [12], [13] is compared with the proposed
approach and results are shown in subsection
4.4. Another set of experiments were conducted
to measure the time for constructing the index.
The data sets chosen for performing the experi-
ments are shown in Table 5.
The proposed system focuses on three types of
queries, mainly simple path queries, recursive
queries, and branch queries.

Table 6 lists all the queries considered for the
experimentation in this paper.

The content part is evaluated by considering
the queries with value predicate at the end or
at any position in both simple path query and
recursive queries. The first set of experiments
is performed on the metric- number of elements
retrieved, for all three types of queries.

4.1. Simple Path Query

The queries Q1 – Q4 listed in Table 6 are simple
path queries. These queries are simple structural

queries without any value predicate. The struc-
tural part is evaluated by varying length of the
path. The query Q1 is simple path query which
specifies the root-to-leaf path. The last node in
the query term is the leaf node. The number of
elements retrieved is the number of leaf nodes
which satisfies the search criteria. In this case,
only one element is retrieved. The Queries Q2
and Q3 are simple path queries, where the last
component of the query is not a leaf node. For
example, Q3- /play/act, the last component of
the query is act, which is not a leaf node. In this
case, the query returns all the descendants of
the node act as the resultant nodes.

Figure 12 shows the execution time in millisec
for processing the simple path queries Q1 to
Q4. It is noted that the query Q1 takes 0 milli-
sec to retrieve the result since it is a root-to-leaf
path query. The entire structural path is stored
in the index and it takes a single lookup to re-
trieve the result. And, for the queries Q2 to Q4,
the search key is path or substring of the paths,
listed in the p_index. If any such match found,
the associated nodes from the posting list are
retrieved as the resultant nodes.Figure 10. Processing of branch queries in scenario 2 by proposed approach.

Algorithm 5. processBranchQuery (I, Q).

Input: Index I, Query Q
Output: All nodes id's that satisfy the query Q.
Begin
 Flag = checkSiblinglevel(Q);
 If (flag) then
 newQ = rewriteCombine(Q)
 processPCQuery(Q);
 Else
 subQ = rewriteCombine(Q);
 for each q in subQ do processPCQuery(Q);
 End for
 End if
End

Table 5. Characteristics of the dataset.

Parameter DBLP Shakespeare SigmodRecord

#Nodes 3332131 6636 11527

Depth 6 12 6

#Fan-out 22 48 4

Table 6. Listing of queries.

Listing of queries tested by the proposed approach

Q1. /play/title
Q2. /play/act/scene/speech
Q3. /play/act
Q4. /play/act/scene
Q5. //title
Q6. //personae
Q7. //scene
Q8. /play//speech
Q9. /play//pgroup
Q10. /play//stagedir
Q11. //line
Q12.//speech//speaker
Q13. //[Speaker = BERNARDO]
Q14. //Speech[Speaker = BERNARDO]
Q15. //Scene//[Line = Heaven]
Q16. //Act//Speech//[Line = Heaven]
Q17. /Play//Act//Speech//[Line = Heaven]
QD1. /dblp/article [author = Frank Manola]/title
QD2. /dblp/article [editor = Paul R. McJones]/title
QD3. /dblp/article [/editor = Paul R. McJones][/journal
= Digital System Research Center Report][/year]
QD4. /dblp/inproceedings[/author = Tor Helleseth]
[/title][/sub]
QD5. /dblp/article [/editor=Paul R.McJones][/journal
= Digital System Research

Figure 11. Number of Nodes retrieved for the Simple
Path Query Q1 – Q4.

Figure 12. Time taken in millisec to process the simple
path query Q1 – Q4.

220 221D. Gopinathan and K. Asawa New Path Based Index Structure for Processing CAS Queries Over XML Database

These three sub queries are processed sepa-
rately. And, the results of each sub query are
merged together to obtain the result. So, it takes
three joins to process this branch query, as
shown. Each of these sub-queries can be a path
query or a branch query. And, each sub query is
evaluated separately to obtain the intermediate
results. These intermediate results are merged
together to obtain the final result.
Whereas, the proposed approach decomposes
the above query as (see Table 1):
a) /book/title and
b) /book//author[/first name][/last name].

It can be observed that the number of decom-
positions is less in comparison with the existing
approaches. This is due to the fact that the pro-
posed approach has the combined path in the
pc_index as a search key. Hence, even though,
the proposed approach also decomposes the
branch query into multiple subqueries, it guar-
antees that the number of expensive join oper-
ations is less in comparison with the existing
approaches.

The method rewriteCombineQ(Q) combines all
the query nodes which lie at the same level into
single path expression. And, the new rewritten
path expression is searched in the pc_index to
process the branch query.

4. Experiments and Result Analysis

The experiments are conducted to evaluate the
performance of the proposed approach on a
Core i7–3610QM processor with 3GB of max-
imum available memory for the Java Runtime
Environment. The performance of the proposed
algorithms is evaluated considering two met-
rics. The first metric is the average execution
time for the different types of queries. The sec-
ond metric is the number of scanned elements
returned as an answer to the query. This met-
ric measures the efficiency of the index being
constructed as part of the proposed scheme. To
evaluate the structural queries, the queries with
Parent-Child (P-C), Ancestor-Descendant (A-
D) queries and the combination of P-C and A-D
queries are considered. To evaluate the value
part, queries with simple linear path query with
value predicate at the end, at any position and
A-D queries with value predicate at the end and
at any position is considered. The experiments
are also conducted by varying the path length
of full match query and partial match queries.
The query evaluation time with an existing ap-
proach [12], [13] is compared with the proposed
approach and results are shown in subsection
4.4. Another set of experiments were conducted
to measure the time for constructing the index.
The data sets chosen for performing the experi-
ments are shown in Table 5.
The proposed system focuses on three types of
queries, mainly simple path queries, recursive
queries, and branch queries.

Table 6 lists all the queries considered for the
experimentation in this paper.

The content part is evaluated by considering
the queries with value predicate at the end or
at any position in both simple path query and
recursive queries. The first set of experiments
is performed on the metric- number of elements
retrieved, for all three types of queries.

4.1. Simple Path Query

The queries Q1 – Q4 listed in Table 6 are simple
path queries. These queries are simple structural

queries without any value predicate. The struc-
tural part is evaluated by varying length of the
path. The query Q1 is simple path query which
specifies the root-to-leaf path. The last node in
the query term is the leaf node. The number of
elements retrieved is the number of leaf nodes
which satisfies the search criteria. In this case,
only one element is retrieved. The Queries Q2
and Q3 are simple path queries, where the last
component of the query is not a leaf node. For
example, Q3- /play/act, the last component of
the query is act, which is not a leaf node. In this
case, the query returns all the descendants of
the node act as the resultant nodes.

Figure 12 shows the execution time in millisec
for processing the simple path queries Q1 to
Q4. It is noted that the query Q1 takes 0 milli-
sec to retrieve the result since it is a root-to-leaf
path query. The entire structural path is stored
in the index and it takes a single lookup to re-
trieve the result. And, for the queries Q2 to Q4,
the search key is path or substring of the paths,
listed in the p_index. If any such match found,
the associated nodes from the posting list are
retrieved as the resultant nodes.Figure 10. Processing of branch queries in scenario 2 by proposed approach.

Algorithm 5. processBranchQuery (I, Q).

Input: Index I, Query Q
Output: All nodes id's that satisfy the query Q.
Begin
 Flag = checkSiblinglevel(Q);
 If (flag) then
 newQ = rewriteCombine(Q)
 processPCQuery(Q);
 Else
 subQ = rewriteCombine(Q);
 for each q in subQ do processPCQuery(Q);
 End for
 End if
End

Table 5. Characteristics of the dataset.

Parameter DBLP Shakespeare SigmodRecord

#Nodes 3332131 6636 11527

Depth 6 12 6

#Fan-out 22 48 4

Table 6. Listing of queries.

Listing of queries tested by the proposed approach

Q1. /play/title
Q2. /play/act/scene/speech
Q3. /play/act
Q4. /play/act/scene
Q5. //title
Q6. //personae
Q7. //scene
Q8. /play//speech
Q9. /play//pgroup
Q10. /play//stagedir
Q11. //line
Q12.//speech//speaker
Q13. //[Speaker = BERNARDO]
Q14. //Speech[Speaker = BERNARDO]
Q15. //Scene//[Line = Heaven]
Q16. //Act//Speech//[Line = Heaven]
Q17. /Play//Act//Speech//[Line = Heaven]
QD1. /dblp/article [author = Frank Manola]/title
QD2. /dblp/article [editor = Paul R. McJones]/title
QD3. /dblp/article [/editor = Paul R. McJones][/journal
= Digital System Research Center Report][/year]
QD4. /dblp/inproceedings[/author = Tor Helleseth]
[/title][/sub]
QD5. /dblp/article [/editor=Paul R.McJones][/journal
= Digital System Research

Figure 11. Number of Nodes retrieved for the Simple
Path Query Q1 – Q4.

Figure 12. Time taken in millisec to process the simple
path query Q1 – Q4.

222 223D. Gopinathan and K. Asawa New Path Based Index Structure for Processing CAS Queries Over XML Database

4.2. Recursive Query

The experimentation recursive query is per-
formed on the Shakespeare's play data set. The
queries Q5 – Q12 listed in Table 6 are consid-
ered for the experiment. And the graph in Fig-
ure 13 and Figure 14 shows the number of el-
ements retrieved and the time taken to process
the queries respectively.

It is observed from the graph that the partial
match query with // axes nearer to the leaf node
or leaf nodes takes less time to retrieve the re-
sult. And, if the axis specifier (//) are some in-
ternal nodes which are far from the leaf nodes,
it takes more time to retrieve the result. For ex-
ample, queries Q5, Q6, Q9 take less time com-
pared to Q7 and Q8.

4.3. Branch Query

The branch query is performed on the Shake-
speare's play data set. The graph in Figure 11(a)
and Figure 11(b) shows the number of elements
retrieved and the time taken to process the branch
query using the proposed index structure.

4.4. Comparison of Query Performance
with the Existing System

The proposed system is compared with some
existing systems also. The queries QD1 – QD5
are used to compare the performance of the
proposed approach with standard indexing ap-
proach and OXDP [12]. The queries are taken
from the standard bench mark data set DBLP.
Standard indexing approach uses the node ele-
ments in the XML documents as the search key.

The performance of pc_index is compared with
the standard value index [10] and the value in-
dex proposed in OXDP [12]. For example, the
pc_index takes 300ms to retrieve one answer of
QD5, the standard index takes almost 1400 ms
to retrieve the answer for the same query and
OXDP takes almost 575 ms to query the data.
This is so because the standard value index is a
node based index. And, as the length of the path
increases, it needs to scan nodes compared to
OXDP or pc_index index. The results in Figure
13 clearly show that pc_index took less time to
evaluate the queries.

5. Related Work

There are many indexing approaches of XML
documents proposed for supporting the evalua-
tion of XML queries. They are mainly divided
into three categories such as node indexing,
path indexing and sequence indexing. How-
ever, most of the work is focused on process-
ing the structural part in twig queries. Node
indexing [11], [14], [15] approach indexes the
XML elements and values. For evaluating they
must look up all elements and values. This will
require a up, since data and elements are in-
dexed separately. The intermediate results are
merged to get the final results. For example, for
the query //book/title, the indexing approach
specified in [11] first looks for all book and title
elements in the document and only the related
are retrieved. But it can also retrieve the title el-
ements which are not under book, like /movie/
title. The problem with this approach is that it
provides huge intermediate results which may
not be useful for the final result. The indexing
approach specified in [16], proposes holistic
twig join algorithms to solve the above prob-
lem present in [11]. They used a chain of linked
stacks to reduce the huge intermediate results.
The XISS index in [14] uses B+ tree as an in-
dexing mechanism where they used a node in-
dex approach on B+ tree. Here since the basic
unit indexed is a node, the query is processed
by decomposing it into nodes and these nodes
are searched in the B+ tree, for each subpart
and finally the intermediate results are joined.
The index [17] proposed a tree-structured index
XR-Tree with labeled nodes in the XML doc-
uments is stored as an extended B+ tree index.
These indices are not suitable for content search

queries. They mainly focus on the ancestor-de-
scendant or parent-child relationship between
nodes. Sequence indexing [18], [19] the XML
documents is converted into a sequence repre-
sentation. The query is also converted into se-
quence representation. The results are retrieved
using subsequence matching. The advantage of
using this approach is that twig queries can be
answered without merging partial results. How-
ever, the disadvantage of subsequence match-
ing is that they require multiple lookups in the
index to solve simple path expressions. In [20],
authors propose XMIS approach for storing
XML documents. They use virtualized inner
structure and path index for this purpose. Path
indexing approaches [1], [4], [6], [21] indexes
XML paths. They index the structural informa-
tion and value information separately as struc-
ture index and value index. This may require
expensive join operation or multiple lookups
of the indexes for answering path queries. This
paper focuses on the construction of an index
which consists of two indices, namely, path
and path combined index which efficiently an-
swer XML path queries and twig queries with
or without value predicates with less expensive
joins and in single lookups.

6. Conclusion

A query processing approach using an index-
ing mechanism to process content and structure
queries is proposed in this study. The proposed
indexing approach combined the terminal sib-
lings lying at the same level into one combined
path. This combined path is stored as a search
key in the path combined index. Due to this ef-
fort, the branch queries are efficiently evaluated
with less number of expensive joins and lookups
compared to existing conventional node based
or path based approaches. More comparisons
taking consideration of different parameters in
terms of quantitative terms will be performed
as future work.

References

[1] R. Goldman and J. Widom, ''Dataguides: En-
abling Query Formulation and Optimization in
Semistructured Databases'', Proc. Int. Conf. Very
Large Data Bases, 1997, pp. 436–445.

Figure 13. Number of elements retrieved for the
recursive queries Q5 – Q12.

Figure 14. Time taken in millisec to process the
recursive queries Q5 – Q12.

Figure 15. Number of elements retrieved for
the branch queries Q13 – Q17.

Figure 16. Time taken to process branch
queries Q13 – Q17.

Figure 17. Time taken to process branch
queries Q13 – Q17.

222 223D. Gopinathan and K. Asawa New Path Based Index Structure for Processing CAS Queries Over XML Database

4.2. Recursive Query

The experimentation recursive query is per-
formed on the Shakespeare's play data set. The
queries Q5 – Q12 listed in Table 6 are consid-
ered for the experiment. And the graph in Fig-
ure 13 and Figure 14 shows the number of el-
ements retrieved and the time taken to process
the queries respectively.

It is observed from the graph that the partial
match query with // axes nearer to the leaf node
or leaf nodes takes less time to retrieve the re-
sult. And, if the axis specifier (//) are some in-
ternal nodes which are far from the leaf nodes,
it takes more time to retrieve the result. For ex-
ample, queries Q5, Q6, Q9 take less time com-
pared to Q7 and Q8.

4.3. Branch Query

The branch query is performed on the Shake-
speare's play data set. The graph in Figure 11(a)
and Figure 11(b) shows the number of elements
retrieved and the time taken to process the branch
query using the proposed index structure.

4.4. Comparison of Query Performance
with the Existing System

The proposed system is compared with some
existing systems also. The queries QD1 – QD5
are used to compare the performance of the
proposed approach with standard indexing ap-
proach and OXDP [12]. The queries are taken
from the standard bench mark data set DBLP.
Standard indexing approach uses the node ele-
ments in the XML documents as the search key.

The performance of pc_index is compared with
the standard value index [10] and the value in-
dex proposed in OXDP [12]. For example, the
pc_index takes 300ms to retrieve one answer of
QD5, the standard index takes almost 1400 ms
to retrieve the answer for the same query and
OXDP takes almost 575 ms to query the data.
This is so because the standard value index is a
node based index. And, as the length of the path
increases, it needs to scan nodes compared to
OXDP or pc_index index. The results in Figure
13 clearly show that pc_index took less time to
evaluate the queries.

5. Related Work

There are many indexing approaches of XML
documents proposed for supporting the evalua-
tion of XML queries. They are mainly divided
into three categories such as node indexing,
path indexing and sequence indexing. How-
ever, most of the work is focused on process-
ing the structural part in twig queries. Node
indexing [11], [14], [15] approach indexes the
XML elements and values. For evaluating they
must look up all elements and values. This will
require a up, since data and elements are in-
dexed separately. The intermediate results are
merged to get the final results. For example, for
the query //book/title, the indexing approach
specified in [11] first looks for all book and title
elements in the document and only the related
are retrieved. But it can also retrieve the title el-
ements which are not under book, like /movie/
title. The problem with this approach is that it
provides huge intermediate results which may
not be useful for the final result. The indexing
approach specified in [16], proposes holistic
twig join algorithms to solve the above prob-
lem present in [11]. They used a chain of linked
stacks to reduce the huge intermediate results.
The XISS index in [14] uses B+ tree as an in-
dexing mechanism where they used a node in-
dex approach on B+ tree. Here since the basic
unit indexed is a node, the query is processed
by decomposing it into nodes and these nodes
are searched in the B+ tree, for each subpart
and finally the intermediate results are joined.
The index [17] proposed a tree-structured index
XR-Tree with labeled nodes in the XML doc-
uments is stored as an extended B+ tree index.
These indices are not suitable for content search

queries. They mainly focus on the ancestor-de-
scendant or parent-child relationship between
nodes. Sequence indexing [18], [19] the XML
documents is converted into a sequence repre-
sentation. The query is also converted into se-
quence representation. The results are retrieved
using subsequence matching. The advantage of
using this approach is that twig queries can be
answered without merging partial results. How-
ever, the disadvantage of subsequence match-
ing is that they require multiple lookups in the
index to solve simple path expressions. In [20],
authors propose XMIS approach for storing
XML documents. They use virtualized inner
structure and path index for this purpose. Path
indexing approaches [1], [4], [6], [21] indexes
XML paths. They index the structural informa-
tion and value information separately as struc-
ture index and value index. This may require
expensive join operation or multiple lookups
of the indexes for answering path queries. This
paper focuses on the construction of an index
which consists of two indices, namely, path
and path combined index which efficiently an-
swer XML path queries and twig queries with
or without value predicates with less expensive
joins and in single lookups.

6. Conclusion

A query processing approach using an index-
ing mechanism to process content and structure
queries is proposed in this study. The proposed
indexing approach combined the terminal sib-
lings lying at the same level into one combined
path. This combined path is stored as a search
key in the path combined index. Due to this ef-
fort, the branch queries are efficiently evaluated
with less number of expensive joins and lookups
compared to existing conventional node based
or path based approaches. More comparisons
taking consideration of different parameters in
terms of quantitative terms will be performed
as future work.

References

[1] R. Goldman and J. Widom, ''Dataguides: En-
abling Query Formulation and Optimization in
Semistructured Databases'', Proc. Int. Conf. Very
Large Data Bases, 1997, pp. 436–445.

Figure 13. Number of elements retrieved for the
recursive queries Q5 – Q12.

Figure 14. Time taken in millisec to process the
recursive queries Q5 – Q12.

Figure 15. Number of elements retrieved for
the branch queries Q13 – Q17.

Figure 16. Time taken to process branch
queries Q13 – Q17.

Figure 17. Time taken to process branch
queries Q13 – Q17.

224 225D. Gopinathan and K. Asawa New Path Based Index Structure for Processing CAS Queries Over XML Database

[2] S.-C. Haw and C.-S. Lee, ''Extending Path Sum-
mary and Region Encoding for Efficient Structural
Query Processing in Native XML Databases'', J.
Syst. Softw., vol. 82, no. 6, pp. 1025–1035, 2009.

[3] Z. Chen et al., ''Index Structures for Matching
XML Twigs using Relational Query Processors'',
Data Knowl. Eng., vol. 60, no. 2, pp. 283–302,
2007.

[4] R. Kaushik et al., ''Exploiting Local Similarity
for Efficient Indexing of Paths in Graph Struc-
tured Data'', Proc. 2002 Int. Conf. Data Eng.,
pp. 129–140, 2002.

[5] B. F. Cooper et al., ''A Fast Index for Semistruc-
tured Data'', Proc. Int. Conf. Very Large Data
Bases, vol. 1, pp. 341–350, 2001.

[6] C.-W. Chung, ''APEX: An Adaptive Path Index
for XML Data'', Proc. ACM SIGMOD Int. Conf.
Manag. Data, pp. 121–132, 2002.

[7] W3c, ''XML Path Language (XPath)'', Engineer-
ing, pp. 297–318, 2010.

[8] D. Chamberlin, ''XQuery: An XML Query Lan-
guage'', IBM Syst. J., pp. 191, 2002.

[9] J. Lu et al., ''From Region Encoding to Ex-
tended Dewey: on Efficient Processing of XML
Twig Pattern Matching'', 31St Int. Conf. …, pp.
193–204, 2005.

[10] G. Dhanalekshmi and A. Krishna, ''LPLX-Lexi-
cographic-Based Persistent Labelling Scheme of
XML Documents for Dynamic Update'', Int. J.
Web Sci., vol. 2, no. 4, pp. 237–257, 2014.

[11] S. Al-Khalifa et al., ''Structural Joins: A Primi-
tive for Efficient XML Query Pattern Matching'',
Proc. Int. Conf. Data Eng., pp. 141–152, 2002.

[12] N. S. Alghamdi et al., ''Semantic-Based Structural
and Content Indexing for the Efficient Retrieval
of Queries over Large XML Data Repositories'',
Futur. Gener. Comput. Syst., vol. 37, no. July, pp.
212–231, 2014.

[13] N. S. Alghamdi et al., ''Semantic-Based Construc-
tion of Content and Structure XML Index'', in
Proceedings of the Twenty-Fourth Australasian
Database Conference, vol. 137, 2013, pp. 61–70.

[14] Q. Li and B. Moon, ''Indexing and Querying
XML Data for Regular Path Expressions'', Vldb,
pp. 361–370, 2001.

[15] I. Tatarinov et al., ''Storing and Querying Ordered
XML using a Relational Database System'', ACM
SIGMOD Int. Conf. Manag. Data, SIGMOD'02,
2002, pp. 204–215.

[16] N. Bruno et al., ''Holistic Twig Joins: Optimal
XML Pattern Matching'', Proc. 2002 ACM SIG-
MOD Int. Conf. Manag. Data, 2002, vol. 2,
pp. 310–321.

[17] H. Jiang et al., ''XR-Tree: Indexing XML Data for
efficient Structural Joins'', in Data Engineering,
2003. Proceedings. 19th International Confer-
ence on, 2003, pp. 253–264.

[18] H. Wang and X. Meng, ''On the Sequencing of
Tree Structures for XML Indexing'', in Data En-
gineering, 2005. ICDE 2005. Proceedings. 21st
International Conference on, 2005, pp. 372–383.

[19] P. Rao and B. Moon, ''PRIX: Indexing And Que-
rying XML Using Prüfer Sequences'', ICDE'04
Proc. 20th Int. Conf. Data Eng., 2004, pp.
288–299.

[20] C. Mathis et al., ''XML Indexing and Storage:
Fulfilling the Wish List'', Comput. Sci. – Res.
Dev., vol. 30, no. 1, pp. 51–68, 2015.

[21] R. Kaushik et al., ''Covering Indexes for Branch-
ing Path Queries'', Proc. ACM SIGMOD Int.
Conf. Manag. data – SIGMOD'02, 2002, pp. 133.

Received: February 2017
Revised: August 2017

Accepted: September 2017

Contact addresses:
Dhanalekshmi Gopinathan

Department of Computer Science
Jaypee Institute of Information Technology

Noida, India
e-mail: dhanalekshmi.g@jiit.ac.in

Krishna Asawa
Department of Computer Science

Jaypee Institute of Information Technology
Noida, India

e-mail: krishna.asawa@jiit.ac.in

Dhanalekshmi Gopinathan received her M.Tech degree in computer
science and engineering from National Institute of Technology, Cali-
cut, India, in 2002. She is currently an Assistant Professor in the De-
partment of Computer Science and Engineering at Jaypee Institute of
Information Technology, Noida, India. She is currently pursuing her
PhD degree from JIIT, Noida. Her research interests include databases,
information retrieval, compiler design, and artificial intelligence.

krishna asawa is working with Jaypee Institute of Information Tech-
nology, Noida, India as a professor. She was awarded Doctor of Philos-
ophy (CSE) in 2002 from Banasthali Vidyapeeth University, India. Her
areas of interest and expertise are Soft Computing and its Applications,
Information Security, Knowledge and Data Engineering. Other than
JIIT, her employment associations were also with the National Institute
of Technology, Jaipur, India and Banasthali Vidyapith, India.

224 225D. Gopinathan and K. Asawa New Path Based Index Structure for Processing CAS Queries Over XML Database

[2] S.-C. Haw and C.-S. Lee, ''Extending Path Sum-
mary and Region Encoding for Efficient Structural
Query Processing in Native XML Databases'', J.
Syst. Softw., vol. 82, no. 6, pp. 1025–1035, 2009.

[3] Z. Chen et al., ''Index Structures for Matching
XML Twigs using Relational Query Processors'',
Data Knowl. Eng., vol. 60, no. 2, pp. 283–302,
2007.

[4] R. Kaushik et al., ''Exploiting Local Similarity
for Efficient Indexing of Paths in Graph Struc-
tured Data'', Proc. 2002 Int. Conf. Data Eng.,
pp. 129–140, 2002.

[5] B. F. Cooper et al., ''A Fast Index for Semistruc-
tured Data'', Proc. Int. Conf. Very Large Data
Bases, vol. 1, pp. 341–350, 2001.

[6] C.-W. Chung, ''APEX: An Adaptive Path Index
for XML Data'', Proc. ACM SIGMOD Int. Conf.
Manag. Data, pp. 121–132, 2002.

[7] W3c, ''XML Path Language (XPath)'', Engineer-
ing, pp. 297–318, 2010.

[8] D. Chamberlin, ''XQuery: An XML Query Lan-
guage'', IBM Syst. J., pp. 191, 2002.

[9] J. Lu et al., ''From Region Encoding to Ex-
tended Dewey: on Efficient Processing of XML
Twig Pattern Matching'', 31St Int. Conf. …, pp.
193–204, 2005.

[10] G. Dhanalekshmi and A. Krishna, ''LPLX-Lexi-
cographic-Based Persistent Labelling Scheme of
XML Documents for Dynamic Update'', Int. J.
Web Sci., vol. 2, no. 4, pp. 237–257, 2014.

[11] S. Al-Khalifa et al., ''Structural Joins: A Primi-
tive for Efficient XML Query Pattern Matching'',
Proc. Int. Conf. Data Eng., pp. 141–152, 2002.

[12] N. S. Alghamdi et al., ''Semantic-Based Structural
and Content Indexing for the Efficient Retrieval
of Queries over Large XML Data Repositories'',
Futur. Gener. Comput. Syst., vol. 37, no. July, pp.
212–231, 2014.

[13] N. S. Alghamdi et al., ''Semantic-Based Construc-
tion of Content and Structure XML Index'', in
Proceedings of the Twenty-Fourth Australasian
Database Conference, vol. 137, 2013, pp. 61–70.

[14] Q. Li and B. Moon, ''Indexing and Querying
XML Data for Regular Path Expressions'', Vldb,
pp. 361–370, 2001.

[15] I. Tatarinov et al., ''Storing and Querying Ordered
XML using a Relational Database System'', ACM
SIGMOD Int. Conf. Manag. Data, SIGMOD'02,
2002, pp. 204–215.

[16] N. Bruno et al., ''Holistic Twig Joins: Optimal
XML Pattern Matching'', Proc. 2002 ACM SIG-
MOD Int. Conf. Manag. Data, 2002, vol. 2,
pp. 310–321.

[17] H. Jiang et al., ''XR-Tree: Indexing XML Data for
efficient Structural Joins'', in Data Engineering,
2003. Proceedings. 19th International Confer-
ence on, 2003, pp. 253–264.

[18] H. Wang and X. Meng, ''On the Sequencing of
Tree Structures for XML Indexing'', in Data En-
gineering, 2005. ICDE 2005. Proceedings. 21st
International Conference on, 2005, pp. 372–383.

[19] P. Rao and B. Moon, ''PRIX: Indexing And Que-
rying XML Using Prüfer Sequences'', ICDE'04
Proc. 20th Int. Conf. Data Eng., 2004, pp.
288–299.

[20] C. Mathis et al., ''XML Indexing and Storage:
Fulfilling the Wish List'', Comput. Sci. – Res.
Dev., vol. 30, no. 1, pp. 51–68, 2015.

[21] R. Kaushik et al., ''Covering Indexes for Branch-
ing Path Queries'', Proc. ACM SIGMOD Int.
Conf. Manag. data – SIGMOD'02, 2002, pp. 133.

Received: February 2017
Revised: August 2017

Accepted: September 2017

Contact addresses:
Dhanalekshmi Gopinathan

Department of Computer Science
Jaypee Institute of Information Technology

Noida, India
e-mail: dhanalekshmi.g@jiit.ac.in

Krishna Asawa
Department of Computer Science

Jaypee Institute of Information Technology
Noida, India

e-mail: krishna.asawa@jiit.ac.in

Dhanalekshmi Gopinathan received her M.Tech degree in computer
science and engineering from National Institute of Technology, Cali-
cut, India, in 2002. She is currently an Assistant Professor in the De-
partment of Computer Science and Engineering at Jaypee Institute of
Information Technology, Noida, India. She is currently pursuing her
PhD degree from JIIT, Noida. Her research interests include databases,
information retrieval, compiler design, and artificial intelligence.

krishna asawa is working with Jaypee Institute of Information Tech-
nology, Noida, India as a professor. She was awarded Doctor of Philos-
ophy (CSE) in 2002 from Banasthali Vidyapeeth University, India. Her
areas of interest and expertise are Soft Computing and its Applications,
Information Security, Knowledge and Data Engineering. Other than
JIIT, her employment associations were also with the National Institute
of Technology, Jaipur, India and Banasthali Vidyapith, India.

 HistoryItem_V1
 Shuffle

 Create a new document
 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 D:20171024083126

 1
 1
 1
 1 1
 622
 261
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1

 HistoryList_V1
 qi2base

