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Microarray data usually contain a large number of 
genes, but a small number of samples. Feature sub-
set selection for microarray data aims at reducing the 
number of genes so that useful information can be ex-
tracted from the samples. Reducing the dimension of 
data sets further helps in improving the computational 
efficiency of the learning model. In this paper, we pro-
pose a modified algorithm based on the tabu search 
as local search procedures to a Greedy Randomized 
Adaptive Search Procedure (GRASP) for high dimen-
sional microarray data sets. The proposed Tabu based 
Greedy Randomized Adaptive Search Procedure al-
gorithm is named as TGRASP. In TGRASP, a new 
parameter has been introduced named as Tabu Tenure 
and the existing parameters, NumIter and size have 
been modified. We observed that different parameter 
settings affect the quality of the optimum. The sec-
ond proposed algorithm known as FFGRASP (Firefly 
Greedy Randomized Adaptive Search Procedure) uses 
a firefly optimization algorithm in the local search op-
timization phase of the greedy randomized adaptive 
search procedure (GRASP). Firefly algorithm is one 
of the powerful algorithms for optimization of mul-
timodal applications. Experimental results show that 
the proposed TGRASP and FFGRASP algorithms are 
much better than existing algorithm with respect to 
three performance parameters viz. accuracy, run time, 
number of a selected subset of features. We have also 
compared both the approaches with a unified metric 
(Extended Adjusted Ratio of Ratios) which has shown 
that TGRASP approach outperforms existing approach 
for six out of nine cancer microarray datasets and FF-
GRASP performs better on seven out of nine datasets.
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1. Introduction

In recent years, there has been a lot of research 
in the medical community on microarray data. 
Many data analysis techniques have been ap-
plied to the classification of cancer microar-
ray data [1], [2]. The greatest challenge when 
dealing with microarray data is its very high 
dimensionality of genes, but small number of 
samples compared with the large number of 
genes awakens the curse of dimensionality [3]. 
When such large number of genes are given as 
input to machine learning tasks such as clus-
tering, or classification, it leads to the problem 
of overfitting. Also, it increases the classifiers, 
complexity and the time needed for its training 
and execution. The presence of irrelevant and 
redundant genes also affects the performance of 
the classifier. Hence, the task of feature subset 
selection becomes important so that the irrele-
vant and redundant features are removed. This 
will further lead to decrease in data acquisition 
cost and learning time to help in improving can-
cer diagnosis.
The problem of dimensionality can be solved 
by two techniques [4], feature extraction and 
feature selection. PCA (Principal Component 
Analysis) is a wellknown and efficient feature 
extraction technique in which the new attributes 
are created as a combination of old attributes. 
PCA based feature extraction with high dimen-
sional spectral data and with different prepro-
cessing steps has been investigated to improve 
machine learning accuracy [5]. In feature selec-
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tion technique, some attributes whose informa-
tion overlaps with other attributes called redun-
dant attributes are removed from the dataset. It 
does not transform the features; instead, it helps 
in improving the accuracy of different classifi-
cation tasks. From the dataset of a disease, one 
is interested in finding the specific features /
genes which are responsible for its occurrence. 
The high dimensionality of the data makes it 
difficult to find the specific genes. In case of 
cancer microarray data, obtaining a transformed 
set of features using feature extraction does not 
help and hence dimension reduction is usually 
carried out using feature /gene selection.
A subset of the features is derived using the val-
ues of the features where the value of a feature 
can be calculated by some mathematical crite-
ria. There are different evaluation criteria and 
according to those criteria, feature selection can 
be broadly classified into four categories which 
are filter, wrapper, embedded and hybrid ap-
proaches [6], [7], [8].
In filter feature selection, feature subset is se-
lected as a preprocessing step before applying 
any learning and classification process. They 
become independent of the learning algorithm 
to be applied. They are usually faster and com-
putationally more efficient than wrapper [7].
In the wrapper method [9], like simulated an-
nealing or a genetic algorithm, features are 
selected in accordance with the learning al-
gorithm which we are going to apply next. It  
gives better feature subset than filter approach 
as it is tuned according to the algorithm, but it 
is much slower than filter feature selection and 
has to be rerun when the algorithm changes.
When the number of features becomes very 
large, the filter model is usually chosen due to 
its computational efficiency and simplicity [8].
In literature, many feature subset selection algo-
rithms based on filter and a wrapper approach 
for different applications have been proposed. 
All the algorithms aim to remove the irrelevant 
as well as redundant features from the original 
set of features and obtain a feature subset. Us-
ing the filter feature selection approach, many 
algorithms were proposed such as Relief [11], 
Relief-F [12], FOCUS, FOCUS-2 [13], Cor-
relation based feature selection (CFS) [14], 
Fast Correlation based feature selection FCBS 
[8], FAST [6]. Algorithm by Yang et al. [15] re-

moves irrelevant features based on gene rank-
ing methods of GS1 and GS2.
Kohavi and John [9] proposed a wrapper 
method which removes features from the data-
set with the help of the learning algorithm. Its 
performance is always better than that of fil-
ter selection method, but it is computationally 
more expensive. For solving the gene selection 
and cancer classification problem, artificial bee 
colony (ABC) algorithm and minimum redun-
dancy maximum relevance (mRMR) algorithm 
combined together have been proved to be an 
efficient approach [16]. This is a hybrid ap-
proach which offers a balance between filter 
and wrapper methods. Another hybrid approach 
which was recently proposed, uses a firefly al-
gorithm in its wrapper phase of the algorithm 
for short term load forecasting application [17].
To take the advantage of the wrapper method, 
Bermejo, Gamez and Puerta [19] proposed a 
hybrid algorithm which can speed up the fea-
ture selection process. Their method is based 
on Greedy Randomized Adaptive Search Pro-
cedure (GRASP). GRASP is developed in two 
stages, filter evaluation method is used in the 
first stage and the solution found here is given 
as the starting point to a local search method in 
the next stage. To provide a good quality solu-
tion, these two phases are run many times. It 
tries to move from local optima provided by lo-
cal search to a global optimum.
In this paper, we use a multi-start two stage al-
gorithm named GRASP (Greedy Randomized 
Adoptive Search Procedure) [10]. The initial 
phase of constructing a reduced set of features 
in TGRASP and FFGRASP algorithms is taken 
from a fast hybrid algorithm for feature selec-
tion in the high dimensional dataset [19]. In the 
first phase, filter evaluation method of mutual 
information is used to take out irrelevant fea-
tures. Then, a solution to the problem, i.e. a re-
duced set of features is constructed using the 
construction steps used by GRASP algorithm. 
The solution found is given as input to the local 
search method for its further improvement. The 
local search methods used are the tabu search 
and firefly optimization algorithm. They are 
computationally less expensive wrapper meth-
ods and provide better feature subsets in terms 
of accuracy as compared to other methods such 
as hill climbing and simulated annealing. Our 
aim of this study is to come up with an opti-

approaches. The first phase of this algorithm 
is taken from a standard hybrid algorithm: In-
cremental Wrapper Subset Selection (IWSS) 
algorithm [25], [26]. The second phase, which 
is the improvement phase, has been modified 
so that it takes n wrapper evaluation for each 
step. In order to have reduced computation time 
for high dimensional data, it maintains a set of 
non-dominated solutions (NDS) in the con-
struction phase. Non-dominated set of solution 
is the set in which every solution in the set is 
different, in terms of number of features and 
accuracy. Suppose there are two solutions S1 
and S2, S2 is non-dominated by S1 if |S1| ≤ |S2| 
and accuracy (S1) > accuracy (S2). According to 
their observations, they have recommended hill 
climbing as a local search procedure to be used 
in the improvement phase. We have named their 
algorithm as FCGRASP that uses a hill climb-
ing in its improvement phase.
The FCGRASP algorithm is depicted in Fig-
ure 1. The input given to the algorithm is Size: 
which gives the number of variables to be con-
sidered at each iteration and NumIter which 
gives the number of iterations in both phases. 
The output of the algorithm is the final selected 
subset.
In the initialization phase of the algorithm, 
NDS is initialized to be empty. The relevance 
of each feature with its class label or target fea-
ture is calculated and stored in the array named 
''relevance''. It is calculated by any filter based 
approach. Then this relevance value is used to 
calculate the probability of each feature in the 
dataset. The probability of occurrence of each 
feature is stored in the ProbSel array.
Now the construction and improvement phases 
are performed till the number of iterations spec-
ified by the user is over. The construction phase 
is depicted in lines 7 to 16. In each iteration, 
construction phase adds a new solution to the 
NDS. Line 7 selects the subset of features from 
X determined by the parameter Size and stores 
it in subset variable. A feature is selected based 
on its value in ''ProbSel'' array. The features in 
subset variable are sorted and stored in array R. 
The function evaluate (C, S, D) calculates the 
classification accuracy of the dataset D over 
classifier C with S variables using 5-cross val-
idation. Then, using the loop from second fea-
ture to last, it is checked whether a feature im-

mization technique for microarray dataset that 
decreases the number of wrapper evaluations 
without affecting the accuracy. Tabu search 
and firefly algorithms have proved to have bet-
ter accuracy than hill climbing as local search 
methods.
The rest of the paper is organized as follows: 
Section 2 gives a detailed description of the 
GRASP algorithm along with an existing fast 
hybrid algorithm. Section 3 discusses the pro-
posed algorithms TGRASP and FFGRASP. 
Section 4 gives the description of the cancer 
microarray datasets along with the experimen-
tal results and comparisons found with the ex-
isting algorithm. Finally, in Section 5 we draw 
conclusions based on the experimental results.

2. GRASP Algorithm for Feature 
Selection

GRASP is a meta heuristic algorithm devel-
oped in two stages. It was developed by Feo 
and Resende [10], [20]. Further, GRASP has 
been used to develop many applications [21], 
[22]. The two stages of the GRASP algo-rithm 
are the construction phase and the improvement 
phase.
1. Construction phase: In this stage, a solu-

tion with reduced features is constructed 
using some heuristic approaches. It starts 
from an empty set and keeps on adding el-
ements till a solution is obtained.

2. Improvement Phase: The result obtained 
in the construction phase is modified using 
some local search algorithm.

Esseghir and Casado-Yusta have proposed a 
feature subset selection (FSS) algorithm based 
on the technique of GRASP [23], [24]. In their 
algorithm, for the construction phase, they have 
used filter algorithm such as Relief [11] and 
FCBF [8]. For the improvement phase, some 
wrapper techniques were applied. The draw-
back of these two proposed algorithms is that 
they do not work well if the data is high dimen-
sional.
For high dimensional datasets, a fast hybrid 
algorithm based on GRASP was introduced 
by Bermejo, Gamez and Puerta [19]. It alter-
nately switches between the filter and wrapper 
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tion technique, some attributes whose informa-
tion overlaps with other attributes called redun-
dant attributes are removed from the dataset. It 
does not transform the features; instead, it helps 
in improving the accuracy of different classifi-
cation tasks. From the dataset of a disease, one 
is interested in finding the specific features /
genes which are responsible for its occurrence. 
The high dimensionality of the data makes it 
difficult to find the specific genes. In case of 
cancer microarray data, obtaining a transformed 
set of features using feature extraction does not 
help and hence dimension reduction is usually 
carried out using feature /gene selection.
A subset of the features is derived using the val-
ues of the features where the value of a feature 
can be calculated by some mathematical crite-
ria. There are different evaluation criteria and 
according to those criteria, feature selection can 
be broadly classified into four categories which 
are filter, wrapper, embedded and hybrid ap-
proaches [6], [7], [8].
In filter feature selection, feature subset is se-
lected as a preprocessing step before applying 
any learning and classification process. They 
become independent of the learning algorithm 
to be applied. They are usually faster and com-
putationally more efficient than wrapper [7].
In the wrapper method [9], like simulated an-
nealing or a genetic algorithm, features are 
selected in accordance with the learning al-
gorithm which we are going to apply next. It  
gives better feature subset than filter approach 
as it is tuned according to the algorithm, but it 
is much slower than filter feature selection and 
has to be rerun when the algorithm changes.
When the number of features becomes very 
large, the filter model is usually chosen due to 
its computational efficiency and simplicity [8].
In literature, many feature subset selection algo-
rithms based on filter and a wrapper approach 
for different applications have been proposed. 
All the algorithms aim to remove the irrelevant 
as well as redundant features from the original 
set of features and obtain a feature subset. Us-
ing the filter feature selection approach, many 
algorithms were proposed such as Relief [11], 
Relief-F [12], FOCUS, FOCUS-2 [13], Cor-
relation based feature selection (CFS) [14], 
Fast Correlation based feature selection FCBS 
[8], FAST [6]. Algorithm by Yang et al. [15] re-

moves irrelevant features based on gene rank-
ing methods of GS1 and GS2.
Kohavi and John [9] proposed a wrapper 
method which removes features from the data-
set with the help of the learning algorithm. Its 
performance is always better than that of fil-
ter selection method, but it is computationally 
more expensive. For solving the gene selection 
and cancer classification problem, artificial bee 
colony (ABC) algorithm and minimum redun-
dancy maximum relevance (mRMR) algorithm 
combined together have been proved to be an 
efficient approach [16]. This is a hybrid ap-
proach which offers a balance between filter 
and wrapper methods. Another hybrid approach 
which was recently proposed, uses a firefly al-
gorithm in its wrapper phase of the algorithm 
for short term load forecasting application [17].
To take the advantage of the wrapper method, 
Bermejo, Gamez and Puerta [19] proposed a 
hybrid algorithm which can speed up the fea-
ture selection process. Their method is based 
on Greedy Randomized Adaptive Search Pro-
cedure (GRASP). GRASP is developed in two 
stages, filter evaluation method is used in the 
first stage and the solution found here is given 
as the starting point to a local search method in 
the next stage. To provide a good quality solu-
tion, these two phases are run many times. It 
tries to move from local optima provided by lo-
cal search to a global optimum.
In this paper, we use a multi-start two stage al-
gorithm named GRASP (Greedy Randomized 
Adoptive Search Procedure) [10]. The initial 
phase of constructing a reduced set of features 
in TGRASP and FFGRASP algorithms is taken 
from a fast hybrid algorithm for feature selec-
tion in the high dimensional dataset [19]. In the 
first phase, filter evaluation method of mutual 
information is used to take out irrelevant fea-
tures. Then, a solution to the problem, i.e. a re-
duced set of features is constructed using the 
construction steps used by GRASP algorithm. 
The solution found is given as input to the local 
search method for its further improvement. The 
local search methods used are the tabu search 
and firefly optimization algorithm. They are 
computationally less expensive wrapper meth-
ods and provide better feature subsets in terms 
of accuracy as compared to other methods such 
as hill climbing and simulated annealing. Our 
aim of this study is to come up with an opti-

approaches. The first phase of this algorithm 
is taken from a standard hybrid algorithm: In-
cremental Wrapper Subset Selection (IWSS) 
algorithm [25], [26]. The second phase, which 
is the improvement phase, has been modified 
so that it takes n wrapper evaluation for each 
step. In order to have reduced computation time 
for high dimensional data, it maintains a set of 
non-dominated solutions (NDS) in the con-
struction phase. Non-dominated set of solution 
is the set in which every solution in the set is 
different, in terms of number of features and 
accuracy. Suppose there are two solutions S1 
and S2, S2 is non-dominated by S1 if |S1| ≤ |S2| 
and accuracy (S1) > accuracy (S2). According to 
their observations, they have recommended hill 
climbing as a local search procedure to be used 
in the improvement phase. We have named their 
algorithm as FCGRASP that uses a hill climb-
ing in its improvement phase.
The FCGRASP algorithm is depicted in Fig-
ure 1. The input given to the algorithm is Size: 
which gives the number of variables to be con-
sidered at each iteration and NumIter which 
gives the number of iterations in both phases. 
The output of the algorithm is the final selected 
subset.
In the initialization phase of the algorithm, 
NDS is initialized to be empty. The relevance 
of each feature with its class label or target fea-
ture is calculated and stored in the array named 
''relevance''. It is calculated by any filter based 
approach. Then this relevance value is used to 
calculate the probability of each feature in the 
dataset. The probability of occurrence of each 
feature is stored in the ProbSel array.
Now the construction and improvement phases 
are performed till the number of iterations spec-
ified by the user is over. The construction phase 
is depicted in lines 7 to 16. In each iteration, 
construction phase adds a new solution to the 
NDS. Line 7 selects the subset of features from 
X determined by the parameter Size and stores 
it in subset variable. A feature is selected based 
on its value in ''ProbSel'' array. The features in 
subset variable are sorted and stored in array R. 
The function evaluate (C, S, D) calculates the 
classification accuracy of the dataset D over 
classifier C with S variables using 5-cross val-
idation. Then, using the loop from second fea-
ture to last, it is checked whether a feature im-

mization technique for microarray dataset that 
decreases the number of wrapper evaluations 
without affecting the accuracy. Tabu search 
and firefly algorithms have proved to have bet-
ter accuracy than hill climbing as local search 
methods.
The rest of the paper is organized as follows: 
Section 2 gives a detailed description of the 
GRASP algorithm along with an existing fast 
hybrid algorithm. Section 3 discusses the pro-
posed algorithms TGRASP and FFGRASP. 
Section 4 gives the description of the cancer 
microarray datasets along with the experimen-
tal results and comparisons found with the ex-
isting algorithm. Finally, in Section 5 we draw 
conclusions based on the experimental results.

2. GRASP Algorithm for Feature 
Selection

GRASP is a meta heuristic algorithm devel-
oped in two stages. It was developed by Feo 
and Resende [10], [20]. Further, GRASP has 
been used to develop many applications [21], 
[22]. The two stages of the GRASP algo-rithm 
are the construction phase and the improvement 
phase.
1. Construction phase: In this stage, a solu-

tion with reduced features is constructed 
using some heuristic approaches. It starts 
from an empty set and keeps on adding el-
ements till a solution is obtained.

2. Improvement Phase: The result obtained 
in the construction phase is modified using 
some local search algorithm.

Esseghir and Casado-Yusta have proposed a 
feature subset selection (FSS) algorithm based 
on the technique of GRASP [23], [24]. In their 
algorithm, for the construction phase, they have 
used filter algorithm such as Relief [11] and 
FCBF [8]. For the improvement phase, some 
wrapper techniques were applied. The draw-
back of these two proposed algorithms is that 
they do not work well if the data is high dimen-
sional.
For high dimensional datasets, a fast hybrid 
algorithm based on GRASP was introduced 
by Bermejo, Gamez and Puerta [19]. It alter-
nately switches between the filter and wrapper 
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proves the classification accuracy or not. If it 
improves the accuracy, it is added to S.
Lines 17 to 20 perform the improving step. 
Here the value of solution S returned by con-
struction step is added to NDS if and only if the 
solution is not present in the non-dominated set. 
Update function modifies NDS and improving 
method is executed with S as starting point in 
line 19. This improving method is one of the lo-
cal-search based FSS algorithm. There are dif-
ferent choices for local-search based algorithms 
such as hill climbing [19], genetic algorithms 
and simulated annealing. We have found that 
hill climbing has some drawbacks.

 ● Possibility of being trapped at a local opti-
mum as it performs only a single run of the 
iterative improvement.

 ● There is no chance of an escape from local 
minima.

 ● It may cycle over the same solutions again 
and again and thus become redundant

The drawbacks found in case of using simu-
lated annealing as a local search algorithm are:

 ● The result found using simulated anneal-
ing can vary on each run of the algorithm, 
in other words, every run of simulated an-
nealing gives a different solution.

 ● Only under certain circumstances, the op-
timum solution is found. So, you may have 
to run the algorithm many times to obtain 
the optimum solution.

3. The Proposed Method

To overcome the drawbacks of hill climbing 
and simu-lated annealing used in the improve-
ment phase of GRASP, we have adopted tabu 
search optimization and firefly optimization 
approaches in the improvement phase of the 
GRASP algorithm.

3.1. Tabu Search Based GRASP 
Approach (TGRASP)

The tabu search uses neighborhood search like 
simulated annealing and hill climbing, but also 
uses memory to record the history. So, the ma-
jor advantage of using this technique is that 
the number of solutions to be tested keeps re-
ducing. This is because it uses memory called 
tabu list, that records the recent history of the 
search and cycling back to previously visited 
solutions is avoided. In many practical prob-
lems, it is seen that a reasonable size tabu list 
improves the performance of hill climbing. For 
high dimensional datasets like microarray data, 
the solution obtained by tabu search rivals and 
often surpasses the best solutions previously 
found by simulated annealing and hill climbing. 
Using tabu search we can avoid repeating the 
search. By using tabu list as used in tabu search 
approach, the problem of redundancy can be re-
moved from the hill climbing approach. In gen-
eral, tabu list has a fixed size to memorize, and 
it follows FIFO in maintaining the list.
The pseudo code of the algorithm is demon-
strated in Figure 2. Initially the first solution 

found in the list of all possible solutions is taken 
as the best solution. Tabu list is initialized to be 
empty.
Tabu search stops when all the solutions found 
in non-dominated set (NDS) have been evalu-
ated. If the accuracy of the new solution Sbest, 
is better than the accuracy of the best solution 
last found, then the best solution is replaced 
with the new solution (Sbest). We also check that 
the new solution (Sbest) is not presented in the 
existing tabu list before making it a best solu-
tion. This new solution is then added in the tabu 
list.
Here, we have used short term tabu list, which 
keeps record of last 20 solutions. The advan-
tage of using tabu list is that the repeated solu-
tions are not checked again. When the solution 
reaches the maximum size of the list, then the 
first added solution from the tabu list is de-
leted. The algorithm returns the best solution 
out of the solutions found in the construction 
of GRASP.

3.2. Novel Firefly Algorithm

In this section, we present a discrete firefly 
algorithm (FFGRASP) for the improvement 
phase of the GRASP algorithm. Yang and He 

[27] have surveyed and shown that firefly algo-
rithm has been used in many applications and 
produces better performance in terms of time 
and optimality than other algorithms.
It obtains better global results than simulated 
annealing, PSO and artificial bee colony (ABC) 
algorithm. Firefly algorithm is a bio-inspired 
optimization algorithm proposed by Xin-She 
Yang at Cambridge University [28], [29]. It is 
based on the pattern of flashing light of fire-
flies. This algorithm focuses on two important 
issues obtained from the behaviour of fireflies: 
the variation of light intensity and formulation 
of the attractiveness. The attractiveness of two 
fireflies is proportional to the brightness of the 
fireflies. The lesser bright fireflies move to-
wards the brighter ones. If there is no brighter 
one than a particular firefly, it will move ran-
domly. Further, brightness is determined by the 
light intensity of the fireflies which affects the 
objective function f. Brightness, li of a firefly i 
at location y is given by l (y) ∝ f (y). Attractive-
ness β, is determined by the adjacent fireflies 
and it varies with distance rij between firefly i 
and firefly j.
Exploration is the acquisition of new informa-
tion through searching. Exploration is a main 
concern for all optimizers because it might lead 
to new search regions that might contain better 
solutions. Exploitation is defined as the applica-
tion of known information. The good sites are 
exploited via the application of a local search 
[30]. Variation in the light intensity controls the 
tradeoff between exploration and exploitation 
in the firefly algorithm. The firefly i is attracted 
to another brighter firefly j, its position at itera-
tion t + 1 is determined by:

        
2( )( 1) ( )ijrt t t t t

i i o j i t ix x e x xγβ α−+ = + − + ∈    
(1)

The second component of the equation 1 is the 
exploration and it is used for attraction between 
the two fireflies. The parameters used in this 
part are β and γ. β is the attractiveness which 
is proportional to the light intensity seen by 
other fireflies. βo is the attractiveness at r = 0. γ 
controls the average distance of a group of fire-
flies that can be seen by adjacent groups. The 
distance between two fireflies is the Cartesian 
distance which is given as:

In D: Data set; F: filter measure; C:class label / target 
         feature; 
Size: number of variables to consider at each iteration; 
numIt: number of iterations in algorithm 
Out S : The selected subset

// initialization
1.   NDS = NULL
2.   for each Xi ∈ X
3.   Relevance [i] = F(Xi, C) + Ɛ
4.   for each Xi ∈ X
5.   ProbSel [i] = Relevance [i] / ∑n

j  = 1 Relevance [j]
// GRASP
6.   for i = 1 to numIt
// constructive step
7.   subset = some Size features selected using 
        ProbSel [ ] from X without replacement
8.   R [ ] = rank the features based on scores value
9.   S = R [1]
10.            BestValue = evaluate(C, S, D)
11.   for ir = 2 to R.size ()
12.   Saux = S ∪ Rir
13.   NewValue = evaluate (C, Saux, D)
14.   if (NewValue > BestValue) then
15.   S = Saux
16.   BestValue = NewValue
// improving step
17.            if (update (NDS, S)) then
18.   Xnds = ∪si ∈ NDS Sir
19.   S' = ExecuteImprovingMethod (Xnds, S, C, D)
20.   update (NDS, S')
21.   return all or best solution(s) in NDS

Figure 1. FCGRASP algorithm for FSS.

Input: S: Start State 
               NumSol: List of all possible solutions 
Output: Best: an improved solution

begin
    Best = S
    Tabulist = [ ]
    Size = size(NumSol)
    Repeat until Size
Sbest = Neighborhood solution (s)
                 if (accuracy(Sbest) > accuracy(best) && 
                    Sbest not in Tabulist)
              Best =Sbest
                            Tabulist.add (Best)
                 end
                 if (Tabulist.size > maxsize)
Tabulist.removefirst()
                 end
    Return Best
end

Figure 2. A new version of tabu search in improvement 
phase.
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proves the classification accuracy or not. If it 
improves the accuracy, it is added to S.
Lines 17 to 20 perform the improving step. 
Here the value of solution S returned by con-
struction step is added to NDS if and only if the 
solution is not present in the non-dominated set. 
Update function modifies NDS and improving 
method is executed with S as starting point in 
line 19. This improving method is one of the lo-
cal-search based FSS algorithm. There are dif-
ferent choices for local-search based algorithms 
such as hill climbing [19], genetic algorithms 
and simulated annealing. We have found that 
hill climbing has some drawbacks.

 ● Possibility of being trapped at a local opti-
mum as it performs only a single run of the 
iterative improvement.

 ● There is no chance of an escape from local 
minima.

 ● It may cycle over the same solutions again 
and again and thus become redundant

The drawbacks found in case of using simu-
lated annealing as a local search algorithm are:

 ● The result found using simulated anneal-
ing can vary on each run of the algorithm, 
in other words, every run of simulated an-
nealing gives a different solution.

 ● Only under certain circumstances, the op-
timum solution is found. So, you may have 
to run the algorithm many times to obtain 
the optimum solution.

3. The Proposed Method

To overcome the drawbacks of hill climbing 
and simu-lated annealing used in the improve-
ment phase of GRASP, we have adopted tabu 
search optimization and firefly optimization 
approaches in the improvement phase of the 
GRASP algorithm.

3.1. Tabu Search Based GRASP 
Approach (TGRASP)

The tabu search uses neighborhood search like 
simulated annealing and hill climbing, but also 
uses memory to record the history. So, the ma-
jor advantage of using this technique is that 
the number of solutions to be tested keeps re-
ducing. This is because it uses memory called 
tabu list, that records the recent history of the 
search and cycling back to previously visited 
solutions is avoided. In many practical prob-
lems, it is seen that a reasonable size tabu list 
improves the performance of hill climbing. For 
high dimensional datasets like microarray data, 
the solution obtained by tabu search rivals and 
often surpasses the best solutions previously 
found by simulated annealing and hill climbing. 
Using tabu search we can avoid repeating the 
search. By using tabu list as used in tabu search 
approach, the problem of redundancy can be re-
moved from the hill climbing approach. In gen-
eral, tabu list has a fixed size to memorize, and 
it follows FIFO in maintaining the list.
The pseudo code of the algorithm is demon-
strated in Figure 2. Initially the first solution 

found in the list of all possible solutions is taken 
as the best solution. Tabu list is initialized to be 
empty.
Tabu search stops when all the solutions found 
in non-dominated set (NDS) have been evalu-
ated. If the accuracy of the new solution Sbest, 
is better than the accuracy of the best solution 
last found, then the best solution is replaced 
with the new solution (Sbest). We also check that 
the new solution (Sbest) is not presented in the 
existing tabu list before making it a best solu-
tion. This new solution is then added in the tabu 
list.
Here, we have used short term tabu list, which 
keeps record of last 20 solutions. The advan-
tage of using tabu list is that the repeated solu-
tions are not checked again. When the solution 
reaches the maximum size of the list, then the 
first added solution from the tabu list is de-
leted. The algorithm returns the best solution 
out of the solutions found in the construction 
of GRASP.

3.2. Novel Firefly Algorithm

In this section, we present a discrete firefly 
algorithm (FFGRASP) for the improvement 
phase of the GRASP algorithm. Yang and He 

[27] have surveyed and shown that firefly algo-
rithm has been used in many applications and 
produces better performance in terms of time 
and optimality than other algorithms.
It obtains better global results than simulated 
annealing, PSO and artificial bee colony (ABC) 
algorithm. Firefly algorithm is a bio-inspired 
optimization algorithm proposed by Xin-She 
Yang at Cambridge University [28], [29]. It is 
based on the pattern of flashing light of fire-
flies. This algorithm focuses on two important 
issues obtained from the behaviour of fireflies: 
the variation of light intensity and formulation 
of the attractiveness. The attractiveness of two 
fireflies is proportional to the brightness of the 
fireflies. The lesser bright fireflies move to-
wards the brighter ones. If there is no brighter 
one than a particular firefly, it will move ran-
domly. Further, brightness is determined by the 
light intensity of the fireflies which affects the 
objective function f. Brightness, li of a firefly i 
at location y is given by l (y) ∝ f (y). Attractive-
ness β, is determined by the adjacent fireflies 
and it varies with distance rij between firefly i 
and firefly j.
Exploration is the acquisition of new informa-
tion through searching. Exploration is a main 
concern for all optimizers because it might lead 
to new search regions that might contain better 
solutions. Exploitation is defined as the applica-
tion of known information. The good sites are 
exploited via the application of a local search 
[30]. Variation in the light intensity controls the 
tradeoff between exploration and exploitation 
in the firefly algorithm. The firefly i is attracted 
to another brighter firefly j, its position at itera-
tion t + 1 is determined by:

        
2( )( 1) ( )ijrt t t t t

i i o j i t ix x e x xγβ α−+ = + − + ∈    
(1)

The second component of the equation 1 is the 
exploration and it is used for attraction between 
the two fireflies. The parameters used in this 
part are β and γ. β is the attractiveness which 
is proportional to the light intensity seen by 
other fireflies. βo is the attractiveness at r = 0. γ 
controls the average distance of a group of fire-
flies that can be seen by adjacent groups. The 
distance between two fireflies is the Cartesian 
distance which is given as:

In D: Data set; F: filter measure; C:class label / target 
         feature; 
Size: number of variables to consider at each iteration; 
numIt: number of iterations in algorithm 
Out S : The selected subset

// initialization
1.   NDS = NULL
2.   for each Xi ∈ X
3.   Relevance [i] = F(Xi, C) + Ɛ
4.   for each Xi ∈ X
5.   ProbSel [i] = Relevance [i] / ∑n

j  = 1 Relevance [j]
// GRASP
6.   for i = 1 to numIt
// constructive step
7.   subset = some Size features selected using 
        ProbSel [ ] from X without replacement
8.   R [ ] = rank the features based on scores value
9.   S = R [1]
10.            BestValue = evaluate(C, S, D)
11.   for ir = 2 to R.size ()
12.   Saux = S ∪ Rir
13.   NewValue = evaluate (C, Saux, D)
14.   if (NewValue > BestValue) then
15.   S = Saux
16.   BestValue = NewValue
// improving step
17.            if (update (NDS, S)) then
18.   Xnds = ∪si ∈ NDS Sir
19.   S' = ExecuteImprovingMethod (Xnds, S, C, D)
20.   update (NDS, S')
21.   return all or best solution(s) in NDS

Figure 1. FCGRASP algorithm for FSS.

Input: S: Start State 
               NumSol: List of all possible solutions 
Output: Best: an improved solution

begin
    Best = S
    Tabulist = [ ]
    Size = size(NumSol)
    Repeat until Size
Sbest = Neighborhood solution (s)
                 if (accuracy(Sbest) > accuracy(best) && 
                    Sbest not in Tabulist)
              Best =Sbest
                            Tabulist.add (Best)
                 end
                 if (Tabulist.size > maxsize)
Tabulist.removefirst()
                 end
    Return Best
end

Figure 2. A new version of tabu search in improvement 
phase.
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The third component of the equation 1 is the ex-
ploitation. Exploitation is controlled by the ran-
domization parameter αt, which is tuned during 
each iteration so that it can vary with iteration 
counter t.
In our implementation, the objective function is 
the average accuracy obtained through the clas-
sifier, naïve Bayes and SVM. We have taken 
βo = 1 as used by most of the applications. The 
parameters γ and α have been used in the algo-
rithm such that they are dependent on the num-
ber of features selected at each iteration.
Parameters γ and α are updated at each iteration 
as follows:
1. Gamma parameter (γ) is given by, 

1/ zγ =  where Z = (|D| – |di|) /|D| where 
|D| is the total number of features. |di| is the 
number of features selected at each itera-
tion. Iteration (i) varies from 1 to Numiter, 
Numiter is the number of iterations.

2. Alpha parameter (∝) is given by, ∝ = 
(1 – ∆)Z, ∆ is the cooling factor for ran-
domness. We have used ∆ = 0.98 in the ex-
periments performed here.

Formally, the modified discrete firefly algo-
rithm as used in the improvement phase of the 
GRASP is given in Figure 3.

4. Empirical Study

An existing hybrid algorithm, which uses hill 
climbing as a local search procedure in the im-
provement phase of GRASP named FCGRASP 
has been used to com-pare the proposed algo-
rithms. In this section, we have compared our 
proposed algorithms named TGRASP and FF-
GRASP with FCGRASP on different publically 
available cancer datasets.

4.1. Experimental Setup and Dataset

The experiments have been performed on nine 
cancer microarray datasets of high dimensions. 
The data set is described in Table 1. Some 

datasets have two classes, while some have 
more than two classes. Datasets are obtained 
from different sources. Breast, colon, leukemia 
and prostate datasets were obtained from Kent 
Ridge Biomedical Dataset data repository [31]. 
For SRBCT, Khan dataset has been used [2]. 
Table 1 gives the further details about these 
datasets.
Before actually using the data in the exper-
iments, a preprocessing procedure has been 
applied to them. Datasets of breast and en-
dometrium contained null values. The attributes 
containing more than 30% missing values have 
been left out. Other null values were replaced 
with the class wise mean of their respective 
attributes. Thus, 3000 attributes were left for 
endometrium and 5000 for breast cancer data 
[32]. Data for colon, SRBCT, leukemia and 
melanoma were used as they were. For other 
datasets, we adopted the technique suggested 
by Yang et al. [15] and Ramaswamy et al. [33]. 

For prostate dataset, floor value of 100 and a 
ceiling value of 16000 with a variation of the 
Max / Min ratio as 5 and Max-Min difference 
of 50 were used to filter the values. CNS-v1, 
Colon-I used the intensity threshold value as 
floor and ceiling between 20 – 16000 with 
Max/Min ratio as 5, 3 and Max-Min difference 
of 500, 100 respectively. All datasets were nor-
malized using z-score normalization before us-
ing them in ex-periments.
The algorithms FCGRASP and TGRASP are 
implemented in matlab on the same PC. Classi-
fication algorithms embedded in wrapper eval-
uation are created as functions in matlab and 
are called wherever needed.
The parameters used to compare both algo-
rithms are the number of features, runtime and 
classification accuracy. Runtime is machine 
dependent, so we have implemented and com-
pared both algorithms on the same machine. 
The classification accuracy is calculated using 
10 fold cross validation strategy for the train-
ing and testing sets. The training set consists 
of 90% of the values and the test set consist 
of 10% of values. For each classification al-
gorithm, we obtain the average classification 
accuracy, number of selected features, runtime 
found under each algorithm and each dataset.
One parameter named EARR (Extended Ad-
justed Ratio of Ratios) proposed by Wang [34] 
has also been used to compare both algorithms. 

It is a multicriteria metric, where the classifica-
tion accuracy, runtime and number of features 
selected are integrated. EARR evaluates the 
performance by taking the ratio of the metric 
values. Let D = {D1, D2, …., Dn} be a set of 
n datasets, and A ={A1, A2, …., An) be a set of 
M FSS algorithms. Then, the EARR of Ai to Aj  
over Dk can be defined as:

,
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∝ and β are user defined parameters which tell 
us how much the runtime and number of fea-
tures selected should respectively dominate ac-
curacy. accik is the accuracy of ith algorithm of 
kth dataset. ti

k and ni
k are the runtime and number 

of selected features of dataset k on ith algorithm 
respectively. The greater the value of EARR, 
the better the corresponding algorithm on a 
given dataset D [34].
As discussed in the algorithm, we have used 
Symmetric Uncertainty (SU) for the filter eval-
uation [6], [8]. For the wrapper phase, Naïve 
Bayes and Support Vector Machine (SVM) 
classifiers are used. Support vector machine 
performs very well on most of the problems in 
high dimensional space. It is difficult to find 
a linear classifier to separate different classes 

Input: 
          •  Initial Values to parameters: α the randomness 
             parameter, β the attraction coefficient, γ the 
             parameter to control randomness, ∆ = 0.98 
          •  Objective function f (y), yi = (y1, y2, ..., yd)T 
          •  All solutions in NDS, Si = (S1, S2, ..., Sn) 
Output: Best solution set Sbest

begin
    Calculate light intensityli at yi by f (yi)
    Sbest = NULL
    While (t < numiter)
    for i = 1:n                  // all n solutions at this step
        for j = 1:i
          Determine the position of i using equation
if ( li > Ij)
    Move firefly i towards j in all d dimensions
          Sbest = Si
Else
    Change position of i randomly
endif
          Determine new solutions from NDS and 
          revise light intensity
    end j
    end i
    Return Sbest
    Calculate new α and γ values
end while

Figure 3. Discrete firefly algorithm in the improvement 
phase.

Table 1.  Dataset description.

Dataset Instances Original 
genes

Preprocessed 
genes Classes Description

Colon_I 37 22883 8826 2 8 Normal samples and 29 tumour samples

Prostate 102 12600 5966 2 52 prostate tumour samples and 50 normal 
samples

Breast 97 24482 5000 2 46 benign samples, 51 malignant samples

Colon 62 2000 2000 2 40 cancer samples and 22 normal samples

SRBCT 83 4773 2308 4 29 EWS samples, 18 NB samples, 
11 BL samples, and 25 RMS samples

Endometrium 42 2308 3000 4 13 serous papillary, 3 clear cell, 19 endometrial 
cancer, and 7 age-matched normal endometrial

Leukemia 72 8872 7129 3 28 AML samples, 24 ALL samples and 20 MLL 
samples

Melanoma 38 7129 8076 3 12 Lentingo samples, 19Acral samples, 
7 Nodular samples

CNS-v1 34 8076 2277 2 9 Normal samples, 25 brain tumour samples
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The third component of the equation 1 is the ex-
ploitation. Exploitation is controlled by the ran-
domization parameter αt, which is tuned during 
each iteration so that it can vary with iteration 
counter t.
In our implementation, the objective function is 
the average accuracy obtained through the clas-
sifier, naïve Bayes and SVM. We have taken 
βo = 1 as used by most of the applications. The 
parameters γ and α have been used in the algo-
rithm such that they are dependent on the num-
ber of features selected at each iteration.
Parameters γ and α are updated at each iteration 
as follows:
1. Gamma parameter (γ) is given by, 

1/ zγ =  where Z = (|D| – |di|) /|D| where 
|D| is the total number of features. |di| is the 
number of features selected at each itera-
tion. Iteration (i) varies from 1 to Numiter, 
Numiter is the number of iterations.

2. Alpha parameter (∝) is given by, ∝ = 
(1 – ∆)Z, ∆ is the cooling factor for ran-
domness. We have used ∆ = 0.98 in the ex-
periments performed here.

Formally, the modified discrete firefly algo-
rithm as used in the improvement phase of the 
GRASP is given in Figure 3.

4. Empirical Study

An existing hybrid algorithm, which uses hill 
climbing as a local search procedure in the im-
provement phase of GRASP named FCGRASP 
has been used to com-pare the proposed algo-
rithms. In this section, we have compared our 
proposed algorithms named TGRASP and FF-
GRASP with FCGRASP on different publically 
available cancer datasets.

4.1. Experimental Setup and Dataset

The experiments have been performed on nine 
cancer microarray datasets of high dimensions. 
The data set is described in Table 1. Some 

datasets have two classes, while some have 
more than two classes. Datasets are obtained 
from different sources. Breast, colon, leukemia 
and prostate datasets were obtained from Kent 
Ridge Biomedical Dataset data repository [31]. 
For SRBCT, Khan dataset has been used [2]. 
Table 1 gives the further details about these 
datasets.
Before actually using the data in the exper-
iments, a preprocessing procedure has been 
applied to them. Datasets of breast and en-
dometrium contained null values. The attributes 
containing more than 30% missing values have 
been left out. Other null values were replaced 
with the class wise mean of their respective 
attributes. Thus, 3000 attributes were left for 
endometrium and 5000 for breast cancer data 
[32]. Data for colon, SRBCT, leukemia and 
melanoma were used as they were. For other 
datasets, we adopted the technique suggested 
by Yang et al. [15] and Ramaswamy et al. [33]. 

For prostate dataset, floor value of 100 and a 
ceiling value of 16000 with a variation of the 
Max / Min ratio as 5 and Max-Min difference 
of 50 were used to filter the values. CNS-v1, 
Colon-I used the intensity threshold value as 
floor and ceiling between 20 – 16000 with 
Max/Min ratio as 5, 3 and Max-Min difference 
of 500, 100 respectively. All datasets were nor-
malized using z-score normalization before us-
ing them in ex-periments.
The algorithms FCGRASP and TGRASP are 
implemented in matlab on the same PC. Classi-
fication algorithms embedded in wrapper eval-
uation are created as functions in matlab and 
are called wherever needed.
The parameters used to compare both algo-
rithms are the number of features, runtime and 
classification accuracy. Runtime is machine 
dependent, so we have implemented and com-
pared both algorithms on the same machine. 
The classification accuracy is calculated using 
10 fold cross validation strategy for the train-
ing and testing sets. The training set consists 
of 90% of the values and the test set consist 
of 10% of values. For each classification al-
gorithm, we obtain the average classification 
accuracy, number of selected features, runtime 
found under each algorithm and each dataset.
One parameter named EARR (Extended Ad-
justed Ratio of Ratios) proposed by Wang [34] 
has also been used to compare both algorithms. 

It is a multicriteria metric, where the classifica-
tion accuracy, runtime and number of features 
selected are integrated. EARR evaluates the 
performance by taking the ratio of the metric 
values. Let D = {D1, D2, …., Dn} be a set of 
n datasets, and A ={A1, A2, …., An) be a set of 
M FSS algorithms. Then, the EARR of Ai to Aj  
over Dk can be defined as:
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∝ and β are user defined parameters which tell 
us how much the runtime and number of fea-
tures selected should respectively dominate ac-
curacy. accik is the accuracy of ith algorithm of 
kth dataset. ti

k and ni
k are the runtime and number 

of selected features of dataset k on ith algorithm 
respectively. The greater the value of EARR, 
the better the corresponding algorithm on a 
given dataset D [34].
As discussed in the algorithm, we have used 
Symmetric Uncertainty (SU) for the filter eval-
uation [6], [8]. For the wrapper phase, Naïve 
Bayes and Support Vector Machine (SVM) 
classifiers are used. Support vector machine 
performs very well on most of the problems in 
high dimensional space. It is difficult to find 
a linear classifier to separate different classes 
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          •  Initial Values to parameters: α the randomness 
             parameter, β the attraction coefficient, γ the 
             parameter to control randomness, ∆ = 0.98 
          •  Objective function f (y), yi = (y1, y2, ..., yd)T 
          •  All solutions in NDS, Si = (S1, S2, ..., Sn) 
Output: Best solution set Sbest

begin
    Calculate light intensityli at yi by f (yi)
    Sbest = NULL
    While (t < numiter)
    for i = 1:n                  // all n solutions at this step
        for j = 1:i
          Determine the position of i using equation
if ( li > Ij)
    Move firefly i towards j in all d dimensions
          Sbest = Si
Else
    Change position of i randomly
endif
          Determine new solutions from NDS and 
          revise light intensity
    end j
    end i
    Return Sbest
    Calculate new α and γ values
end while

Figure 3. Discrete firefly algorithm in the improvement 
phase.

Table 1.  Dataset description.

Dataset Instances Original 
genes

Preprocessed 
genes Classes Description

Colon_I 37 22883 8826 2 8 Normal samples and 29 tumour samples

Prostate 102 12600 5966 2 52 prostate tumour samples and 50 normal 
samples

Breast 97 24482 5000 2 46 benign samples, 51 malignant samples

Colon 62 2000 2000 2 40 cancer samples and 22 normal samples

SRBCT 83 4773 2308 4 29 EWS samples, 18 NB samples, 
11 BL samples, and 25 RMS samples

Endometrium 42 2308 3000 4 13 serous papillary, 3 clear cell, 19 endometrial 
cancer, and 7 age-matched normal endometrial

Leukemia 72 8872 7129 3 28 AML samples, 24 ALL samples and 20 MLL 
samples

Melanoma 38 7129 8076 3 12 Lentingo samples, 19Acral samples, 
7 Nodular samples

CNS-v1 34 8076 2277 2 9 Normal samples, 25 brain tumour samples
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in the dataset. This problem can be solved us-
ing SVM. It is proved to be relatively new and 
promising classifier over other classifiers [18]. 
Naïve Bayes is quite sensitive to the presence 
of redundant and irrelevant predicted attributes 
[19].

4.2. Experimental Results

The proposed algorithms TGRASP and FF-
GRASP have been compared with an existing 
algorithm FCGRASP. They have been com-
pared in terms of three performance measures, 
i.e., classification accuracy, runtime and num-
ber of features. The classifiers used are Naïve 
Bayes classifier and SVM. 
In all of the three algorithms, Size and NumIter 
are the parameters used to carry out multiple 
wrapper evaluations. Tabu tenure is a param-
eter that is used only for TGRASP algorithm. 
Tabu tenure is the length of the tabu list kept 
at the time of performing the experiments. This 
parameter is a static tabu list with short term 
memory for storing a maximum of 20 values. 
In our experiments, we have varied the size of 
the tabu tenure from 5 to 15. For most of the 
datasets, we observed that after the size of Tabu 
tenure reaches 10, the solutions repeat them-
selves. So, to compare all datasets on a com-
mon value of Tabu tenure, we have shown the 
results when its value was 8.
Table 2 and Table 3 give the comparison of 
TGRASP, FFGRASP and FCGRASP by keep-
ing the value of tabu tenure as 8. NumIter 
parameter is fixed to 50 and then 100 for all 
datasets and for both classifiers. The value of 
parameter ''Size'' varies based on the total num-
ber of features in each dataset.
Table 2 gives the average number of features 
and average runtime in seconds obtained using 
10 fold cross validation. From the results we 
observe that

 ● As the number of iterations (NumIter) in-
creased from 50 to 100, it showed a sig-
nificant change in the number of wrapper 
evaluation and hence we could observe 
that there was approximately 25 – 30% in-
crease in runtime in most of the datasets.

 ● In case of two class dataset, when Nu-
mIter = 50, and Naïve classifier was con-
sidered, the average runtime of FFGRASP 

decreased by 13.2, 27.7 percent over 
TGRASP and FCGRASP respectively. The 
runtime of TGRASP in case of SVM Clas-
sifier has been decreased by 84.5, 67.8 per-
cent of that of FCGRASP and FFGRASP 
respectively.

 ● For four class dataset, when Naïve Bayes 
classifier was used, TGRASP ranks 1. Its 
average runtime over both the datasets 
decreased by 95.6, 86.9 percent of that of 
FCGRASP and FFGRASP respectively. 
When SVM classifier was considered, FF-
GRASP has a decreased average runtime 
by 65.2, 21.38 percent by TGRASP and 
FCGRASP respectively.

 ● In all the datasets, FFGRASP algorithm 
selects less number of features in the range 
of 2 to 227 numbers of features, as com-
pared to FCGRASP.

 ● In the majority of the datasets, on average, 
approximately 80 percent of the features 
selected by FFGRASP and TGRASP are 
common with the features selected by FC-
GRASP.

Table 3 shows the average accuracy of the three 
algorithms found using 10 fold cross validation 
of two classifiers on nine cancer datasets. The 
results observed using Naïve Bayes classifier 
are as follows:

 ● For two class datasets, when NumIter = 
50, as compared to FCGRASP, the classi-
fication accuracy of Naïve Bayes has been 
improved by TGRASP algorithm by 12, 
15, 14 percent in case of colon, prostate 
and breast datasets respectively. TGRASP 
shows an improvement over FFGRASP 
in classification accuracy by 40, 9.4 and 
1 percent for colon_I, colon and breast 
datasets respectively. FFGRASP has in-
creased the classification accuracy in case 
of prostate dataset by 18 and 2 percent from 
FCGRASP and TGRASP respectively. 
However, CNS-v1 is the only two class 
dataset which has decreased the classifica-
tion accuracy of TGRASP and FFGRASP 
by 20 and 50.01 percent respectively from 
FCGRASP.

 ● For two class datasets, when NumIter = 
100, the classification accuracy of Naïve 
Bayes has been improved by TGRASP 
algorithm by 7 and 9 percent in case of 

prostate and colon datasets respectively. 
FFGRASP shows an improvement over 
FCGRASP in the range of 1 to 11 percent. 
Unfortunately, in case of dataset CNS-v1 
the accuracy of TGRASP and FFGRASP 
has been decreased by 20 percent from FC-
GRASP.

 ● In case of endometrium dataset, FFGRASP 
classification accuracy has been improved 

by 21.3 and 4 percent from FCGRASP and 
TGRASP respectively when NumIter = 50. 
The accuracy was improved by 22.5 and 
5.5 percent from FCGRASP and TGRASP 
respectively when NumIter = 100.

 ● For SRBCT dataset, when NumIter = 
50, maximum classification accuracy of 
100% was achieved by FCGRASP and 
TGRASP algo-rithms, and the accuracy 

Table 2.  Comparison of FCGRASP, TGRASP and FFGRASP in terms of runtime and number of features 
selected when NumIter = 50 and 100.

Dataset
Parameters Classifier Runtime (s) No. of features

Size NumIter FCGRASP TGRASP FFGRASP FCGRASP TGRASP FFGRASP

Colon_I 
176 50 Naïve Bayes 

SVM
358.39 
707.25

177.88 
402.89

185.13 
336.56

105 
201

101 
201

98 
200

88 100 Naïve Bayes 
SVM

453.86 
855.04

253.20 
534.66

191.79 
340.46

216 
365

206 
351

200 
340

Prostate
110 50 Naïve Bayes 

SVM
285.9 
350.41

281.7 
177.01

226.72 
640.99

245 
225

219 
222

119 
198

59 100 Naïve Bayes 
SVM

330.25 
531.25

316.69 
180.97

340.91 
654.84

395 
399

154 
369

135 
355

Breast
40 50 Naïve Bayes 

SVM
70.77 
108.56

76.69 
51.52

51.91 
106.55

397 
230

172 
222

170 
200

20 100 Naïve Bayes 
SVM

149.25 
1117.92

83.221 
66.65

61.23 
217.16

275 
355

274 
348

200 
300

Colon
100 50 Naïve Bayes 

SVM
254.95 
244.74

239.35 
131.56

187.07 
218.48

217 
259

211 
247

100 
212

50 100 Naïve Bayes 
SVM

276.68 
222.50

334 
291.6

197.66 
279.95

384 
490

370 
458

360 
359

SRBCT
45 50 Naïve Bayes 

SVM
155.35 
1343.17

84.75 
615.38

149.54 
251.65

234 
492

231 
492

190 
350

23 100 Naïve Bayes 
SVM

190.39 
1549.4

140.20 
797.05

156.20 
325.51

405 
661

405 
661

390 
521

Endometrium
60 50 Naïve Bayes 

SVM
301.76 
495.22

148.89 
353.56

287.11 
334.56

195 
661

166 
561

155 
480

30 100 Naïve Bayes 
SVM

401.55 
13.88

199.57 
455.94

290.86 
536.1

322 
877

312 
877

218 
775

Leukemia
140 50 Naïve Bayes 

SVM
660.50 
1933.9

326.47 
957.76

307.77 
930.91

217 
629

216 
629

198 
550

70 100 Naïve Bayes 
SVM

985.71 
1960.0

682.4 
986.44

345.28 
1042.21

392 
981

370 
980

297 
880

Melanoma
160 50 Naïve Bayes 

SVM
742.27 
1017.4

297.22 
865.27

491.99 
610.25

174 
634

163 
634

163 
556

80 100 Naïve Bayes 
SVM

987.41 
1109.0

386.84 
918.6

376.75 
956.35

392 
1065

219 
1065

200 
9456

CNS-v1
45 50 Naïve Bayes 

SVM
64.13 
92.65

34.17 
51.64

52.22 
64.74

103 
136

105 
137

99 
100

22 100 Naïve Bayes 
SVM

85.53 
117.68

91.751 
58.15

59.39 
67.23

182 
236

184 
222

180 
212
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in the dataset. This problem can be solved us-
ing SVM. It is proved to be relatively new and 
promising classifier over other classifiers [18]. 
Naïve Bayes is quite sensitive to the presence 
of redundant and irrelevant predicted attributes 
[19].

4.2. Experimental Results

The proposed algorithms TGRASP and FF-
GRASP have been compared with an existing 
algorithm FCGRASP. They have been com-
pared in terms of three performance measures, 
i.e., classification accuracy, runtime and num-
ber of features. The classifiers used are Naïve 
Bayes classifier and SVM. 
In all of the three algorithms, Size and NumIter 
are the parameters used to carry out multiple 
wrapper evaluations. Tabu tenure is a param-
eter that is used only for TGRASP algorithm. 
Tabu tenure is the length of the tabu list kept 
at the time of performing the experiments. This 
parameter is a static tabu list with short term 
memory for storing a maximum of 20 values. 
In our experiments, we have varied the size of 
the tabu tenure from 5 to 15. For most of the 
datasets, we observed that after the size of Tabu 
tenure reaches 10, the solutions repeat them-
selves. So, to compare all datasets on a com-
mon value of Tabu tenure, we have shown the 
results when its value was 8.
Table 2 and Table 3 give the comparison of 
TGRASP, FFGRASP and FCGRASP by keep-
ing the value of tabu tenure as 8. NumIter 
parameter is fixed to 50 and then 100 for all 
datasets and for both classifiers. The value of 
parameter ''Size'' varies based on the total num-
ber of features in each dataset.
Table 2 gives the average number of features 
and average runtime in seconds obtained using 
10 fold cross validation. From the results we 
observe that

 ● As the number of iterations (NumIter) in-
creased from 50 to 100, it showed a sig-
nificant change in the number of wrapper 
evaluation and hence we could observe 
that there was approximately 25 – 30% in-
crease in runtime in most of the datasets.

 ● In case of two class dataset, when Nu-
mIter = 50, and Naïve classifier was con-
sidered, the average runtime of FFGRASP 

decreased by 13.2, 27.7 percent over 
TGRASP and FCGRASP respectively. The 
runtime of TGRASP in case of SVM Clas-
sifier has been decreased by 84.5, 67.8 per-
cent of that of FCGRASP and FFGRASP 
respectively.

 ● For four class dataset, when Naïve Bayes 
classifier was used, TGRASP ranks 1. Its 
average runtime over both the datasets 
decreased by 95.6, 86.9 percent of that of 
FCGRASP and FFGRASP respectively. 
When SVM classifier was considered, FF-
GRASP has a decreased average runtime 
by 65.2, 21.38 percent by TGRASP and 
FCGRASP respectively.

 ● In all the datasets, FFGRASP algorithm 
selects less number of features in the range 
of 2 to 227 numbers of features, as com-
pared to FCGRASP.

 ● In the majority of the datasets, on average, 
approximately 80 percent of the features 
selected by FFGRASP and TGRASP are 
common with the features selected by FC-
GRASP.

Table 3 shows the average accuracy of the three 
algorithms found using 10 fold cross validation 
of two classifiers on nine cancer datasets. The 
results observed using Naïve Bayes classifier 
are as follows:

 ● For two class datasets, when NumIter = 
50, as compared to FCGRASP, the classi-
fication accuracy of Naïve Bayes has been 
improved by TGRASP algorithm by 12, 
15, 14 percent in case of colon, prostate 
and breast datasets respectively. TGRASP 
shows an improvement over FFGRASP 
in classification accuracy by 40, 9.4 and 
1 percent for colon_I, colon and breast 
datasets respectively. FFGRASP has in-
creased the classification accuracy in case 
of prostate dataset by 18 and 2 percent from 
FCGRASP and TGRASP respectively. 
However, CNS-v1 is the only two class 
dataset which has decreased the classifica-
tion accuracy of TGRASP and FFGRASP 
by 20 and 50.01 percent respectively from 
FCGRASP.

 ● For two class datasets, when NumIter = 
100, the classification accuracy of Naïve 
Bayes has been improved by TGRASP 
algorithm by 7 and 9 percent in case of 

prostate and colon datasets respectively. 
FFGRASP shows an improvement over 
FCGRASP in the range of 1 to 11 percent. 
Unfortunately, in case of dataset CNS-v1 
the accuracy of TGRASP and FFGRASP 
has been decreased by 20 percent from FC-
GRASP.

 ● In case of endometrium dataset, FFGRASP 
classification accuracy has been improved 

by 21.3 and 4 percent from FCGRASP and 
TGRASP respectively when NumIter = 50. 
The accuracy was improved by 22.5 and 
5.5 percent from FCGRASP and TGRASP 
respectively when NumIter = 100.

 ● For SRBCT dataset, when NumIter = 
50, maximum classification accuracy of 
100% was achieved by FCGRASP and 
TGRASP algo-rithms, and the accuracy 

Table 2.  Comparison of FCGRASP, TGRASP and FFGRASP in terms of runtime and number of features 
selected when NumIter = 50 and 100.

Dataset
Parameters Classifier Runtime (s) No. of features

Size NumIter FCGRASP TGRASP FFGRASP FCGRASP TGRASP FFGRASP

Colon_I 
176 50 Naïve Bayes 

SVM
358.39 
707.25

177.88 
402.89

185.13 
336.56

105 
201

101 
201

98 
200

88 100 Naïve Bayes 
SVM

453.86 
855.04

253.20 
534.66

191.79 
340.46

216 
365

206 
351

200 
340

Prostate
110 50 Naïve Bayes 

SVM
285.9 
350.41

281.7 
177.01

226.72 
640.99

245 
225

219 
222

119 
198

59 100 Naïve Bayes 
SVM

330.25 
531.25

316.69 
180.97

340.91 
654.84

395 
399

154 
369

135 
355

Breast
40 50 Naïve Bayes 

SVM
70.77 
108.56

76.69 
51.52

51.91 
106.55

397 
230

172 
222

170 
200

20 100 Naïve Bayes 
SVM

149.25 
1117.92

83.221 
66.65

61.23 
217.16

275 
355

274 
348

200 
300

Colon
100 50 Naïve Bayes 

SVM
254.95 
244.74

239.35 
131.56

187.07 
218.48

217 
259

211 
247

100 
212

50 100 Naïve Bayes 
SVM

276.68 
222.50

334 
291.6

197.66 
279.95

384 
490

370 
458

360 
359

SRBCT
45 50 Naïve Bayes 

SVM
155.35 
1343.17

84.75 
615.38

149.54 
251.65

234 
492

231 
492

190 
350

23 100 Naïve Bayes 
SVM

190.39 
1549.4

140.20 
797.05

156.20 
325.51

405 
661

405 
661

390 
521

Endometrium
60 50 Naïve Bayes 

SVM
301.76 
495.22

148.89 
353.56

287.11 
334.56

195 
661

166 
561

155 
480

30 100 Naïve Bayes 
SVM

401.55 
13.88

199.57 
455.94

290.86 
536.1

322 
877

312 
877

218 
775

Leukemia
140 50 Naïve Bayes 

SVM
660.50 
1933.9

326.47 
957.76

307.77 
930.91

217 
629

216 
629

198 
550

70 100 Naïve Bayes 
SVM

985.71 
1960.0

682.4 
986.44

345.28 
1042.21

392 
981

370 
980

297 
880

Melanoma
160 50 Naïve Bayes 

SVM
742.27 
1017.4

297.22 
865.27

491.99 
610.25

174 
634

163 
634

163 
556

80 100 Naïve Bayes 
SVM

987.41 
1109.0

386.84 
918.6

376.75 
956.35

392 
1065

219 
1065

200 
9456

CNS-v1
45 50 Naïve Bayes 

SVM
64.13 
92.65

34.17 
51.64

52.22 
64.74

103 
136

105 
137

99 
100

22 100 Naïve Bayes 
SVM

85.53 
117.68

91.751 
58.15

59.39 
67.23

182 
236

184 
222

180 
212
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of FFGRASP has been decreased by 12.67 
percent. When NumIter = 100, the classi-
fication accuracy of FFGRASP has been 
increased by 9.84 and 19 percent from FC-
GRASP and TGRASP respectively.

 ● In case of three class dataset, when Nu-
mIter = 50, the classification accuracy of 
FFGRASP has shown an improvement 

over FCGRASP and TGRASP by 7.7 and 
1.5 percent respectively in leukemia data-
set and by 24.9 percent over both the algo-
rithms in melanoma dataset.

 ● For three class dataset, when NumIter 
= 100, FFGRASP takes over by 9.9 and 
0.8 percent over FCGRAS and TGRASP 
respectively for leukemia dataset and by 

33.3 percent over FCGRAS and TGRASP 
for melanoma dataset.

When we consider SVM Classifier in Table 3, 
we observe that:

 ● For two class datasets, when NumIter = 
50, TGRASP algorithm classification ac-
curacy is better than FCGRASP and FF-
GRASP in the range of 2 to 29 percent in 
case of prostate, colon and breast datasets. 
For colon_I dataset, TGRASP and FC-

GRASP have maximum accuracy of 100%, 
which has been increased from FFGRASP 
by 28.58 percent. For dataset, CNS-v1 the 
classification accuracy of TGRASP and 
FFGRASP has been decreased by 7.4 and 
26.5 percent respectively from FCGRASP.

 ● For two class datasets, when NumIter = 100, 
Classification accuracy has been improved 
by TGRASP as compared to FCGRASP 
by 2, 12, 8, 4 percent for colon_I, prostate, 

Table 3.  Comparison of FCGRASP, TGRASP and FFGRASP in terms of accuracy when numIter = 50 and 100.

Dataset
Parameters Classifier Accuracy

Size NumIter FCGRASP TGRASP FFGRASP

Colon_I 
176 50 Naïve Bayes 

SVM
100 
100

100 
100

71.42 
77.77

88 100 Naïve Bayes 
SVM

85.71 
98

85.71 
100

71.42 
94.44

Prostate
110 50 Naïve Bayes 

SVM
77.87 

80
90 
85

92 
88.23

59 100 Naïve Bayes 
SVM

85 
80

91.6 
90

94 
84.31

Breast
40 50 Naïve Bayes 

SVM
81.13 
0.580

91.66 
0.806

83.66 
0.709

20 100 Naïve Bayes 
SVM

83.33 
80.65

91.66 
87.10

92.56 
83.87

Colon
100 50 Naïve Bayes 

SVM
68.42 
77.08

78.42 
79.17

77.89 
77.08

50 100 Naïve Bayes 
SVM

73.68 
72.92

73.68 
75

74.5 
73.83

SRBCT
45 50 Naïve Bayes 

SVM
100 
100

100 
100

88.75 
98.5

23 100 Naïve Bayes 
SVM

81.25 
100

75 
100

89.25 
98.5

Endometrium
60 50 Naïve Bayes 

SVM
75 

94.07
87.5 
95.47

91 
96.5

30 100 Naïve Bayes 
SVM

77.5 
90.04

85 
90.04

95 
95

Leukemia
140 50 Naïve Bayes 

SVM
92.85 
95.46

98.5 
95.46

100 
96.00

70 100 Naïve Bayes 
SVM

78.57 
97.72

85.71 
98.72

86.42 
98.71

Melanoma
160 50 Naïve Bayes 

SVM
57.14 
38.21

57.14 
38.21

71.42 
61.21

80 100 Naïve Bayes 
SVM

42.85 
13.07

42.85 
13.07

57.14 
50.12

CNS-v1
45 50 Naïve Bayes 

SVM
100 
87

83.33 
81

66.66 
68.75

22 100 Naïve Bayes 
SVM

100 
93

83.33 
81

83.33 
87.5

Table 4.  EARR Values calculated to compare both the algorithms on all datasets.

Dataset EARR values FCGRASP TGRASP FFGRASP

Colon_I 

FCGRASP 0.9997 1.1995

TGRASP 1.0002 1.2010

FFGRASP 0.8336 0.8333

Prostate

FCGRASP 0.9275 0.9038

TGRASP 1.0781 0.9680

FFGRASP 1.1314 0.9999

Colon

FCGRASP 0.90886 0.8998

TGRASP 1.1001 0.9899

FFGRASP 1.1113 1.01009

Breast

FCGRASP 1.00006 0.9889

TGRASP 0.9999 0.9889

FFGRASP 1.0112 1.0111

SRBCT

FCGRASP 1.0831 0.9102

TGRASP 0.9231 0.8403

FFGRASP 1.0985 1.1942

Endometrium

FCGRASP 0.9114 0.8156

TGRASP 1.0970 0.8933

FFGRASP 1.2346 1.1178

Leukemia

FCGRASP 0.91652 0.9085

TGRASP 1.09107 0.9913

FFGRASP 1.1006 1.0087

Melanoma

FCGRASP 0.9993 0.7493

TGRASP 1.00015412 0.7498

FFGRASP 1.334437 1.3335

CNS-v1

FCGRASP 1.2000 1.1998

TGRASP 0.8332 0.9998

FFGRASP 0.8344 1.0001
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of FFGRASP has been decreased by 12.67 
percent. When NumIter = 100, the classi-
fication accuracy of FFGRASP has been 
increased by 9.84 and 19 percent from FC-
GRASP and TGRASP respectively.

 ● In case of three class dataset, when Nu-
mIter = 50, the classification accuracy of 
FFGRASP has shown an improvement 

over FCGRASP and TGRASP by 7.7 and 
1.5 percent respectively in leukemia data-
set and by 24.9 percent over both the algo-
rithms in melanoma dataset.

 ● For three class dataset, when NumIter 
= 100, FFGRASP takes over by 9.9 and 
0.8 percent over FCGRAS and TGRASP 
respectively for leukemia dataset and by 

33.3 percent over FCGRAS and TGRASP 
for melanoma dataset.

When we consider SVM Classifier in Table 3, 
we observe that:

 ● For two class datasets, when NumIter = 
50, TGRASP algorithm classification ac-
curacy is better than FCGRASP and FF-
GRASP in the range of 2 to 29 percent in 
case of prostate, colon and breast datasets. 
For colon_I dataset, TGRASP and FC-

GRASP have maximum accuracy of 100%, 
which has been increased from FFGRASP 
by 28.58 percent. For dataset, CNS-v1 the 
classification accuracy of TGRASP and 
FFGRASP has been decreased by 7.4 and 
26.5 percent respectively from FCGRASP.

 ● For two class datasets, when NumIter = 100, 
Classification accuracy has been improved 
by TGRASP as compared to FCGRASP 
by 2, 12, 8, 4 percent for colon_I, prostate, 

Table 3.  Comparison of FCGRASP, TGRASP and FFGRASP in terms of accuracy when numIter = 50 and 100.

Dataset
Parameters Classifier Accuracy

Size NumIter FCGRASP TGRASP FFGRASP

Colon_I 
176 50 Naïve Bayes 

SVM
100 
100

100 
100

71.42 
77.77

88 100 Naïve Bayes 
SVM

85.71 
98

85.71 
100

71.42 
94.44

Prostate
110 50 Naïve Bayes 

SVM
77.87 

80
90 
85

92 
88.23

59 100 Naïve Bayes 
SVM

85 
80

91.6 
90

94 
84.31

Breast
40 50 Naïve Bayes 

SVM
81.13 
0.580

91.66 
0.806

83.66 
0.709

20 100 Naïve Bayes 
SVM

83.33 
80.65

91.66 
87.10

92.56 
83.87

Colon
100 50 Naïve Bayes 

SVM
68.42 
77.08

78.42 
79.17

77.89 
77.08

50 100 Naïve Bayes 
SVM

73.68 
72.92

73.68 
75

74.5 
73.83

SRBCT
45 50 Naïve Bayes 

SVM
100 
100

100 
100

88.75 
98.5

23 100 Naïve Bayes 
SVM

81.25 
100

75 
100

89.25 
98.5

Endometrium
60 50 Naïve Bayes 

SVM
75 

94.07
87.5 
95.47

91 
96.5

30 100 Naïve Bayes 
SVM

77.5 
90.04

85 
90.04

95 
95

Leukemia
140 50 Naïve Bayes 

SVM
92.85 
95.46

98.5 
95.46

100 
96.00

70 100 Naïve Bayes 
SVM

78.57 
97.72

85.71 
98.72

86.42 
98.71

Melanoma
160 50 Naïve Bayes 

SVM
57.14 
38.21

57.14 
38.21

71.42 
61.21

80 100 Naïve Bayes 
SVM

42.85 
13.07

42.85 
13.07

57.14 
50.12

CNS-v1
45 50 Naïve Bayes 

SVM
100 
87

83.33 
81

66.66 
68.75

22 100 Naïve Bayes 
SVM

100 
93

83.33 
81

83.33 
87.5

Table 4.  EARR Values calculated to compare both the algorithms on all datasets.

Dataset EARR values FCGRASP TGRASP FFGRASP

Colon_I 

FCGRASP 0.9997 1.1995

TGRASP 1.0002 1.2010

FFGRASP 0.8336 0.8333

Prostate

FCGRASP 0.9275 0.9038

TGRASP 1.0781 0.9680

FFGRASP 1.1314 0.9999

Colon

FCGRASP 0.90886 0.8998

TGRASP 1.1001 0.9899

FFGRASP 1.1113 1.01009

Breast

FCGRASP 1.00006 0.9889

TGRASP 0.9999 0.9889

FFGRASP 1.0112 1.0111

SRBCT

FCGRASP 1.0831 0.9102

TGRASP 0.9231 0.8403

FFGRASP 1.0985 1.1942

Endometrium

FCGRASP 0.9114 0.8156

TGRASP 1.0970 0.8933

FFGRASP 1.2346 1.1178

Leukemia

FCGRASP 0.91652 0.9085

TGRASP 1.09107 0.9913

FFGRASP 1.1006 1.0087

Melanoma

FCGRASP 0.9993 0.7493

TGRASP 1.00015412 0.7498

FFGRASP 1.334437 1.3335

CNS-v1

FCGRASP 1.2000 1.1998

TGRASP 0.8332 0.9998

FFGRASP 0.8344 1.0001
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colon and breast datasets respectively. FF-
GRASP has improved the classification 
accuracy over FCGRASP in the range of 2 
to 4 percent. However, in the case of data-
set CNS-v1 the accuracy of TGRASP and 
FFGRASP has been decreased by 14.8 and 
6.2 percent respectively from FCGRASP.

 ● In case of endometrium dataset, the clas-
sification accuracy of FFGRASP has been 
improved by 2.58 and 1.07 percent from 
FCGRASP and TGRASP respectively at 
NumIter = 50. When NumIter = 100, an 
improvement in accuracy of 5 percent has 
been obtained in FFGRASP from both al-
gorithms.

 ● For SRBCT dataset, maximum classifica-
tion ac-curacy of 100% is achieved by FC-
GRASP and TGRASP algorithms, but the 
accuracy of FFGRASP has been decreased 
by 1.52 percent.

 ● In case of three class dataset, when NumIter 
= 50, FFGRASP wins over FCGRASP and 
TGRASP by 0.5 percent in leukemia data-
set and by 60.19 percent over melanoma 
dataset.

 ● For three class datasets, when NumIter 
= 100, FFGRASP as compared to FC-
GRASP and TGRASP has been showing 
an improvement of 1.01 and 28.3 percent 
over leukemia and melanoma datasets re-
spectively.

From the above results, it was concluded that 
TGRASP performs better than the other two al-
gorithms for two class datasets. For multiclass 
datasets FFGRASP performs more efficiently.
In order to further explore which feature selec-
tion algorithm is significantly better, we per-
formed a test on a unified metric, EARR [34]. 
To do calculations in EARR equation, we have 
taken Naïve Bayes classification accuracies, 
runtime, number of features selected values at 
NumIter = 100 from Table 2 and Table 3 and 
parameters α = β = 0.001. Using equation 3, we 
calculate the EARR values between each of the 
two algorithms on all datasets. Table 4 depicts 
the different EARR values found between each 
of the two different algorithms.
According to Wang et al. [34], the value of 
EARR Ai, AJ is greater than (or equal to, or 
smaller than) that of EARR Aj, AJ indicates that 
Ai is better than (or equal to, or worse than) AJ. 

For example, in colon_I dataset, it is found 
that EARR (TGRASP, FCGRASP) = 1.0002 is 
greater than EARR (FCGRASP, TGRASP) = 
0.9997. So, we can say that TGRASP is better 
than FCGRASP for colon_I dataset. Similarly, 
values of EARR for other datasets are found 
and depicted in Table 4. We observe that for 
six out of nine datasets TGRASP has greater 
EARR values than FCGRASP.
Comparing FFGRASP algorithm with FC-
GRASP on colon_I dataset, the EARR (FC-
GRASP, FFGRASP) value is 1.1995 which is 
greater than EARR (FFGRASP, FCGRASP) 
in value of 0.8336. Here we can say that FC-
GRASP is better than FFGRASP approach for 
this dataset. For all other datasets, on compar-
ing FFGRASP with FCGRASP, the results in-
dicate that FFGRASP is performing better than 
FCGRASP in case of seven out of nine datasets.
On comparing TGRASP with FFGRASP, ac-
cording to the EARR values found in Table 4, 
we can conclude that FFGRASP algorithm is 
statistically better than TGRASP approach in 
all the datasets except in the case of colon_I 
dataset.
NumIter and tabu tenure are the parameters 
which can control the tradeoff between accu-
racy and runtime. In our experiments, we have 
varied the size of tabu tenure from 5 to15 to 
varying the size enables us to determine how 
this parameter affects the performance based 
on runtime and accuracy. For six out of nine 
datasets there is a high positive correlation be-
tween tabu tenure with runtime and accuracy. 
This effect has been shown in Figure 4 and Fig-
ure 5 for leukemia dataset.

Figures 6 and Figure 7 depict the classification 
accuracy and runtime of one of the two class 
datasets, colon with different NumIter values. 
It was observed that by changing the value of 
NumIter, there is a change in the value of ac-
curacy and runtime. Proposed TGRASP algo-
rithm shows better results than FCGRASP in 

this dataset. Runtime of FFGRASP is less than 
that of TGRASP and FCGRASP in colon data-
set.
Figure 8 and Figure 9 depict the classification 
accuracy and runtime of a multiclass dataset, 
leukemia with different NumIter values. It de-
picts that by changing the value of the number 
of iterations, there is a change in the value of 
accuracy and runtime. So, it can be said that 
NumIter parameter affects the quality of opti-
mum.

Table 5 lists the gene accession numbers for 
some of the features obtained as the best fea-
tures in regard to maximum accuracy and min-
imum number of genes. Due to limited space 
in the table, we are not able to mention all the 
genes selected. We have mentioned only the 
top few genes which came out using the naïve 
Bayes classifier.
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Figure 4. Depicting the effect of runtime and tabu 
tenure on Leukemia dataset.
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Figure 5. Depicting the effect of accuracy and tabu 
tenure on leukemia dataset.
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Figure 6. The effect of NumIter parameter on accuracy 
on dataset colon.
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Figure 7. The effect of NumIter parameter on runtime 
for dataset Colon.
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Figure 8. The effect of NumIter parameter on accuracy 
on leukemia dataset.
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colon and breast datasets respectively. FF-
GRASP has improved the classification 
accuracy over FCGRASP in the range of 2 
to 4 percent. However, in the case of data-
set CNS-v1 the accuracy of TGRASP and 
FFGRASP has been decreased by 14.8 and 
6.2 percent respectively from FCGRASP.

 ● In case of endometrium dataset, the clas-
sification accuracy of FFGRASP has been 
improved by 2.58 and 1.07 percent from 
FCGRASP and TGRASP respectively at 
NumIter = 50. When NumIter = 100, an 
improvement in accuracy of 5 percent has 
been obtained in FFGRASP from both al-
gorithms.

 ● For SRBCT dataset, maximum classifica-
tion ac-curacy of 100% is achieved by FC-
GRASP and TGRASP algorithms, but the 
accuracy of FFGRASP has been decreased 
by 1.52 percent.

 ● In case of three class dataset, when NumIter 
= 50, FFGRASP wins over FCGRASP and 
TGRASP by 0.5 percent in leukemia data-
set and by 60.19 percent over melanoma 
dataset.

 ● For three class datasets, when NumIter 
= 100, FFGRASP as compared to FC-
GRASP and TGRASP has been showing 
an improvement of 1.01 and 28.3 percent 
over leukemia and melanoma datasets re-
spectively.

From the above results, it was concluded that 
TGRASP performs better than the other two al-
gorithms for two class datasets. For multiclass 
datasets FFGRASP performs more efficiently.
In order to further explore which feature selec-
tion algorithm is significantly better, we per-
formed a test on a unified metric, EARR [34]. 
To do calculations in EARR equation, we have 
taken Naïve Bayes classification accuracies, 
runtime, number of features selected values at 
NumIter = 100 from Table 2 and Table 3 and 
parameters α = β = 0.001. Using equation 3, we 
calculate the EARR values between each of the 
two algorithms on all datasets. Table 4 depicts 
the different EARR values found between each 
of the two different algorithms.
According to Wang et al. [34], the value of 
EARR Ai, AJ is greater than (or equal to, or 
smaller than) that of EARR Aj, AJ indicates that 
Ai is better than (or equal to, or worse than) AJ. 

For example, in colon_I dataset, it is found 
that EARR (TGRASP, FCGRASP) = 1.0002 is 
greater than EARR (FCGRASP, TGRASP) = 
0.9997. So, we can say that TGRASP is better 
than FCGRASP for colon_I dataset. Similarly, 
values of EARR for other datasets are found 
and depicted in Table 4. We observe that for 
six out of nine datasets TGRASP has greater 
EARR values than FCGRASP.
Comparing FFGRASP algorithm with FC-
GRASP on colon_I dataset, the EARR (FC-
GRASP, FFGRASP) value is 1.1995 which is 
greater than EARR (FFGRASP, FCGRASP) 
in value of 0.8336. Here we can say that FC-
GRASP is better than FFGRASP approach for 
this dataset. For all other datasets, on compar-
ing FFGRASP with FCGRASP, the results in-
dicate that FFGRASP is performing better than 
FCGRASP in case of seven out of nine datasets.
On comparing TGRASP with FFGRASP, ac-
cording to the EARR values found in Table 4, 
we can conclude that FFGRASP algorithm is 
statistically better than TGRASP approach in 
all the datasets except in the case of colon_I 
dataset.
NumIter and tabu tenure are the parameters 
which can control the tradeoff between accu-
racy and runtime. In our experiments, we have 
varied the size of tabu tenure from 5 to15 to 
varying the size enables us to determine how 
this parameter affects the performance based 
on runtime and accuracy. For six out of nine 
datasets there is a high positive correlation be-
tween tabu tenure with runtime and accuracy. 
This effect has been shown in Figure 4 and Fig-
ure 5 for leukemia dataset.

Figures 6 and Figure 7 depict the classification 
accuracy and runtime of one of the two class 
datasets, colon with different NumIter values. 
It was observed that by changing the value of 
NumIter, there is a change in the value of ac-
curacy and runtime. Proposed TGRASP algo-
rithm shows better results than FCGRASP in 

this dataset. Runtime of FFGRASP is less than 
that of TGRASP and FCGRASP in colon data-
set.
Figure 8 and Figure 9 depict the classification 
accuracy and runtime of a multiclass dataset, 
leukemia with different NumIter values. It de-
picts that by changing the value of the number 
of iterations, there is a change in the value of 
accuracy and runtime. So, it can be said that 
NumIter parameter affects the quality of opti-
mum.

Table 5 lists the gene accession numbers for 
some of the features obtained as the best fea-
tures in regard to maximum accuracy and min-
imum number of genes. Due to limited space 
in the table, we are not able to mention all the 
genes selected. We have mentioned only the 
top few genes which came out using the naïve 
Bayes classifier.
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Figure 6. The effect of NumIter parameter on accuracy 
on dataset colon.
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Figure 7. The effect of NumIter parameter on runtime 
for dataset Colon.
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5. Conclusion

In this paper, TGRASP and FFGRASP algo-
rithms are proposed based on GRASP method 
applied to cancer microarray data. The tabu 
search and firefly optimization algorithms 
are applied in the improvement phase of the 
GRASP method and are compared with the ex-
isting hybrid algorithm that uses hill climbing 
in the improvement phase (FCGRASP). Ac-
cording to the results obtained we can say that,  
GRASP with tabu search algorithm TGRASP 
is better or comparable for two class datasets 
in terms of all three performance parameters 
viz. accuracy, runtime and number of a selected 
subsets of features. Firefly optimization ap-
proach with GRASP (FFGRASP) has been per-
forming more efficiently for multiclass cancer 
microarray datasets than FCGRASP. We have 
also compared both proposed algorithms on a 

unified metric which has proved that TGRASP 
and FFGRASP algorithms are performing bet-
ter than FCGRASP on six out of nine and on 
seven out of nine datasets respectively. The 
other advantage of the proposed TGRASP over 
previous algorithms is that it not only improves 
the accuracy, but can also control the tradeoff 
between accuracy and runtime. It is possible 
to increase or decrease the accuracy and num-
ber of selected features by changing the value 
of the parameters NumIter and Tabu tenure. 
Comparison of FFGRASP with TGRASP on a 
unified metric, lets us decide that FFGRASP is 
performing better on eight out of nine datasets. 
In the future, we would like to explore which 
specific values of NumIter and Tabu tenure 
would be set in order to obtain an optimal num-
ber of features from a dataset.
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5. Conclusion

In this paper, TGRASP and FFGRASP algo-
rithms are proposed based on GRASP method 
applied to cancer microarray data. The tabu 
search and firefly optimization algorithms 
are applied in the improvement phase of the 
GRASP method and are compared with the ex-
isting hybrid algorithm that uses hill climbing 
in the improvement phase (FCGRASP). Ac-
cording to the results obtained we can say that,  
GRASP with tabu search algorithm TGRASP 
is better or comparable for two class datasets 
in terms of all three performance parameters 
viz. accuracy, runtime and number of a selected 
subsets of features. Firefly optimization ap-
proach with GRASP (FFGRASP) has been per-
forming more efficiently for multiclass cancer 
microarray datasets than FCGRASP. We have 
also compared both proposed algorithms on a 

unified metric which has proved that TGRASP 
and FFGRASP algorithms are performing bet-
ter than FCGRASP on six out of nine and on 
seven out of nine datasets respectively. The 
other advantage of the proposed TGRASP over 
previous algorithms is that it not only improves 
the accuracy, but can also control the tradeoff 
between accuracy and runtime. It is possible 
to increase or decrease the accuracy and num-
ber of selected features by changing the value 
of the parameters NumIter and Tabu tenure. 
Comparison of FFGRASP with TGRASP on a 
unified metric, lets us decide that FFGRASP is 
performing better on eight out of nine datasets. 
In the future, we would like to explore which 
specific values of NumIter and Tabu tenure 
would be set in order to obtain an optimal num-
ber of features from a dataset.
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