Journal of Computing and Information Technology - CIT 2, 1994, 1, 15-24 15

A Completely Parallelizable Algorithm
for the Determinant
of a Tridiagonal Matrix

A. Mahmood, D. J. Lyneh and L. D. Philipp

School of Electrical Engineering and Computer Science, Washington State University at Tri-Cities, Richland, U.S.A.

A new parallel algorithm (MIMD-PRAM class) having
parallel time complexity of log, n for computing the de-
terminant of a tridiagonal matrix is developed. The al-
gorithm is based on coupling the determinants of two
neighboring submatrix blocks. With each coupling, the
block size is increased by a factor of two until the en-
tire determinant of an n x n matrix is found by the final
coupling of two 7 sized blocks. It is shown that the deter-
minant of an n x n tridiagonal matrix can be computed
in (3logyn — 2) parallel steps with a maximum paral-
lel requirement of 7(%) + 3 processors. The algorithm

achieves linear speedup as the number of processors is
increased.

Keywords: Determinant, Tridiagonal Matrix, Parallel Al-
gorithm, MIMD, PRAM

1. Introduction

Tridiagonal matrices appear in many practical
problems such as interpolation by cubic splines,
the solution of two-point boundary value prob-
lems by finite differences, and the solution of
certain partial differential equations [1]. An-
other application where tridiagonal matrices are
encountered is in computing the eigenvalues of
a banded matrix. The eigenvalues are often
determined by first reducing a banded matrix
to tridiagonal form, and then computing the ei
genvalues [2,3]. Recently, the use of tridiag-
onal matrices was demonstrated in the design
of special digital-filter structures [5] which also
involves computation of the determinant.

The most efficient way of computing the deter-
minant of a matrix on a single processor com-
puter is by using LU factorization, and then

multiplying the diagonal elements of the upper
triangular matrix [4,6], i.e.,

A=LU
det(A) = [[ Ui
=1

The value of a determinant can vary a great deal.
For instance, multiplying A by a scalar « yields
o’ det(A). Therefore, the above method re-
quires greater accuracy in the computation of
the U;;. In order to compute the determinant
of an n x n tridiagonal matrix, this method re-
quires 4(n — 1) floating point operations (flops),
where 3(n — 1) flops are for the LU decompo-
sition and (n — 1) flops are for multiplication of
the n diagonals.

On a parallel machine, the drawback in using
LU decomposition for a tridiagonal matrix is
that the decomposition is inherently sequential
and so it still requires 3(n—1) steps. That s, the
determinant of an n x n tridiagonal matrix will
be computed in 3(n — 1) + 1 steps on a parallel
machine, since the product of U;; terms can be
carried out concurrently with the computation
of LU decomposition.

The amount of parallelism in the computation
of the determinant of a tridiagonal matrix can
be improved if an expansion is carried out in
terms of the minors of the determinant. Un-
fortunately, this results in a very large number
of terms, and hence requires enormous parallel
computing resources in order to optimize the
number of steps. In the expansion by minors,
the exact number of terms that appear in the de-
terminant of a tridiagonal n x n matrix follows



16 A. Mahmood, D. J. Lynch and L. D. Philipp: A Completely Parallelizable Algorithm. . .

a Fibonacci sequence and is given by
1 1+ /5y ntl 1 — +/By\ntl
n=57) -]
V5 2 2
where each term has n factors. Hence, the de-
terminant can be computed in log,[nT},] steps
if 5T}, processors are available. For example,
if n = 100, then the determinant can be com-
puted in 77 steps requiring 57T, ~ 6.4 x 102
processors. Obviously, this approach is imprac-

tical. A practical and highly efficient approach
is developed in the next section.

2. Decomposing the Determinant of a
Tridiagonal Matrix

A parallel algorithm for evaluation of the deter-
minant of a matrix can be developed by using a
divide and conquer method based on partition-
ing. Consider the block partitioning of a matrix
into four submatrices:

1= 4 ®

Al2
A

The determinant of A is given by [7]

det(A) = det(A11) x det(B) ()
where

B = Ay — Ay X A]_ll x Aqa. 3)

The special case where either of the antidiago-
nal submatrices A1y or Ajq is zero is next used
to define decoupled submatrices:

Two submatrices P and @) of size p X p and
q X g, respectively, belonging to a matrix A of
size n X n, where n = p + ¢, are decoupled if
A can be partitioned such that

Ann=P~P Axp=0Q
and either
Au = OorAgl =

Theorem 1. The determinant of a matrix com-
prised of two decoupled mairices is given by
the product of the determinant of the decoupled
submatrices.

PROOF. Since A1y = O or Ay = O, B =
A2y = @ in equation (3). Thus, from equation
@)

det(A) = det(P) x det(Q) 4)

O

A more interesting situation arises when consid-
ering the coupling of submatrices P and () by
a small overlapping submatrix C. An example
of coupled submatrices is shown in Fig. 1.

let1az -+ a1

P 0

a1

A1k C
. i1 Ak k—1| Qkk | Ok k+1T—
Ap41 k (Ck+1 k+1|[0k+1 k42" " Qk+ln
k42 k+1 o
0 : Q
L Ay k+1 Gnn |

Fig. 1. A matrix with coupled submatrices

A tridiagonal matrix can be considered a cou-
pled system where the submatrices P and () are
themselves tridiagonal. The matrix shown in
Fig. 2. is an example of a tridiagonal matrix de-
composable into smaller coupled submatrices.

P ra1l a1z 0 0
A= az1 | 22 | A234 C

0 |a32|a3s|as
0 0 a43 Q447 Q

Fig. 2. A 4 x 4 tridiagonal matrix

The determinant of such a coupled system can
be expressed in terms of the determinants of the
decoupled blocks and a coupling product term.
In this example
det(A) = a11(ax(a3zas — azqaq3)
— ax(azag — 0))
— a12(a21(a33044 — a34043) — a23(0))

()
= (a11a22 — a12021)(a33044 — A34043)
— (@11044023032)
— det(P) det(Q)
— Cofactor Py, Cofactor Q11a23a32 (6)
— det(P) det(Q)
— CouplingProduct(P, Q) @)

Thus the determinant of matrix A is given by
the product of the determinants of the decoupled
blocks P and @ less a coupling product term.



A. Mahmood, D. J. Lynch and L. D. Philipp: A Completely Parallelizable Algorithm. . . 17

a11 @12 0 1
a1’
0
g1k
A= |0 Gkk—1] Gkk | Gkt
Okt b |Qk+1 k+1|Qk+1 k42 0
Q42 k+1
0
Un—1n
L 0 Opn—1 Gnn

Fig. 3. Ann x n tridiagonal matrix with coupled submatrices

The coupling product involves the anti-diagonal
terms in the coupling block C and cofactors of
the coupled elements of P and (. Theorem 2
states the general case for tridiagonal matrices

(Fig. 3).

Theorem 2. Let A be an n X n tridiagonal
matrix, consisting of two decoupled blocks,
P, a k x k tridiagonal matrix, and @), an
(n — k) x (n — k) tridiagonal matrix, and a
coupling block C;n > 4;2 < k <n — 1. The
determinant of A is then

det(A) = (det(P))(det(Q))
— (Cofactor Py )(Cofactor Q1) x
X (akke1)(2ps1k)  (8)

where Cofactor A;; = (—1)" det(M;;(A)).
M,;(A) is the minor matrix of a;;, that is, the
matrix formed by elimination of the i*" row and
4t column of A.

PROOF.. Using a cofactor expansion for column
k + 1in A (Fig. 3.), the determinant of A is

det(A) = ajk+1(Cofactor Ag k1)
+ ak+1 k41 (Cofactor Agi1gs1)
+ ag42 k41(Cofactor Aginks1) (9)

Each of the cofactors is determined separately
and then substituted into (9).

Cofactor Ay 41 =
0
My (P) 0
0
:(-—l)x Ak—1k
0 - Oagk@rsrksz 0 -0
0
0 : M (@)
0
(10)
where | | = det( )

Applying Theorem 1 to relation (10) with A1y =
My (P) yields

Cofactor Agp+1 = (—1)(ak+1%) ¥

x (Cofactor Py )(Cofactor Q11) (11)
Similar application of Theorem 1 yields
Cofactor Agi1 ket
= (det(P))(Cofactor Q11) (12)
and
Cofactor Agio k41
= (det(P))(Cofactor @12) (13)

Using relations (11), (12) and (13) in (9) yields
det(A)=|[(ag+1 k+1)(Cofactor Q11)
+(aks2x+1)(Cofactor Qq2)] det( P)
—(akﬂk) (akkﬂ)((}ofactor Pkk)(Cofactor Qll)
=det(Q) det(P)— CouplingProduct(P, Q)
O



18 A. Mahmood, D. J. Lynch and L. D. Philipp: A Completely Parallelizable Algorithm. . .

3. Parallel Algorithm for the Determinant
of a Tridiagonal Matrix

Theorem 2 relates the determinant of a tridi-
agonal matrix to determinants of submatrices
within it. This provides a natural mechanism
for a divide and conquer approach to the calcu-
lation of a determinant by parallel evaluation of
determinants of submatrices. Equivalently, the
evaluation of a determinant can be viewed as
a bottom-up process, constructing the determi-
nant of a matrix from determinants of smaller
submatrices that are computed in parallel.

The algorithm presented in this section de-
scribes how to boot-strap from the 7 determi-
nants of 2 x 2 matrices to the resultant deter-
minant of an n X n matrix in log, n steps. For
sake of simplicity in describing the algorithm,
it is assumed that n is a power of 2. A general
program is provided in the appendix which can
compute the determinant of a tridiagonal matrix
for arbitrary size n.

In the algorithm that follows, det[¢][] denotes
the determinant of the j x j submatrix whose up-
per, leftmost element is a;; (i.e., the first brack-
eted index indicates the starting element and
the second indicates the size of the submatrix).
For example, the determinant of block ¢} in ma-
trix A of Fig. 2. will be denoted as det[3][2].
Similarly, CP[i][j] denotes the coupling prod-
uct required in the computation of det[¢][]. The
algorithm is described in terms of C language
constructs and thus the row and column num-
bers startat 0. The tridiagonal matrix is assumed
to be stored in array A[n][3] with the lower diag-
onal in column 0, the center diagonal in column
1, and upper diagonal in column 2 of A.

Algorithm:

for (i =0; i <mn; 1i=1+1)

{ det[i][0] = 1.0; det[iJ[1] = A[i]0[11; }

for (i =0; i <n; i=1+ 2) /*

For a given block (submatrix) of size B,
det[¢][B] is computed by the application of The-
orem 2 as,

det[i][B]=det[s] [g] %

BB
x det [z’+5} [5] — CP[{][B]
where B is a power of 2 and i is a positive mul-
tiple of B. The coupling product CP[:][B] in

above expression is computed as,
; . B . B
CP[i][B]=A [3-1—5—1] [0] x A [@+5—1] 2]

T8 . B B
><det[z][2 1} xdet[z—l— 5 +1] [2 1]
Now if det[i][B] is to be coupled to a succeed-
ing submatrix of size B to form a larger sub-
matrix of size 2 * B, then the det[s][B — 1] is
required in the coupling product term for com-
puting det[s][2 * B]. Note that in the compu-
tation of det[¢][B — 1], CP[i][B — 1] requires
det[i][B/2—1] and det[i + B/2+1][B/2—2].
Similarly, for coupling of det[i][B] to a pre-
ceding submatrix of size B, det[s + 1][B — 1]
is required. The coupling product computa-
tion for det[i + 1|[B — 1] will in turn need
det[i + 1][B/2 — 2. In short, for a given block
size B, four different determinants are com-
puted, i.e.:

det[i + 1][B — 2].
det[i][B — 1]
det[i + 1][B — 1]
det[:][B]

where det[i 4+ 1][B — 1] and det[i + 1][B — 2]
will be used to couple to a preceding block;
det[i][B — 1] and det[i + 1][B — 2] will be used
in coupling to a succeeding block, and det|[i][ B]
will be used in det[:][2 x B|.

/% initialization */

forall =/

det[i][2] = A[i][1] = A[i+1]1[1] - A[i][0] = A[il[2] ;

/* endsync */
B=4,; hB=2;
while(B < n)

/* B = current block size, hB= half block */



A. Mahmood, D. J. Lynch and L. D. Philipp: A Completely Parallelizable Algorithm. . . 19

{

/*---parallel step 2, 4,...-coupling products for next step*/

for (i =0; 1 <n; i=1i+ B)

{ /+ parbegin =/

/* forall */

CP[i+1][B-2] = A[i+hB-1][0] * A[i+hB-1][2] *
det[i+1] [hB-2] * det[i+hB+1][hB-2];
CP[i][B-1] = A[i+hB-1]1[0] * A[i+hB-1]1[2] *
det[i] (hB~1] * det[i+hB+1] [hB-2];
CP[i+1] [B-1] = A[i+hB-1][0] * A[i+hB-1][2] =
det[i+1] [hB-2] * det[i+hb+1] [hB-1];

CP[i][B] = A[i+hB-1][2] * A[i+hB-1][2] =*

det[i] [hB-1] * det[i+hb+1] [hB-1];

/* parend x/
}
/* endsync x/

/*---parallel STEP 3, 5,
for (i =0; i <n; i=1i+ B)
{

/* parbegin x/

....determinants

/* forall */

det[i+1] [B-2]= det[i+1] [hB-1] *det[i+hB] [hB-1] - CP[i+1][B-2];

det[i][B-1] = det[i] [hB] * det[i+hB][hB-1] - CP[i][B-1]

det[i+1] [B-1] = det[i+1][hB-1] * det[i+hB][hB] - CP[i+1]1[B-1];
det[i][B] = det[i] [hB] * det[i+hB][hB] - CP[i][RB] ;

/* parend */
}
/* endsync */

hB=B; B=3B=x* 2 ;
} /% end while */

CP[0] [n]= A[n/2-11[0] * A[n/2-1][2]*

det[0] [n/2-1] * det[n/2+1] [n/2-1];
det [0] [n]l= det[0] [n/2]*det[n/2] [n/2] - CP[0][n]; /* STEP log2n */

The above algorithm can be run on an MIMD-
shared memory (PRAM) machine. The con-
structs needed for a parallel processor imple-
mentation are indicated in boldface within the
comment fields. These parallel constructs, i.e.,
forall, parbegin, parend and endsync, are gen-
eral [8] and can be changed to the exact syntax
required by a given parallel language. The forall
construct indicates parallel execution of the dif-
ferent iterations of the for loop; parbegin and
parend indicate a parallel block of statements;
endsync provides the barrier synchronization
[9] to synchronize the sequencing of parallel
steps.

Although the algorithm above is presented for
matrices which are a positive power of 2 in size,
Theorem 2 is general, and thus the algorithm can
be easily modified to compute the determinant
of any size matrix. As an example, the determi-
nant of a 3 x 3 tridiagonal matrix is computed

as,
P

a11 app| O
az (a5 | anal-C

T |
0 {ax | @k




20

A. Mahmood, D. J. Lynch and L. D. Philipp: A Completely Parallelizable Algorithm. . .

a1 apz| O 0 0 0 0 0 7 1 3/]0 00 0 0 07
az | ax | a3 | O 0 0 0 0 2141110 0 0 0 O
0 lamp|axz|ay]| O 0 0 0 013(2|5/0 0 0 O
0 0 |aq3|agq |asas| O 0 0 10 0]4]8]2]0 0 0
0 0 0 |asy|ass | asg| O 0 100 BT 810 b
0 0 0 0 |ags |aes |ag7]| O 00 0 062110
0 0 0 0 0 a6 | 477 | A78 0 00 0 0[1[4]3
| 0 0 0 0 0 0 |agr asgs |l L 00 000 0|2 5]
D[l][2 Cl1][4]=24  DPBIRJ=—4  D[5|2=—16  C[S][4]=35 D[7][2] 14 Stepl
D[1][4]=—16 C[1][8]=—966 111 L] . SRR Step 2
D[1][8]=5110 Step 3

Fig. 4. An example showing the application of the algorithm from Section 3 to an & x 8 tridiagonal matrix

det(A) = det(P) x det(Q)
— CouplingProduct(P, Q)
— (a11a22 — a12a71) X (a33)
—ag3 X a3 X ay; X1

Note that in order to determine the coupling
product, the cofactor Py of P is aq1 and cofac-
tor Q11 is 1.

The appendix lists a modified version of the
above algorithm such that parallelism is im-
proved in terms of floating point steps. Analy-
sis of this program indicates that 3 log,(n) — 2
floating point steps are required to compute the
determinant with a maximum parallel require-
ment of 7(%) 4 3 processors in parallel step 3.

4. Results

An example is presented in Fig. 4. to show the
application of the algorithm of Section 3 to com-
puting the determinant of an 8 x 8 tridiagonal
matrix. In the figure, D refers to detand C refers
to CouplingProduct. Fig. 5. shows a graph re-
lating the execution time, in terms of floating
point steps for computing the determinant of a
262,144 x 262, 144 tridiagonal matrix, to the
available number of processors. When using

one processor, the execution time is 2,359,270
floating point steps. As the number of proces-
sors is increased (up to ~ 10%), the computation
time decreases by a factor equal to the number
of processors used. Theoretically, the minimum
time is achieved when 7(%) + 3 = 458755 pro-
cessors are employed yielding a total execution
time of 3log,n — 2 = 52 steps. If the num-
ber of processors is increased beyond 7(%) + 3,
there is no improvoment in execution tlme

Since the dataflow graph for the computation of
the determinant by the algorithm of Section 3
follows the pattern of a binary tree, the speedup
in execution time is linear (within 5%) as the
number of processors, p, is increased up to
plog,p < %. As indicated by Figure 5, the
algorithm achieves ideal performance in terms
of speedup for a wide range of number of pro-
cessors (i.e., when the number of processors is
< 10* in this example). Such properties of a
parallel algorithm are highly desirable and an
algorithm having the linear speedup property is
referred to as maximally parallelizable [9].

It should be noted that the number of float-
ing point operations for sequential processing
of this algorithm is O(n) and is roughly twice
the number required by the LU decomposition
approach for computing the determinant. The
number of sequential floating point operations



A. Mahmood, D. J. Lynch and L. D. Philipp: A Completely Parallelizable Algorithm. . .

21

YT T T TTTTT] T ™T T Y

10° —a—— actual fl pt steps 3
] ideal fl pt steps |
S s '
»n 10¢ E
- ; ]
.E [ 1
o
& 10% E
-] : :
£ g
[
© 28 ~
8 107 :
Ly F 1
10%F _ E
E n = 262,144 3
1 1d " 4 4 1 lilE
10 " 2 2 a1l 1 PO 1 | 13 g saanl n R U O T
10° 10' 102 10° 10*

10°

Number of Processors

Fig. 5. Plot of execution time vs. number of processors for a tridiagonal matrix

is 9n — 26 for the program in the appendix, as
compared to 4(n — 1) for the LU decomposition
approach.

5. Conclusions

An algorithm for efficient parallel computation
of a tridiagonal matrix has been developed in
Section 3. This algorithm is based on a new
formulation of the determinant in terms of the
determinants of two coupled submatrices. In
terms of floating point operations, the deter-
minant of an n x n tridiagonal matrix can be
computed in 3log, n — 2 steps with 7(%) +98
number of processors. The algorithm yields a
linear speedup as the number of processors, p,
is increased (for p < n).

Since this algorithm does not involve any di-
vision operations, it can be applied to symbolic
evaluation of determinants involving polynomi-
als as matrix elements. Also, the roundoff er-
rors are slightly improved due to the absence of
division.

The idea of coupling submatrices is new and
may have potential in parallelizing other ma-
trix problems. In particular, the algorithm of
Section 3 can be extended to computing the de-
terminant of general banded matrices provided
the coupling theory is established for the case
when the coupling block is larger than 2 x 2.
Work is continuing on the determinant of a gen-
eral banded matrix and other matrix problems
using this approach.

Acknowledgements

This work was supported in part from a grant
from Electric Power Research Institute (EPRI)
under contract number RP 1570-26. Construc-
tive comments from an anonymous reviewer

were helpful in refining discussions in Sections
1 and 2.



22 A. Mahmood, D. J. Lynch and L. D. Philipp: A Completely Parallelizable Algorithm. . .

Appendix

D compute_determinant () —==========—m—————e */

/* A parallel algorithm for the determinant of a Tridiagonal matrix.
The matrix is stored as: lower diagonal in Oth, diagonal in 1st,
upper diagonal in 3rd column */

float compute_determinant(n,A)
int n; float A[][3]:
{
float pD2[max_size] , pD4[max_size], pD[max_size][4], pClmax_size] ;
/* these arrays store partial determinants and coupling products */

float D[max_size][4], Clmax_size][4] ;

/* D and C are for storing the intermediate determinants and the
coupling products respectively. The second dimension is for
storing: [i]1[0] det[i+1] [B-2] or CP[i+1] [B-2]

[i1[1] = det[i]l[B-1] or CP[i][B-1]
[i1[2] = det[i+1]1[B-1] or CP[i+1][B-1]
(11[(3] = det[i][B] or CP[i] [B] */

int i, B, hB ; /* B = current block size, hB = half block size %/

fHe=me=— parallel floating point STEP 1---------------—----——- */
/* parbegin x/
for (1 = 0; i <mn; i=1i+1) /x forall »/

pCli]l = A[i1[0] = A[4i]1[2] ; /* antidiagonal products */

for (i =0; 1 <n; i=1i+ 2) /* forall =/

pD2[i] = A[iJ[1] * A[i+1][1]; /* partial 2x2 determinant */
/* parend x/
/* endsync */

/* parbegin */
for (i = 0; i < (n-1); i =i + 2) /* forall */
D[i1[3] = pD2[i] - pC[i] ; /% ----2x2 determinants */
for (i =0; i < (n-3) ; i =1 + 4) /+ forall =/
pD4[i] = A[i][1] * A[i+3]([1]; /* partial 4x4 determinant */
/* parend =/
/* endsync */

[Hm————— parallel STEP 3-—--—-———=——=——————-———mmmm oo */
/* coupling products and partial determinants for next step  */
/* parbegin */

for (i = 0; i < (n-3); i = i + 4) /* forall »/

{ /» parbegin =/

C[il[0] = pCli+1] ; pD[il[0]= A[i+11[1] * A[i+2][1];
Clil[1] = pCli+1] = A[iJ[1]; pD[il[1]= D[i1(3] = A[i+2]1[1] ;
C[i][2] = pCli+1] = A[i+3]1[11; pD[il[2]= A[i+1]1[i] * D[i+2] [3];
C[i1[3] = pCl[i+1] = pD4[i] ; pD[i][3]= D[i1[3] * D[i+2]1[3];
/* parend x/

}



A. Mahmood, D. J. Lynch and L. D. Philipp: A Completely Parallelizable Algorithm. . .

switch(n-i) {
case 1: /+ parbegin */
Clil[2]= 0; C[i]l[3]= O;
pD[il[2]= 1; pD[il[3]1= A[il[1];
/* parend */ break ;
case 2: /* parbegin */
Cl[il[2]= 0 ; C[il[3]= pCli+1] ;
pD[il1[2]= A[i+1]1([1]1; pD[il[3]= A[il[1]* A[i+1][1];
/% parend */ break ;
case 3: /* parbegin */
Cl[i]J[2]= pCli+1]; C[i]1[3]= pCl[i+1]#* A[i][1];
pD[i][2]1=A[i+1] [1]1*A[i+2]1[1]; pD[i] [(3]=D[i] [31=A[i+2][1];
/* parend */ break ;
}
/* parend x/
/* endsync */

B=4; hB=2; /%xB = current block size, hB= half block */

while(B < n) {

/*---parallel STEP 4, 7, 10, ....(determinants)--------—======= */
for (i =0; i <n; i =1+ B) /* forall =/

{ /* parbegin x
D[il[0] = pD[i][0]
D[i][2] = pD[i][2]

/* parend x/
} /* endsync */

clil[0] ; DILil1[1]
clil[2] ; DI[i1[3]

pp[il[1] - C[i1[1] ;
pD[i1[3] - C[i][3] ;

K e e e e */
hB=B ; B=Bx* 2 ;
if (B < n) {
/*-—--parallel steps 5,6, 8,9, ... .-=—--—-mm—mmmmnmu */

/% coupling products and partial determinants for next step */
for (i = 0; 1 < (n-hB); i = i + B) /x forall x/
{ /» parbegin */
CLi][0]=pCl[i+hB-11*D[i} [0]*D[i+hB] [0];
pD[i][0]1=D[i] [2]*D[i+hBI[1];
C[il [1]=pC[i+hB-1]*D[i] [1]*D[i+hB] [0];
pD[i][1]1=D[i] [3]1*D[i+hB][1];
Cli] [2]=pCli+hB-11*D[i] [0]*D[i+hB] [2];
pD[i] [2]=D[i] [2]1*D[i+hB][3];
C[i] (3]=pC[i+hB-1]*D[i] [11*D[i+hB] [2];
pD[i]1[3]1=D[i] [3]1*D[i+hB] [3];
/% parend =/
} /* endsync =/

/* parbegin =/

clol[3] = pC[B/2-11* D[0][1]= D[B/2]1[2]; pD[0](3]1= D[0][3]1* D[B/2][3];
/* parend =/

return(ApD[0] [3] - C[0][3]) ; /* STEP 3log2n-2 */



24 A. Mahmood, D. J. Lynch and L. D. Philipp: A Completely Parallelizable Algorithm, . .

References

[1] GERALD, C.F. , and P. O. WHEATLEY, Applied Nu-

merical Analysis, Addison-Wesley Publishing Com-

pany, 1985.

[2] PISSANETZKY, SERGIO, Sparse Mairix Technology,
Academic Press, Inc., 1984, pp. 207-214.

[3] SmiTH, B. T., et. al., “Matrix Eigensystem Routines
— EISPACK Guide”, Lecture Notes in Compuier
Science, Vol. 6, 2nd Ed. Springer-Verlag, Berlin,
1976, p. 532.

[4] DUFF, L. S., A. M. ERISMAN, and J. K. REID, Direct
Methods for Sparse Matrices, Clarendon Press,
Oxford, 1986, pp. 81-82.

[5] SARCINELLL, M. D. and P. 5. R. DINIZ, Tridiagonal
State-Space Digital-Filter Structures, IEEE Trans-
actions on Circuits and Systems, Vol. 37 no. 6, June
1990, pp. 818-824.

[6] GoLUB, G. H., and C. F. VAN LoAN, Matrix Compu-
tations, The Johns Hopkins University Press, 1983,
p. 56.

[7] KALATH, T., Linear Systems, Prentice-Hall, 1980,
p. 650.

[8] JORDAN, H. F.,, A Special Purpose Architecture for
Finite Element Analysis, Proceedings of the 1978
International Conference on Parallel Processing,
pp. 263-266, 1978,

[9] ALMASI, G. S. , and A. GOTTLEIB, Highly' Parallel
Computing, The Benjamin/Cummings Publishing
Company, Inc., 1989, pp. 115-167.

Received: Semptember, 1993
Accepted: January, 1994

Contact address:

School of Electrical Engineering
and Coemputer Science,
Washington State University

at Tri-Cities,

Richland, WA 99352, U.S.A.

AUSIF MAHMOOD is currently an assistant professor in the School of
Electrical Engineering and Computer Science at Washington State Uni-
versity Tri-Cities. His rescarch interests are in parallel algorithms and
architectures, and CAD for VLSI,

DONALD J. LYNCH is an associate professor in the School of Electri-
cal Engineering and Computer Science at Washington State University
Tri-Cities. His research interests are in numerical methods, parallel
algorithms and software testing.

LEE D. PHILIPP is a professor in the School of Electrical Engineering
and Computer Science at Washington State University Tri-Cities. His
research interests are in non-destructive evaluation by Eddy currents
and numerical methods.




