Journal of Computing and Information Technology - CIT 3, 1995, 2, 67-82 67

Modeling Trusted Processing

Architectures

for Mandatory Access Control

Thomas H. Hinke

Computer Science Department, University of Alabama in Huntsville, Huntsville, U.S.A.

This paper introduces a trusted architecture graph (TAG)
model, which can be used for modeling the semantics
of trusted architectures designed to enforce mandatory
access control. The TAG permits the modeling of
various types of trusted functions, storage functions and
processing functions and their interconnection through
various types of links. The value of the TAG and the
associated TAG notation is that they provide a uniform
way of representing different trusted architectures that
may be described either informally in a natural language,
or formally (but voluminously) described in design doc-
uments or programming code. By providing a concise
yet expressive description of the architecture, the various
features of one architecture can be readily compared with
another’s. This paper provides some examples that illus-
trate how various trusted database management system
architectures can be formulated in the TAG notation such
that their significant differences can be readily observed.

Keywords: Computer Security, Security Architectures
Modeling

1. Introduction

This paper describes the semantics and model-

ing constructs of the trusted architecture graph
(TAG), which can be used to provide a high-
level description of hardware/software archi-
tectures that are trusted to enforce a mandatory
access control security policy. The TAG no-
tation provides a uniform notation for describ-
ing various trusted architectures that have been
presented in the literature. By being able to de-
scribe these architectures in a common notation,
crucial architecture issues, that distinguish one
architecture from another, can be compared and
contrasted.

The TAG model is more than a pictorial repre-
sentation to accompany a textual description of

an architecture. The TAG model can be used to
describe the top-level security architecture of a
trusted system with the TAG constructs taken
from a canon of trusted architecture compo-
nents. The TAG model provides sufficient detail
so that fundamentally distinct security architec-
tures can be distinguished from each other. The
main architectural features that the TAG nota-
tion is intended to describe are the gross division
of trusted and untrusted software and the nature
of the access control/flow control functions to
be provided by the trusted functions. TAG is
not used to express the functional capability of
the untrusted components other than in natural
language labels or description. TAG is also not
intended to provide a notation for detailed de-
sign. The description of the detailed design is
left to other approaches, such as formal speci-
fications or descriptive top-level specifications
(National Computer Security Center, 1985).

The remainder of this section will describe the
security policy addressed by TAG, introduce
trusted system architectures and provide some
background on related research. Following the
conclusion of this introductory material, Sec-
tion 2 describes the semantics of the TAG con-
structs, with Section 3 presenting a graphical
notation. Section 4 demonstrates the use of
TAG for describing a number of trusted archi-
tectures that have been described in the literature
and presents the results of an architecture-level
security analysis of the various database man-
agement system architectures described in TAG.
Section 5 concludes with a summary of the con-
tributions and conclusions of this research.

68

T. H. Hinke: Modeling Trusted Architectures

1.1. Mandatory Security Policy

This paper describes the modeling of the hard-
ware and software architectures of systems trus-
ted to enforce a mandatory access policy. The
mandatory access policy is one of the two se-
curity policies that are commonly recognized
within the security community and by such
trusted system evaluation groups as the U.S.
National Computer Security Center (National
Computer Security Center, 1985). The other
major policy is the discretionary access policy.
One of the reasons for focusing on the manda-
tory policy is that it is the most critical of the
two and the one that affects the selection of an
architecture. '

Mandatory policy is based on hierarchically or-
dered security levels such as unclassified <
confidential < secret < top secret, and non-
hierarchically ordered categories, which may be
associated with particular types of intelligence,
projects or technology. Together these form an
access class. Access classes are related by the
dominates relationship. A set of categories A is
said to dominate a set of categories B if the set
of categories associated with B is a subset of the
set of categories associated with the categories
of A. An access class X is said to dominate an
access class Y if the set of categories associated
with X dominates the set of categories associ-
ated with Y and the hierarchical component of X
is greater than or equal to the hierarchical com-
ponent of Y. An access class X is said to strictly
dominate an access class Y if X dominates Y
but is not equal to Y.

A model of a mandatory access policy that has
been found acceptable by the U.S. National
Computer Security Center is the Bell and La-
Padula security model (National Computer Se-
curity Center, 1985; Bell & LaPadula, 1976).
In this model a subject (which provides the ac-
tive locus of control) can read an object (which
models the passive storage of data or programs)
if the access class of the subject dominates the
access class of the object. However, to pre-
vent the inadvertent or intentional (via mali-
cious code) writing down of sensitive data, the
Bell and LaPadula model requires that a sub-
ject can write into an object only if the access
class of the object dominates the access class
of the subject. This means that a subject can-
not write down in security level. This prevents

malicious code that may exist within programs
being executed by a user from writing data into
an object where it could be read by some sub-
ject not cleared to access the original data. This
no-write-down property is called the *-property.
For the purpose of describing the TAG model
the Bell-L.aPadula model will be used as our
model of a mandatory access policy.

It should be noted that the Bell-LaPadula model
is primarily concerned with unauthorized dis-
closure of data, although limited protection
against unauthorized modification is provided
by write controls. The model does not address
the prevention of unauthorized denial of ser-
vice. In keeping with the disclosure nature of
current security architectures, this paper will
focus primarily on the disclosure issues in the
architecture.

1.2. Security Architectures

A fundamental mechanism that should be present
in all security architectures that purport to pro-
vide security with a high level of assurance is the
security reference monitor (Anderson, 1972).
A security reference monitor must satisfy the
following three conditions:

1. It must be invoked on every access by a
subject to an object;

2. It must be protected from unauthorized
modification, and

3. It must correctly enforce a desired security
policy.

Systems are called “trusted” when the combina-
tion of their software and hardware architectures
are trusted to enforce a desired security policy,
such as Bell and LaPadula. A trusted system is
designed with a combination of trusted and un-
trusted software. Depending upon its role in the
system, software is called “trusted” if it satisfies
one or both of the the following criteria:

1. It is trusted to enforce the desired security
policy, and

2. It is trusted to be nonmalicious

T. H. Hinke: Modeling Trusted Architectures

69

In most trusted architectures, trusted software
enforces the mandatory and discretionary secu-
rity policy. The trusted software associated with
a trusted system architecture is called the trusted
computing base (TCB) (National Computer Se-
curity Center, 1985). Software that does not en-
force a security policy, but is non-malicious, can
be used to enhance some security architectures,
as is noted in the crypto-seal database example
that will be presented in this paper.

The basis for trust in a system is provided by
a combination of structuring the architecture to
minimize the amount of required trusted code
and ensuring that the required trusted code has
appropriate assurance technology applied to it
to validate its trust. This assurance technol-
ogy can range from good software engineering
practices to formal specification and verifica-
tion techniques. In contrast, untrusted software
can be assumed to perform any activity — au-
thorized or unauthorized — with the effect of the
activity constrained by the system architecture
so that no unauthorized disclosure will result.

The third component of a trusted architecture
is hardware, which is normally assumed to be
trusted at least to the extent that trusted soft-
ware is trusted. The evaluation of hardware
trust is beyond the current trusted system evalu-
ation criteria (National Computer Security Cen-
ter, 1985).

Because the development of trusted software
can add a significant amount of additional assur-
ance requirements and cost beyond that associ-
ated with untrusted software, a strong goal in the
development of trusted systems is to minimize
the amount of trusted software. The objective is
to use a small amount of trusted code to provide
the trust for a large amount of untrusted code.
-One of the techniques used to permit trusted
code to control large bodies of untrusted code is
to use multiple instantiations of untrusted code
for each subject or security level. This con-
cept was first applied to secure database man-
agement systems by Hinke and Schaefer in a
design which based all of the DBMS security
on the operating system security kernel, leaving
the DBMS code with no security enforcement
role for mandatory security (Hinke & Schae-
fer, 1975; Woods Hole Summer Study, 1983).
This multiple instantiation approach was con-
tinued in the SeaView secure DBMS prototype

for mandatory enforcement, but with the mod-
ification that the DBMS code provided discre-
tionary security enforement. (Lunt & Hsich,
1990; Lunt & Boucher, 1994) By replicating
the untrusted software among subjects and en-
suring that there is no communication between
subjects except as provided by the trusted soft-
ware, the untrusted software cannot serve as a
conduit of data flow between different subjects
(Pfleeger, 1989). The next section will describe
previous work that is related to modeling trusted
systems.

1.3. Previous Work

The first known security model was proposed
by Weissman (Weissman, 1969) and modeled
only the security policy to be enforced in a sys-
tem. This work was followed by contributions
of the reference monitor and the mandatory pol-
icy of Bell and Lapadula which have already
been noted. These form the basis for the U.S.
Department of Defense Orange Book (National
Computer Security Center, 1985). TAG is in-
tended to model reference-monitor-based archi-
tectures that enforce a Bell and LaPadula-type
security policy.

Early examples of architectural modeling were
presented in the Woods Hole report on secure
database management systems (Woods Hole
Summer Study, 1983) and the secure database
management system design methodology work
of Hinke (Hinke, 1986). In these early papers,
various secure architectures were represented
by boxes. However, there are little or no se-
mantics attached to the boxes.

TAG corrects this deficiency by providing graph-
based modeling concepts that provide security-
oriented semantics. While there have been
many such graph-based semantic models such
as the ER-model of Chen’s (Chen, 1976) or
conceptual graph models of Sowa, based on the
work of the 19th-century work of Charles Peirce
(Sowa, 1984), none of this work was oriented
toward security semantic modeling. A secu-
rity orientation for the modeling of data was
provided by Smith (Smith, 1990), who devel-
oped a graph-based language for representing
the security semantics of fine-grained data such
as would be stored in a secure database man-
agement system (DBMS), but this work did not
address architecture modeling. TAG is unique

70

T. H. Hinke: Modeling Trusted Architectures

in its orientation to the modeling of security
architectures.

2. Trusted Architecture Model

The TAG model uses the following six types
of objects: storage entities (SE), processing
entities (PE), processing environments (PEV),
ports (P), links (L), and various types of flow
controllers (FC). These objects are combined
to represent a TAG model of an architecture.
At the highest level of abstraction, a trusted ar-
chitecture is represented as a directed graph G
= (N, L), where N is a set of nodes and L is
a set of links. The nodes represent processing
entities, storage entities and various types of
trusted flow controllers. The links provide the
connections between the various entities. Each
of these constructs will be explained in the fol-
lowing paragraphs.

2.1. Storage Entity

The storage entity represents the passive objects
that provide persistent storage of data. In the
TAG model, storage entities are not assumed to
have any processing capability. Any processing
that is required to retrieve data from the SE is
assumed to be provided by a processing entity
or one of the trusted-flow controllers. An SE
is characterized by whether or not it contains
labeled data and the nature of the labels. An
SE that contains only unlabeled data is termed
an UD (unlabeled-data) SE, while one that con-
tains only labeled data is termed an LD (labeled-
data) SE. If the labeled data is crypto-sealed,
then this is so indicated by the TAG notion,
which will be described shortly.

2.2. Processing Entity

A processing entity models the active system
objects that perform the execution of instruc-
tions. It can be a single process, a single proces-
sor or a system comprised of multiple proces-
sors. As will be noted, a PE can be constructed
from other PE’s. When not otherwise indicated,
the PE will be composed of untrusted code. If
the PE is to perform a trusted function, then the
trusted function will be identified as a trusted
flow controller.

A processing entity can be formally modeled as
a graph PE = (N, L), where N is a set of nodes
and L is a set of links connecting the nodes.
The set of nodes is drawn from the set of ob-
jects {PEV, P, FC }, where PEV represents a set
of processing environments; P represents a set
of ports associated with the processing entity,
and FC represents a flow controller.

The processing entity can be ‘characterized by
the nature of both its internal flow policy and
of its input and output data flow. To character-
ize the dataflow policy, we assume that the PE
is partitioned into one or more processing envi-
ronments and describe the policy in terms of the
flow of data between processing environments.

Three internal flow policies are possible: un-
constrained (UF), constrained (CF) and no flow
(NF). Unconstrained flow means that there is
no security reference monitor to mediate the
flow of data between processing environments;
hence the PE provides no security protection. In
effect, this is equivalent to a PE’s having only a
single processing environment.

The constrained-flow system permits the flow
of data between different processing environ-
ments, but only under controlled conditions
that satisfy some security policy. To support
a constrained-flow policy would require that a
trusted flow controller mediate all data flow be-
tween the various processing environments and
ports within the processing entity. A constrained-
flow processing entity is capable of support-
ing the controlled sharing of data of differ-
ent sensitivities between uses with different ac-
cess privileges. The no-flow system carries the
constrained-flow to the limit by completely re-
stricting the flow of data between processing
environments.

The nature of the PE’s input and output dataflow
can be characterized in terms of the dataflow
supported by its ports, where all datatlow into
and out of a PE is assumed to flow through
a port. If the PE is to process data that is
classified at a single security level, data can
be input through a single unlabeled-flow input
(SUI) port. If the PE is to support the pro-
cessing of data at multiple security levels, there
are two input options: use multiple unlabeled-
flow input (MUI) ports or use a single multi-
level labeled-flow input (MLI) port. In a sim-
ilar way, the output of a PE can be character-

T. H. Hinke: Modeling Trusted Architectures

71

ized by whether all output flows through a sin-
gle unlabeled-flow output (SUO) port, multiple
unlabeled-flow output (MUO) ports or a sin-
gle multilevel labeled-flow output (MLO) port.
When it is not important to identify the precise
realization of the multilevel input mechanisms,
the multilevel input can be indicated as M*I,
where “*”is a “wild card” that could be a “U”
or an “L”. Similarly, multilevel output can be in-
dicated as M*O, where the precise nature of the
output ports (MUO or MLO) is not pertinent.

This section has described those characteristics
of a PE that are seen by its users, but not how the
PE is designed internally to provide such char-
acteristics. These external characteristics can
be provided through a number of different in-
ternal architectures. The basic building blocks
of these internal architectures are the processing
environment, along with a number of other com-
ponents, which include various types of trusted
components, a storage entity and various types
of links to connect these components. Each of
these will be described in the following sections.

2.3. Processing Environment

A processing environment represents a program
execution environment in which multiple pro-
cessing threads could exist simultaneously. All
data and programs within a particular process-
ing environment are accessible to all of the
processing threads that exist within the same
environment. Access by a processing thread
within one processing environment to programs
or data within another processing environment
depends upon the nature of the path joining the
two, where a path is comprised of single links
or combinations of nodes and links. If two pro-
cessing environments are directly connected by
a link then they form a single processing envi-
ronment, since links do not have any ability to
enforce an access policy. If however, all paths
between two processing environments include a
trusted flow controller, the nature of the access
will depend upon the specific type of trusted
flow controller that is used. If a processing
environment is to support the enforcement of
a security policy based on a reference monitor,
then all processing environments should be con-
nected to a trusted flow controller appropriate
for the desired policy that is to be enforced.

Since a processing environment provides at least
one execution thread, it can also be considered
a processing entity. However, we use the term
“processing environment” rather than ”process-
ing entity” when we are describing an internal
data flow property of an architecture, since it
is the access class of the processing environ-
ment that is critical, rather than the processing
capability of the entity.

2.4. Ports

A port represents the termination of links at pro-
cessing entities, flow controllers and process-
ing environments. Ports are assigned an access
class that determines the highest access class of
data that is permitted to move through the port.

Two types of ports are possible: unlabeled- and
labeled-flow. The unlabeled-flow port provides
the PE with the ability to input or output a stream
of data that is regarded as uniformly classified
at a single level — it contains no labels. Since
there are no security-relevant labels, this type of
port requires no trusted software to append or
interpret security labels.

In contrast, the labeled-flow port is capable of
handling data that contains security labels as
part of the flow. This port preserves the actual
classification of the data, thus avoiding the need
to classify all data within the flow at the high-
est access class of the flow. For input, the port
must have trusted software for interpreting the
security labels so that a trusted flow controller
is able to route the data properly. For output,
the port must have trusted software to label all
data. In addition — for both input and out-
put — the port’s trusted software must prevent
the intermixing of data with different security
levels.

2.5. Links

Links are used to interconnect storage entities,
processing entities, processing environments,
ports and flow controllers. The links are char-
acterized by three attributes: direction, label
characteristics and level composition. The di-
rection of the link indicates the direction of the
data flow that it supports. A link can be uni-
directional or bidirectional. The labeling char-
acteristics indicate whether the data that flows

72

T. H. Hinke: Modeling Trusted Architectures

through the link is labeled with a security label
or unlabeled.

The level composition gives an indication of the
security levels that provided the original source
for the data within the flow. If the original
source of the data was single level, then the
current level composition will also be single
level and indicated with by the “SL” notation.
If, however, the flow originated from multilevel
sources but does not contain labels, then the data
flow is considered to be system-high data, indi-
cated by the “SH” notation. All of this system-
high data must, however, be considered to be
classified at a security level that dominates all
of the data in the flow since (due to lack of se-
curity levels) it can no longer be separated into
its original security levels.

If the data flow is labeled and originated from
multiple security levels, then it is a multilevel
flow and indicated with the “ML” notation.
With a multilevel flow it is possible to differ-
entiate between data of different access classes
and recover the original access class labels of
the data.

The final type of link is the trusted link, which
carries data whose security semantics must be
preserved. Itis more general than the multilevel
link, since the multilevel link is assumed to con-
tain only labels which must be preserved. For
example, a trusted link would permit the trans-
fer of access control data, whose unauthorized
modifications could change a subject’s access
privileges, granting it a higher level of access
privilege than was desired. The trusted link can
be shown in two different ways. The first is to
show an explicit trusted link. The second is to
draw the components physically touching each
other, but leaving out the explicit link. This
is the approach used for the TAG architectures
shown in this paper.

2.6. Flow Controller

The flow controller mediates the flow of data
between the various processing environments or
between ports and flow controllers. All but the
degenerate null flow controller are trusted. The
trusted flow controller serves as a security ref-
erence monitor (Anderson, 1972). The trusted
flow controller (TFC) represents a component
that can impose various types of restrictions on

the flow of data passing through it. The TFC
would be implemented with trusted code.

The semantics of the various type ot TFC’s can
be specified by the nature of the flow policy that
they enforce. The flow policy can be character-
ized in terms of the access class (AC) of various
combinations of six flow attributes. The first
four flow attributes consist of processing envi-
ronments that play various roles in data flow.
These include the source of the data (source),
destination of the data (destination) and the ini-
tiator of the request for data (initiator). The
fourth role identifies those processing environ-
ments that retain any persistent memory of the
request for data (memory). The fifth flow at-
tribute is the port through which the data passes.
The ports can be distinguished as input (p_in),
output (p_out) or just (port) if there is no need
to make a distinction. The final flow attribute is
the labeled container that holds the data within
a multilevel link or entity (container). While
most of these attributes are self-explanatory, a
few words need to be said about some of these.

The container models the ability of data flows
(links) to contain data at multiple access classes.
Different containers within the data flow con-
tain data at different levels, each labeled with
the access class of the data that it contains.

The memory attribute is used to represent the
possibility that a particular flow control policy
may or may not leave some residue of a data
request at the data source. If residue is left, then
that represents a potential covert channel (an
unintended channel used to leak data in viola-
tion of mandatory policy), since the existence
of the residue alone could provide notification
that a dominant processing environment made
a data request. If the content of this residue or
the timing of the appearance of a request can
be modulated, then information can potentially
be transferred from the processing environment
of the initiator to the processing environment of
the source of the data. If the initiator’s process-
ing environment strictly dominates the source’s
processing environment, then we have a poten-
tial breach of security if Trojan horse code (ma-
licious code whose purpose is to surreptitiously
leak data out of the processing environment,
while at the same time performing some legiti-
mate functions to mask its malicious function)
can leak information from the dominant pro-
cessing environment using Trojan horse code.

T. H. Hinke: Modeling Trusted Architectures

i35

With these attributes we can now describe and
formally characterize the semantics of each of
the flow controllers to be described in the fol-
lowing sections.

Identification/Authentication (I&A)

The identification and authentication (I&A)
TFC is used to identify and authenticate the pro-
cessing entities that terminate the various links
that may be connected to a PE. The I&A com-
ponent can be characterized in terms of its sub-
ject granularity and security scope. The subject
granularity options include the complete pro-
cessing entity (E) and/or the people who are
users of that processing entity (P). If, for exam-
ple, system “A” performs E granularity authen-
tication of system “B”, this means while “A” can
authenticate the “B” system, the “A” authenti-
cation system is not capable of distinguishing
between the various users of the “B” system.

The security scope of the authentication can in-
clude just the identity of the entity and/or per-
son, or the authorized security level of the en-
tity and/or person. Identity authentication is
termed “I” authentication and level authentica-
tion is termed “L” authentication.

The 1&A TFC can be specified by indicating the
granularity and scope of the authentication that
is performed using the notation P(wx)E(yz),
where wxyz are [or L. or null. If an I&A con-
troller supports the authentication of the identity
and security level of both individual users and
the processing entity from which they are per-
forming the access, this is indicated as [&A =

P{IL}E{IL}.

For initiators emanating from single level PE’s,
the I&A TFC validates that the AC(initiator)
= AC(port), where (port) is the port assigned
to an authenticated link. For initiator requests
that come through trusted flow controllers, the
I&A TFC must ensure that the access class of
the port associated with the link is within the
permitted access class range of the requesting
flow controller.

One-Way Flow (OWF)

The one-way-flow (OWF) TFC is used to re-
strict the flow of data and associated control in-
formation to a single direction. The restriction

on the flow in the opposite direction is absolute
— no data or control information is permitted
to flow in a direction opposite that permitted by
the OWF TFC.

The OWF TFC is characterized by the following
security constraints: AC(source) < AC(desti-
nation) AND AC(memory) > AC(source) AND
AC(initiator) = AC(source).

Read Down/No Write Down (RDNWD)

The read down/no write down (RDNWD) TFC
permits a processing environment to read data
that is at a lower access class than the current
operating access class of the processing envi-
ronment. This read must be performed by soft-
ware or hardware that is trusted not to leak data
from the processing environment that initiated
the read request to any other untrusted process-
ing environment.

For software to support the RDNWD function,
it must meet one of the following two criteria.
The first is that it must be trusted in the sense that
it has undergone the necessary assurance, as de-
fined by the cognizant evaluation organization,
to ensure that it correctly enforces the desired
security constraint (i.e., not writing down in the
course of performing the read). If software does
not satisfy the first criterium it must satisfy the
second.

The second criterium is that it must be encapsu-
lated by trusted software. This latter approach,
suggested by Sandhu (Thomas & Sandhu, 1992)
for object-oriented systems, is to have the read
performed by untrusted software that is encap-
sulated and memoryless. It must be encapsu-
lated so that it cannot leak data to other un-
trusted software, that could ultimately leak data
to users within the lower processing environ-
ment. It must be memoryless so that data from
previous requests is not leaked in the results to
subsequent requests.

The RDNWD TFC is characterized by the fol-
lowing security constraints: AC(initiator) >
AC(source) AND AC(source) < AC(destina-
tion) AND AC(memory) > AC(initiator).

74

T. H. Hinke: Modeling Trusted Architectures

No-Flow (NF)

The no-flow (NF) TFC is used to totally restrict
the flow of data between two processing envi-
ronments. This models the separation between
processing environments within the NF type of
PE described previously.

The NF TFC is characterized by the following
constraints: AC(source) = AC(destination) =
AC(memory) = AC(initiator).

Unrestricted Flow (UF)

The unrestricted-flow (UF) TFC permits the un-
restricted flow of data in either direction. How-
ever, it is trusted to handle multiple flows and
not intermix them. The purpose of the UF
trusted flow controller is to serve as an interface
between a processing entity and one or more
links.

The UF TFC is characterized by the follow-
ing constraint: AC(container_in) = AC(con-
tainer_out).

Flow Reducer (FR)

The flow-reducer (FR) TFC is a variation of the
unrestricted-flow TFC in that flow is permitted
in both directions. However, the flow through
the FR is unbalanced, in that the flow in the pre-
ferred direction is unrestricted, while the flow
in the attenuated direction is highly restricted.
However, in contrast to the OWF controller, the
flow even in the attenuated direction is not at-
tenuated to zero. It can still be used to forward
control information, and thus can be used to
leak unauthorized data from one processing en-

- vironment to another.

The FR TFC is characterized by the following

security constraints: AC(initiator) > AC(source)
AND AC(source) < AC(destination) AND

AC(memory) > AC(source). As can be seen,

this characterization is identical to that of the

RDNWD TFC, except that the memory of the

transfer can exist at the access class of the

source.

Flow Splitter

The trusted-flow splitter (TFS) provides the in-
terface between multiple, unlabeled data flows
and a single labeled data flow. In one direction,
the TFS is trusted to transform one or.more
streams of unlabeled data into a stream of la-
beled data. In the opposite direction, the TFS
is trusted to transform a stream of labeled data
into one or more streams of unlabeled data. The

" TFS thus serves as a multiplexer /demultiplexer.

The trusted flow splitter (TFS) can be modeled
as a component that provides one of the follow-
ing combinations of multiple unlabeled flows
and a single labeled flow, modeled as a set of
various types of ports:

1. Unidirectional TFS that transforms a la-
beled flow into multiple unlabeled flows:
(MLI — MUO).

2. Unidirectional TFS that transforms multi-
ple unlabeled flows into a single labeled
flow: (MUI — MLO).

3. Bidirectional TFS that provides bidirec-
tional flows between a single labeled flow
and multiple unlabeled flows: ((MLI,
MLO) « (MUI, MUO)).

Since flow splitters have different constraints,
depending upon the direction of the flow, each
of the types will be characterized with a dif-
ferent set of constraints. The unidirectional
flow splitter (MLI — MUO) is characterized
by the following constraints: AC(container_in)
= AC(port_out) AND AC(initiator) = AC(con-
tainer_in). The unidirectional flow splitter (MUI
— MLO) is characterized by the following
constraints: AC(port_in) = AC(container_out)
AND AC(initiator) = AC(port_in). The bidi-
rectional TFS is just the combination of these
two.

Crypto-sealer

For data input, the crypto-sealer TFC com-
putes and appends a crypto-seal (Gifford, 1982;
Pfleeger, 1989) to the data. The data itself is not
encrypted, but used by the cryptographic algo-
rithm only to compute a cryptographic check-
sum or crypto-seal. One approach to comput-
ing a cryptographic checksum is to use an en-
cryption algorithm, such as the Data Encryption

T. H. Hinke: Modeling Trusted Architectures

75

Standard (National Bureau of Standards, 1977)
in cipher feedback mode (National Bureau of
Standards, 1980; Pfleeger, 1989). Under this
mode of operation, a 64-bit register is encrypted
during each cycle. The least significant byte of
the resulting 64-bit result of the encryption is
exclusively OR’ed with the next byte of the text
to be encrypted and the single byte output as an
encrypted byte. This single byte is also shifted
into the least significant byte of the register,
with the most significant byte of the register
discarded. The encryption cycle is then exe-
cuted again on the 64-bit register. The 64-bit
result from each encryption cycle is a function
of the encryption algorithm used, the encryption
key and all of the previous data. The result from
the final cycle can thus serve as a cryptographic
checksum, since it is a function of all of the data
that has been processed.

While both a normal checksum, a cyclical re-
dundancy check (CRC) and the cryptographic
algorithm can perform similar functions in de-
tecting data modification and may use known
algorithms, the contrast lies in the fact that the
cryptographic algorithm also uses a key that can
be kept secret. Thus, in contrast to a normal
checksum or CRC, the adversary or his program
is unable to mimic the computation.

For data output from a crypto-seal protected
system, the crypto-sealer computes the cryp-
tographic checksum of the data that is flowing
through it and compares this newly computed
checksum with the one that accompanies the
data to be output. If the newly computed cryp-
tographic checksum matches the checksum al-
ready associated with the data, then the data is
permitted to pass. Otherwise, the crypto-sealer
acts as a no-flow controller by preventing the
data from flowing through the controller.

The crypto-sealer TFC is characterized by the
following constraints: AC(source) = AC(con-
tainer).

3. TAG Modelirg Notation

Figure 1 shows the symbols and associated an-
notations that comprise the TAG modeling nota-
tion. These symbols fall into four classes: pro-
cessing entities, trusted flow controllers, stor-
age entities and links. This notation will be
described briefly in this section.

The general processing entities are indicated by
plain rectangles with the notation “PE” below
the rectangle. The internal data flow policy sup-
ported by the PE is indicated by a line that di-
vides the PE into two representative processing
environments in the case of the constrained-flow
and no-flow PE and the absence of such a line in
the unconstrained-flow PE. As shown in the no-
flow example, the nature of the data processed in
each processing environment can be optionally
included. In this example, the upper process-
ing environment has access to system-high data,
while the lower processing environment has ac-
cess to only system-low data. These annotations
could be replaced with particular security level
labels if desired.

The figure shows various types of trusted-flow
controllers. The trust that differentiates these
trusted components from untrusted TAG com-
ponents is indicated by the shading. The control
nature of these components is indicated by the
dashed line that divides the symbol. The type
of symbol is indicated by the label that sits be-
low the symbol, although as can be noted, the
annotation is not normally required, since each
symbol is unique. Only in the case where an
identification and authentication flow controller
is coupled with an unrestricted flow controller
to provide both authentication and data separa-
tion and routing will the annotation normally be
included.

The three types of storage entities are shown.
The SE annotation below the symbol should be
included to differentiate the storage entity from
the unconstrained flow processing entity, since
the UD notation might be mistaken for a secu-
rity level label.

Links are indicated with directed lines indicat-
ing direction of flow, and with circles indicat-
ing the labeling characteristics and access class
composition of the data flowing through the
link. Examples are shown for various types of
links including trusted links (which do not carry
a level composition indication for this example,
but could); untrusted, system-high; untrusted,
system-low; and labeled, multilevel.

The next section presents some examples of
TAG descriptions for a number of trusted sys-
tems.

76

T. H. Hinke: Modeling Trusted Architectures

Processing Entities
PE
Unconstrained Flow
Trusted Flow Controllers
T
1
Identification and 1
Authentication : .
1&A
1
1
One way flow |
1
i
OWF
T
Read down §
No write down ?
RDNWD
Storage Entities
uD
SE
Unlabeled Data
Links

PE PE
Constrained Flow

Flow Reducer

Unrestricted Flow i

Flow Splitter i

: Check

Crypto Sealer

SE
Labeled Data
Crypto-Sealed

SE
Labeled Data

OO OO

Trusted

Unlabeled
System high

Unlabeled
System low

Labeled

Fig. 1. TAG Graphical Notation

4. TAG Examples

This section shows a number of examples of
trusted architectures specified in the TAG nota-
tion. The first one shown is the one-way guard,
and the remaining examples are various trusted
database management system architectures.

For each of the database management systems,
the results of an architecture-level security anal-
ysis that was conducted on the TAG representa-

tion is presented. A security vulnerability that
exists at the architecture level will exist within
an implementation. However, itis the case thata
good security architecture can be compromised
with a poor implementation. The security anal-
ysis techniques being used here are based on
the work of (Hinke, 1986). This work cate-
gorized the various architectural-level security
vulnerabilities into the following four classes:

T. H. Hinke: Modeling Trusted Architectures

77

High
UuD \
SE PE
Low
UD /
SE PE

i SL

I&A=E{IL} PE

Fig. 2. One-Way Guard

Vulnerability 1 — Grants Unauthorized Re-

quest: A system permits a legitimate user to be
granted access to requested data to which
he is not authorized access. This vulnera-
bility violates the basic security condition
aspect of the Bell and LaPadula security
policy model.

Vulnerability 2 — Direct Write Down: A sys-
tem permits data to be written in a port,
container, storage entity or processing en-
tity whose access class is strictly domi-
nated by the access class of the data. This
is a violation of the Bell and LaPadula *-

property.

Vulnerability 3 — Internal Covert Channel: —
A System permits the leakage of data from
within the system to processing environ-
ments whose access class is strictly domi-
nated by the access class of the data using
an architectural-level covert channel.

Vulnerability 4 — System as Covert Channel:
The system itself can be used as a covert
channel so that data can be leaked between
external systems using the trusted architec-
ture.

The vulnerabilities are hierarchically ordered in
the sense, that the lower the number, the more
severe the vulnerability in terms of the amount

of data that could be compromised. In the analy-
sis which follows, the DBMS architectures will
be characterized by the lowest numbered vul-
nerability that applies.

4.1. One-Way Guard

This system is analogous to an electronic diode
applied to the data flow within a computer sys-
tem. Figure 2 shows the graphical representa-
tion of such a guard that allows data to flow from
a system-low PE to a system-high PE. Both of
these PE’s include storage as indicated by their
SE component. Both of these PE’s and associ-
ated SE’s could represent workstations or hosts
on a network.

The guard itself consists of two unconstrained
flow PE’s (one processing system-high data
and the other processing system-low data) con-
nected to each other by a one-way flow TFC.
The PE’s are connected to their respective work-
stations through an identification and authen-
tication TFC. As indicated, this trusted com-
ponent also includes an unrestricted-flow TFC,
which serves to provide data stream separation
and routing for moving the data from the guard
input to the respective guard PE’s. As a com-
plete system, the guard itself would be described
as a controlled-flow PE with multiple unlabeled
input and output ports.

78

T. H. Hinke: Modeling Trusted Architectures

4.2. Label-Checking Filter DBMS

The label-checking filter DBMS, which could
aiso be called a label-checking guard DBMS, is
one of the simplest security mechanisms to pro-
vide a limited amount of security to a DBMS.
The label-checking filter serves as a trusted me-
diator between users and a DBMS. While the
untrusted DBMS contains sensitive data clas-
sified at different security levels, it does not
provide any security mediation itself. All of
the security mediation is provided by the fil-
ter. An example of such a filter approach is
the query modification approach used for In-
gres (Stonebraker & Wong, 1974) and ACCAT
and FORSCOM guards (Soleglad, 1981).

A TAG model of the label-checking filter DBMS
is shown in Figure 3. This architecture is char-
acterized by a trusted-flow controller that pro-
vides for identification and authentication of
both the identity and level of the users attempt-
ing to access the system. The access control
function for the data itself is performed by a
trusted flow-controller that mediates the query
prior to passing it on to the DBMS. This means
that this architecture can successfully counter
Vulnerability 1.

The primary disadvantage of this approach is
that the trusted-flow controller is not capable
of identifying the security level of the returned
data. Hence, if the untrusted DBMS code at-
tempted to output data whose access class was
higher than the subject making the request, the
trusted-flow controller would not be able to de-
tect this intentional or accidental error. This can
be seen in the fact that the TAG model shows
an untrusted PE between the SE and the trusted-

High

flow controller. This means that this architec-
ture is subject to Vulnerability 2. This vulnera-
bility is remedied in the next architecture.

4.3. Crypto-sealing Filter DBMS

The crypto-sealing data filter DBMS has an ar-
chitecture similar to the basic filter DBMS in
that it sits between the users and the untrusted
DBMS. It is identical to the basic filter DBMS
in the way that it performs request mediation.
It differs from the basic filter DBMS in that it
performs mediation of the response as well as
the request.

The response mediation is based on the data
and the labeling being indelibly connected via
a cryptographic checksum which is computed
when data enters the system (Denning, 1984).
The internal structure of the crypto-sealing filter
is shown in Figure 4.

This architecture is not subject to Vulnerabil-
ity 1, since the trusted flow controller can medi-
ate requests. Also, since the trusted-flow con-
troller can now validate the access class of the
output, this means that this architecture can suc-
cessfully counter Vulnerability 2.

This architecture is subject to Vulnerability 3,
since the untrusted system-high DBMS PE has
access to both high and low data and can out-
put data to both high and low PE’s. Untrusted
Trojan horse code within the DBMS could en-
code high data that it can view in terms of a
code expressed in terms of low data that it can
forward to a low PE. However, if the untrusted
DBMS PE could be considered non-malicious,
based on it having been developed by appropri-
ately cleared personnel, then this architecture

\
U/SH
PE

High/Low
DBMS

A |

Low
U/SL t
/ 1

I&A

PE

Flow PE SE
Controller

Fig. 3. Label Checking Filter

T. H. Hinke: Modeling Trusted Architectures

79

High

Crypto-sealer

Seill

T

i

2 T

1

\ [
1

U/SH +

|

PE ;
l

I

1

1

T
Chec
SH

DBMS

High/Low

Low
/ U/SL

/I\ PE SE
|

PE

Seal

Crypto-sealer

Fig. 4. Crypto-Sealing Filter

would not be open to vulnerability 3, since it
would contain no Trojan horse code to perform
the encoding.

4.4. Disjoint Data — Multilevel Secure
Database Management System

This backend architecture includes a trusted,
multilevel frontend processor and multiple, un-
trusted single-level backend processors. An ex-
ample of this architecture is the Unisys SD-
DBMS system design (McCollum & Notargia-
como, 1991). The disjoint data backend archi-
tecture is shown in Figure 5.

In this architecture, each backend processor has
access to only a single level of data, thus re-
quiring the frontend processor to query multi-
ple backend processors to satisfy a multilevel
query. What characterizes this architecture is
the use of a flow reducer in the trusted fron-
tend processor to permit a query to be sent from
the system-high processing environment of the
trusted frontend to the low backend processor.
Requests for a single level of data are handled
by the untrusted backend processor of the ap-
propriate access class. A significant advantage
of this architecture is that the backend proces-
sors can be implemented with commercial of-
the-shelf processors, since they support only an
unconstrained-flow policy.

The disjoint data backend architecture is not
susceptible to Vulnerability 1, since it has a
trusted flow controller to validate requests. Since
the backend PE’s cannot write down to lower
level requesting PE’s (workstations), the sys-
tem is not subject to Vulnerability 2. This ar-

chitecture can also resist Vulnerability 3, since
backend PE’s cannot view data whose access
class strictly dominates the access class of the
output of the PE. This architecture is, however,
susceptible to Vulnerability 4. This can be
detected from the TAG representation by not-
ing the U/SH link from the TFC to the low
backend processing entity /storage entity. This
U/SH link is carrying the request to a process-
ing entity and associated storage entity that has
memory. This request could have been initiated
at a system-high workstation (frontend PE). In
this case, the result would be that data origi-
nating at a high processing entity has reached a
low backend processing entity /storage entity. If
this backend PE contained Trojan horse code, it
could proceed to forward the data to the low
frontend processing entity. This is possible
since once data reaches a backend processing
entity, there is no way for the TFC to validate
that the data provided by a low access class
backend is anything but low. The possibility
that the low backend PE may become contam-
inated with high data is indicated by the “-h”
annotation of the link security levels emanating
from this low backend.

4.5. Replicated Data — Multilevel Secure
Database Management System

A contrast to the disjoint data multilevel secure
DBMS is the replicated data multilevel secure
DBMS. The SINTRA system developed by the
U.S. Naval Research Laboratory is an example
of areplicated data DBMS (Kang & et al., 1994;
Frosher & Meadows, 1990).

80

T. H. Hinke: Modeling Trusted Architectures

Both the replicated and disjoint data architec-
tures represent backend DBMS architectures,
but as the TAG representation indicates, these
are significantly different architectures. In the
replicated data, backend DBMS architecture,
shown in Figure 6, each backend processor con-
tains all of the data that is dominated by the secu-
rity level of that processor. Thus, for example,
an unclassified backend processor would have
only unclassified data, but a top secret proces-
sor would contain top secret, secret, confidential
and unclassified data.

To support this proliferation of data copies, a
one-way data flow must be provided from the
low to the high processing environment. Itisim-
portant for the reader to recognize the somewhat
subtle difference between a one-way capability
from low to high and a read-down capability
from high to low. In the one-way, low-to-high
data flow, the low processing environment ini-
tiates the transfer when its data changes. The
high processing environment is not capable of

High

making a request to initiate the data flow. How-
ever, in the read-down capability, it is the high
processing environment that must be capable of
initiating the data flow. Since this requires the
cooperation of software in the low processing
environment, this requires a data flow from the
high to the low processing environment, which
is not provided in this architecture, but must
be provided in the architecture described in the
previous section. Thus in contrast to the dis-
joint data architecture, this architecture does not
have any of the write-down vulnerabilities of
the previous architecture. It thus provides all of
the vulnerability-countering capabilities of the
previous architecture and also counters Vulner-
ability 4, since there is no downward flow of
data.

SH

S
U/SH
PE

SL

A
U/SL-h
/

1&A PE

PE

PE SE
1
1
: U/SH
B
—
¥
1
Flow
Controller
DBMS
U/SL-h UD Low
PE SE

Fig. 5. Disjoint Data Backend

High

\
U/SH
PE

Low
/ U/SL

i
1
1

I&A PE

PE

PE SE
T
1
T
1
|
!
1
1
!
1
Flow
Controller
DBMS
U/SL uD Law
PE SE

Fig. 6. Replicated Data Backend DBMS

T. H. Hinke: Modeling Trusted Architectures

81

High

PE

SH
DBMS

¥

High/Low

- /@H“*‘*

SL
DBMS

1%

PE

PE Flow SE
Controller

Fig. 7. Security Kernel Based DBMS

4.6. Security Kernel-Based DBMS

This architecture, shown in Figure 7, represents
the more traditional approach to providing mul-
tilevel secure DBMSs. Examples of security
kernel-based DBMS architectures are the SRI
International SeaView system (Lunt & Boucher,
1994; Lunt & Hsieh, 1990) and TRW’s ASD
system (Hinke, 1988).

This architecture is modeled as three trusted-
flow controllers. A frontend flow controller
provides identification and authentication of
users as well as maintaining the separation of
different flows. The backend flow controller
provides a read-down /no-write-down access to
a storage component that contains labeled data.
This read-down/no-write-down policy is pos-
sible since the trusted-flow controller has di-
rect access to the data through the hardware of
the storage entity. Thus, the path that retrieves
the data consists totally of trusted software (the
flow controller) and hardware (the storage com-
ponent). The final flow controller that mod-
els the kernel is an optional (at least for the
DBMS) read-down/no-write-down flow con-
troller that provides separation between multi-
ple untrusted processing environments, each of

which contains ar instance of untrusted DBMS”

code. This architecture could also be supported
by an inter-processing environment trusted flow
controller that enforced a no-flow policy, such
as that provided by a separation kernel (Goguen
& Meseguer, 1982).

This architecture is not vulnerable to any of the
vulnerability classes listed since each untrusted
DBMS can only read and write data at the level
of the DBMS.

5. Conclusions

This paper makes a number of important contri-
butions to the computer security research field.
The first is that it provides a graphical model
that can be used to provide a uniform represen-
tation for various trusted architectures. In this
way, different architectures can be described,
analyzed, compared, contrasted and discussed,
based on a uniform representation of each. The
second contribution is that the model is then
used to represent the security guard and a num-
ber of the more significant trusted DBMS ar-
chitectures that have been suggested over the
years. By providing a common representation,
the various architectures can be compared and
contrasted.

For future work, this notation could provide a
first step toward a trusted architecture computer-
aided design system, with the TAG constructs
providing the building blocks for system de-
sign. Then the TAG representation of an archi-
tecture could be subjected to analysis, such as
the system-level security analysis presented in
this paper.

References

Anderson, J. P. (1972). Computer Security Technol-
ogy Planning Study. Tech. rep. ESD-TR-73-51
(AD-758206, U.S. Air Force Electronic Systems
Division. ‘

Bell, D. E., & LaPadula, L. J. (1976). Secure Computer
Systems: Unified Exposition and Multics Inter-
pretation. Tech. rep. MTR-2997 Rev. 1, MITRE
Corp., Bedford, MA.

82

T. H. Hinke: Modeling Trusted Architectures

Chen, P. P.-S. (1976). The Entity-Relationship Model —
Toward a Unified View of Data. ACM Transac-
tions of Database Systems.

Denning, D. E. (1984). Cryptographic Checksums For
Multilevel Database Security. In Proceeding of
the 1984 Symposium on Security and Privacy.

Frosher, J. N., & Meadows, C. (1990). Achieving
a Trusted Database Management System Using
Parallelism. In Spooner, D. L., & Landwehr,
C. C. (Eds.), Database Security, III: Status and
Prospects, Results of the IFIP Working Group
11.3 Workshop on Database Security. North-
Holland.

Gifford, D. K. (1982). Cryptographic Sealing for Infor-
mation Security and Authentication. Communi-
cations of the ACM.

Goguen, J. A., & Meseguer, J. (1982). Security Policies
and Security Models. In Proceedings of the 1982
Symposium on Security and Privacy.

Hinke, T. H. (1986). Securc Database Management
System Architectural Analysis. In Proceedings of
the ATAA/ASIS/DODCI Second Aerospace Com-
puter Security Conference. American Institute of
Aeronautics and Astronautics.

Hinke, T. H. (1988). Al Secure DBMS Design. In A
Postscript to the Proceedings of the 11th National
Computer Security Conference.

Hinke, T. H., & Schaefer, M. (1975). Secure Data
Management System. Tech. rep. RADC-TR-266
(AD-A019201), Rome Air Development Center,
AFSC, Griffiss AFB, N. Y.

Kang, M. H., & et al. (1994). Achieving Database Se-
curity Through Data Replication: The SINTRA
Prototype. In Proceedings of the 17th National
Computer Security Conference.

Lunt, T. F., & Boucher, P. K. (1994). The SeaView
Prototype:Project Summary. In Proceedings of
the 17th National Computer Security Conference.

Lunt, T. F., & Hsieh, D. (1990). The SeaView Secure
Database System: A Progress Report. In Pro-
ceedings of the European Symposium on Research
on Computer Security (ESORICS 90).

McColium, C. D., & Notargiacomo, L. (1991). Dis-
tributed Concurrency Control with Optional Data
Replication. In Proceedings 5th IFIP WG 11.3
Working Conference on Database Security.

National Bureau of Standards (1977). Data Encryp-
tion Standard. FIPS PUB 46, U.S. Government
Printing Office.

National Bureau of Standards (1980). DES Modes of Op-
eration. FIPS PUB 81, U.S. Government Printing
Office.

National Computer Security. Center (1985). Department
of Defense Standard: Department of Defense
Trusted Computer System Evaluation Criteria.
DoD 5200.28.STD.

Pfleeger, C. P. (1989). Security in Computing. Prentice
Hall, Englewood Cliffs, NI.

Smith, G. W. (1990). Modeling Security-Relevant Data
Semantics. In Proceedings of the 1990 IEEE
Computer Society Symposium on Research in
Security and Privacy.

Soleglad, M. (1981). ACCAT and FORSCOM Guard
Systems. In Proceedings of the Fourth Seminar on
the DOD Computer Security Initiative. National
Bureau of Standards.

Sowa, J. F. (1984). Conceptual Structures: Information
Processing in Mind and Machine. Addison-
Wesley, Reading, MA.

Stonebraker, M., & Wong, E. (1974). Access Control
in a Relational Database Management System by
Query Modification. In Proceedings 1974 ACM
National Conference.

Thomas, R. K., & Sandhu, R. S. (1992). Implement-
ing the Message Filter Object-Oriented Security
Model without Trusted Subjects. In Proceedings
of the 6th IFIP WG 11.3 Working Conference on
Database Security.

Weissman, C. (1969). Security Controls in the ADEPT-
50 Time-Sharing System. In Proceedings of the
1969 Fall Joint Computer Conference. American
Federation of Information Processing Societies
Press.

Woods Hole Summer Study (1983). Multilevel Data
Management Security. Air Force Studies Board,
National Research Council.

Received: April, 1994
Accepted: September, 1995

Contact address:

Thomas H. Hinke

Computer Science Department
University of Alabama in Huntsville
Huntsville, AL, 35899, U.S.A.
phone: (205) 895-6455

fax: (205) 895-6239

e-mail: thinke@cs.uah.edu

TraoMAS H. HINKE an Associate Profesor on Computer Science who
joined the UAH Computer Science Faculty in 1990 after a 16-years
career in industry. He received his Ph.D. in Computer Science from
the University of Southern California. He has been an active researcher
in the area of computer security, including database securily since the
mid-1970’s.

