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Intelligent distance diagnosis of

students’ solutions.

DIRCE: Diagnostic Interactive
Relationship-Causality Engine.

Emmanuel Barbounis, Maria Grigoriadou and George Philokyprou
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One of the important and most difficult tasks of open
distance learning is the efficient diagnosis of students’
solutions of given problems and exercises. Intelli-
gent diagnostic systems and tools may essentially assist
in this type of diagnosis by employing new methods
and techniques from the fields of Artificial Intelligence
and Cognitive Psychology. In this paper we present
DIRCE (Diagnostic Interactive Relationship-Causality
Engine), a novel intelligent diagnostic engine suitable
for computer-based distance diagnosis. The scope of
DIRCE is the detection of discrepancies in the stu-
dents’ solutions, and the identification of relevant errors.
DIRCE diagnoses problems solved in a procedural
manner with steps interconnected through mathematical
equations. The engine does not need extended student
models or bug libraries. It is mainly based on the
correct solution(s) of the problem, the interconnections
among the steps of the student’s solution, as well as on
limited evidential information about the solution under
examination acquired interactively from the user. DIRCE
has been used in the DIAS and I-DIAS experimental
systems diagnosing the students” solutions of problems
in high school physics and chemistry.
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1. Introduction

The development of open distance learning is
one of the major challenges of the coming
decades. This form of education and train-
ing combines the interaction between the stu-
dent and teacher ordinary face-to-face instruc-
tion with large components of independent or
autonomous learning. Distance teaching and
group training by means of interactive simula-
tions and virtual learning environments, video-

conferencing, computer-assisted conference net-
works and multimedia communications activate
an educational reform (Hunter, 1993).

A very important field of this type of education
is the distance diagnosis of students’ solutions.
It helps a tutor, human or artificial, to understand
a learner’s level of knowledge by remotely ex-
amining his/her performance (responses, prob-
lem solutions, etc.). The development of dis-
tance diagnosis has to cope with quite a num-
ber of intrinsic particularities and limitations.
For example, a tutor can instruct hundreds of
learners in distance teaching but in no case
he can diagnose their errors and suggest solu-
tions for each one individually. Intelligent diag-
nostic systems and tools may essentially assist
this type of diagnosis by employing new meth-
ods and techniques from the domains of Ar-
tificial Intelligence and Cognitive Psychology.
The requirements and constraints of computer-
based distance diagnosis are implied by consid-
eting the limitations and prerequisites of dis-
tance learning (Foster, 1992; Hunter, 1993) and
computer-based intelligent diagnosis (Ohlsson,
1993; VanlLehn, 1988). Among the most sig-
nificant of them are:

e Reliability and speed. Dominating quality of
any “artificial diagnostician™ is the quick and
correct diagnosis of the students’ errors.

e [nteractive diagnosis of the learner’s solution.
Students usually solve the given problems and
exercises in their environments by using their
own, familiar tools. Therefore, an artificial di-
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agnostician must perceive learners’ solutions
by interactively acquiring the required infor-
mation.

e Lxtended knowledge domains. Distance di-
agnosis concerns a great variety of topics and
knowledge domains that are not usually di-
agnosed by static and monolithic diagnostic
techniques and methods.

e Laborious knowledge acquisitions. Human
expertise acquisition, especially that of the di-
agnosticians, is a very difficult process (Keyes,
1989), either because experts are not able to
properly and efficiently express their expertise
to the knowledge engineers, or due to severe
problems in the transformation of the human
way of thinking to computer operation.

e Multiple learners concurrent diagnosis. Stu-
dents are working concurrently in an educa-
tional network. Therefore, a diagnostic sys-
tem must be able to diagnose efficiently a
learner’s responses and solutions, indepen-
dently of the active diagnostic sessions of
other learners.

e System resources. Among the major problems
of on-line and real-time systems are:

— the availability of resources (knowledge
bases, programs, etc.),

— the distribution of these resources to the
USers.

In this paper DIRCE (Diagnostic Interactive
Relationship-Causality Engine), an intelligent
diagnostic engine applicable to computer-based
distance diagnosis of students’ solutions is pre-
sented. DIRCE deals with the problems solved
in a procedural manner, with steps intercon-
nected through mathematical equations. This
engine has been used in I-DIAS (Intelligent-
Diagnostic Instruction Assistant System) a di-
agnostic system under evaluation (Barbounis &
Philokyprou, 1995), that examines and diag-
noses students’ problem solutions in high school
physics and chemistry.

2. Intelligent diagnostic approaches

A variety of methods and lechniques has becn
developed for the intelligent diagnosis of stu-
dents’ and trainees’ responses and solutions.

The great majority of these techniques are cate-
gorised under three main approaches:

A. Overlay modelling. These methods and
techniques consider the student model as a proper
subset of the expert model. For a given prob-
lem, they presuppose the existence of the ex-
pert’s solution that is compared to the student’s
solution. The detected discontinuities and dif-
ferences identify the missing conceptions of the
student but not the misconceptions. The over-
lay modelling techniques have a relatively easy
implementation however, they can fail when the
student’s solution, correct or erroneous, differs
greatly from the expert’s solution. They have
been applied in a number of educational systems
like the GUIDON (Clancey, 1982) and WEST
(Burton & Brown, 1982).

B. Bug library and machine learning ap-
proaches. The bug library approach diagnoses
a student’s solution by employing a library con-
taining a set of bugs related with the problem un-
der examination. The diagnostic module com-
parcs the behaviour predicted by the bugs, with
the discrepancies observed in the student’s solu-
ticn. The resulting diagnosis corresponds to the
identification of a subset of the bug library able
to explain all the existing errors in the specific
solution. The biggest obstacle of the approach is
the building up of the bug library. If the library
18 not sufficient, the solution under examination
may be totally misdiagnosed. Furthermore, an
empirical study by Payne and Squibb (1990)
indicales that bugs can vary across the student
populations. This may result in the need to
reconstruct bug libraries for each new student
population, a fact that is quite impractical. The
machine learning techniques have been devel-
oped to avoid the painful process of constructing
bug libraries (Ohlsson & Langley, 1988; Lan-
gley et al, 1990). This approach infers bugs
bottom-up during the diagnostic operation. It
is usually assisted by auxiliary libraries of ele-
ments that may be combined for the construc-
tion of the bugs (VanLehn, 1988). Diagnosis
based on both approaches is computationally
expensive.

C. Model tracing. Model tracing is a practi-
cal and easily realisable diagnostic technique.
According to this approach, a student proceeds
from a mental state to the next one by firing
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Fig. 1. The operating environment of DIRCE

some rule, correct or false. Furthermore, it as-
sumes that all the student’s mental states in a
solution under examination are accessible and
that the corresponding rules are available to the
diagnostic module. The technique traces the
student’s solution by problem solving and di-
agnosing each individual step. It identifies the
rule evoked by the student in the particular step
based on a corresponding rule library. Model
tracing is used by a number of intelligent tu-
toring systems (Anderson, 1988; Anderson et
al.,, 1990). The obligation to diagnose each
faulty step as it occurs limits the usefulness of
the approach from the pedagogical side of view
(Ohlsson, 1993), while the construction of suffi-
cient rule libraries may request thorough empir-
ical research. Moreover, the necessity to attend
and coach the student during the solution pro-
cess restricts the applicability of the technique
in distance diagnosis.

3. Overview of DIRCE

The goal of this engine is the identification of all
the errors in the students’ solutions, with speed
and effectiveness. Its major characteristic is the
interactive identification of faults, by acquiring
necessary information from the users in a min-
imum but adequate number of diagnostic steps.
Prerequisites for the application of DIRCE as
shown in Fig. 1 are the following components:

e The correct solutions data base. It comprises
the experts’ solutions for the given problems.

It represents the shallow knowledge of the sys-
tem. During the diagnostic process, a prop-
erly selected correct solution is activated and
used for the diagnosis of the student’s solu-
tion. Fig. 2 shows the record structure and the
description of a step in the data base of correct
solutions.

Step name: Distance covered by a car A
Meaning: Distance
Expert symbol: X4

Correct relation: %amri] + g tAz

Correct components [a,q 1,141, UAT, IAZ}

Correct value: 217.8
Measurement unit: km
Error Causing Belief: 0.8

Fig. 2. Record structure of a step

e The diagnostic network.When a diagnostic
process commences, the engine utilising the
chosen correct solution of the problem under
examination constructs a diagnostic network.
The specific procedural acyclic network con-
stitutes the heart of the diagnostic operation
and its structure is similar to the structure of
a Bayesian network (Pearl, 1986; Keung-Chi
& Abramson, 1990; Peot & Shachter, 1991).
Each node of the network corresponds to a
step of the solution and is depicted by a frame.
The erroneous steps are called fault nodes.
The slots of the frame may contain functions
and equations, results, causal factors and co-
efficients, solution explanations, current diag-
nostic information, etc. The links that connect
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a node with its parents are defined by one and
only one rule. The output of every node cor-
responds to a set of values that are transmitted
to the direct descendants of the node. Each set
of values may be empty or it can contain one
or more elements. This scheme has been se-
lected to represent the structure and behaviour
of the solution under examination, taking ad-
vantage of the computational architecture of
belief networks for the propagation of pieces
of evidence and local diagnostic conclusions.

The network is dynamically transformed as
new pieces of evidence are collected during
the diagnostic operation. New steps may be
added in, existing steps may be altered or clus-
tered into a single step or decoupled into par-
tial steps or eliminated completely, while ex-
isting links may be substituted by new ones or
removed. Thus, by the end of the process the
network corresponds to the student’s solution.

Fig. 3 shows the frame structure of the altered
step of Fig. 2. The user components are con-
necting links with the parent nodes, while the
user relation corresponds to the interconnect-
ing rule.

Step name: Distance covered by a car A
Meaning: Distance

User symbol: XA

User relation: tartal + Uartar  (rule)
User components [am JEAL, HAL, .!Ag] (links)
User value: 219.6

Estimated value: 219.6

Measurement unit: km

Error Causing Belief: 1

Local conclusion: Wrong relation

Fig. 3. Frame structure of a node of the diagnostic
network

e The agenda of targets is the component through
which the engine controls the diagnostic pro-
cess. The nodes suspected to be fault nodes
are inserted in the agenda as pending tasks.
The diagnostic mechanism based on appro-
priate criteria, existing evidences and previ-
ous experiences, selects and activates from
the agenda a task at a time. Bach entry in
the agenda includes the follewing elements:
the step of the solution to be examined, the

evidential node supporting this entry, the rea-
son of the entry (new step, diagnostic conflict,
indirect diagnosis, etc.).

e The diagnostic knowledge base of meta-rules.
The meta-rules are domain-independent pro-
duction rules, mainly heuristics, that guide the
diagnostic operation. For example, meta-rule
N1 (IF there is a new step in the agenda THEN
it must be examined at first priority) gives
an order of priority for looking through the
agenda, while meta-rule N2 (IF there is evi-
dence of malfunctioning THEN the fault will
be detected either in the specific evidential
node or in its predecessors) assists in the def-
inition of the problem space.

The deep-knowledge base. This contains the
correct form of the domain knowledge related
to the exercises. The diagnostic mechanism
utilises the deep-knowledge base in specific
cases such as the diagnosis of students’ steps
that do not exist in the correct solution (new
steps). For example, if the student’s step
My = DaVy (where My is the mass, Dy the
density and V4 the volume of an object A),
does not exist in the correct solution, then the
diagnostic mechanism through the rule:

IF density := D and volume := V

THEN mass := M = DV

of the deep-knowledge base will acknowledge
the correctness of the relation.

e A partial solver. This is used for:

— inferring what output values should be ex-
pected for certain input values and,

— transforming the equation(s) of the expert’s
solution or the equation(s) of the deep-know-
ledge base to a form comparable with the
equation(s) of the learner’s solution.

The diagnostic framework of DIRCE relates the
learner’s solution to a specific expert’s solution
identifying the existing discrepancies. All or
most of the expert’s solutions for a given prob-
lem must be known and one of them is selected
according to initial evidences acquired from the
learner. The basic idea is to use the chosen cor-
rect solution as a template during the diagnostic
process. The engine based on appropriate evi-
dences, gathered interactively from the learner
and the deep-knowledge base, transforms grad-
vally the expert’s solution and constructs the
learner’s solution, diagnosing the existing er-
rors. The operation of DIRCE is strongly based
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on the relationship-causality and the interactive
evidence gathering approaches:

Relationship-causality. The existing relation-
ships among the entities of a procedural net-
work play a significant role in the knowledge
representation and problem solving process of
a system. The specific diagnostic engine has
been built upon the relationship approach in or-
der to avoid the existing difficulties in collecting
conditional probabilities and other extra infor-
mation as well as to bypass complicated and
non-real time computationally expensive cal-
culations. The utilisation of the relationship-
causality in DIRCE concerns mainly the fol-
lowing three domains:

e The diagnostic knowledge base, where many
of the production rules refer to the existing
relations among the nodes of a diagnostic net-
work.

e The selection of the most promising node,
where the diagnostic mechanism decides for
the afppropriate node to be examined in depth.

o The intermediate diagnosis of the network,
where the local diagnostic results of a node
are propagated through its relatives aiming at
minimising the diagnostic problem space, at
locating areas with other fault nodes, at resolv-
ing conflicts, at detecting hidden fault nodes,
etc.

Initially, search methods and heuristic algo-
rithms were employed in the relationship iden-
tification tasks. These were dependent on the
nature and the demands of the diagnostic prob-
lems as well as on the structure and the magni-
tude of the knowledge used. But the phenomena
of time consuming operations and demanding
implementations, especially in cases of iterated
tasks, were noted. In order to surpass these dif-
ficulties the Sygg table technique (described in
the next section) was developed and used.

Interactive evidence gathering. A successful
diagnostic procedure is based on the observed
symptoms of the malfunctioning system. In
many cases only a few manifestations are ade-
quate for drawing proper conclusions (Van der
Gaag & Wessels, 1993). DIRCE interactively
acquires evidences necessary for the diagnostic
operation in two phases. Initially it requests out-
puts of a preselected set of nodes of the learner’s
solution. If this information is not adequate, the

diagnostic mechanism interactively obtains ad-
ditional evidences, until a satisfactory diagnosis
has been reached.

Diagnostic operation of the method is exem-
plified in the following chapters by using an
exercise from the digital electronics described
in Fig. 4. Fig. 5 gives the electronic diagram,
while Fig. 6 shows the corresponding diagnostic
network of the student’s solution.

PROBLEM INTEGRATED CIRCUIT
ADDERS/MULTIPLIERS

A digital circuit is given consisting of a five adders
A21, A23, A24, A41, A42 and six multipliers M11,
M12, M13, M31, M32, M33. The circuit has five
inputs with the following values X1 = 2, X2 = 3,
X3 =1,X4 =2 and X5 = 3. The question is “What
are the outputs of the adders A41 and A42”.

Input X1 =2
Input X2 =3
Input X3 =1
Input X4 =2
Input X5 =3

Multiplier M11 = X1 x X2
Multiplier M12 = X2 x X3
Multiplier M13 = X4 x X5
AdderA21 = M11+M12=9

* AdderA22 =X3 4+ M13 =7 *
AdderA23 =X5+M13 =9
Multiplier M31 = M11 x A21 = 54
Multiplier M32 = A21 x A22 = 63
Multiplier M33 = A22 x A23 = 26 (error)
Adder A41 = M31 + M32 = 117

¥ Adder A42 = A22 4+ M33 = 33 (wrong result)

6
3
6

i

Fig. 4. The digital circuit exercise and a student’s
solution

4. Sygg table

A great number of Artificial Intelligence ap-
plications require from their inference mecha-
nisms to detect the existence of direct or indi-
rect relationships between the elements of their
knowledge bases. For example, an expert sys-
tem that diagnoses an integrated circuit with
hundreds of gates and a number of outputs needs
to know the relationship between a suspected
malfunctioning gate and a faulty output. The
methods employed, the representation schemes
and the heuristic algorithms frequently require
a time consuming and demanding implementa-
tion in order to accomplish the above request,
especially when this occurs many times during
an inferential process.
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Fig. 5. The electronic diagram of the exercise

Fig. 6. The diagnostic network of the student’s sclution

The aim of the Sygg table technique, introduced
below, is to minimise the processing effort re-
quired by the inference mechanism in order to
find the existence of any connection among the
entities of a knowledge base and /or to minimise
the investigated problem space concerning the
existing evidences. The term “Sygg” is an ab-
breviation of the Greek word “syggeneia” which
means “relationship”.

A Sygg table is a two-dimensional table with
identical axes. Each axis of the table is com-
posed of all the entities of the knowledge base.
The table is independent from the logic struc-
ture of the knowledge base. When new elements
are added to the corresponding knowledge base,
the table is updated properly. Any number dif-
ferent from 0’ in a slot of the table identifies
a relationship (direct or indirect) between two
entities of the knowledge base. The columns of
the Sygg table include the predecessors of the
corresponding entities, while the rows contain

the descendants of the entities. The crossing
point of a row and a column of a specific entity
identifies the mark of the entity in the table. The
use of this technique in a knowledge represen-
tation network can be summarised as follows:

¢ Relationship identification, detecting instantly
any relationship among the nodes of a net-
work.

e Locating the predecessors of anode. Locating
the descendants of a node.

e Locating the common intermediate relatives
of two or more nodes.

¢ Detecting the connecting path of two nodes.

e Deducting the diagnostic problem space based
on the existing evidences.

The Sygg table in DIRCE is related with the
diagnostic network of the solution under exami-
nation. The immediate identification by DIRCE
of the relationships among the nodes of the net-
work springs from this technique. Each axis of
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the table is composed of all the nodes of the di-
agnostic network. Fig. 7 shows the Sygg table
of the digital circuit of the previous chapter. If,
for example, the engine needs to know which
of the two outputs of the digital circuit (adder
A41 or adder A42), is affected by a wrong cal-
culation at multiplier M12, it will check the
cells [M12,A41] and [M12,A42] of the table
(Fig. 7). Their values are 1 and 0, denoting the
dependence of A41 on M12, while the A42 is
independent.

5. Qutlining the Diagnostic Reasoning
Procedure of DIRCE

The engine initiates the diagnostic process by
requesting the outputs of preselected steps of
the solution under examination. These steps
are preselected by the experts when they pre-
pare the correct solution for the correct solu-
tions data base. DIRCE uses the specific steps
as initial evidences to detect whether the solu-
tion is erroneous or not. The task is similar
to a teacher’s action when he/she examines the
solution of an exercise that he/she frequently
used. At first the teacher examines the steps
in which, according to his/her experience, fre-
quently errors occur and then continues with the
rest of the diagnostic process.

When all outcomes are correct, the diagnos-
tic procedure terminates. Otherwise, the nodes
with the detected discrepancies are recorded as
targets for diagnosis in the agenda of targets.
In the second case, the diagnostic mechanism,
based on the learners’ answers, selects and uses
as template the most plausible correct solution.
Diagnosis of the solution under examination is
broken down into one or more diagnostic cy-
cles. Each diagnostic cycle begins by selecting
a target node from the agenda and it terminates
when:

e afault node is identified with all its faults. The
detected faults explain partially or totally the
observed discrepancies in the target node,

e the acquired evidence proves the correctness
of the target node and justifies the noted dis-
crepancies,

e new faulty nodes are detected and added to
the agenda.

By the end of each cycle local diagnostic conclu-
sions are extracted. The character of the diag-
nostic mechanism is non-monotonic, permitting
the alteration of previous diagnostic conclusions
based on the recently entered evidential infor-
mation. Diagnosis arrives at an end when the
agenda is empty and all the target nodes have
been examined and diagnosed. Each diagnostic
cycle is composed of the following stages:
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Fig. 7. The Sygg table of the student’s solution
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e Selection of the target node.

e Selection of the most promising node.
e Diagnosis of the node.

e Indirect diagnosis of the relative nodes.

It is stressed that DIRCE can diagnose learn-
ers’ solutions with multiple, mutually depen-
dent fault nodes even though the “one per cycle”
fault node identification assumes conditional in-
dependence. This is accomplished by requiring
the inputs and the corresponding outputs for
each interactively examined node. The diag-
nostic algorithm of DIRCE is shown in Fig. 8.
The engine is capable of avoiding:

e I'reezing the diagnosis of the solution under
examination, meaning the early termination of
the diagnostic operation before the extraction
of final diagnostic conclusions. This usually
happens in the absence of adequate diagnostic
evidence.

e Overheating of the diagnostic operation, mean-
ing halting the diagnostic procedure and denot-

ing the inadequacy of the system to manipulate
all the available evidences, especially the con-
flicting ones.

In our example, the initially selected nodes are
the adders A22, A41 and A42. The user results
are A22 = 7 (correct), A41 = 117 (correct),
A42 = 33 (error). Hence, the node A42 is in-
serted in the agenda. The mechanism extracts
from the results of the selected nodes the ensu-
ing diagnostic conclusion, “All the nodes of the
diagnostic network are correct except A23, M33
and A42 that contain at least one fault”.

5.1. Selection of the target node
DIRCE selects and activates a target node from
the agenda by applying the following criteria:

e the recently inserted new nodes in the network
are examined first,

e the nodes with conflicting indirect evidences
are examined second,

EVIDENCE GATHERING

[PRESELECTED NODES -]

IS THE AGENDA EMPTY?

FINAL
DIAGNOSTIC
CONCLUSIONS

SELECTION OF THE
TARGET NODE

v

SELECTION OF THE
MOST PROMISING NODE

v

NODE

DIAGNOSIS OF THE

v

INDIRECT DIAGNOSIS OF
THE NETWORK

Fig. 8. The diagnostic algorithm of DIRCE
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e then the nodes with wrong results, and finally,

e the nodes that have not yet been diagnosed in
any manner during the diagnostic operation.

The target node is utilised as the main evidence
for the detection of the fault nodes as well as
for the verification of any examined hypothesis.
This node is deleted from the agenda as soon as
all the causes of its discrepant behaviour have
been diagnosed.

During each cycle the diagnostic mechanism
detects and locates the existing errors either in
the target node or in one of its predecessors;
otherwise, it considers the specific nodes cor-
rect. The problem space is determined with the
assistance of the Sygg table, by using the tar-
get node as well as other existing evidences and
the up to that moment extracted conclusions. In
the example of the digital circuit, DIRCE selects
node A42 as target node because of its wrong re-
sult and it defines a problem space that involves
nodes A23, M33 and A42.

5.2. Selection of the most promising node

During this stage the engine is trying to pre-
dict and examine the step of the solution that
will give the most appropriate evidence for the
identification of the error in the defined problem
space. The conditional probabilities in the net-
work have only two values (1 or 0), depending
on the existence or not of a relationship between
the corresponding nodes.

Errors in an individual problem can either be
very specific and may be identified in the same
step or they may concern a more general mis-
conception and can be identified in different but
related steps. Therefore, the fault frequency
(prior probability) of each node is not ade-
quate by itself to inform the engine about the
most promising node. In order to strengthen
the predictability of DIRCE, the Relationship-
Causality technique substitutes the prior prob-
abilities with the error causing beliefs (ECBs).
The error causing belief of a node designates the
existing belief for the specific node to be faulty.
It can be declared by the expert or evaluated by
a machine learning procedure from the previ-
ously diagnosed cases or it may be deduced by
combining both approaches. The most promis-
ing node is chosen according to the following
three prerequisites:

o the selected node must be by far the most
probable fault node and/or

e the neighbourhood of the selected node must
concentrate strong positive evidences that it
may include a fault node and/or

e when the particular node is not a fault node,
it must radically restrict the relative problem
space. In case of lack of further evidence, the
probability to detect a fault node in the prede-
cessors or the descendants of the selected node
must be roughly equal to 0.5.

Considering the above criteria and the Bayes
theorem, a decision support function has been
constructed that evaluates the RCF (Relation-
ship Causality Factor). The specific factor is
utilised for the selection of the most promising
node. The node of the specific problem space
with the greater RCF is the requested one. The
RCF of a node x is extracted as follows:

Yopi+ %
k=1

n
> Dpi
i=1

PPx =

]

where pp, indicates the relative belief in detect-
ing a fault in node x or among its predecessors,
Pi» P and p, depict the belief (ECB) of the sys-
tem that nodes i, k, x respectively may be the
fault nodes,

w is the number of predecessors of x in the spe-
cific problem space and

n is the number of all the immediate relatives
of node x (including ancestors, descendants and
itself) in the area under inspection.

Then gp, = 0.5 — ppx|/0.5 and
n m

psx = . pi/ > pj, where gp, indicates the rel-
=1 j=1

ative belief deviation according to the third pre-

requisite, ps, indicates the relative causal belief

of node x, and m is the total number of nodes of

the problem space, and finally

RCF, = (1 — qpy) % psy

The values of the RCF, range between 0 and
1. When RCF, tends to 1, node x is the most
promising node. On the other hand, when RCT,
tends to zero, the specific node does not satisfy
one or more of the posed preconditions and it
1s not recommended. The error causality values
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and the relationship-causality coefficients of the
digital circuit of Fig. 4 are given in Table 1. The
most promising node is the multiplier M33 with
RCF= 0.72.

Coef f icients

ECB || pp H qp “ ps H RCF
X1 | 0.00 | 0.00|0.00]|0.000.00
X2 | 0.00 | 0.00 | 0.00{0.00 | 0.00
X3 | 0.00 | 0.00 | 0.00|0.00 | 0.00
X4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
X5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
X5 | 0.00 | 0.000.00|0.00| 0.00
M11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
M12 | 0.00 [ 0.00 | 0.00 | 0.00 | 0.00
M13 | 0.10 [ 0.00 | 0.00 | 0.00 | 0.00
A21 | 0.30 { 0.00 | 0.00 | 0.00 | 0.00
A22 {1 0.00 | 0.00 | 0.00 | 0.00 | 0.00
A22 | 0.00 | 0.00 { 0.00]0.00 | 0.00
A23 ] 0.24 10.2410.5211.00| 0.48
M31 || 0.10 | 0.00 | 0.00 | 0.00 | 0.00
M32 | 0.00 | 0.00 | 0.00 | 0.00| 0.00
M33 || 0.16 | 0.64 | 0.28 | 1.00 | 0.72
A41 || 0.00 | 0.00 | 0.00 | 0.00 | 0.00
A42 || 0.10 [ 0.90 | 0.80 | 1.00 | 0.20

Tab. 1. The RCFs of the digital circuit

5.3. Diagnosis of the node

The diagnostic mechanism requires from the
user the assigned by the learner relation, the
values of the allocated components and the ex-
tracted result for the variable under examina-
tion. DIRCE, assisted by the partial solver,
parses the relation, analyses syntactically and
semantically the above elements, diagnoses any
existing error in the specific step and arrives at
local diagnostic conclusions. If the diagnosed
node is a new one in the diagnostic network,
the corresponding equation is retrieved from the
deep-knowledge base, transformed and finally
compared with the learner’s equation. When
the particular node is not a fault node, there are
two directions:

e the acquired information designates the exis-
tence of one or more errors among the prede-

cessors of the examined step and the node is
inserted in the agenda

o the diagnosed node declares the correctness of
its ancestors and delimits the problem space.

In the digital circuit of the example the node
M33is, indeed, a fault node with relation A22 +
A23 instead of A22 x A23 and with the output
value equal to 26 instead of the calculated one
which is 16 (the correct result is 63).

5.4. Indirect diagnosis of the relative
nodes

The diagnostic conclusions of the selected and
examined node constitute a source of knowl-
edge for the diagnosis of all its relative nodes
(predecessors or descendants, with immediate
or intermediate relationship). These conclu-
sions are propagated through the neighbouring
relative nodes of the diagnostic network by util-
ising the following two inferential procedures:

Indirect diagnosis of predecessors. The di-
agnostic conclusions are transferred to the pre-
decessors through the parents of the examined
node. Any discrepancy between previously ex-
tracted results in the nodes and the propelled
results indicates a conflict that must be resolved
by DIRCE.

Indirect diagnosis of descendants. The di-
agnostic results are diffused sequentially from
one level to another, starting from the immediate
descendants of the investigated node. The ap-
plied process is working in two directions. The
initial direction is forward and the knowledge
is propagated through the non-examined nodes
by recalculating their values. When the for-
ward procedure encounters a previously exam-
ined node or a final node, it stops. At each such
node the value calculated from the transferred
information is compared to the already existing
one. When the two values are equal a backward
process begins that extracts indirect local diag-
nostic conclusions for the previously traversed
nodes. On the contrary, the appearance of dif-
ferences declares the existence of one or more
fault nodes in the specific problem space, which
must be detected by DIRCE.

In the presented example, the indirect diagnosis
examines and verifies that node M33 is the only
cause of the digital circuit malfunction.
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6. Application of the engine

DIRCE has been applied in the I-DIAS system,
which is currently under evaluation, while an
initial version of the engine was used in the
DIAS diagnostic system (Barbounis & Philo-
kyprou, 1991). I-DIAS can diagnose high
school exercises in physics and chemistry with
50 steps at the most. The examined exercises
were from kinematics, electrical circuits, heat
and inorganic chemistry. All of them had been
solved in procedural manner, with steps inter-
connected through mathematical equations.

The educational objective of I-DIAS is to iden-
tify all errors in the students’ solutions. The
students based on the diagnostic conclusions of
the system can proceed to self-correcting ac-
tions or to seek the assistance of their teachers
if they do not understand why their solutions
were wrong.

The diagnostic mechanism of the I-DIAS sys-
tem can handle adequately all errors that arise in
this type of problems with the exception of the
covered errors. As covered error is considered
any error that cannot be detected via the existing
evidences during indirect diagnosis, because a
following error covers its discrepant behaviour.
The teacher has a similar difficulty in dealing
with covered errors when he/she diagnoses a
learner’s solution based on limited evidence.
DIRCE is trying to reveal and identify these
errors by examining any new evidence whether
it contradicts with any of the up to that moment
reached diagnostic conclusions. If there is a
conflict, then a covered error has been detected.
The engine can diagnose any covered error in a
solution when it takes into account all the steps
of the student’s solution.

The number of diagnostic steps required by the
system to locate a fault node in a solution mainly
depends on the magnitude of the problem space
and on the ECBs of the included nodes. For ex-
ample, a fault node with very high ECB and/or
limited problem space is located in one or two
diagnostic steps. On the contrary, the number of
diagnostic steps required to locate a fault node
with low ECB and/or large problem space ap-
proaches log,(N), where N is the number of
nodes of the specific problem space. The re-
sponse of the system in consecutive diagnostic
steps is nearly instant.

I-DIAS can operate on low and average ca-
pabilities microcomputers that usually exist in
schools (80386 SX microprocessors and over).
It has been developed in Clipper of Computer
Associates combined with modules from C li-
braries. The system can also run in local area
networks either under Novell with client-server
architecture (Novell 3.1x, Novell 4.x) or un-
der Windows NT of Microsoft in DOS mode.
Furthermore, I-DIAS with the assistance of the
communication package PC-Anywhere of
Symantec can run remotely through common
telephone lines. In the client-server operation of
the system a work area is created at the client’s
workstation during the diagnostic process. This
area includes the diagnostic network, the meta-
rules knowledge base and the agenda of targets.
The program communicates with the server in
order to query the deep knowledge base only.
By the end of the diagnostic process the work-
ing area is eliminated and the final conclusions
update proper data bases in the server.

7. Conclusions

The present paper was focused on the intelligent
diagnostic engine DIRCE. The engine exam-
ines problems exclusively solved in a procedu-
ral manner, with steps interconnected through
mathematical equations. The following charac-
teristics and abilities, suitable to distance diag-
nosis, have been embodied in DIRCE:

e applicability to a wide range of knowledge
domains,

e interactive diagnosis of the student’s solu-
tions in an evidence-driven approach, requir-
ing only the necessary information from the
user,

e identification of the learner’s errors without
extensive bug catalogues and mal-rule libraries,

e perception and detection of the existing errors
in a manner efficient and rapid,

e capability to operate in multi-user environ-
ments.

DIRCE is currently being used and tested in the
I-DIAS system for diagnosis of high school ex-
ercises in physics and chemistry with positive
results. Main objective of the system is the on-
line identification of the existing errors in the
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students’ solutions. During informal tests the
engine based on limited information acquired
interactively from the students, located all the
existing errors of the diagnosed solutions, ex-
cept for the covered errors.

Future research will be concentrated at minimis-
ing the number of required diagnostic steps in
students’ solutions with average or low belief
nodes as well as at minimising the informa-
tion required from the experts for the data and
knowledge bases of the DIRCE systems.
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