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Analytical Approach in Solving
Specific Queuing Theory Problem

Zeljko Dobrovié

Ministarstvo obrane, Glavni inspektorat obrane, Zagreb, Croatia

Problems from the area of queuing theory can be solved
by different methods. If the problem is so simple, that it is
possible to find the corresponding classic model of queu-
ing theory, we can simply use the existing expressions
defining the main parameters of classic model. More
complicated problems, which are not classic and look
like real practical problems, need deeper analysis. There
are two ways of solving them. One is simulation, which
means statistical analysis of the results of a few times
repeating simulation. If the real system we are trying
to describe is so complex that it has a lot of possible
states, simulation method can be used. Otherwise, if
we are able, while solving a queuing problem, to make
some presumptions not destroying the real picture of the
problem, analytical method is recommended. In this
work we present such analytical solution.

1. Introduction

The maintenance system is, generally, a compli-
cated system. Its analysis needs deep approach
with numerous random elements. An essential
part of maintenance system is the repair shop,
to repair and maintain specific technical equip-
ment. In this work an analysis is given of re-
pair and maintain processes in a technical repair
shop. - The devices which need to be repaired
and maintained in this shop are different kinds
of radio devices. Trying to mathematically de-
scribe this kind of problem, we can choose be-
tween two methods — analytic and by simula-
tion. Both methods use queuing theory for the
repair shop description. The simulation method
is based on a statistical analysis of the results of
several times repeating simulation. On the other
side, analytic method is based on the mathemat-
ical model generated by analytic description of
the problem. The analytic solution is presented
in this work. What we want to achieve is to

determine the probabilities of states, in which
the repair shop can be. Those probabilities can
be used to determine the probability of complex
events (one or more mechanics are not avail-
able for service, the device demanding service
or repair cannot be serviced because all me-
chanics are engaged etc.), which can be used to
analyse important parameters like the minimum
cost needed for normal functioning of the repair
shop. Functional and organizational description
of the radio devices repair shop is given in the
second chapter and it is used as the basis for
analytic description (by the terms of the queu-
ing theory) which is discussed in the third and
fourth chapters. The fifth chapter verifies the
results we got using the proposed repair shop
mathematical model. This verification is made
comparing our results we got with the results of
some classic queuing systems.

2. Organizational and functional structure
of the radio devices repair shop

The purpose of the radio devices repair shop is to
maintain different kinds of radio equipment and
therefore there are four kinds of radio mechanics
working there. These four kinds of radio me-
chanics are enough to support all radio devices
that are maintained in the repair shop. They will
be denoted as RMi, i = 1,2,3,4. Each radio
device can be maintained or repaired by one of
the four mentioned mechanics. The mechanics
do not work independently. The second me-
chanic (RM2) is qualified to help the first me-
chanic (RM1) by servicing radio devices that
is the first mechanic is trained for. Equallu so,
the fourth mechanic (RM4) can help the third
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Fig. 1. The repair shop schema

mechanic. If we assume that RM1 is trained for
servicing radio devices A, B, C, D and E, RM2
for servicing devices N and O, RM3 for servic-
ing devices F, G, H, I and J, RM4 for servicing
devices K, L and M, the repair shop organiza-
tional and functional scheme looks like the one
presented in figure 1. Broken arrows

depict the direction of help given by RM2 and
RM4 to RM1 and RM3, respectively. The ser-
vices done by RM1 and RM2 are functionally
independent from the services doned by RM3
and RM4, which is depicted by the broken line.

3. Input process

The term “input process” means the radio de-
vices that originate over time demanding service
and join the queue of a system (repair shop) pro-
viding such service. Due to the complexity of
the matter analytic description of the queuing
theory problem demands certain presumptions.
As we mentioned, the first pair of mechanics
(RM1 and RM2) are functionally independent
from the second pair (RM3 and RM4) and there-
fore we can analyse the service of RM1 and
RM?2 first and use the results for description of
RM3 and RM4 service. RM1 services A, B,
C, D and E types of radio devices, RM2 ser-
vices N and O types and A, B, C, D and E types
if helps the RM1. The streams of customers
(radio devices) coming to the queuing system
(repair shop) are, in fact the streams of types of
devices mentioned above (A, B, C, D, E, N, O),

and they form the input processes. Each type of
the radio device generates its own input stream,
so we have seven input streams for seven types
of devices. We assume that four technologi-
cal maintenance programs [1] are performed in
the repair shop: two preventive programs —
PP-3 (periodical service) and PP-5 (technical
service) and two corrective programs — CP—
3 (easy repair) and CP—4 (module removing
repair). Each radio device input stream can be
considered as the sum of four independent input
streams:

1) radio device input stream that demands ser-
vice PP--3;

2) radio device input stream that demands ser-
vice PP-5;

3) radio device input stream that demands ser-
vice CP-3;

4) radio device input stream that demands ser-
vice CP—4.

Preventive programs (PP-3, PP-5) and correc-
tive programs (CP-3, CP-4) mentioned above,
are taken from the set of eleven preventive and
eleven corrective programs which contain all
necessary services that radio devices can de-
mand in the maintenance system [1]. So there
are seven types of radio devices (A, B, C, D,
E, N, O) and each type generates four input
streams (PP-3, PP-5, CP-3, CP-4). Therefore
we have 28 radio devices input streams coming
to RM1 and RM2. We assume input streams
of one type of radio device to be mutually in-
dependent. In the next step we should consider
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the characteristics of four input streams gener-
ated by each type of the radio device. There
are two input streams for preventive servicing
(PP-3, PP-5) and two input streams for correc-
tive servicing (CP--3, CP—4). We can consider
corrective service streams to be ordinary, be-
cause assume the probability that two or more
radio devices arrive at the same time demand-
ing corrective service is practically very small.
The situation with preventive service streams is
more complicated. If the interarrival time be-
tween successive appearances of the same type
of radio device coming for preventive service is
the multiple of interarrival time between succes-
sive appearance of another type of radio device
coming for preventive service, two or more ra-
dio devices demanding service can appear at the
same time and thus make the preventive service
streams inordinary. The service system orga-
nization has solved this problem by planning a
few days arrival delay for such radio devices, al-
lowing us to consider preventive service streams
to be ordinary, too. We can assume that inter-
arrival times between successive appearances
of radio devices are mutually independent for
all services. Radio devices input streams are
Poisson streams considering the mentioned as-
sumptions.

Let A be the rate of radio device X arrival de-
manding corrective service and A, be the rate
of radio device X arrival demanding preventive
service. Because of the stability characteristic,
the total rate A, of radio device X arrival (in-
tensity of radio device X input stream), can be
expressed as:

A, = xk+)"xp- (])

In determining A and A, we must consider the
following parameters: failure intensities of the
radio device X, both when it works and when
it does not work, number of radio devices of

type X, time period between two successive pre-
ventive services (PP-3, PP-5) and the working
factor (usability factor) for radio device X. Let
us explain this. Every professional radio device
has two parameters given by the manufacturer
— tailure intensity when the device works and
failure intensity when it does not work. The
radio device working factor is a rate of radio
device operational time (when it works) and
the whole passed time during one time interval.

So, the value of A (formula 1) can be expressed
as ke x A1 + (1 — ko) * Ay, where &, is a working
factor and A4, A; are failure intensities when the
device works/does not work, respectively. As
mentioned before, RM1 (radio mechanic 1 or
server 1 or channel 1) serves radio devices A,
B, C, D, E and RM2 services radio devices N, O.
Each radio device type generates its own input
stream which, because of the stability charac-
teristic, can be added to the input streams of
other radio devices. So, the intensity of radio
device input streams sum (coming to RM1 de-
manding service) equals the sum of intensities
of all types of radio device input streams:

M= A, S1={AB,C,D,E}. (2)
ieS1

According to formula (2), for RM2 we have:

ha=) %, S2={N,0}.  (3)
JESZ

We can get the values of A; and A, using formu-
las 2 and 3 just in case that help factor k; equals
zero, and which happens when RM2 does not
help RM1 servicing a certain number of “his”
radio devices A, B, C, D or E (see fig. 2, 1 stands
for A).

The intensities (A{ and A}) of real radio device
input streams that come to RM1 and RM2 de-

) 11'_ ~ 1.radio mechanic
(RM1)

1 3' _ _ | 2radiomechanic
. (RM2)

Fig. 2. The repair shop functional scheme
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manding service, can be expressed as:

}L{—_—(l—k,)*)q

4
)\Q’:)Lg—l—k,‘*)nl ()

If RM2 does not help RM1 at all (k; = 0), we

have:
A s

A=k
On the contrary, if, for some reason, RM2 ser-

vices all radio devices that RM1 is supposed to
service (k; = 1), we have:

(5)

AM=0

A=A+ A (6)

4. Formal descriptidn of the radio device
repair shop as a queuing system

After we described radio device input streams,
the next step is the formal description of radio
device repair shop. First of all, we have to make
some presumptions:

— the activities in radio device repair shop are
preventive (PP-3, PP-5) and corrective (CP-3,
CP—4) technological programs (services);

— there are four radio mechanics (servers, chan-
nels — queuing theory expressions) RM1, RM2,
RM3, RM4 working in the repair shop, RM1
and RM2 are organizationally and technologi-
cally connected in the same way as RM3 and
RM4 (fig. 1);

— the duration of radio device service is random
variable having exponential distribution and so
is the time interval between two successive ra-
dio device arrivals;

— there is one waiting place in the queue, which
means that each radio device arriving in the mo-
ment when both mechanics (RM1 and RM2)
and waiting places are engaged, leaves the queu-
ing system;

— two channels (RM1, RM2 or RM3, RM4)
forming one technological and organizational
unit have such characteristics that one of them
(RM2 or RM4) can help the other (RM1 or
RM3) by servicing a certain number of its radio
devices. This number of radio devices depends
on help factor (k;) whose possible value may

vary between 0 (no help) and 1 (full help) as in
fig. 2;

—there are two technological and organizational
units each having two channels (RM1, RM2 and

RM3, RM4) and they can be described indepen-
dently;

— each radio mechanic represents one channel
or server and adding another mechanic of the
same kind means increasing the rate of service
or service intensity (u);

— the process in radio device repair shop is dis-
crete Markov stochastic process with continu-
ous parameter (time).

Figure 3 shows the whole process in a radio de-
vice repair shop (1 stands for A ). According to
the presumption mentioned before, the process
in our queuing system is a discrete stochastic
process with continuous parameters. Therefore
we can determine the states in which the system
can be. All states are showed in Table 1. For
example, state Y5(1,0,0) describes the situation
when channel 1 (RM1) is engaged, channel 2
(RM2) is free and there is no radio device wait-
ing for service. Two states are specially marked:
Y2 and Y6. Our queuing system can never be
in these states. Table 1 describes just the first
(RM1, RM2) of the two technological and orga-
nizational parts of the repair shop because those
parts are mutually independent.

waiting
States | channel 1 | channel 2 | place
Y1 0 0 0
Y2* 0 0 1
X3 0 1 0
Y4 0 1 1
Y5 i 0 0
Yo6* 1 0 1
Y7 ik 1 0
Y8 1 1 1

Tab. 1. The queuing system description (all states)

Eliminating states Y2 and Y6 we get the queu-
ing system description showed in Table 2. One
of the important tasks in queuing theory is to
find out the probabilities of the states in which
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Fig. 3. The radio device repair shop process

the system can be. If we knew those proba-
bilities, we could determine the probabilities of
more

walting
States | channel 1 | channel 2 | place
Y1 0 0 0
X2 0 i 0
Y3 0 1 1
Y4 il 0 0
Y5 1 i 1

Tab. 2. The queuing system description (possible states)
events like:

a) Probability that the service demanding radio
device will be cancelled. This occurs if such a
radio device appears in the moment when the
system is either in state Y3 or in state Y6. If the
system is in state Y3, the radio device that can
be serviced only by the second channel (N, O),
will be cancelled. If we assume that the events
“system is in Y3 state” and “radio device N or
radio device O demand service” are mutually
independent, the probability of their simultane-
ous appearance can be expressed as the product
of their probabilities. On the other hand, if the
system is in Y6 state, any radio device that ap-
pears demanding service will be cancelled. The
Y3 and Y6 states mutually exclude each other.

So, the probability that a service demanding ra-
dio device will be cancelled can be expressed
by the formula:

P,
_ kil L% «P(Y3)
NA+TNALNCINDINELNNINO
+ P(Y6) (7)

where NI is the number of the radio devices 1.

b) Probability that the first channel is engaged
can be determined by the sum of probabilities
of states Y4, Y5 and Y6. Those states mutually
exclude each other and we have:

Pi, = P(Y4) + P(Y5) + P(Y6)  (8)

c) Probability that the second channel is en-
gaged:

Py, = P(¥2) + P(Y3) 4+ P(Y5) + P(Y6) (9)
d) Probability that the queuing system is empty

(both channels are free and there are no radio
devices waiting):

Py = P(Y1) (10)

Using the queuing system states (Y1 through
Y6) we can generate 2° = 64 events (merging
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different states), but majority of those events
have no particular importance to us. After we
have found all the states of a queuing system, the
following step to determine the probabilities is
to define possible transitions between the states.
Let A{ and A; be the intensities of the radio de-
vice input streams demanding service from the
first and the second channels. Let uy and u, be
the service intensities of the first and the sec-
ond channels. We can explain the transitions
using Y1 and Y2 states as examples (the graph
in figure 4 provides the necessary informaton
on other states transitions).

From the Y1 state the system can transit to:
— Y2 state with A] intensity
— Y4 state with A] intensity.
From the Y2 state the system can transit to:
— Y1 state with w intensity
— Y3 state with A} intensity
—Y5 state with A{ intensity.

The following graph illustrate the states and
transitions (fig. 4, 1 stands for A, m stands for

w).

If we assume radio device input streams switch-
ing the system from one state to the other to be

stationary Poisson streams, the queuing system
can be described by means of a linear differ-
ential equation system. From figure 4 we can
see that all states have input and output streams
and therefore there is astationary system state
(after some time the values of probabilities of
states will be constant). Using the Chapman—
Kolmogorov method it is possible to form the
system of six linear differential equations (six
states of system) with constant coefficients A
and .

V1= (A + M) Y14+ Y4+ up % Y2
Y2 = —(A{ + A5 + wp) * Y2

+ M x Y1+« Y34 uy Y5
Y3 = —(M + ) * Y3+ A, # Y2+ g % Y6
Y& = —(u + M) x Y4+ i+ Y5 + A x Y1
Y5 = —(A + A5+ w + ) * Y5

+ A * Y24+ AL« Y4+ (g + 1) * Y6
Y6 = — (2% u + wp) x Y6

+ (1" +2V Y54+ 1" %Y3

(11)

Y1',...,Y6 are functions with the parameter ¢
(time) and the depict the probabilities of states
Y1,...,Y6. If we want to solve this system of

equations by some of the numerical methods,
initial conditions must be determined. These

14
Y1 I2'
mz
Y4 m Y2
mi1 ‘
I+
Y5 Y3
14'+]2' 14

Comi +me Y6 -

Fig. 4. States and transitions
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conditions are the probabilities of states in the
moment £ = 0. It is logical to accept the as-
sumption that the system in moment t = 0 is in
the state Y1, so we have

P[:U(Yl) == ],

On the other hand, the set of all states com-
pletely describes the queuing system. So we

have
6

¥ BE=1,

i=1

(12)

Solution of the system of equations (11) is given
in figures 5 and 6 and in tables 3 and 4. It is
achieved by using Adams predictor—corrector
method. Let us explain tables 3 and 4. Those
tables are interactive computer printouts. Input
parameters to our computer program are:

— initial values of probabilities of states (P(Y1)
to P(Y6));

— failure intensities for all radio devices both
when they work and when they do not work;

— the number of all types of maintained radio
devices;

Po(Yi) =0, i=2,3,4,5,6.

— the radio device working factor (usability fac-
tor);

— the frequency of radio device preventive ser-
vice;

— the probability of radio device corrective ser-
vice;

— the time needed for certain preventive and
corrective programes;

— the channel help factor;

— number of radio mechanics per service chan-
nel.

Using these input parameters the computer cal-
culates A1, A2, ul, u2 and the probabilities of
states during one time interval (58 time units
— hours). Probabilities of states are givenas
columns at the end of the tables. Headers of
columns are marked as Yi-xxx, for example Y3-
011 means the third state (Y3), the first channel
is free (0), the second is engaged (1) and the
waiting place is occupied(1).

58 hours is enough for the system to reach the
stationary state. After 19 hours (table 3) and 16

. 8 +
< = A 1
S5 / X
231030~ /
020 -

J\

G OO,IOJ f T T T T T T T J
0,00 1600 3200 48,00 64,00 30,00

Time (h)

Fig. 5. The probabilities of states (1)
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Fig. 6. The probabilities of states (2)

hours (table 4) the system reaches the station-
ary state and the probabilities of states become
constant.

We assumed that the constant value of five num-
bers after the decimal point is enough to con-
sider the probabilities of states to be constant
too. Figures 5 and 6 are graphs of tables 3 and 4,
(in that order). Table 3 with figure 5 and table 4
with figure 6 depict the probabilities of the same
queuing system states, but with different input
parameters. Table 4 and figure 6 describe the
situation when there is no radio mechanic in the
first channel and one radio mechanic works in
the second channel. Therefore the probabilities
of states in which the first channel is engaged
equal zero (Y4, Y5, Y6). Using the data from
tables 3 and 4 we can analyse the exploitation
of channels in our system. The first channel is
engaged in states Y4, Y5 and Y6.

Therefore the sum of probabilities of those states
represents the exploitation of that channel or the
probability that the first channel isengaged. The
exploitation factor of the second channel equals
the sum of probabilities of states Y2, Y3, Y5,

Y6. So, using the data from table 3 we can
calculate the exploitation of the first channel
in the stationary state: 0.37532 + 0.04936 +
0.01983 = 0.4423 (working 44% of time). In
the same way, the exploitation of the second
channel equals 0.15 (working 15% of time).
Reading the table 4 we can notice an increased
exploitation of the second channel (help factor
equals 1, there is no mechanic in the first chan-
nel). There is one interesting parameter con-
cerning each channel-traffic intensity p = A /.

From the table 3 we have p; = A/ = 0.8
and p; = Ay/up = 0.138. From the table 4,

pr =M/ =0and pr = Ap/pp = 0.951. As

we can see from the table 4, the second channel
is almost out of use, because the input stream
intensity (A;) is almost equal to the service in-
tensity (uz). Our queuing system (radio device
repair shop) is described with six states, so we
can observe 2° — 1 = 63 events and find out the
probabilities of their appearance. But not all of
them are interesting to us. On the contrary, just
a small subset of that set of events is of practical
interest.
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LGO

Number of radio devices A( 75):

Number of radio devices B( 85) :

Number of radio devices C( 1

50

Number of radio devices D( 25) :

Number of radio devices E( 45) :

Number of radio devices N( 25) :

Number of radio devices O( 7) :

Write the help factor RM2 to RM1(0. ) :

? 0.05

Write the radio device usability factor(o.]) :

Number of radio mechanics in the first channel(1) :

Number of radio mechanics in the first channel(]) ?

STABILIZATION OF QUEUING SYSTEM STATES PROBABILITIES FOR THE FOLLOWING PARAMETER VALUES:

A1 =0.709 u1 = 0.887 usability factor = 0.1

A2 =0.120 u2 = 0.873 help factor = 0.05

X

1.0000

4.0000

7.0000

10.0000
13.0000
16.0000
19.0000
22.0000
25.0000
28.0000
31.0000
34.0000
37.0000
40.0000
43.0000
46.0000
49.0000
52.0000
55.0000
58.0000

Y1-000

0.59537
0.47858
0.47278
0.47202
0.47191
0.47190
0.47189
0.47189
0.47189
0.47189
0.47189
0.47189
0.47189
0.47189
0.47189
0.47189
0.47189
0.47189
0.47189
0.47189

Y2-010

0.04685
0.06380
0.06682
0.06728
0.06734
0.06735
0.06735
0.06735
0.06735
0.06735
0.06735
0.06735
0.06735
0.06735
0.06735
0.06735
0.06735
0.06735
0.06735
0.06735

Y3-011

0.00330
0.01385
0.01588
0.01618
0.01623
0.01623
0.01623
0.01623
0.01623
0.01623
0.01623
0.01623
0.01623
0.01623
0.01623
0.01623
0.01623
0.01623
0.01623
0.01623

Y4-100

0.32631
0.37956
0.37604
0.37543
0.37534
0.37533
0.37532
0.37532
0.37532
0.37532
0.37532
0.37532
0.37532
0.37532
0.37532
0.37532
0.37532
0.37532
0.37532
0.37532

Y5-110

0.02311
0.04645
0.04894
0.04930
0.04935
0.04936
0.04936
0.04936
0.04936
0.04936
0.04936
0.04936
0.04936
0.04936
0.04936
0.04936
0.04936
0.04936
0.04936
0.04936

Tab. 3. The probabilities of states (1)

Y6-111

0.00506
0.01775
0.01954
0.01979
0.01983
0.01983
0.01983
0.01983
0.01983
0.01983
0.01983
0.01983
0.01983
0.01983
0.01983
0.01983
0.01983
0.01983
0.01983
0.01983
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LGO
Number of radio devices A( 75) :

Number of radio devices B( 85) :
Number of radio devices C( 15) :
Number of radio devices D( 25) :
Number of radio devices E( 45) :
Number of radio devices N( 25) :
Number of radio devices O( 7) :

Write the help factor RM2 to RM1(0. ) :
7 1.0
Write the radio device usability factor(0.1) :

Number of radio mechanics in the first channel(1) :
? 0

Number of radio mechanics in the first channel(1) :
?

STABILIZATION OF QUEUING SYSTEM STATES PROBABILITIES FOR THE FOLLOWING PARAMETER VALUES:
A1 =0. ul = 0. usability factor = 0.1
A2 = 0.830 u2 = 0.873 help factor = 1.0

X Y1-000 Y2-010 Y3-011 Y4-100 Y5-110 Ye6-111

1.0000 0.57078 0.30294 0.12628 0.00000 0.00000 0.00000
4.0000 0.36642 0.33264 0.30094 0.00000 0.00000 0.00000
7.0000 0.35151 0.33301 0.31548 0.00000 0.00000 0.00000
10.0000 0.35035 0.33305 0.31660 0.00000 0.00000 0.00000
13.0000 0.35026 0.33304 0.31670 0.00000 0.00000 0.00000
16.0000 0.35025 0.33305 0.31670 0.00000 0.00000 0.00000
19.0000 0.35025 0.33305 0.31670 0.00000 0.00000 0.00000
22.0000 0.35025 0.33305 031670 0.00000 0.00000 0.00000
25.0000 0.35025 0.33305 031670 0.00000 0.00000 0.00000
28.0000 0.35025 0.33305 031670 0.00000 0.00000 0.00000
31.0000 0.35025 0.33305 0.31670 0.00000 0.00000 0.00000
34.0000 0.35025 0.33305 0.31670 0.00000 0.00000 0.00000
37.0000 0.35025 0.33305 0.31670 0.00000 0.00000 0.00000
40.0000 0.35025 0.33305 0.31670 0.00000 0.00000 0.00000
43.0000 035025 0.33305 0.31670 0.00000 0.00000 0.00000
46.0000 0.35025 0.33305 0.31670 0.00000 0.00000 0.00000
49.0000 0.35025 0.33305 0.31670 0.00000 0.00000 0.00000
52.0000 0.35025 0.33305 0.31670 0.00000 0.00000 0.00000
55.0000 0.35025 0.33305 031670 0.00000 0.00000 0.00000
58.0000 0.35025 0.33305 031670 0.00000 0.00000 0.00000

Tab. 4 The probabilities of states (2)
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5. Conclusions

In this work using a queuing system theory, we
gave analytic description of the radio device re-
pair shop. The method we used is mathematical
modelling based on analytic description of the
real system. This model is realised on a com-
puter and can be applied for different analysis
(determination of number of workers needed for
successtul service of given number and types of
devices). With a certain appendix we can use
this model for calculation of different costs in
the system. To be able to apply our model, we
must solve a concrete system of linear differen-
tial equations. The only practical way of solving
this system is to use a computer. Our system
(11) is solved by the use of mathematical rou-
tines library on the CYBER 170/825 computer.
In our repair shop analysis we restricted our-
selves to one waiting place in the system. If
there is a need for more than one waiting place
(with the same input data), the new system of
linear differential equations must be defined,
because each new waiting place increases the
number of states in the system. We do not need
to be concerned with the increase of the num-
ber of states because there are more impossible
states which can be ejected. Finally, the types
of devices noted as A, B, C, D, N, O can be any
devices and all we need to know is their fault
intensity and the average service time.
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