Journal of Computing and Information Technology - CIT 4, 1996, 3, 205-213

Book Reviews

205

Frederick P. Brooks, Jr.

The Mythical Man-Month: Essays on
Software Engineering

Addison—Wesley Publishing Company, Read-
ing, Massachusetts, 1995, pp. xiii, 322, ISBN
0-201-83595-9

This is the anniversary edition of Brooks’s
authoritative book The Mythical Man-Month
whose first edition appeared already in 1975. In
it the author elaborates on the methodology of
software development and tribulations of soft-
ware project management based on his vast per-
sonal experience in this domain. In fact, the
undertitle of the book — Essays on Software
Engineering — 1s its best description, Brooks
being concerned primarily with productivity in
developing large software systems. The book is
written very clearly and shows deep insight into
this problem, using an informal style to present
individual issues and related conclusions, thus
making reading it a pure delight.

The book consists of three parts, each contain-
ing a group of essays. In its 15 chapters, the
first part produces the text of the first edition.
The central argument of this part is explicated
especially in Chapters 2-7: the author notes that
large programming projects suffer management
problems different in kind from small ones,
what is due to the division of labour. The criti-
cal need is preservation of conceptual integrity
of the software system itself. These chapters
explore both difficulties in achieving the indis-
pensable unity, and the methods used. Other
chapters explore different aspects of software
engineering management.

The second part (Chapter 16) reprints the influ-
ential essay “No Silver Bullet: Essence and Ac-
cidents of Software Engineering”, the 1986 IFIP

paper that grew out of the author’s experience
chairing a Defence Science Board study on mil-
itary software. It predicted that another decade
would not see any programming technique that
would by itself bring an order of magnitude im-
provement in software productivity. This work
inspired a lot of discussion, and ten years later
the readers themselves can conclude on the cor-
rectness of this assertion.

The third part consists of three chapters written
especially for this edition, and mainly includes
comments on published critique as well as au-
thor’s reflections on past experience in software
engineering. The last chapter is specifically an
updating essay.

As the author noted, the book is intended for
professional programmers, professional man-
agers, and especially professional managers
of programmers. It should be added that it
is,beyond any doubt,a highly interesting read-
ing for every computer professional.

Uros Perusko

Faculty of Electrical Engineering
and Computing

University of Zagreb

Zagreb, Croatia

Allen 1. Holub

Rules for C and C++ Programming

McGraw-Hill Book Company, New York, 1995,
pp. 186, ISBN 0-07-029689-8

In spite of its folksy title, Holub’s book is
refreshingly oldfashioned, standing out from
the current crop of thick verbose programming
books, primarily in that:

206

Book Reviews

e it is written by an intelligent and knowledge-
able author, assuming intelligent readers with
at least a basic command of the subject;

e it is not selling anything, except for the au-
thor’s knowledge and wit;

e its points are put clearly and concisely, in a
literate and often elegant language.

The result is 186 delightful pages, contain-
ing lots of information which is hard or im-
possible to find elsewhere. It is reminiscent
of finest mathematical books, which are pri-
marily about disciplined thinking, rather than
about partial differential equations or algebraic
fields: Holub’s book is about disciplined think-
ing about C/C++ programs.

The book is organized into “rules” which the au-
thor has found out to have worked well for him,
ranging from very general points on software
design and construction (and the organization
of the process), to intricate details of C/C++
semantics and use. C and C++ are separate
both spatially and conceptually — distinction
between C and C++ approach is one of Holub’s
major points. It is not a textbook, and not a ref-
erence manual — its proper use seems to be
to hang around, within reach from a program-
mer’s desk or bedside, to be reopened from time
to time.

Holub’s opinions are strong, and sometimes

highly personal, as he himself repeatedly stresses.

The reader may thus often disagree, but, in this
reviewer’s opinion, she is well advised to take
Holub seriously, and to explicate and analyze
the points of disagreement, it makes very useful
excercise. The reader would also be well ad-
vised to be a good sport and not to get offended
by this or that insulting remark, since Holub
hurls insults all around: at managers who mea-
sure productivity in lines of code, at doctors who
never learn to use a pencil, at mathematicians
who have written some of the worst programs
ever, at programmers who can program Fortran
in any language, at primadonnas who quickly
produce unreadable programs which seem to
work, at Microsoft whose MFC is a primary
source of examples of how not to do things, at...
In return, the reader gets a lot of good advice
about and valuable insight into C/C++, and
also splendid reading.

A short “did you know” quiz may help the reader
determine his/her use for Holub’s book. For C

programmers: did you know that a cast in an
expression in general involves a temporary vari-
able of the target type? For C++ programmers:
did you know that passing a class object by
value, or returning it from a function, involves
the copy constructor? If the (honest) answer is
“yes of course”, there is finally a book talking
to you. If the answer is anything less than that,
then you need Holub’s book desperately.

Dean Rosenzweig

Faculty of Mechanical Engineering
and Naval Architecture

University of Zagreb

Zagreb, Croatia

Christopher W. Fraser, David R. Han-
son

A Retargetable C Compiler: Design
and Implementation

The Benjamin/Cummings Publishing Com-
pany, Inc., Redwood City, USA, 1995, pp. xv,
564, ISBN 0-8053-1670-1

While most compiler texts focus on compiling
algorithms and methods, which leaves room
only for a toy compiler as an example, this
book completely examines the design and im-
plementation of 1cc, a production-quality, retar-

- getable compiler for the ANSI C programming

language, designed at AT&T Bell Laboratories
and Princeton University.

The aim of reading this book is to learn more
about compiler construction. Not many pro-
grammers really need to know how to design
and implement compilers, most of them work
on applications and other aspects of systems
programming. However, there are several rea-
sons why even those C programmers may ben-
efit from reading this book

First, programmers who understand how a par-
ticular compiler works are usually better pro-
grammers, since they gain knowledge about
even the darkest corners of the programming
language. Second, most texts on program-
ming use only small, elegant examples to il-
lustrate programming techniques. The majority

Book Reviews

207

of programmers, however, work on very large
programs, and thus encounter many problems
evolving from the size of their programs. This
book provides one such reference point, since
it describes both the good and the bad points of
lcc, a large and complex application. Third, a
compiler is one of the best demonstrations of
the interactions between theory and practice in
computer science. Exploring these interactions
in areal program helps programmers understand
when, where and how to apply different tech-
niques. Fourth, this book is an example of a
“literate program”, it presents lcc’s source code
and the prose that describes it. The code is pre-
sented in the order that best suits understanding
it, not in the order dictated by the C program-
ming language.

A compiler generally translates source code to
assembler or object code for a target machine.
A retargetable compiler has multiple targets.
lcc is a retargetable compiler, and this book
tours not only most of the compiler itself, but
also code generators for three target machines:
MIPS R3000, SPARC, and Intel 386 and its
successors (referred to as X86).

The book is organized as follows. The first
chapter is an introduction, giving instructions
to the reader on how to read the book. The
second chapter describes 1cc’s storage manage-
ment scheme, which is based on object life-
times. In this scheme allocation is very ef-

ficient and the cost of deallocation is negligi-

ble. It simplifies the code and makes alloca-
tion very cheap. The following chapter deals
with symbol management in 1cc. Symbols are
collected into symbol tables, through which all
parts of the compiler communicate. Chapter 4
focuses on types — representing types, type
management, type predicates, type construc-
tors, function types, structure and enumeration
types, type-checking functions and type map-
ping.

The fifth chapter defines the interface between
the target-independent front end and the target-
dependent back ends of 1cc. This interface con-
sists of a few shared data structures, 19 functions
and a 36-operator language which encodes the
executable code from a source program in di-
rected acyclic graphs, called dags. Chapter 5
has been made as self-contained as possible, al-
lowing the readers to approach it independently
from other chapters.

The lexical analyzer, which reads source text
and produces token, the basic lexical units of the
language, is described in Chapter 6. The lexical
analyzer’s main activity is moving characters,
so minimizing the amount of character moving
may help increase the speed. In 1cc, this is done
by dividing the lexical analyzer into two tightly
coupled modules: the input module input.c and
the recognition module lex.c. The described
lexical analyzer provides a stream of tokens to
the parser. lcc uses a recursive-descent parser,
a straightforward application of classical pars-
ing techniques for constructing parsers by hand,
which produces a smail and efficient compiler
and is suitable for languages as simple as C
or Pascal. The seventh chapter gives a theo-
retical background in formal language theory,
syntax-directed translation and error handling,
necessary for understanding the code described
in subsequent chapters.

Chapter 8 focuses on C expressions. Those
expressions form a sublanguage for which the
parsing functions are relatively simple and
straightforward to write. They are a good start-
ing point for describing lcc’s eight modules
that collaborate to parse and analyze the in-
put program. This chapter concentrates on two
of those modules: tree.c with low-level func-
tions for managing trees and expr . ¢ with pars-
ing functions for recognizing and translating ex-
pressions.

Chapter 9 deals with expression semantics, de-
scribing semantic analyses that mustbe done to
build trees for expressions. There are three sep-
arate problems with which these analyses must
deal: implicit conversions, type checking and
order of evaluation. Two modules involved in
those analyses are enode. c with type-checking
functions and simp.c with functions that per-
form tree transformations.

Statements are the subject of the tenth chapter.
The semantics of statements consist of the eval-
uation of expressions, possibly intermixed with
labels and jumps. Expressions are compiled
into trees and then converted to dags. Jumps
and labels are also described by dags. This
chapter describes if statements, labels and go-
tos, loops, switch statements, return statements,
and managing labels and jumps. The corre-
sponding module is stmt . c.

The longest chapter of the book, Chapter 11,
concentrates on declarations. Declarations

208

Book Reviews

specify the types of identifiers, define structure
and union types and give the code for functions.
Declarations are the most difficult part of C to
parse. This chapter describes how declarations
are parsed and are internalized in the front end’s
data structures. It also covers function defini-
tions, compound statements, finalizations and
lcc’s main program. The modules involved are
decl.c,main.c and init.c.

Chapter 12 describes the remaining missing
pieces of 1cc’s front end — those that convert
trees to dags and append them to the code list,
and the functions which back ends call from
their interface procedures to traverse code lists.
Those pieces appear in the module dag. c.

Chapters 13—18 cover the back ends of the 1cc
compiler. The thirteenth chapter is concerned
with structuring of the code generator. The code
generator supplies the front end with interface
functions that find target-dependent instructions
to implement machine-independent intermedi-
ate code. Interface functions also assign vari-
ables and temporaries to registers, to fixed cells
in memory and to stacks, which are also in mem-
ory.

Selecting and emitting instructions is the sub-
ject of Chapter 14. The instruction selectors
in this book are generated automatically from
compact specifications by the program lburg,
a code-generator generator. lburg accepts a
compact specification and emits a tree parser
written in C that selects instructions for a target
machine.

The following chapter focuses on register al-
location, which can be viewed as having two
parts: allocation decides which values will oc-
cupy registers and assignment assigns a partic-
ular register to each value. The overall organi-
zation of the register allocator is described first,
followed by tracking the register state, allocat-
ing registers and spilling.

Chapters 16, 17 and 18 present the modules
that capture all information about three differ-
ent targets — the MIPS R3000, SPARC and
X86 (machines compatible with the Intel 386
architecture) architectures, respectively. Those
chapters are concerned with registers, selecting
instructions, implementing functions, defining
data and copying blocks. A retrospective is
given in the last, nineteenth chapter, followed
by the bibliography.

This book is well suited for self-study by both
professionals and academics. The readers are
supposed to be fluent in C and some assembly
language, to know what a compiler is and what
a compiler does, and to have a working under-
standing of data structures and algorithms at the
level covered in typical undergraduate courses.
The book and the accompanying diskette offer
complete documented source code for 1cc, and
the latest version of 1cc is always available for
anonymous ftp from ftp.cs.princeton.edu
in pub/lcc.

Andrea Budin

Faculty of Electrical Engineering
and Computing

University of Zagreb

Zagreb, Croatia

André Bacard
The Computer Privacy Handbook

Peachpit Press, Berkeley, California, 1995,
pp- xii, 274, ISBN 1-56609-171-3

Computers and computer communications have
a great impact on our everyday life. A huge
amount of information is stored on today’s com-
puters and shared between them. Some of it is
about us and about the things we want to keep
private. André Bacard, the author of this book,
tries to show us how naive we are in our be-
lief that our privacy cannot be easily invaded,
however, he also suggests some steps we can
take to protect our rights to privacy. To quote
the author: “This book is a wake-up call. . . The
goal of this book is to coax awareness. Life is
just the right length for awareness. Those of
us who are computer literate have the electronic
power and the social responsibility to fight for
our freedom of privacy”.

The book is divided into six parts. Part[: Guard-
ing Our Privacy in the Information Age, is an
excellent introduction not only to the subject of
privacy on the Internet but also to the whole sub-
ject of politics of privacy. Throughout the first
part of the book there are lots of drastic exam-
ples from real life in which privacy of individual

Book Reviews

209

persons has been neglected. The author’s inten-
tion was to show us that there is already plenty
of information about our private life that can
be easily gathered and used to harm or control
us. Medical and tax records, social security and
telephone numbers as well as postal addresses
are available not only to the government but
also to everyone who can illegally access gov-
ernment, bank or hospital computers.

Part II: Cryptology, is an introduction to encryp-
tion techniques available today. This is by no
means a mathematical introduction, but just an
overview of the most widely used and publicly
available techniques. This part deals with tech-
niques such as: DES, RSA and IDEA and gives
us a short historical background of the encryp-
tion technology. It also covers the well-known
Clipper Chip Initiative, an attempt of the US
government to popularize phone calls encryp-
tion with a special computer chip which would
however allow US law enforcement agencies
(and hopefully nobody else) to intercept voice
communications.

Part I1I: PGP: Pretty Good Privacy, presents an
easy-to-use, highly secure computer program
called PGP, and written by Philip Zimmermann,
that encrypts and decrypts data. A short history
of PGP and a presentation of its author are cov-
ered along with his battle with the FBI (Federal
Bureau of Investigation) and the NSA (National
Security Agency) to allow PGP encryption for
public use. Today, PGP is a freely available
program ported to almost every computer archi-
tecture and operating system and is the de facto
world standard software for E-mail security.

Part IV: Using PGP on the PC, is nothing but
a classical user’s guide for PGP written for PC
DOS platforms. } covers both the installation
and the usage of the program: how to create
public and secret keys, and how to encrypt and
decrypt messages and files, as well. There is
a great deal of examples with accompanying
computer screen images well suited for novice
users.

Part V provides a bibliography to the subject of
computer privacy. It can be used as a starting
point for anyone who wants to know more about
the subject. Part VI: Pro-Privacy Cyberspace
Resources, lists resources, both on the Internet
and elsewhere, that can help us to insure our pri-
vacy. There is also a list of non-government or-
ganizations, research projects, conferences, file

archives and other Internet resources promoting
privacy of individuals.

If you were not concerned about your privacy
before, after reading this book you will start to
ponder. This book also raises some interesting
political questions. I myself recommend it to
everyone using the Internet, so that he can find
out how to protect his privacy while commu-
nicating with others. Part T of this book is an
excellent piece of journalism written in plain
language with a lot of humour and real word
examples. I believe that you will read it in one
breath.

Goran Omréen—Ceko

Faculty of Electrical Engineering
and Computing

University of Zagreb

Zagreb, Croatia

Tracy Laquey
Adapted by Richard Harris and Stephan Deutsch

The European Internet Companion
A Beginner’s Guide To Global Networking

Addison—Wesley Publishing Company, Wok-
ingham, England 1995, pp. xiv, 272, ISBN 0-
201-42778-8

This book has its origin in the best-selling intro-
ductory guide to the Internet, The Internet Com-
panion, written in 1992 by Tracy Laquey. It is
its adaptation for the European audience, hence
the title The European Internet Companion. As
expected from this kind of book, not only the
hardcopy form exists, but also an online Inter-
net Companion site at the Online BookStore
(OBS). Throughout the book the democratic na-
ture of the Internet is often emphasized. This
political issue is best seen through the fact that
the foreword is written by US Vice President Al
Gore.

Although the book is intended for Internet neo-
phytes, it offers plenty of useful information for
users with certain Internet experience, too. In
order to make the book more understandable
the author gives comparisons with everyday life

Book Reviews

and follows a didactic approach. The book con-
tains a certain dose of fun and humor, neces-
sary to keep the attention of a cover-to-cover
reader. Practical issues are also suitably cov-
ered through numerous examples and sample
commands to try.

The book consists of seven chapters and an ap-
pendix. The introductory Chapter 1 titled What
Is the Internet and Why Should You Know About
It? attempts to find a tentative answer to this
question. In order to give a comprehensive re-
sponse, the chapter overviews plenty of diverse
aspects of the Internet. Briefly stated, it dis-
cusses Internet history, significance, success,
nature, properties, benefits, influence, future
and the like.

Chapter 2 explains some of the basic principles
underlying the Internet. Starting with its his-
tory, it continues with a set of short guidelines
to basic concepts and terms. It also reviews the
Internet structure and organizations involved in
its operation.

The third chapter deals with the many differ-
ent means people use to communicate over the
Internet. It covers e-mail and USENET News
in depth, and briefly describes interactive types
of communication (talk, Internet Relay Chat,
CU-SeeMe and MBONE).

If you are interested in finding information on
the Internet, Chapter 4 will instruct you in us-
ing online resources and services. It starts with
basic, low-level class of services such as remote
login and file transfer, and continues with infor-
mation discovery and retrieval class of services
like Archie, Gopher, WAIS and World Wide
Web. Additionally, the second half of this chap-
ter presents various client applications used in
accessing the above services.

Throughout Chapter 5, the author covers several
different topics which are denoted as advanced.
The beginning section contains accounts on In-
ternet culture, myths, legends and even games,
and is followed by a section that provides an
overview of security issues additionally fur-
nishing some related recommendations. Next
comes a section on organizations commited to
the Internet. The chapter ends with a descrip-
tion of services and methods for finding e-mail
addresses and resources.

To provide a more complete reference in using
the Internet, the author devoted Chapter 6 to an

introduction to UNIX, since many computers
on the Internet run it. Except for the basic com-
mands, it also provides explanations of the most
common UNIX idiosyncrasies and applications.

The final chapter discusses how to connect to
the Internet, what 1s needed to start the com-
munication and where to go for the required
services. It also comments the choices for in-
dividual access as well as basics for connecting
business organizations.

The Appendix is intended to be a sort of sum-
mary. The information presented there mostly
apply to the European market, since the book
is addressed to this audience. It lists service
providers by countries (I noted the absence of
Croatia), selected resources for navigating, or-
ganizations and consortiums, commercial infor-
mation services, client software and tools.

Josko Poljak

Faculty of Electrical Engineering
and Computing

University of Zagreb

Zagreb, Croatia

Donald K. Burleson

Managing Distributed Databases.
Building Bridges between Database
Islands

A Wiley /QED Publication, John Wiley & Sons,
Inc., New York, 1994, pp. 367, ISBN 0-471-
086223-1

In this book Donald K. Burleson provides solu-
tions to every conceivable problem associated
with the management of distributed database
systems, including those in client/server envi-
ronments.

“Open systems” has become one of the fore-
most buzzwords of the 1990s, but very lit-
tle has been written about issues involved in
managing a diverse network of databases and
making disparate database systems behave as
parts of an integrated enterprise. The prob-
lems of managing distributed database systems

Book Reviews

211

that span geographical areas, hardware plat-
forms and database architectures are very com-
plicated. Distributed database expert Donald
K. Burleson covers in 17 chapters many impor-
tant problems and provides a detailed overview
of the technological and human issues involved
in creating and maintaining a successful dis-
tributed database.

The basic terms and historical overview about
databases are addressed at the beginning of
this book: history of distributed databases
(Chapter 1), what is a database (Chapter 2),
overview of distributed databases (Chapter 3),
and basics of client/server systems (Chapter
4). The economics and human factor in dis-
tributed database design are presented in Chap-
ter 5. Chapter 6 deals with enterprise man-
agement of distributed databases. Chapters 7
and 8 explain the influence of object technol-
ogy to distributed databases. COBRA — the
common architecture for distributed systems is
presented in Chapter 9. The next five chapters
cover other distributed database related prob-
lems: distributed database connectivity (Chap-
ter 10), database access control and connectivity
(Chapter 11), distributed database backup and
recovery (Chapter 12), distributed database se-
curity (Chapter 13), and performance and tun-
ing for distributed databases (Chapter 14). New
data retrieval methods are explained in Chap-
ter 15. The remaining two chapters deal with
human issues: psychological issues — dealing
with resistance (Chapter 16) and new human
roles in distributed database systems (Chapter
17). Main products for creating object oriented
distributed systems that are the result of numer-
ous projects are described in the appendix. The
book has a very rich bibliography and a well-
structured index.

This book Managing Distributed Databases.
Building Bridges between Database Islands
gives an excellent explanation of all important
problems related to distributed databases. The
book possesses no deep theoretical background,
however it includes a comprehensive and fasci-
nating set of examples in a variety of language,
management and application domains. Its main
feature is a clear definition and explanation of
a large number of different terms related to the
domain of distributed databases. It can be seen
that the author is an acknowledged expert who
has worked in the consolidation of databases on

a variety of platforms and architectures. More-
over, the writing style of the book is clear and
acceptable even for readers with a limited back-
ground in distributed database. On the whole,
this is abook which I enjoyed reading very much
and [recommend it to anyone interested in the
practice of distributed databases.

Zoran Skocir

Faculty of Electrical Engineering
and Computing

University of Zagreb

Zagreb, Croatia

D. Collins

Designing Object-Oriented User
Interfaces

Benjamin/Cummings Publishing Company, Inc.
Redwood City, CA, 1995, pp. xvi, 590, ISBN
0-8053-5350-X

The book Designing Object-Oriented User In-
terfaces by Dave Collins investigates user inter-
face design, a computer science area which is
nowadays increasingly showing its importance.
It studies this area through object orientation, a
procedure which, besides providing a closer and
very convenient link with a (still) modern and
promising software engineering methodology
— the one of object oriented development, un-
derlines deeper conceptual ties to be exploited
in user interface design.

The book is structured into three parts: a Foun-
dation within its roughly 80 pages provides in-
troductory matter on user interfaces (Uls) and
on applying object orientation onto it, External
Design (about 200 pages) delivers an account
on UI design methodology, encompassing im-
portant items as the conceptual model and the
“look and feel”, i.e. the presentation and ac-
tion languages, while Internal Design (slightly
less than 200 pages) details the general soft-
ware architectures, methods and tools used in
object oriented Uls (OOUls) and corroborates
this with examples.

The exposition along the chapters proceeds as
follows. Chapter 1 introduces definitions of Ul

212

Book Reviews

and its treatment in the book, the book’s general
plan, the audience it addresses, and the relation-
ship to other methods/books on Ul The three
chapters of Part I present the framework for un-
derstanding OOUI. In Evolution of the OOUI,
an analysis of characteristics of end users and
their work along with a historical overview of
Uls, stressing Xerox PARC seminal influence
on the field, is given. Chapter 3 describes
the two most frequently encountered UI styles:
the character-based and the graphical one. A
“naive” analysis is provided, still not directly
relying on OO principles, yet exposing the basic
issues of user perception. Next, the application
of object orientation to Ul external character-
istics is introduced, identifying elements of the
OO0 paradigm (OOP) along with the definition
of OOUT itself.

Part I in its 6 chapters documents methodol-
ogy and techniques for concrete and observable
Ul objects design. In Chapter 5 the three do-
mains of OO design for Ul are presented: sys-
tem conceptual model, representation of objects
provided by the Ul, and information structures
implementing the objects” functional character-
istics. Their description, the relevance to Ul de-
velopment, and respective illustration through
the well known Solitaire game is provided, too.
The following chapter brings an exposition of
basic software engineering development mod-
els along with a model for the OOUI design
process. This model is based on an interrelated
iteration of three activity clusters — conceptual
model (metaphor) definition, conceptual model
objects actualization, and testing and evalua-
tion. Chapter 7 underlines the importance of
understanding users, their tasks and work en-
vironments, and delves deeper into task analy-
sis, including its documenting, levels of detail
and interpretation of tasks within OOP. In The
User’s Conceptual Model the terminology of
models and metaphors with accompanying ex-
amples is given, as well as a method for user
conceptual model design and evaluation, sup-
ported by a catalog of Ul metaphors for de-
sign ideas generation. The next chapter is de-
voted to presentation of information onto com-
puter displays (view) with particular attention
on the use of OO principles. A step-by-step
method for designing OOUI appearance is of-
fered, and corroborated with content view and
icon design. The chapter Interaction and Con-
trol Mechanisms provides a general framework

for reasoning about interaction. Interactivity
is considered as a cyclic activity resulting in
information presentation as a response to user
action, and therefore determining the “look and
feel” of a Ul design. Nature of interactivity,
review of interaction devices, step-by-step ap-
proach to designing OOUI “feel”, style guides
in OOUI design, and documenting UT “look and
feel” design are some of the most relevant topics
addressed.

Finally, in the third part (Chapters 11-16) as-
pects of designing the implementation model
that are important to Ul designers are dis-
cussed. Object-Oriented System Architectures
brings the OO view of systems and applications.
The two influential Ul implementation mod-
els — language, encompassing command and
menu-based Uls, and event, combining primi-
tive events to create new ones, are described,
the latter as the basis for commercial windows
systems. After overviewing (event-driven) win-
dows managers, the following topics make the
rest of the chapter: Ul code structuring, MVC
(mental-view-controller) model as a software
engineering technique, key tools for modularity
in Ul implementation, and model-view separa-
tion as the basis for well-structured implementa-
tions. Chapter 12 provides information models
as concrete views of users’ conceptual models.
Aspects of information models such as proto-
cols supporting visible Uls, general structuring
issues in designing information models, “infras-
tructures” for building information models from
00O and non-OO components are also worked
out in the chapter. Chapter 13 highlights soft-
ware structure aspects that promote interactiv-
ity: presentation objects — views implement-
ing the presentation language, and interaction
objects — controllers or views behaving as vir-
tual devices and affording some user action that
implements the action language. After a more
general discussion on interaction and feedback,
direct manipulation (DM), an interaction tech-
nique using displayed objects as “input devices”
to control the Ul is elaborated, here including
DM protocols encapsulation methods for mak-
ing them simpler and more reusable. In Chapter
14 OO0 tools for prototyping and implementation
are recapitulated, along with related issues like
tool requirements, tool components and porta-
bility, their classification and evaluation. In the
subsequent Chapter 15 some OOUI design ex-
amples are illustrated among which a seamless

Book Reviews

[S®]
—
(O8]

online news system (Journalist), a distributed
multimedia system (KCM, Knowledge and Co-
laboration Machine), and a virtual reality toolkit
(VR-DECK, Virtual Reality Distributed Envi-
ronment and Construction Kit). The last chapter
gives a summary of the most important points
in the book, reviews OOUI current state of the
art and discusses presently detectable trends for
future OOUlISs.

The book is complemented by two appendices
ireating a fax case study, and an introduction to
object orientation. A nice Glossary with some
100 entries offers a short explanation of rele-
vant acronyms and terms, while the impressive
Bibliography, intended primarily as a guide to
resources for further study, lists nearly 500 en-
tries for books, papers, and articles, 7 entries
for videotapes and somewhat less than 40 en-
tries for software packages. The well compiled
Index extends over 18 pages.

As in the case of other Benjamin/Cummings
editions, this book is superbly produced. The
structure is impeccable and is based upon the
development process so enabling quick focus-
ing on desired subject matter. The book’s three
parts are well-chosen and the chapter organiza-
tion is performed accordingly well. It brings
a lot of subject matter on a computer science
area whose importance is increasingly growing,
and exposes it by linking it to a modern and
promising software engineering methodology.
Moreover, there is a wealth of examples, exer-
cises and very helpful suggestions for individual
study. As stated in the book, it is intended for
working developers and students of interface
design. In my opinion it has accomplished this
task outstandingly.

Viado Glavinic

Facuity of Electrical Engineering
and Compulting

University of Zagreb

Zagreb, Croatia

