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An Adaptive Coherence Protocol
Using Write Invalidate and Write
Update Mechanisms
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A number of different systems (multiprocessor systems,
distributed systems, and nowadays Internet) replicate
data (cache lines, pages, user defined data structures, and
Internet objects) in order to improve the performance,
but it introduces a coherence problem. Many different
protocols have been introduced to maintain coherence
between the copies of the same date item. The per-
formance of such systems is very sensitive to both the
data access behavior of the application and the coherence
mechanism. Adaptive coherence protocols use a decision
function to dynamically choose the appropriate coher-
ence mechanism. The choice of coherence mechanism is
determined from the data access behavior with the goal of
improving performance. The decision function presented
in this paper chooses between a write invalidate and a
write update mechanism, depending on which of these
mechanisms incurs a lower cumulative communication
coherence overhead. Simulation results are presented
which demonstrate a signiticant improvement over other
suggested solutions.

Keywords: cache coherence, replicated data, adaptive
coherence protocols, decision function, memory access
behavior, performances comparison.

1. Introduction

The coherence of replicated data in distributed,
multiprocessor systems, and nowadays the In-
ternet is of critical. Among the many factors that
influence the performance of such systems, the
choice of a coherence protocol plays a promi-
nent role. The most popular protocols make
use of the write invalidate or the write update
mechanisms. It is well known that each of these
mechanisms favors certain types of access be-
havior. This has motivated the idea of combin-
ing more than one basic mechanism in coher-
ence scheme implementations.

To make a protocol adapt to the current data
access pattern and to dynamically choose the
best mechanism, a decision function must be
implemented that decides which mechanism to
use. All practical implementations of such de-
cision functions have been based on observation
of a sequence of consecutive accesses to a data
item. The copies of data item are updated until
a certain number of consecutive writes are per-
formed by the same node {processor) such that
no intervening accesses are performed (writes
or/and reads) by any other node [1-6], after
which the invalidation protocol is used.

An interesting evaluation of adaptive protocols
based on such a decision function has shown
that gains from the adaptive approach may not
be as large as one might expect [6]. These anal-
yses also show that no single adaptive scheme
proposed so far is appropriate for both sequen-
tial and concurrent sharing.

To overcome this problem we propose having a
different kind of decision function. Our deci-
sion function chooses between the write invali-
date and the write update mechanism based on
the cumulative communication coherence over-
head. For each data item we keep statistics
about the cumulative overhead for both the write
invalidate and the write update mechanism. The
decision function dynamically chooses the mech-
anism whose cumulative overhead is lower. In
the rest of the paper we describe the imple-
mentation of this decision function and how it
is applied in the adaptive coherence protocol.
We discuss how to update the counters which
keep the statistics of the cumulative overheads
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during the protocol execution. While the sug-
gested solution is applicable for both distributed
and multiprocessor systems, we will present it
for a distributed environment only.

The performance of the proposed protocol is
compared using simulations to the performance
of the Illinois protocol (which is chosen as a
typical example of a write invalidate protocol)
[8-10], the Firefly protocol (which is a typi-
cal example of a write update protocol) [9-11],
a modified RWB adaptive protocol (an adap-
tive protocol whose decision function switches
from write update to write invalidate after three
successive writes from a node without interven-
ing writes from other nodes [2]), and an ideal
EDWP (an adaptive protocol similar to the mod-
ified RWB protocol except that both intervening
reads and writes from other nodes will prevent
switching from the write update to write the
invalidate mechanism [4]).

The next section gives the necessary background.
Section 3 presents the proposed adaptive scheme.

Simulation results are reported in Section 4.

2. Background

This section describes the distributed system
and the communication cost parameters we as-
sume in our simulations. A brief informal de-
scription of the Illinois protocol, the Firefly
protocol, the modified RWB adaptive protocol,
and the ideal EDWP adaptive protocol in a dis-
tributed environment is also given.

2.1. Distributed system model

In our model, a distributed system consists of
N +1 nodes. Communication between nodes is
achieved via messages transmitted through first-
in/first-out fault-free communication channels.
Consistency is maintained by exchanging mes-
sages between the nodes of the system. There
are N clients and one sequencer [12]. Some
requests are executed locally and require no
communication; the other requests are called
remote. The sequencer globally sequences all
remote accesses to the copies of the same data
item. Table 1 shows the costs used in the model.
The communication cost is assumed to be: S for
transmission of one data item, P for transmis-
sion of update information for one data item,

and unity cost for transmission of a command
message. For example, the cost of transmitting
a read request is 1. The cost of transmitting
a read response, including the requested data
item, is S + 1. The value of P is typically less
than §, because updating does not necessarily
change an entire data item. The cost of a broad-
cast to N nodes is simply N times the cost of a
basic message transfer (data or command).

N number of clients

§  communication cost for transmission of one data item

P communication cost for transmission of update informa-
tion for one data item

1 communication cost for a command message

N multiplier for the cost of a broadcast

Tab. 1. Distributed system parameters

2.2. Firefly protocol

The Firefly protocol [9-11] is a write update
protocol. On a write from the sequencer, the
update information is broadcast to all clients.
As explained above, the communication cost for
broadcasting the update information is N (P+1).
The communication cost of a write from a client
is N(P + 1) + 1, which consists of P + 1 for
sending of update information from requesting
client to the sequencer, (N —1)(P+1) for broad-
casting the update information from sequencer
to all other clients, and 1 for returning a write
permission command message from sequencer
to the requesting client.

State associated with each copy determines the
presence and the validity of the copy. Based
on the given state and the given operation (read
or write), protocol performs appropriate action
and changes the state of the copy. The Fire-
fly protocol does not cause an invalidation, and
therefore an INVALID state {copy is present but
it is not valid) is not used. Copies of all data
items are present in the sequencer’s local mem-
ory, which i1s assumed to be infinite, and are
in the VALID state. The client’s copies can be
in one of two states: VALID (consistent with
the sequencer’s copy) and NOTIN (the copy is
not present in the local memory). After a read
from a sequencer, the client obtains a copy and
changes its state from NOTIN to VALID. The
communication cost for reading a copy from the
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Mechanism Remote operation Communication cost
(No. of packets)

Write Update 1. Sequencer’s write operation NP +1)

2. Client’s read operation to sequence S+2

3. Client’s write operation with reading to sequence (N=D(P+1)+S5+2

4. Client’s write operation NP+1)+1

Write Invalidate 5. Sequencer’s read and exclusive read operation to client S4+2

6. Sequencer’s write operation N

7. Sequencer’s read and exclusive read operation to sequencer S4+2

8. Sequencer’s read and exclusive read operation to remote client 25+ 4

9. Sequencer’s read and exclusive read operation to sequencer and invalidate S+N+1

10. Client’s write operation N+1

Tab. 2. Communication costs for remote reads and writes

sequencer is S + 2, which consists of 1 for send-
ing a read request to the sequencer and S + 1
for returning a copy and the read response com-
mand. Once a copy is in the VALID state, all
successive reads can be executed locally with-
out sending any requests to the sequencer. The
communication costs for all remote reads and
writes (the communication costs for write up-
date operations) are given in Table 2.

2.3. lllinois protocol

The Ilinois protocol [8-10] is a write invalidate
protocol. A write from a sequencer causes an in-
validation message to be broadcast to all clients
at a cost of N. The state of the sequencer’s copy
becomes DIRTY, while the clients’ copies be-
come INVALID. The DIRTY copy is the only
valid copy in the distributed system. A write to
the DIRTY copy can be executed locally with-
out requiring commands to be sent. A read of
an invalid copy at a client will cause a read
request to be sent to the sequencer. After a
read response, the state of the sequencer’s copy
changes from DIRTY to VALID while the state
of the client’s copy changes from INVALID to
VALID. The communication cost of this read is
S+ 2. After the client performs a write, its copy
becomes DIRTY. All other copies, including
the sequencer’s copy, become INVALID. The
DIRTY state enables the local execution of the
client’s write operations. The sequencer keeps
information about the location of each DIRTY
copy. Reading a DIRTY copy from a remote
client results in sending a read request to the
sequencer. The sequencer sends a read request
to the client with the DIRTY copy. The client
with the DIRTY copy returns the data to the re-
questing client through the sequencer. All three

copies will be now in the VALID state. The
communication cost of this operation is 25 + 4.
There are three states for both the sequencer’s
and the clients’ copies: VALID (the copy is con-
sistent with all copies which are in the VALID
state), DIRTY (the copy is the only valid one
and all others should be in the INVALID state),
and INVALID (the copy is not consistent). The
client’s copy can also be in the NOTIN state
(the copy is not present in local memory). The
communication costs for remote operations for
a write invalidate protocol are given in Table 2.

2.4. Modified RWB and ideal
EDWP adaptive protocols

The modified RWB and the ideal EDWP adap-
tive protocols use both the write invalidate and
the write update mechanisms. While the write
update mechanism is being used, the state tran-
sitions and the execution of operations are iden-
tical to the Firefly protocol. If the write invali-
date protocol is being used, then the state tran-
sitions and execution of operations are identical
to the Illinois protocol. Changing the mecha-
nism from write update to write invalidate is not
difficult because the set of states for the write
update mechanism is a subset of the set of states
for the write invalidate mechanism. The proto-
col simply applies the rules of the write inval-
idate mechanism since all global states for the
write update mechanism are legal for the write
invalidate protocol. The problem occurs when
switching from the write invalidate mechanism
to the write update mechanism when a DIRTY
copy exists. The INVALID and DIRTY states
are not legal states for the write update mech-
anism. This can be resolved by defining the
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state transitions and the execution of operations
for the INVALID state to be the same as for
the NOTIN state. Also, the transition from the
DIRTY state is interpreted as a remote operation
from the VALID state.

We have implemented a modified version of the
original RWB protocol [2]. The modified ver-
sion switches from write update to write inval-
idate if there are three consecutive writes with-
out intervening writes from other nodes, as sug-
gested in the EDWP protocol [4]. We introduce
two intermediate states instead of one as de-
fined in the original protocol. This enables us
to send two updates before an invalidation. The
original protocol invalidates all copies on the
second successive write from the same node.
The second modification concerns operations
on which switching should occur. In the orig-
inal RWB protocol all remote operations, ex-
cept local reads, prevent the adaptive scheme
from switching to write invalidate from write
update. In our implementation of the modified
RWB protocol reads are not used to prevent
switching. We do not use remote reads because
they are visible only to the sequencer and not to
clients.

We also simulated an ideal distributed version
of the EDWP adaptive protocol [4]. The differ-
ence between the modified RWB protocol and
the ideal EDWP protocol is that all reads, local
and remote, are used to prevent switching from
write update to write invalidate. To implement
such a protocol in a distributed environment,
additional communication overhead is needed
in order for the reads to be visible to clients.
We did not include this additional communica-
tion overhead in the simulation of the EDWP
adaptive protocol. This was done in order to
show the maximum possible gain for the given
decision function. We call this protocol ideal
EDWP. The second difference is in the state
transition for the case where node i performs a
write and node j has a DIRTY copy. In the mod-
ified RWB protocol, both nodes i and j will have
the copies in the VALID state and the adaptive
protocol will switch from the write invalidate
to the write update mechanism after a write.
The ideal EDWP protocol will change the state
from DIRTY to INVALID in node i and from
INVALID to DIRTY in node j. It will continue
to use the write invalidate mechanism and will
not switch to the write update mechanism.

In the modified RWB and the ideal EDWP adap-
tive protocols, all remote operations in Table 2
are possible for both the write invalidate and
the write update mechanisms. In Section 4 we
will discuss the results of simulations of the de-
scribed coherence protocols. The performance
of these protocols is compared with the perfor-
mance of the protocol proposed in this paper.

3. Proposed adaptive protocol

In this section, we propose an adaptive protocol,
called APCUM (Adaptive Protocol using CU-
Mulative cost), which uses a decision function
based on the cumulative communication cost.
An early attempt at defining such a protocol
was reported by Bunjevac in [7]. The decision
function chooses dynamically between the write
invalidate or the write update mechanisms based
on which mechanism incurs lower cumulative
communication coherence overhead. This sec-
tion describes the implementation of the deci-
sion function in a distributed environment. We
also discuss the state transition and the execu-
tion of operations necessary to handle both of
the mechanisms in one coherence protocol.

The main idea for implementing the proposed
decision function is to introduce two counters
for each data item. One counter will keep the
cumulative communication coherence overhead
for the write invalidate mechanism, and the
other for the write update mechanism. Both
of these two counters are updated, even when
only running in one mechanism. We call these
two counters NPI (Number of Packets using
write Invalidate mechanism) and NPU (Num-
ber of Packets using write Update mechanism).
To maintain the cumulative overhead, the com-
munication cost from Table 2 corresponding to
the appropriate operation is added to the counter
at each remote read and write operations. The
APCUM protocol switches to the mechanism
whose counter has a lower value. To avoid con-
stantly switching back and forth, we use a de-
cision function with hysteresis which will be
explained in Section 3.3.

The NPI and NPU counters must reside in an
appropriate place in the system so that all re-
mote operations are properly taken into account.
Since the role of the sequencer is to globally
sequence all remote operations, we place the
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two counters within the sequencer. Each time
the sequencer receives a remote request, it up-
dates both counters. The difficulty in main-
taining these counters at the sequencer is that,
while running under one mechanism a data ac-
cess may be non- local, but may be purely local
under the other mechanism, and that is that case
the counters need to be updated even though
the actual operation is local. The contribution
of these local operations must also be added to
the appropriate counter. When the write update
mechanism is used, the NPI counter must be up-
dated for the local clients” read operations, and
when the write invalidate mechanism is used,
the NPU counter must be updated for local exe-
cutions of clients’ write operations. In order to
keep these statistics for local executions of op-
erations, we include two additional counters to
each client: the NRO counter (Number of Read
Operations) and the NWO counter (Number of
Write Operations).

The next section explains how to maintain the
counters while the write update mechanism is
used. This is followed by an explanation of
how to maintain the counters when the write
invalidate mechanism is used.

3.1. Maintaining the counters during the
execution of the write update
mechanism

The sequencer updates the NPU counter to main-
tain the cumulative communication coherence
overhead for the write update mechanism. All
remote operations for the write update mecha-
nism are visible to the sequencer and their re-
spective values are given in Table 2. The se-
quencer adds S + 2 to the NPU counter each
time the client sends a read request; or adds
(N —1)(P+1)+S+2if the client sends a read
request with an update request and updating in-
formation; or adds N(P + 1) + 1 if the client
sends an update request and updating informa-
tion; or adds N(P + 1) if the local sequencer’s
application process sends an update request and
updating information.

For the write invalidate mechanism, a key ques-
tion is how to estimate the contribution of reads
and writes to the NPI counter. It is not straight-
forward to estimate the cost for the write inval-
idate mechanism, because not all of the writes
will be remote (in contrast to when using the

write update mechanism). The second write and
all succeeding writes from a single node with-
out intervening accesses from other nodes will
be executed locally as was previously explained
for the Illinois protocol. To decide which write
will be executed locally, some additional com-
munication and calculation is needed. To avoid
additional complexity in maintaining the NPI
counter, we simply add § + N + 1 to the NPI
counter for each write operation. This value
was chosen because for large N it is the largest
among all values for remote writes for the write
invalidate mechanism (see Table 2). Updating
the NPI counter using this value will predict the
upper limit for the cumulative communication
cost overhead for the write invalidate mecha-
nism. Results presented in Section 4 show that
even with such a simple approximate approach
which favors the write update mechanism, our
decision function gives good results.

Each time the read operation is remote under
the write update mechanism, it is also remote
for the write invalidate mechanism. Some of
the reads which are performed locally under the
write update mechanism would be remote un-
der the invalidate mechanism. As a result, we
introduce the NRO counters within each client
to count the number of these local reads. Only
the first read from a client i after an update
request from client j will increment the NRO
counter. During each remote operation a copy
of the NRO value is sent to the sequencer. It
must be determined whether to multiply the re-
ceived values by S + 2 or by 25 + 4, and then
add the value to the NPI counter; i.e. how many
of these reads will be satisfied by the sequencer
and how many reads will be sent to a remote
client. We use the same approach we used for
write operations and assume the worst case, so
always multiply by 2S + 4 under assumption
that all reads are sent to remote clients.

As an example, assume that data is shared
among several clients and that the write up-
date mechanism is used. Also assume that only
one client is performing writes while all oth-
ers are reading the same data. The sequencer
can update the NPU and the NPI counters based
only on the remote write operations. The con-

‘tributions due to reads cannot be added to the

NPI counter because they are local and not vis-
ible to the sequencer. Because the contribu-
tion of writes to the NPU ‘counter is greater
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than to the NPI counter, the value of the NPU
counter exceeds the value of the NPI counter.
The mechanism is changed to write invalidate
and the sequencer invalidates all copies. Now,
the clients send read requests and the values
of the NRO counters to the sequencer. The
sequencer uses these NRO values to update the
NPI counter which now once again has a greater
value than the one in the NPU counter. As a re-
sult, the mechanism switches back to the write
update mechanism. To avoid this unnecessary
switch, we introduce a constant MAX_NRO.
Whenever the NRO counter exceeds the value
of MAX _NRO, the contents of the NRO counter
are sent to the sequencer. This additional mes-
sage does not affect the communication over-
head by much, but avoids the unnecessary in-
validation of copies of the shared data.

3.2. Maintaining the counters during
the execution of the write invalidate
mechanism

Maintaining the NPI counter under the write
invalidate mechanism is straightforward and in-
curs no communication cost. Each time the se-
quencer receives a request, the appropriate cost
for the write invalidate mechanism in Table 2
will be added to the NPI counter.

To maintain-the NPt counter, the cost of using
the write update mechanism must be estimated
based on the execution of the write invalidate
mechanism. To properly predict the contribu-
tion of reads to the NPU counter during the ex-
ecution of the write invalidate mechanism, the
client must send a read request along with an
indication of the state of its copy (INVALID or
NOTIN state). The sequencer adds S + 2 to up-
date the NPU counter only when a read request
is sent from a client whose copy is in the NOTIN
state. In the write update mechanism, a read is
remote only if the copy is not present in the local
memory. Invalidations never take place; there-
fore, reading an INVALID copy cannot occur in
the write update mechanism.

All writes under the write update mechanism in-
cur a communication cost which must be added
to the NPU counter. Therefore, to properly
handle the contribution of writes to the NPU
counter during the execution of the write inval-
idate mechanism, the sequencer must add the
appropriate value to the NPU counter each time

it receives a request for a write. But, the client’s
write operations are executed locally under the
write invalidate mechanism, and hence not vis-
ible to the sequencer, so we introduce the NWO
counters in each client to keep track of the num-
ber of local executions of the write operation.
Each local execution of a write operation in-
crements the NWO counter, and the contents
of the NWO counter are sent to the sequencer
with each remote operation. Upon receiving the
NWO value, the sequencer multiplies it with
N(P + 1) + 1 and then adds the product to the
NPU counter.

As an example, assume that the APCUM pro-
tocol is using the write invalidate mechanism
and that client i is the only one using the data.
Upon the arrival of a read request from the se-
quencer, the client returns the contents of the
NWO counter in the data response message.
The sequencer updates the NPU and NPI coun-
ters. Based on the new values of the counters,
the sequencer makes a decision which mecha-
nism to use next.

3.3. Decision function

The following is the simplest possible decision
function: use the write invalidate mechanism
when NPI < NPU, otherwise use the write up-
date mechanism. A decision function like this
can result in periods where the operation mecha-
nism is changed after each remote operation. To
overcome this problem, we use a decision func-
tion with hysteresis that changes the mechanism
from write update to write invalidate when NP1
< NPU, and from write invalidate to write up-
date when NPU < NPI - h, where k is some
constant. This policy favors the write invalidate
mechanism. We choose this policy because the
analysis of real applications has shown that it is
more likely that sharing will be sequential rather
than concurrent, and for sequential sharing, it is
better to use the write invalidate mechanism.

3.4. State transition and operation
execution

The state transitions and operation execution
necessary to handle both mechanisms in one
coherence protocol were described in Section
2.4 where we discussed the modified RWB and
the ideal EDWP adaptive protocols. The copy
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Fig. 1. Average number of packets per operation for sequential sharing data access pattern (Distributed system
parameters: N = 16, § = 4, P = 1; Workload parameters: Burst size = N(11,1))

in the client can be in the NOTIN, INVALID,
VALID, or DIRTY state whose meanings are the
standard ones for coherence protocols. The se-
quencer’s copy can be in the INVALID, VALID,
or DIRTY state. Besides the state in the se-
quencer which indicates the consistency of the
copy, there is a state which indicates which
mechanism to use to maintain the consistency.
The states are changed according to the values
of the NPI and the NPU counters as previously
described. All requests and responses from the
sequencer to the clients during the execution of
the remote operations bring information about
which of the two mechanisms to use. According
to this information the client performs the ap-
propriate state transition and coherence action.

The performance of the proposed APCUM pro-
tocol is presented in the next section.

4. Simulation results

To assess the performance of the APCUM pro-
tocol, we compare the simulation results with
those of other coherence protocols, both adap-
tive and non-adaptive. The simulations are
driven by artificial workloads in order to ob-
tain the results for a variety of values of the data
access pattern parameters. We first describe the
“workload model. i

The analysis of real applications shows that
nodes perform operations in bursts, i.e. only one
node accesses the data at a time. Therefore, we
use Dubois & Katz burst model [13, 14] to de-
fine the artificial workload. The workload gen-
erates the operations in bursts, where the burst

size (number of operations in access burst) is
determined by a Normal (Gaussian) distribu-
tion N(mean, standard deviation). When the
node completes a burst of accesses, all N + 1
nodes have the same probability of performing
the next access burst. The probability of a write
operation is also a parameter of the workload.

All results in this paper were obtained through
the simulation of a distributed system consisting
of 16 clients (N = 16). Four packets are used
to send data (S = 4) while one packet is used
to transfer update information (P = 1). We
measure performance by measuring the average
number of packets per operation. We generate
three types of data access patterns: sequential
sharing, concurrent sharing, and sharing which
dynamically changes from sequential to concur-
rent and vice versa.

4.1. Sequential sharing

Figure 1 shows the results of a simulation us-
ing a workload with a high degree of sequential
sharing. The burst size is generated as a Normal
distribution with a mean equal to 11 operations
and a standard deviation equal to 1. Therefore,
the average size of the burst, i.e. the number of
operations performed by a node without inter-
vention by other nodes, is equal to 11 opera-

. tions. This characterizes the sequential sharing.
The simulation results are presented for differ-
ent probabilities of write operations.

As one expects, the write invalidate [llinois pro-
tocol incurs lower communication cost per op-
eration than the write update Firefly protocol.
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With increasing probability of writes, the differ-
ence between them becomes bigger. Note that
for the Illinois protocol only the first write (and
the read operation if it is the first operation in
the access burst) incurs a communication cost,
while for Firefly all writes in an access burst are
remote and incur a communication cost. There-
fore, the communication cost for the Illinois
protocol does not change much when the prob-
ability of a write operation is increased, but the
communication cost for the Firefly protocol in-
creases linearly with the probability of a write
operation.

The performance of the modified RWB adap-
tive protocol and the ideal EDWP is very close
to the Firefly protocol for small probabilities of
write operations. Both of these protocols switch
from write update to write invalidate if there
are three consecutive write operations from one
node. If the probability of a write is small, then
the probability that there will be three writes
in an access burst is also small. Both proto-
cols will use the write update mechanism most
of the time and their performance will be very
close to the performance of the Firefly proto-
col. As the probability of a write increases, it
becomes more likely that in a single access burst
there will be three writes which will switch the
mechanism to write invalidate. Therefore, the
communication cost for large probabilities of
write operations is better for RWB and EDWP
than for the Firefly protocol. The communica-
tion cost is higher than for the Illinois protocol
because the modified RWB and the ideal EDWP
protocols perform two unnecessary updates be-
fore an invalidation.

The ideal EDWP protocol incurs a lower com-
munication cost than the modified RWB for
higher probability of writes, because it is more
likely that the first operation in an access burst
will be a write. In this case the ideal EDWP
will continue with the write invalidate mecha-
nism (see state transition explanation for EDWP
and RWB protocol in Section 2.4), while the
modified RWB will switch to the write update
mechanism for each new access burst. Sequen-
tial sharing with a high probability of a write
characterizes migratory data. The detection of
migratory data [15, 16], and sending read ex-
clusive as the first request instead of a normal
shared read, can improve the performance of
the EDWP protocol. The first exclusive read

will force the EDWP protocol to use the write
invalidate protocol all the time.

The performance of the APCUM protocol is the
same as for the Illinois protocol. The cumula-
tive communication cost for write invalidate is
lower than for write update. As the access burst
starts, NPI < NPU and the APCUM protocol
uses the write invalidate mechanism. During
most of the access burst, operations are local,
so that both NPI and NPU are not changed.
As one of the other nodes starts a new access
burst, the NPU counter is increased for all local
executions of write operations as previously de-
scribed. This increases the difference between
the NPI and the NPU counters and ensures that
the APCUM protocol will continue to use the
write invalidate mechanism which is better for
the given data access pattern. APCUM can
switch to write update at the beginning of the
simulation, but will later switch to write invali-
date for the remainder.

4.2. Concurrent sharing

Figure 2 shows the results of simulation for
workloads with a high degree of concurrent
sharing. The access burst sizes are much shorter
and are generated from a Normal distribution
with a mean equal to 1 operation and with a
standard deviation equal to 0.16. All values for
an access burst size less the 1 are forced to be
equal to 1.

For lower probabilities of write operations, Fire-
fly outperforms Illinois, while for larger val-
ues, Illinois incurs a lower communication cost.
For small probabilities of write operations, it
is likely that after a write operation one of the
remaining nodes will read the same data after
each change. Therefore, it is better to update all
copies than to perform invalidation. For large
probabilities of a write operation it is better to
use write invalidate because the probability that
the data will be read by more than one node
after each change is very low.

The results for the modified RWB and the ideal
EDWP protocols are very close to the Firefly
protocol for all values of probability of write op-
erations. These protocols stay with the write up-
date mechanism, because it is unlikely that three
successive writes will come from one node. The
results for the ideal EDWP are negligibly better



An Adaptive Coherence Protocaol. . .

195

£ 1 iinois N

g , M| Firefly 5.7

£ % |5 RWB & EDWP D N

w = LOAPCUM B A=

S B N o) :

£ T

2] el -

£ g

R

g™ 2

% al = : ;
0.1 0.2 0.3 0.4 0.5

Probability of Write

Fig. 2. Average number of packets per operation for concurrent sharing data access pattern (Distributed system
parameters: N = 16, S = 4, P = 1; Workload parameters: Burst size = N(1,0.16))

than for the modified RWB and are not pre-
sented separately in the figure.

The results for the APCUM protocol show that
its performance always follows the better non-
adaptive protocol except for the case when the
probability of a write is equal to 0.4. The reason
that APCUM is worse than Illinois at this point
is the method used to estimate the cumulative
cost for the write invalidate mechanism. Itis es-
timated by taking the worst case (as discussed
in Section 3.3). The estimation of the cumula-
tive cost by more realistic values (we can choose
some average numbers for updating the NPI, not
the worst case) would give results which more
closely follow the best non- adaptive protocol.

Average Number of Packets
per Read and Write
o] Cad B th

—

4.3. Dynamically changed sharing

Both of the previous workloads are static in the
sense that the data access patterns are charac-
terized either as sequential shared or concurrent
shared. Figure 3 shows the results for a work-
load whose type of sharing is changed with re-
spect to time. The access burst size is generated
from a Normal distribution with different val-
ues of the standard deviation parameter. The
mean is fixed and equal to 1 operation. The
probability of a write operation is equal to 0.1.
Figure 3 presents the results for increasing val-
ues of standard deviation. All values of burst
size less than 1 are forced to be 1. The left end
of the graph shows the results for pure concur-
rent sharing. Moving toward the right increases
the amount of sequential sharing.
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Fig. 3. Average number of packets per operation for dynamically changed sequential and concurrent sharing data
access pattern (Distributed system parameters: N = 16,5 = 4, P = 1; Workload parameters: Probability of write
= 0.1, Burst size = N(1, Standard Deviation))
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The results at both ends were discussed in the
previous two sections. The performance of the
APCUM protocol is always as good as the best
non-adaptive protocol for a given set of param-
eters. The modified RWB and the ideal EDWP
can only benefit from adaptability if there is a
- high probability of a large access burst. Then it
is more likely that there will be three writes in
the access burst, which will enable switching to
the write invalidate mechanism.

5. Conclusions

We showed that it is possible to define a deci-
sion function for adaptive coherence protocols
which for a given data access behavior ensures
that the adaptive protocol will have the same
performance as the best non-adaptive protocol.
In particular, we proposed an adaptive scheme,
APCUM, whose decision function gives good
results for both sequential and concurrent shar-
ing data accesses. We also showed that pre-
viously proposed decision function are not as
good as APCUM for both sequential and con-
current sharing, particularly not for sequential
sharing. Because previously proposed decision
function give good results for concurrent shar-
ing and they work better than pure write update
protocols for sequential sharing, they are attrac-
tive for page replication [5]. Data access pat-
terns at the page level show a higher percentage
of concurrent sharing than for smaller data items
such as cache lines. For smaller data sizes there
is more likelihood of sequential sharing than
there is of concurrent sharing. In such cases
the previous solutions do not give good results.
The solution proposed in this paper is attractive
because it works well with both sequential and
concurrent sharing data accesses.

Adaptive protocols can be implemented either
in software (typically for distributed systems
and Internet) or in hardware (typically for mul-
tiprocessor systems). The proposed counters
can be easy and efficiently implemented in soft-
ware. Even though today’s cache line sizes (it is
normal to have 128 byte cache lines) are large
enough to allow the cost of implementing the
counters in hardware, in our future work we are
planning to use fuzzy set decision function in
order to reduce the number of bits required for
counters.
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