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1. Introduction

Presentation of images plays a significant role
in today’s information exchange. Numerous ap-
plications that have been introduced in last few
years, such as video teleconferencing, HDTV,

wirephoto, fax, -computer tomography, interac-.

tive visualization, multimedia and other, are
based on image presentation and distribution
procedures. Disadvantage of using digital im-
ages in these applications is enormous amount
of space needed for image storage. For exam-
ple, a 1024 x 1024 color image with 24 bits
per pixel requires 3.15 M bytes in the raw form.
It is obvious that efficient handling of images
is possible only with the introduction of data
compression techniques. Data compression is
the reduction or elimination of redundancy in
- order to achieve savings in storage and commu-
nication costs. Data compression techniques
can be classified in many ways, but the most
common classification defines two basic cate-
gories: lossless and lossy. In lossless meth-
ods, the exact original data is recovered while
in lossy methods only a close approximation
of the original data can be obtained. Lossless
methods are used in applications where no loss

of information is allowed, such as text com-
pression, medical imaging, and similar. Lossy
methods are mostly used in image and audio
compression where designers or users can select
the quality of the restored data. Disadvantage
of lossless methods is that the compression ratio
is relatively small and runs between 3:1 and 4:1,
while lossy methods can achieve compression
ratios of up to 100:1. Even with compression
ratios of that magnitude, due to the large vol-
ume of data, real-time operation of image us-
ing applications requires development of very
high speed implementation of image compres-
sion/decompression techniques.

In recent years, a working group known as Joint
Photographic Expert Group (JPEG) consisting
of three international standard organizations, In-
ternational Telegraph and Telephone Consulta-
tive Committee (CCITT), International Organi-
zation for Standardization (ISO) and Interna-
tional Electrotechnical Commission (IEC), has
established an international standard for cod-
ing and compression of continuous-tone still
images. This standard is commonly referred
to as the JPEG standard. The primary aim of
the JPEG standard is to propose an application
independent image compression algorithm that
would be and aid VLSI implementation of data
compression [32].

In this paper we describe design and optimiza-
tion of the most critical part of the efficient sin-
gle chip architecture for JPEG image compres-
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Fig. 1. JPEG Encoder

sion: the Discrete Cosine Transform (DCT)
module. To maximize the throughput and re-
duce the silicon area required the architecture
has been designed on the basis of the novel hard-
ware algorithms, and later optimized to reduce
any redundancy in the logic.

The paper is organized as follows. In the second
chapter we briefly describe JPEG Compression
Standard. The third chapter reviews previous
work in the field. The fourth chapter presents
detailed description of the design, optimization
and implementation of the DCT architecture and
it is followed by conclusions and references.

2. JPEG Compression Standard

The basic model for the JPEG encoder is shown
in Fig. 1. The encoder model transforms the in-
put image into an abstract representation which
is more suitable for further processing. To
achieve this transformation, the encoder model
may require parameters stored in some model
tables. The entropy encoder is a compression

procedure which converts the output of the en-
coder model into a compressed form. Also,
the entropy encoder may use tables for stor-
ing the entropy codes. Four distinct coding
processes were derived based on the above de-
scribed JPEG model: (i) baseline process, (ii)
extended DCT-based process, (iii) lossless pro-
cess and (iv) hierarchical process.

The baseline and the extended processes are also
known as DCT-based processes since they use
DCT within the encoder model. The lossless
process uses prediction based methods within
the encoder model. The hierarchical process
uses the encoder model from the extended pro-
cess or the lossless process. The baseline pro-
cess uses Huffman codes for entropy encoding,
while the other three processes use either Huff-
man or arithmetic. Since the focus of this pa-
per is on VLSI implementation of the baseline
process, we describe the baseline process in de-
tail in the rest of this section. For a complete
overview of the JPEG standard and the various
processes, the reader is referred to [32,44].

The encoder model for the baseline process is
shown in Fig. 2. The input image is divided
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Fig. 2. JPEG Baseline Encoder Model
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into nonoverlapping blocks of 8 x 8 pixels and
input to the baseline encoder. The pixel val-
ues are converted from unsigned integer format
to signed integer format and DCT computation
is performed on each block. DCT transforms
the pixel data into a block of spatial frequencies
that are called the DCT coefficients. Since the
pixels in the 8x8 neighborhood typically have
small variations in gray levels, the output of
DCT will result in most of the block energy
being stored in the lower spatial frequencies.
On the other hand, the higher frequencies will
have values equal to or close to zero and hence,
can be ignored during encoding without signif-
icantly affecting the image quality. Selection
of frequencies based on their importance can
affect the quality of the final image. JPEG al-
lows for this by letting the user predefine the
quantization tables used in the quantization step
following the DCT computation. The selection
of quantization values is critical, since it affects
both the compression efficiency and the recon-
structed image quality.

The block of DCT coefficients output by the en-
coder model is rearranged into one dimensional
data using zig-zag reordering as shown in Fig. 3.
The location (0,0) of each block I contains

the DC coefficient for the block, represented
as DC;. This DC coefficient is replaced by the
value ADC; which is the difference between the
DC coefficients of block I and blockI—1. Since
the pixels of adjacent blocks are likely to have
similar average energy levels, only the differ-
ence between the current and previous DC co-
efficients is used, which is commonly known
as differential pulse code modulation (DPCM)
technique. It should be noted that due to the zig-
zag reordering the high frequency coefficients
that are more likely to be zeroes, get grouped at
the end of the one dimensional data.

The entropy encoder details are shown in Fig. 4.
In order to encode the rearranged DCT coeffi-
cients the entropy encoder uses variable length
encoding based on a statistical model. In the
entropy encoder the quantized DCT coefficients
are converted into a stream of [runlength count,
category| pairs. For each pair, there is a corre-
sponding variable length Huffman code, which
will be used by the Huffman encoder to perform
the compression. The Huffman codes are stored
in a table.

In order to achieve better compression results,
input images are transformed very often to a
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Fig. 4. JPEG Baseline Entropy Encoder
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different color space (or color coordinates) rep-
resentation before being input to the encoder.
Although the JPEG algorithm is unaffected by
the color, since it processes each color inde-
pendently, it has been shown that by changing
the color space, the compression ratio can be
significantly improved.

3. Related work

Discrete Cosine Transform, a key function in
the JPEG compression /decompression process,
has been widely used in many applications and
hence there is a vast amount of research work
published on this topic. Of particular interest
are the papers discussing hardware implemen-
tation approaches. It is well known that two-
dimensional DCT computation can be imple-
mented as a sequence of two one-dimensional
DCT’s which is commonly referred to as the
separability property. It is simpler to imple-
ment this approach in hardware. It was shown
by Haralick [21] that the DCT of N points can
be computed using two N-point FFT’s by ex-
ploiting the symmetry of the inputs. Later,
Tseng and Miller [49] showed that the DCT
can be obtained more efficiently by just com-
puting the real part of the first N coefficients
of the 2N-point DFT. The computation of 8-
point DCT needed for JPEG can be replaced by
16—point DFT computation followed by scal-
ing. An optimum form for 16—point DFT was
developed by Winograd [53]. Arai, Agui and
Nakagima adapted Winograd’s solution for 8—
point DCT reducing the computation by means
of the symmetry property [7]. The hardware im-
plementation of one-dimensional scaled DCT
in our architecture is based on the algorithm
by Arai et.al. [7]. Their computational flow-
graph requires 5 multiplications, 29 additions
and 16 two’s complement operations (referred
to as multiplications by —1 by Arai et.al. [7]).
In our paper [38] we have described a new al-
gorithm for one dimensional DCT computation
which further reduces the number of operations.
By using this approach one dimensional, scaled
DCT introduces a 25% reduction in the num-
ber of two’s complement operations compared
to Arai et.al. In this paper we will describe the
design and optimization process of the VLSI
architecture that is based on that algorithm.

A few special purpose VLSI chips implement-
ing the JPEG baseline compression standard
have been built and successfully commercial-
ized. The Intel’s 1750 video processor [2,3,26]
consists of two chips, the 82 750PB pixel pro-
cessor and the 82 750DB display processor.
The pixel processor can be programmed to im-
plement the JPEG compression standard. The
C-CUBE CL550 is a single chip processor for
JPEG image compression and decompression
[38]. The core of the chip is a compression/de-
compression unit consisting of the FDCT/IDCT,
the quantizer, the run-length encoder/decoder
and the Huffman encoder/decoder. The chip
can operate at up to 35 MHZ. The chip can
draw the data at rates up to 17.5 million pixels
per second and produce compressed data at a
rate of approximately 2 million bytes per sec-
ond. Since the entropy encoder in the chip op-
erates at a slower speed than the DCT module, a
FIFO buffer is used between the two modules to
avoid overflow during compression. Whenever
the amount of data in the buffer reaches a certain
level a delay signal is generated, which stalls the
DCT computation and the data input to the sys-
tem. LSI Logic announced a chipset for JPEG
compression that consists of 1.64735 DCT pro-
cessor, 164745 JPEG coder and L.74765 color
and raster-block converter. The chipset operates
at the maximum rate of 35 MHZ and processes
still image data at up to 30 million bytes per sec-
ond. LSI Logic offers a single chip JPEG copro-
cessor 1.64702 designed for graphics and video
applications in personal computers, engineering
workstations and laser printers [40]. The chip is
capable of compressing and decompressing the
data at rates up to 8.25 million bytes per second
with an operating frequency of 33 MHZ.

Design and optimization of high speed, pipeline
architecture for DCT and category selection was
one of the most demanding tasks in the develop-
ment of the single chip for the JPEG compres-
sion. Our goal was to design the architecture
that would be able to accept new data and com-
pute new result every clock cycle. In this paper
we will present the details of both DCT and cat-
egory selection architectures that are based on
the novel algorithms developed by the authors.
Efficient logic that controls the operation of the
circuitry is described as well.
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4. DCT Architecture

Efficient hardware implementation of two di-
mensional DCT is feasible using the separabil-
ity property of the transform. A sequence of
two one-dimensional DCT’s will produce the
same result but the amount of logic needed
to implement two 1D DCT’s is significantly
smaller. Another reduction in computation can
be achieved if DCT coefficients are allowed to
be scaled by some constant factor (which is the
case with the DFT based methods, as explained
in previous chapter). Since DCT is followed by
the quantization procedure, as per JPEG stan-
dard, all scaling factors can be combined with
the quantization factors, resulting in the notable
reduction in computation. We have chosen this
approach in the development of the DCT algo-
rithm. For the sake of reference this algorithm
is restated in Table 1.

Based on the above algorithm we have devel-
oped the efficient, fully pipelined, VLSI archi-

Step 1 :
bo =ag+az; by =ai+ag;
by =az+as; bs=az+ag;
Step 2 :
cg=Dby+bs; ¢1=0b1—by
ca=by—bs; cs=0b3+by;

Step 3 :

do=co+c3; dy =cp—c3;
dy =cy—cs;  ds =y
dg = c7;

Step 4 :

eg = dp; e1 = dy;

€4 = my x dg es = ds;

eg = dg;

Step 5 :

fo = eo; fi=ey
fa=estes; fs=eg—e;3;
Step 6 :

So = fo S1=fa+ 7
S4 =f13 Ss =[5+ fe;

where: a;  input elements (01 7)
Si  scaled DFT coefficients (01 7)
m; fixed multipliers:

m; = cos(4/16);

my = cos(6/16);
m3 = cos(2/16) — cos(6/16);
my = cos(2/16) + cos(6/16);

tecture with minimized control logic. It is seen
from the algorithm, that if appropriate logic
and control signals are designed all steps can
be computed parallelly within the 8 clock cy-
cles. Number of 8 clock cycles was chosen on
the grounds of the efficiency calculation for the
whole circuit.

Maximum throughput for the above algorithm,
i.e. 8 pixels/clock cycle can be achieved if all
computations in a step are performed parallelly
(Fig. 5). In that case, DCT architecture would
consist of up to 8 arithmetic units for each step.
Although attractive, this approach is inappro-
priate for most of the applications for two ma-
jor reasons: (I) JPEG decoders should be cost
effective and an unreasonable amount of logic
(arithmetic units) would significantly increase
the chip cost, and (ii) entropy encoding portion
of the JPEG architecture processes data in a se-
rial fashion and, using the same technology, is
not capable of processing 8 coefficients/clock
cycle.

by =a3—ay; b3
be =a; —as; by

a1 — deg;
apg — ag;

co=by+bs; c3=0by+ bs;
cg=bs+bs; ¢7=0y

dy = ¢3; d3 = c1 + c4;
dg = cs; dy =g}

e =m3xdy; ez =myxdy;
e = my * ds; e7 = Mo * dy;
fao=es+e  f3=e5—es;
fe=ext+en fr=ei+ey
S2 = f2; S3 =fs —fe;
S¢ = f3; =fi—Fn

Table 1.
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Fig. 5. 1D DCT Module

‘We have chosen another approach which is not
computationally that intensive and which maxi-
mizes performance/silicon ratio. Since entropy
encoding logic can’t accept more than one ele-
ment per clock cycle, DCT was designed to have
exactly the same throughput. The algorithm al-
lows that all operations are performed within the
common time frame of eight clock cycles by us-
ing only one arithmetic unit per step. This is an
optimal performance since it provides maximal
output rate that further logic can handle (max.
performance); at the same time, any further re-
duction of the number of arithmetic units would
reduce that output rate (min. silicon needed).
The algorithm was developed for the VLSI im-
plementation, with special care to remove any
operand feedbacks. While designing the ar-
chitecture, several rules have been followed to
enable maximum throughput:

— All stages should follow the same speed of
operation (1 pixel/clock cycle)

— No intermediate result of the operation should

be forwarded from one step to the next one until
all operations in that particular step are com-
pleted. This rule allows fine optimization of
the architecture for each step, maintaining the
consistency of the overall architecture.

— Based on the statistical information, arith-
metic units within each stage should be opti-
mized for speed and silicon.

Following the above rules we have designed a
1D-DCT module that maps our DCT algorithm
in the hardware. The architecture consists of
six partitions as shown in the Fig. 6. so that
each step in the algorithm corresponds to a par-
tition in the architecture. Each partition con-
tains a register set (RS), an arithmetic unit and
the associated control logic. To enable paral-
lel execution of operations each register set was
designed to be able to concurrently evaluate al-
gorithm formulas and receive new operands to
be used later in the process. For that reason each
register set contains several register pairs where
a register pair is added for every input variable
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in the algorithm step. As mentioned earlier, all
the computations for a single step are performed
within 8 clock cycles time frame. The circuit
accepts one pixel per clock cycle and the entire
processing is performed as a linear pipe. Dur-
ing each clock cycle input pixels are stored in
one of the eight registers from the left column of
the register set RS-a. After eight clock cycles,
the left column is filled with eight data elements
that are now ready for processing, and the en-
tire column is copied onto the corresponding
registers in the right column. During the next
eight clock cycles the adder logic performs the
computations as in step 1 of the algorithm while
the left column keeps receiving new input data.
A similar process occurs in each of the parti-
tions simultaneously. By using this approach
we have successfully created the architecture
that utilizes arithmetic units to the maximum
extent, providing the required output data rate.

Another goal in the design process was to opti-
mize arithmetic units (adders, multiplier) to

a) reduce DCT architecture latency
b) reduce silicon area

Both of the above tasks are closely related. Re-
duction of the circuit latency can be achieved
by the logic reduction, which will then result
in a smaller silicon area. Reduction of logic
was based on the theoretical analysis performed
by the authors. During the analysis we were
looking for max. wvalues that can be expected

as a result of every operation. This gave us
the maximum number of bits needed for the
result. In addition, we have intentionally in-
troduced reductions in the output precision and
calculated the error caused by that reduction.
Since JPEG allows small variations in the re-
sults, we performed over 300 simulations with
different reductions to derive the optimal size
of the arithmetic units. After the sizes were de-
fined we focused our efforts on the design of
high speed CLA’s (Carry Lookahead Adders)
with one, two, three and four bit inputs. These
optimized adders were then used for design-
ing larger adders and a multiplier. Every adder
within the DCT architecture was designed as a
cluster of several CLA’s which resulted in the
high speed operation. All adders, inciuding the
largest adder (14 bit) that is part of the second
1D-DCT module, were extensively simulated
and it was shown, using the worst-case tim-
ing analysis, that they could perform operations
within a single clock cycle.

Multiplication unit has been designed as a re-
duced Wallace tree multiplier with seven seg-
ments. As known from the literature, the most
complex operation in the Wallace tree multiplier
takes place during the final addition of interme-
diate results, while other steps are simple and
straightforward. Hence, our 7 segment Wal-
lace tree multiplier requires 4 clock cycles to
perform multiplication. First six steps in the
process of the multiplication are performed us-



166

Design and Optimization of the VLSI Architecture. . .

®1

®2 |

—)

STAGE 0

STAGE 2

STAGE 1

)

STAGE 3

STAGE 4

STAGE 5
STAGE 6

Fig. 7. Proposed DCT Architecture

ing the CSA’s (Carry Save Adders) during 3
clock cycles, while the final step is performed
in the 4th clock cycle. Since the optimization of
the multiplier requires significant design time,
it was decided to design and optimize one mul-
tiplier and reuse the design in both 1D-DCT
modules. Fig. 7 shows pipelined organization
of the multiplier stages. Due to the limited page
width and size of the multiplier schematics it
was not possible to show all details in this fig-
ure.

In one multiplier design we also addressed the
fact that second operands can be chosen from
the set of only 4 constants (mq, my, m3 and my)
listed in the Table 2. Using the simulation we
have slightly reduced the number of bits for
these constants to reduce multiplier logic. The
principle was to try to eliminate 1’s from cer-

tain bit position for all four constants. If this
was possible then this bit position was excluded
from the list of partial sums in the multiplica-
tion. Without significantly affecting the preci-
sion we have arrived to the new constants that
are listed in Table 3. In this table we show final
values for the constants, together with the error
introduced and the ratio of 1’s after and before
this rounding.

After the simulation of a circuitry was per-
formed and arithmetic units optimized in size,
we were able to define the final architecture
of the DCT module. Table 4 lists final sizes
for elements of the first 1D-DCT circuit. La-
tency of the arithmetic units introduced ‘phase
shifting’ of the control signals between register
sets. For certain algorithm steps it was possible
to compensate this delay as the circuitry is not

4
mi{ = COS — =

6%

my = cos — = (.38268343 =

3%

M3 = COS —

3%

g = Cas ok 4 gosey = 130655206 =

0.70710678 = (0.10110101 0000 0100 1111); = (0.B504F)¢
(0.01100001 11110111 1000); = (0.61F78)14

6
— cos %’ = 0.5411961 = (0.1000 1010 1000 1011 1101), = {0.848ED)1¢

(1.01001110011110101110), = (1.4E7AE )16

16 16
Table 2. Constants used for DCT
my = (O.BS(D]@ A — (0.0001)}0, 5/10
my = (0.620)15 A = (0.0003)19,  3/11
ms = (0.8A9)]6 A= (0.0001)10, 5/10
my = (14E8)16 A = (0.00005)19,  6/13

Table 3. New DCT
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DCT 1

11 a0,...,a7: 8bits + : 8 bits
2 1b0,...,b7: 9bits + : 9 bits
31 ¢0,...,c6: 10 bits; c7: 9 bits + : 10 bits
41d0,...,d7: 11bits; d8 : 9 bits; m : 10 bits | : 11x10 bits
5 1e0,...,e8: 10 bits + : 10 bits
6 | f0,...,f7: 11 bits +: 11 bits

[ Module

| registers : width | arithm. unit : width

Table 4. Width of the devices in the DCT module

used in all 8 clock cycles and it was possible
to execute concurrently two operations from a
single step. Fig. 8 shows all details of the con-
trol needed for the high speed operation of the
proposed 1D-DCT VLSI architecture. Bold X-
boxes represent the moment when values are
copied from input to the output registers within
the register set. As it can be seen from the figure
control logic for the whole DCT module can be
done using the single three-bit counter and 3-
to-8 decoder. The counter is directly connected
to the system clock while decoder outputs are
connected to the appropriate control lines of
every register set and arithmetic unit. Such ef-
ficient control approach significantly improved
the DCT performance and allowed faster clock
speeds. DCT circuit has a latency of 50 clock

cycles calculated as 9 clock cycles for stages
RS-a and RS-b and 8 clock cycles for all other
stages. The same architecture is replicated for
column-wise DCT computation.

After the design and simulation under worst-
case timing conditions, we verified whether the
architecture was capable of processing one pixel
in every clock cycle at the frequency of 100
MHZ. resulting in the compression speed of 30
1k by 1k color images per second. By means
of the Cadence Opus design tools the archi-
tecture was mapped into the VLSI chip using
the 2 micron CMOS technology. The chip was
designed using the 2-phase non-overlapping
clocking scheme and fitted on the 6.8 by 6.9
mm? MOSIS frame. Prototype samples of the

A B C D E F s
| | | 1 T poD)
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1} oel,0e7
B 1 10
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‘ id4 1d3 a2 1d2,1d3,1d6 d8 1d3
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Fig. 8. DCT Module control signals
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Fig. 9. Chip prototype

chip were fabricated under MOSIS[38] (Fig. 9).

5. Conclusions

DCT architecture represents the key module in
the JPEG compression/decompression chip. In
this paper we have presented design, optimiza-
tion and implementation issues of an efficient,
highly parallelized architecture that performs
DCT computations. The architecture is orga-
nized as a multistage linear pipeline with min-
imal control logic using only one 3 bit counter
and a 3-to-8 decoder. The circuitry within the
architecture has been optimized for both speed
and size, resulting in only few major comput-
ing elements. Intensive simulation using Ver-
ilog and other Cadence design tools has shown
that the architecture can operate with clock fre-
quency of more than 100 Mhz. As a result,
DCT module can transform 30 color images of
1024 x 1024 pixels per second. A prototype
chip implementing the proposed architecture
has been designed and fabricated under MO-
SIS.
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