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Image Processing. A new Approach via
Informational Entropy and Informational
Divergence of non Random Functions

Guy Jumarie

Department of Mathematics, University of Quebec, Montreal Qc, Canada

By combining a maximum conditional entropy principle
with a basic equation of (Shannon) information theory,
one can obtain a meaningful concept of informational
entropy of non random functions. When this entropy
is applied to the brightness function of an image, one
so has at hand a new tool which provides new ap-
proaches to some image processing problems, such as,
for instance, image representation, image compression
and image similarity. As a by-product, to some extent,
this new modelling provides a support to the so-called
monkey model of image entropy. But while the latter
involves the brightness itself, here, the entropy of the
brightness function is expressed in terms of the contrast
of the brightness instead of the brightness itself. In this
framework, a new concept of informational divergence
of an image is obtained, which could be of help in image
analysis.
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1. Introduction

Basically, image processing is an information
processing. Digitization, compression, restora-
tion, segmentation and even pattern recognition
can be thought of as problems dealing with in-
formation; and as a result, information theory
(IT in the following) should be quite relevant.
Strictly speaking, IT is not essential (it is not a
prerequisite) to address these questions. For in-
stance, let us consider image compression (see
Rosenfeld et al, 1982). Several techniques are
available. There is the Karhunen—ILoeve com-
pression (Loeve, 1948); Fourier, Hadamar and
cosine compression (Chen et al, 1977; Kata-
jima, 1980); predictive compression (Cutler,

1952; Graham, 1958); block truncation com-
pression (Mitchell et al, 1978; Delp et al, 1979);
and none of them explicitly refers to I'T, despite
the fact that the latter are more or less transpar-
ent in their respective contents.

As a matter of fact, the basic issue in introduc-
ing IT in image processing is the randomization
of the problem. In substance, Shannon’s infor-
mation is defined in fields of probabilities, and
using IT in image processing is easy if we are
dealing with a family of images; but the matter
is much less obvious if we have only one picture
at hand.

Much earlier (see for instance Pratt, 1978) came
the idea of considering the brightness function
b(x,y) of a picture as more or less equivalent
to a bi-variate probability density, and to pro-
cess it as if it were that. At the beginning, this
comparison was purely formal. But later, this
point of view was supported by using a phys-
ical model (referred to as the monkey model)
in which photons are randomly thrown on a set
of empty pixels (this is recalled in the next sec-
tion), and as a result, it can now be considered
that this approach has a sound support.

Nevertheless, this monkey model of image en-
tropy gives rise to the following problem: it
works as if the brightnesses of neighbouring
pixels were uncorrelated (or independent), what
is rather troublesome on the surface. At first
glance, a proper measure of the amount of un-
certainty involved in a picture should take into
account the mutual dependence between neigh-
bouring pixels, and this requirement is not met
in the monkey model.
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Our main purpose herein is to once more con-
sider the problem of measuring the amount of
uncertainty (which is equal to the amount of in-
formation in some instances!) contained in an
image; and more exactly, we shall show how
one can obtain a new model of image entropy
which explicitly takes into account the pixel cor-
relation. This will be done by merely using a
principle of maximum conditional entropy com-
bined with a basic equation of IT.

The paper is organized as follows. In the next
section, we shall recall the definition of image
entropy in terms of brightness function, and its
derivation via the monkey model of throwing
photons. Then we shall obtain a model of en-
tropy of non random functions as a direct con-
sequence of the basic equation of information
theory. Applying this definition to brightness
functions will allow us to define a new model
of image entropy, which explicitly refers to the
mutual dependence of pixels, via the brightness
contrast. Then we shall see how this entropy
provides new approaches to some problems of
image processing. Lastly, by combining the
monkey model with the entropy of markovian
processes, we shall obtain a concept of infor-
mational divergence of image, which is directly
related to the complexity of the latter.

2. Monkey Model of Image Entropy

2.1. Main Definitions

Analogously with the entropy of random vari-
ables, it has been suggested to define the entropy
of an image as follows.

Definition 2.1. Let be given an image P (P for

picture) defined on the domain (x,y) € Q C R?
and characterized by the brightness b(x;, y;) for
all (i,). Its image entropy is defined by

H(P):_ Z b(xi:yi) In b(xi:yi)a (xay) € Q.
L
(2.1)
In the continuous case, one will set

HiP) = —/S;b(x,y) Inb(x,y)dxdy. (2.2)

This definition requires a few comments. In-
deed, given a random discrete scalar valued ran-
dom variable X with the probability distribution

pi, i =1,...,n; its entropy is given by
n
H(X)=— Zpi Inp;; (2.3)
=1

but if we consider the entropy defined by the
incomplete distribution (pj,...,pjim; then its
expression is (see for instance Aczel et al, 1975)

jm j+m
H(X; 5<X<Xj1m)=—Y pilapi/ > pi.
i=] =]
(2.4)
In a similar manner, for a continuous random
variable with the probability density p(x), the

corresponding mean value of uncertainty in the
interval (a, b) is

HX;a <X <D)
b b
= —J/a p(x)Inp(x) dx/ / p(x)dx. (2.5)

As a result, it seems that a definition of H(P),
which would be fully consistent with the en-
tropy of incomplete probability distribution (equ.
(2.4), should be the average

> b(xi, i) Inb(xi, y;)
Lice

Z b(xn)’i)b(xn}’j)
ijeQ

H(P) = —

(2.6)

H(P) is the mean value of uncertainty involved
in the image, whilst H(P) is the total uncertainty
in this image.

2.2. Photon/Unit Grey-Level Allocation
Model

The expression (2.1) can be obtained by con-
sidering a digital image as a probability distri-
bution where grey-level value of pixel repre-
sents the number of photons reaching this point
(Frieden, 1980). We can assume to have a
number B of photons and an initial image in
the form of an empty grid comprising n cells
(pixels). The B photons are allocated, one at
a time, among the n cells with uniform spa-
tial probability (Frieden, 1972). This model is
sometimes referred to as the “monkey model”
by the analogy with a group of monkeys which
randomly throw B balls in a two-dimensional
array of boxes to form the image (Gull et al,
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Fig. 1. Photon / unit grey-level allocation model

1978; Skilling, 1986; Jaynes, 1986). Each ball
represents a unit grey-level and each box a pixel,
see Fig. 1 for the one-dimensional case

The number of ways W that an image (by, by, . . .,
by,) can be formed is
V(bi; o0

,by) = B!/by ... b, (2:7)

and in a classical manner, using Stirling’s ap-
proximationn! = #”e~"(2nn)'/?, one finds that

In = H(P). (2.8)

3. Shannon Entropy of non Random
Functions

3.1. Entropy of Non Random Continuous
Functions

Proposition 3.1. Letf : R" — R", x — f(x)
designate a continuously differentiable func-
tion, the Jacobian determinant of which is de-
noted by f'(x). A measure of the amount of
uncertainty it involves on the domain Q, which
1s fully consistent with Shannon entropy of ran-
dom variable, is the S-entropy (S holds for Shan-
non) of order ¢ € R, defined by

_ Jolf'@IFn |G dx
Hc(f} o fQ \f’(JC)!Cdx A

(3.1)

PROOF. (i) Letx € Q@ D R"andX’ € R"denote
two random vectors; then the Shannon entropy
of the pair (X, X’) is defined by the equation

HX,X') = HX) + HX'|X), B2

where H(X, X') is the conditional entropy of X’
given X. Clearly

HEX'|X) = /Q PH(X'|X = x)dx.  (33)

(ii) Next, assume that the random vectors X and
Y are related by the equation Y = f (X)), where
f(.) is a continuously differentiable function;
then, according to a basic result of Shannon
information theory, one can write H(Y) in the
form

A = HE) + [ pmif @] ds. (34

(iii) Analogously with the equ. (3.2), we get the
following

H(Y)=H(X:f(.);Q)=H(X)+H(f(.);Ql(?g)as)
and to define the conditional entropy of f (.) on
€2 given X, by the expression

HY (000 = [ p) ')l dv. (36)
(iv) This being so, it is well known that the equ.
(3.2) yields the equality

HX,X)=HX)+HX), (3.7

when and only when X and X' are independent.
Moreover one has the inequality

HX'|X) < H(X').

As a result, we can write

H(X') = maxH(X'|X), (3.8)
plx)
subject to the condition that
H(X) = constant. (3.9)
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(v) Analogously, we shall define the entropy of
f (.) on the domain €2 by the relation

H(f(.);Q) = I;l@fH(f(-); Qlx),

given the constraint (3.9). We should express
that the quantity

/Qp(x)[hl [f'(x)l + A+ ulnp(x)] dx

is optimum where the Lagrange multipliers A
and p are associated with the constraints (3.9)
and the normalization condition on p(x), respec-
tively. Then we have the equation

In|f'(x) + A + ullnp(x) + 1] = 0,
hence

p() = If'(0) |7 # expl—(1 + (A/n))].

The normalization condition on p(x) provides

P(X)=1f’(X)_”“/LV’(X)[‘”WX- (3.10)

In order to determine the constant u, we shall
refer to the constraint (3.9), namely

fpwmmma——m
Q

JoIf @) 7 In|f ! (x)] dx
In K(u)+ =2 oK) =h,
(3.11)

where K(u) is defined by

mm=vawwm. (3.12)

The constant p appears as an implicit function
of h. Letting —1u = c and substituting the ex-
pression (3.10) for p(x) into (3.6) results in the
entropy (3.1).

3.2. Entropy of Non-Random Discrete
Functions

Assume that f (.) is a discrete function defined
on a finite grid; then the expression of the cor-
responding entropy will be obtained by making
the substitution [ «— 3", f' « Af into (3.1).

For instance, for a one-dimensional function
f(x) € R,x; € R, one has

n—1
Z% |Afi]“ In [Af]

He(fa( ;@) = =0 | ceR
2} |Afil¢
- (3.13)

with the notation Af; = f (x;01 — f (x:).

Notice that, exactly like with Shannon entropy
of random variables, there is no direct relation
between the S-entropy of continuous functions
and the S-entropy of discrete functions (or dis-
crete mappings). We are actually facing two
different concepts, and here we used the formal
approach only for the sake of simplification.
For further details, see for instance (Jumarie,

1994).

3.3. Further Remarks and Comments

(i) Assume that f(x), in the expression of
H.(f (.); Q) is the (cumulative) distribution func-
tion

X

o= [ ey

— 00

of the scalar valued random variable X; then one
has the equation

Hy(F(.);R) = —H(X). (3.14)
On the surface, the minus sign could look trou-
blesome; but, nevertheless, it is quite right so;
the contrary would be rather puzzling. H;(F)
measures the uncertainty involved in the mathe-
matical expression of F(.), whilst H(X) charac-
terizes the uncertainty related to the value of X;
the magnitudes of these two uncertainties vary
in opposite ways. H(X) achieves its maximum
value when p(x) is the uniform density, in which
case the graph of F(.) is a straightline, that is
to say, the curve which exhibits the smallest
amount of complexity.

(ii) Another way to seize the informational
meaning of the In-term is as follows:

Firstly, according to the equation
H(kX) = H(X) + In|k|, k = constant. (3.15)

In this expression, In |k| can be thought of as
the amount of uncertainty involved in the mag-
nitude of the constant k in the sense that the
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number of bits we need to encode |k| is exactly
equal to In ||/ In 2. To encode k, we shall need
one bit more for its sign.

Next, consider the Taylor expansion

fx+P)=2f(x)+YTf(x),

where T denotes transpose operation, where Y
is a “small” random variable (i.e. with a small
variance). Taking the conditional entropy of
both sides, given X = x, yields

Hf (x+ YV)) 2 HE) +In|f' (x)]. (3.17)

(3.16)

it can be re-writenas follows:

H(f (x+Y)lx) 2 H(Y) + In|[f'(x)]. (3.18)
to obtain the identity
HEOW =@l (319)
(iii) If we define
[l =minlf (), xeQ@ o
v = max|f'(x)], xe€Q
then it follows:
UmH(f (); Q)=Inlf"|s as ¢ T +o0, (321)

=In|f'|nasc | —oo.
In a similarmanner, defining

A = mlim APl €=0,12,...0~1,
|AF = max|AM 5] =012 sun=1,

(3.22)
gives the equation -

limH.(fa(.); @)= 1n |Af [s as ¢ T 400,
=In|Af |nasc | —oco.
(3.23)

(iv) The parameter c in the expression of the S-
entropy appears as a Lagrange parameter, and,
strictly speaking, its value should be defined by
the constraints. Unfortunately, in this way, we
shall not obtain a formula in a closed form. So,
in a general modelling, we shall rather consider
c as a (structural) parameter of the definition,
and we shall rather try to determine its suit-
able value by using other considerations and
remarks.

(v) As a matter of fact, the density

m@=W@WLWWWﬂ (3.24)

is proportional to the frequency with which the
path generated by the point (x, f (x)) is scruti-
nized. Clear, p.(x) defines the corresponding
scanning frequency. :

The value ¢ = 0 defines the uniform observation
(each point (x,f (x)) is visited with the same
frequency), ¢ = +oo characterizes an observa-
tion concentrated at (xpr, f (xp), and ¢ = —oo
corresponds to the observation concentrated at

(X, f (2m)-

(vi) For the sake of consistency with Shannon
entropy of random variables, we shall select the
special value ¢ = 1, to measure the amount of
uncertainty involved in f (.), and we shall set

H(f (.); Q) = Hi(f (.); Q).

(vii) H(fa(.); Q) is the mean value of the uncer-
tainty involved in the absolute value of each step
Af (x;) on Q, so the total amount of uncertainty
involved in all the n steps is nH(fa(.); Q).

(viii) Considering |Af |,, as the measurement
unit of the magnitude of f (.), one is led to in-
troduce the relative variation

|Afi| = |Afil /1Af |m;

and to introduce the new entropy

(3.25)

n—1 n—1
He(|Af [ fa(): @) = D AFi1/ 3 IAFII"
EZO i=0 (326)

4. A New Approach to Entropy of Images

4.1. Main Definition

Definition 4.1. Let an image P be defined by
the brightness function b(x, y) on the domain €.
As a result of the definition of entropy of non-
random functions, the amount of uncertainty
involved in the latter is defined by

HL(5(...); @)=da Po (oY) 10 by (x )| dx dy
c vy o) fg |b§gy(x,y)|cdxdy
(4.1)
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In the discrete case, this entropy reads

> 18%b(x;, yp)|¢ In |A%b(x;, y) |

H(by(.,.): Q)=-2
c( A( ) * ) Z!Azb(xi:Yj)l
ij
(4.2)
with
A?b(x;,yj) = b(xiy1,¥j11) — b(Xir1,¥7)
— b(xiaijrl) ii b(xl:!yj)' (4.3)

Derivation of this definition. The expression
(4.1) can be supported by the following argu-
ments.

(i) Let f(x,y) = g1(x)g2(y); x € Q1 C R,
y € Q C R denote an R> — R function.
According to the practical significance of infor-
mational entropy as a measure of uncertainty, it
1s quite understandable to define the entropy of

f(x,y) by

He(f (+.); Q1 x Q2) = He(g1(.); Q1)

+ He(g2(.); Q). (44)

(i) Expliciting the right-side term of (4.4) yields
He(f(.,.); 1 x 92)
IQ] fQZ ‘ (x,y)|°In |f” (x,y)| dx - dy
fg, Jo, IF5 (e, y)|cdxdy

(4.5)

(iii) We now consider this expression (4.5) as a
definition which applies to any function f (x, y).

4.2. Further Remarks and Comments

Definition of the “monkey model” of image en-
tropy assumes that the individual pixels are mu-
tually independent; in other words, that the pix-
els of the image could be randomly rearranged
without modifying the amount of uncertainty
contained in the picture, what is contrary to the
intuition (Titterington, 1984). In order to reply
to this criticism, Skilling (1986) suggested to
replace H(P) in equ. (2.1) by

= — Z bijln(b;)/myj), by = b(xi,y:),

(4.6)
where m; is a measure which takes into account
this dependence.

In the following, we wish to point out that the
dependence of the pixels appears in quite a natu-
ral manner in the expression (4.1), and in order
to simplify the explanation, we shall consider
a line of pixels characterized by the brightness
function b(xp), b(x1), ..., b(x,). We are inter-
ested in the mutual entropy H(bg, by, ..., by,),
b; = b(x;); assuming that b; depends upon b;_1
only, for every , then one will have the equation

H(bo, b1, . ..,b,) = H(bg) + H(bi|bo)
+ ... +H(bn|bn—1)v

According to section 3, one has

(4.7)

BB = /R pilx) In |Ab(x)) dx, (4.8)

therefore

H(bg, b1,...,bs) = H(bg)

v /R pix) In |Ab(x) | dx. (4.9)

5. Image Encoding

5.1. Statement of the Problem

As a simple illustrative example, assume that
we want to encode the horizontal row of pixels
of the preceding subsection, and let denote the
brightness of the i-th pixel. In terms of the vari-
ation of this brightness, we shall have to encode
the set of data bg, b1, ...,b,_1, or, in a similar
manner the set fibm sgn bg) (|Abg)|, sgn Abg),
-, (|Aby—1], sgn Ab,_1).

'lhen, the problem is to determine the mean
number of bits necessary to encode each com-
ponent.

This problem refers to the H. entropy, and we
shall clarify the significance of the latter in terms
of encoding.

5.2. Relation Between Entropy of Non-
Random Functions and Encoding

It should be pomted out that the equ. (3.14), i.c.
H(F(.);R) = —H(X) which connects the en-
tropy of the ( cumulative) distribution function
F(X) and the entropy of X, is already transpar-
ent in one of the encoding techniques already
suggested by Shannon himself ((1948) (see for
instance Yaglom et all 1960).
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The basic idea of this method is the following.
We write down the numbers x;, 1 = 1,2,...,n
of the alphabet following the order of decreasing
probabilities p; > py > p3 > ... > py (recall
that p; = pr(X = x;) and consider the sums p;,
i=1,2,...,ndefined by the expressions

pi=pi+pat ... +pic1, i=1,2,...,n. (52)

In the inequality p1 < p2 < p3 < ... < p,, One
can consider the “n numbers” {py,...,p,} as
an alphabet which is in a one-to-one correspon-
dence with the initial alphabet {x,...,x,}.
Then we have to encode this new alphabet, that
is to say, to associate a suitable sequence of bits
to each number p;. In other words, encoding
the sequence {x;} is equivalent to enconding the
sequence {p;}, and the amount of information
involved should be the same.

The fact that H; (F(.); R) is negative should not
be disturbing, and is merely due to the fact that
one has the inequality p; < 0 for all i, in such a
manner that it can be written in the form

by = a,12*] +a22*2+. ; .+ak2*k+. s (53)

Let ; be defined by the condition

In p; Inp;
- <L;<— 1 5.4
n2 == W2 " ko)
for all #, then one can show that, if for each p;,
oneretains only the firstnumbersaq, a;. . . ., ar,,

the sequences obtained are all different, and thus
define the code.

5.3. On the Relation Between Entropy of
Random Variables and Entropy of
Non-Random Functions

Background on the meaning of ¢

The fact that H.(f (.); Q) is an increasing func-
tion of ¢ gives rise to following question. Since
we are interested in the encoding algorithms
which involve a smaller number of bits, it would
at first glance be quite relevant to use Hy in-
stead of H for defining the corresponding code.
Clearly, since one has Hy < H1, then H; should
be disqualified in advance.

As a matter fact, this remark is not quite cor-
rect. A good encoding procedure is a trade-off
between the number of bits necessary to encode
the picture on the one hand, and the amount of

information which is preserved (in the transfor-
mation) on the other. In other words, we should
ascertain that the value ¢ = 0 does not lessen the
amount of information contained in the image.

Let us examine this point. If we denote by X,
the random variable whose probability density
is expressed by equ. (3.24), then a simple cal-
culation yields the relation

H(X.) +cHo(f (); Q) = InVe(f () Q), (5.5)

with the notation

nmm@=LWMWx (5.6)

which can be thought of as related to the total
variation of f (.) on Q.

According to this equation, the value ¢ = 1 ap-
pears to be a neutral value which neither creates
nor destroys information. Clearly, the equation

HX1) +Hi(f(.); Q)= Vi(f(.); Q) (5.7)

seems like a referential relation in which the
right side term is absolute, in the sense that it
depends upon f (.) only, irrespective of any ex-
ternal parameter (namely ¢).

In contrast, the values ¢ > 1 and ¢ < 1, in
the right side term, may increase or lower the
amount of uncertainty involved in f (.), depend-
ing upon the position of |f’(x)| with respect to
the unit. If one has |[f'(x)| > 1 forall x € Q,
then the equ. (5.5) defines an increase of uncer-
tainty; and when, on the contrary, one has that
f'(x)| < 1, then ¢ > 1 reduces the uncertainty
(while ¢ < 1 increases it).

Identification principle

The equ. (5.5) can be re-written in the form

B = —cHC(Wf((}));@; Q)

+(1-c)InV.(f(.);Q), (58)

~which shows that, in a case when ¢ = 1, there

1s a complete identification between the entropy
of X, and the entropy of f(.). In other words,
in the encoding of f (.) with ¢ = 1, we shall be
able to duplicate the rationale of the subsection
52.
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5.4. Application to Image Encoding

We can now get back to the problem of encoding
a row of pixels, see subsection 5.1. In order to
achieve this objective, we can directly duplicate
the result of the preceding section.

(i) Firstly, we have shown that there is a com-
plete identification between encoding random
variables and encoding non random functions.

(ii) So, as an illustrative example, consider the
brightness function pictured in Fig. 2.

According to the algorithm of subsection 5.2,
we shall introduce the steps A; with the addi-
tional condition |A1| > |A2| > |Az| > |A4] >
|As| on the one hand, and the probability-like
distribution on the other.

5
pres il 3 il BB (8]
=1

We shall have to encode the numbers p;, i =
1,2,3,4,5, as defined by the equ. (5.2); to-
gether with the sign of A; for each i. In the fol-
lowing, we shall examine the problem of image
compression; but before we do that, we need to
define the Renyi entropy of non-random func-
tions.

6. Renyi Entropy of non Random
Functions

6.1. Continuously Differentiable Functions

Proposition 6.1.. Letf : R" — R", x — [ (x)
denote a continuously differentiable function,

/

b (x)

the Jacobian determinant of which is denoted by
f'(x). Then the measure of the amount of uncer-
tainty it involves on the domain €2, and which,
furthermore, is fully consistent with Renyi en-
tropy of random variables, is the R-entropy (R
stands for Renyi) of order o, @ # 1, a € R
defined by

-t

1—«a
(6.1)

Proof The proof of this result is summarized as
follows

(i) The Renyi entropy of order a of the real
valued r-dimensional random variable X with
the probability density p(x) is defined by the
expression (see for instance Aczel et al, 1975):

: ln/np“(x) dx, (6.2)

—a
and one can show that the following inequalities
hold,

HR,a = -

Hgro > HX), a <1,

(6.3a)
Hpo < HX), > 1,

(6.3b)

(ii) The transformation ¥ = f (X) yields

1
Hra(¥) = —

in [ PGl

(6.4)
and analogously with the derivation of the en-
tropy of f (.), we can write

Hp o(Y) = Hr o(X) + Hr of (.);R"); (6.5)

10 15

Fig. 2. Brightnes: of a one-dimensional row of pixels
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therefore
Hgof (.);RY)

(iii) The quantity to maximize now reads (on
the domain Q):

= Hra(Y) + Hr o(X). (6.6)

1 a ¥ P'x ]—(Idx
max In JaP ()] w.r.t. p,
1-« Jop®(x)dx
(6.7)
subject to the constraint
/p(x) dx=1, (6.8)
Q
/ p(x)¥ dx = constant. (6.9)
Q

(iv) Using the Lagrange parameter technique,
one obtains the equ. (6.1) as a “special case”.

6.2. Discrete Functions

We shall formally obtain the entropy of discrete
functions by substituting [ «— >, f' «— Af
into the equ. (6.1).

For instance, for an R — R function, the Renyi
entropy is

n—1
Hralfa( @) = ——— n|larid*/ 3[4

(6.10)
7. Image Compression

7.1. Renyi Entropy of Image

Definition 7.1. Consider the image as in the Def-

inition 4.1. Its Reayi entropy of order o € R,

o 3£ 1,8
Hr,a(b(.;-); L)

! fQ b (%, J’)iadx‘iy

Ia |l s (x,y)| dxdy’

and in the discrete case, it is

_IAa

~

7.1)

Hg o(b(.,.); )
> |A%B" (xi, yj)I
—t Y i
o l-a YAy
i

In order to accomplishthese definitions, it is suf-
ficient to duplicate the rationale of Section 4.

7.2. Application to Image Compression

Let us first note that the following properties
hold:

Hpa(b(.,.); R)>H(b(.,.);Q), @ <1,

HitulBllss s )T, )5 O, 0 B 1, (7:3)

The second inequality can be interpreted as

follows. The transformation |by,(x,y)|| «

|biy(x, )| %, with & < 1, lessens the uncertainty
contained in the image; and as a result, the num-
ber of bits which are necessary to encode the
transformed image will be lower than for the
original image.

In practical implementation, we shall avoid the
use of the Renyi entropy itself, and we shall pro-
ceed as follows: we shall encode |A?|* instead
of |A?|, and to this end, we shall refer to the
entropy

(b))

> |A%b(xi, y;)|* In |A%b(x;, ;)|
LJ
= s 7.4
> (A%, )

b

Example

Assume that

(A1, A2, A3, A4, As) = (7,6,5,4,3).

(i) A simple calculation yields

see equ. (5.8))

The fact that H(X) is smaller than H;(f) is
quite understandable. H(X7) refers to the en-
coding of |A;|/ >, |A;| for all i, so that if we
want to determine |A;|, we need to know the
value of >, |A;].
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(ii) Regarding the Renyi entropy, in the special
case when a = 0.5, one finds that

Hgos5(f) = 1.63
Hpy.5(X1) = 1.58;

and, as expected, the following inequalities are
satisfied, clearly Hg.os (X]) < HR;O.S(f) and
Hpyos5(f) < Hi(f).

iii) Now assume that we are encoding |A;|%;
then will be the entropy

HY>(f) = 0.80,

which, as expected, is lower than H;(f ).

8. Similitudes of Images via Brightness
Cross-Entropy

8.1. Statement of the Problem

In a 2-D geometry described by rectangular co-
ordinates, the similitude transformation is de-
fined by the equs x' = kx, y' = ky, k= constant.
It multiplies the distance between every pair of
points by the same constant, referred to as the
ratio of similitude. Such a change of variables
transforms figures into similar patterns.

When we try to apply the same concept to im-
ages, we can do it in two different ways.

(i) We can consider some special drawings in
the picture, and measure their similutude.

(ii) Or else, we can consider the image as a
whole and define the corresponding measure of
similitude. This point of view is particularly
relevant when it is not easy to meaningfully
extract some characteristic drawings from the
image, which is the case, for instance, with an
“impressionist” painting.

In such a case, the most direct way is to compare
the brightnesses themselves, which brings us to
the following definition.

Definition 8.1. Given two pictures characterized
by the respective brightness functions b (x, y)
and by(x, y) defined on the same domain Q, we
shall say that they are similar if there exists a
positive constant k such that

ba(x,y) = kb(x,y),

The task now is to have a practical criterion to
measure the so defined.

(x,y € Q. (8.1)

8.2. Cross-Entropic Variance of Brightness
Functions

In the wake of thought of statistics, the first idea
to obtain a measure of image similitude, is to
consider the variance of the variable by(x,y)/
bi(x,y), which provides the sought property.
Indeed, if the latter is zero, then by (x, ) /b1 (x, y)=
constant. For instance, one can select the quan-
tity

D(bq,b3)

b2 xhy
:ZbZ(xian [ : } /ZbZ xn)’j
i

bl xt y; i

b2 [,
~[E by (xi, y;) balcs, 3;) / > b xz,y; } s
ij if

b1 xl,yj

Nevertheless, with our purpose of generaliz-
ing Kullback cross-entropy (or relative entropy
or divergence between probability distribution)
> :4qiIn(qi/pi), we shall rather consider the
variance of In |by/b|:

Vi (b2, b1)
xuy

_ZbZ xl:yj x yj /ZbZ xt:yj

ij

—[Z;bz(xf,yf) el Bitay)! 220 J ’

xl:yj ij

which will be referred to as the cross-entropic
variance of the brightness functions of the two
pictures to be compared. Itis equal to zero when
and only when, there exists a positive constant
k such that by (x, y) = kb (x,y).

9. Spatial Informational Divergence of
Images

9.1. Preliminary Background

Divergence of random variables. Let X denote
a scalar real valued random variable defined on
Q, and let H(X) denote its (Shannon) entropy.
Let H,,(X) denote the maximum value of H(X).
Then the divergence D(X) of X is defined by

D(X) = Hy(X) - HX).  (9.1)
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D(X) can be thought of as a measure of the
(structural) information contained in X. When
D(X) = 0, there is no information in the stochas-
tic definition of X, and the larger D(X) is, the
more information is contained in X. D(X) is
not an uncertainty measure: it is a difference
of information, and thus an information itself.
If one considers that X defines a system, then
D(X) would measure the complexity of the lat-
ter.

Note that this divergence is differs from the so-
called Kullback divergence between two prob-
ability distributions.

Entropy of Markovian processes. Let X(t)
denote a scalar real valued stochastic process
which satisfies the Fokker-Planck-Kolmogorov
equation

Aup(x, 1)=—0xf (x, ()p]+50ulg” (x, Dp),
(9.2)
the Shannon entropy of X(#) on the time interval
(0,T) s

H(X;0,T) =

//

This expression is a direct consequence of the
equation

X, (0))

(x, £) In[2meg?(x, )] ?dx dt.
(9.3)

H(X(t4d0)|X(f) = x) = In[2meg’(x, 1). (9.4)

For further details, see Jumarie, 1997.

9.2. Application to Divergence of Image

For convenience purpose, we shall consider
continuous brightness functions, but the reader
will easily generalize to (discrete) pixels by
making the usual substitutions.

(ii) In the first step, we shall refer to the monkey
model of entropy

i Jo b(x,y) Inb(x,y) dxdy
H(P) = - Jo b(x,y) dxdy

and we shall assume that it is equivalent to the
term H,, in the expression of D(X) in the equa-
tion (9.1). This assumption is quite correct,
since this model implicitly presupposes that the
pixels are mutually independent.

(9.5)

ii) Next, acccording to the equ. (3.6), the term
J|
| In &, (x,y)| can be understood as the density of

conditional entropy. As a result, using the prob-
abilistic significance of b(x, y) in equ. (9.5), and
analogously with equ. (9.3), one can define an-
other model of image entropy in the form

— v JabGey) In|by(x,y)| dxdy
H(P) = . fQ b(x,;;dxdy

. (96)

which explicitly takes the pixel dependence into
account. This entropy is exactly the parallel of
H(X;0,T) in the expression of D(X), see equ.
(9.3).

(iii) Analogously, with the equ. (9.1), we are
led to the following

Definition 9.1. An informational divergence
D(P) of the image P with the brightness func-
tion b(x,y), with is fully consistent with the
monkey model of entropy on the one hand, and
which takes into account the mutual dependence
of pixels on the other, is given by the expression:

D(P) = H(P) — H(P/b)
_ Job(x,y) Inb(x, y)|by,(x, y)| dx dy
Jo blx,y) dxdy (9.7)

In this expression, In b(x, y) is the density of un-
certainty involved in the brightness of the pixel
(x,y), while the component In |b(x, y)| rep-
resents the density of uncertainty contained in
the contrast of the brightnesses of neighbouring
pixels. D(P) could be a valuable tool to an-
alyze the image from the point of view of its
informational content.

10. Concluding Remarks

In our paper, we have shown how, by combin-
ing the maximum conditional entropy principle
with a basic equation of information theory, one
can derive a new model of image entropy, which
involves the contrast of the brightness instead of
the brightness itself, therefore, a new approach
to image processing.

As aby-product, the information theoretic frame-
work described herein, provides some support
to the so-called monkey model of image en-

tropy.

The theory applies to Renyi entropy, and this
allows us to introduce a y-exponent for image
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compression using by, (x, y)| instead of by (x, y),
as suggested by other authors (Horn, 1986).

Lastly, in the same framework we have obtained
a new concept of informational divergence of
an image (which should not be confused with
Kullback divergence between two probability
distributions), which seems to be of interest in
image analysis.
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