Journal of Computing and Information Technology - CIT 6, 1998, 1, 73-88 g 73

Database and Transaction Model for
Dynamic and Cooperative Workflows

Waldemar Wieczerzycki

Department of Information Technology, University of Economics at Poznan, Poland

In the paper, a flexible persistent environment for work-
flow system applications is proposed. It enables both
efficient business process modeling and execution. A
special emphasis is put on the dynamic evolution of
process description over a given time, on one hand, and
on the cooperative execution of activities embedded in
processes which cortespond to transactions, on the other.

In case of activity evolution, the proposed approach is
based on the notion of the database configuration, which
comprises versions of objects included in a particular set.
The paper shows that a particular versioning technique
may improve and simplify process modeling.

In case of activity execution, new ideas concerning
transaction management are proposed, which aim to
efficiently and widely support the cooperation.between
users assigned to the same tasks, who intend to achieve
common goals in a collaborative way.

Keywords: Workflow, CSCW, Transaction Management,
Object-oriented databases

1. Introduction

Most of the problems faced by enterprises con-
cern internal business procedures that are nei-
ther well defined nor particularly efficient (Hales
1993, Lavery 1992, Medina-Mora et al. 1993).
Workflow management is a computer-based,
potential solution to these problems. It is a
system for managing a series of tasks (actions)
defined for one or more procedures (Aiello et
al. 1984, Brierley 1993, Bullinger et al. 1993,
Hendley 1992, Jones et al. 1993). The system
ensures that the tasks are passed among the ap-
propriate participants in the correct sequence
and completed within set times (default actions
being taken where necessary). Participants may
be people (actors) or other systems. People nor-
mally interact through workstations while other

systems may be either on the same computer as
the system considered, or on another accessible
over a communication network.

Many tasks performed by enterprises can be
effectively automated using current business-
oriented workflow management products (Sheth
1994, Kling 1991, Hennessy et al. 1989) which
typically support imaging, document process-
ing and routing. Some enterprises perform tasks
that must be modeled in a client-server style, us-
ing a transaction mechanism. These can be sup-
ported by workflow systems built on top of the
distributed databases (Georgakopoulos 1994,
Huhns et al. 1994, Shuster et al. 1994). Finally,
workflows are often pro-active and embed long-
living processes. Process agents, i.e. members
of the organization structures of the enterprise,
are in charge of executing processes and process
steps. Workflow management systems have to
associate appropriate process agents to process
pro-actively. That is why they are built over
active databases (Bussler et al. 1994).

The emerging computing paradigm of workflow
management is beginning to influence not only
business-oriented applications, but increasingly
those in the scientific sector, too. Scientific ap-
plications present particular problems of work-
flow management. Not only do the workflows
change frequently, but their refinement may
only emerge as a result of experimentation as the
production/workflow process is followed (Mc-
Clatchey etal. 1997). Scientific workflows may
be specified and executed in an ad-hoc manner,
may be aborted during execution and often dif-
fer in nature from their definition at the outset
of the scientific experiment. New definitions
of activities can be added to the workflow sys-
tem and existing definitions can be amended or

74

Database and Transaction Model for Dynamic and Cooperative Workflows

deleted as the workflows evolve. This is usu-
ally called dynamic modification of workflows
(Vossen et al. 1996). For these reasons and
others commercial workflow management sys-
tems appear to be inadequate for the purposes of
managing scientific workflow applications. In
particular, these products are rather restricted
in coping with the versioning problems which
arise when workflows change on a frequent ba-
sis, i.e. when workflow models evolve dynam-
ically, possibly towards many different direc-
tions (Benford 1991, Smith et al. 1989).

Besides the support for dynamic evolution, work-
flows require also support for cooperative work
of people collectively assigned to perform par-
ticular activities (tasks), e.g. writing a co-author-
ed report, collaborative preparation of a busi-
ness contract, etc. Since many workflow man-
agement systems are transactional, traditional
transaction models become insufficient. New
mechanisms supporting efficient cooperation of
long-duration transactions working in both shared
and exclusive environments must be provided.
In particular, conflicts between transactions of
this type should be avoided whenever possible.
If, however, conflicts do occur, they must be
resolved in such a way that transactions are not
suspended or rolled-back, but that their execu-
tion may be immediately continued.

In the paper workflow systems supported by
object-oriented databases are considered. The
first main contribution of this paper is a par-
ticular approach to business process modeling
in workflow systems, which provides new con-
cepts and operations that are necessary for dy-
namic evolution of workflows. The approach
is based on the notion of the database config-
uration, which comprises versions of objects
included in a particular set. The paper shows
that a particular versioning technique may im-
- prove and simplify both process modeling and
execution.

The second main contribution of the paper con-
sists in a new approach to transaction manage-
ment, which aims to efficiently and widely sup-
port the cooperation between users assigned to
the same tasks who intend to achieve common
goals in a collaborative way. Briefly, it can be
fulfilled by assigning the entire group of col-
laborating users to the same transaction, still
preserving, however, the identity of individu-
als. The proposed transaction model is-inspired

by the natural perception, that a team of inten-
sively cooperating users can be considered as a
single virtual user who has more than one brain
trying to achieve the assumed goal, and more
than two hands operating on a keyboard.

The paper is organized in the following way: in
Section 2 basic concepts are given and a process
modeling technique oriented for dynamic evo-
lution of worklows is proposed; in Section 3 a
new transaction model supporting cooperation
between users, as well as particular transaction
management mechanisms are discussed; in Sec-
tion 4 brief experimental evaluation of the pro-
posed approach is described; finally, in Section
5 concluding remarks are given.

2. Process Models and Instances

2.1. Basic Concepts

Dynamic workflow evolution may be seen in
different ways. First, it may be seen in terms of
improving the process description, elementary
task allocation and scheduling, resource utiliza-
tion, etc., in order to increase the quality of
services offered and, as a consequence, the total
income of the enterprise. The improved pro-
cess description typically replaces the previous
one, next it is validated and finally, depending
on the results achieved, accepted or rejected. In
case of unsatisfactory results, process roll-back
must be done in order to restore its previous de-
scription. It means that old descriptions must be
somehow kept in the system. Even in the case
of satisfactory results of process validation, an
older description may be useful in the future,
due to the cyclic nature of process or returning
requirements.

On the other hand, process evolution relates to
the creative nature of processes. Most of them
usually create and develop very complex ob-
jects which are the expected outputs (artifacts)
of processes. The progress is reached step by
step, through the creation of improved versions
of the object being developed. Similarly to other
approaches, our model of an enterprise is com-
posed of two parts: a model of organizational
environments and a model of processes, which
are strictly related to each other and mutually
dependent (Hawryszkiewicz 1994). Environ-
ments model the support structures for groups

Database and Transaction Model for Dynamic and Cooperative Workflows 75

of employees. Environments can be of a pro-
longed duration and support a variety of pro-
cesses. They can also define the social con-
text for cooperation. Environments can include
other environments, as well as artifacts, roles
and actors. Artifacts represent the information
base of the enterprise. These can include files
as well as artifacts such as reports, designs, and
so on. Roles are abstract entities that represent
system decisions. For example, purchasing a
part requires a purchase requisition to be made
and approved. The requisition and approval de-
cisions are modeled as two separate roles. An
actor is assigned to each role to make the de-
cision. Actors are often positions that can be
derived using organizational rules. Roles are
not permanently associated with positions but

are dynamically assigned using organizational
rules.

Each process corresponds to a subset of actions
performed by the enterprise to achieve one of
the goals it has been created for. Each process
is within an environment and models interac-
tions between a subset of objects in this en-
vironment. Processes are further decomposed
into activities. Activities correspond to differ-
ent stages of process execution. They are par-
tially ordered according to ways the process is
executed in real-life. In order to be initiated,
some activities require particular artifacts as an
input, which may be taken directly from corre-
sponding environments or produced as outputs
by other activities. Moreover, some activities
are triggered by so called events, which may
be classified into external events (e.g. a client’s
request), internal events (an employee’s deci-
sion), and time events (a change of the year).
In our approach, activities are only units of pro-
cess decomposition. In general, however, they
may be further sub-divided into so called tasks,
which correspond to elementary, well-defined
actions in the scope of a given activity.

2.2. Dynamic Process Evolution

In this section we will show how basic con-
cepts presented in the previous section can be
modeled in a multiversion database supporting
workflow management applications, and how
they can evolve over time, due to dynamic mod-
ifications of their models.

Every process is represented in the database
by its precise description, which is called the
process model. This description contains the
structure and behavior of all objects that may
potentially be used during process execution, or
produced as a result of process execution, e.g.
artifacts, roles. It also contains the exact speci-
fications of all activities embedded in a process,
their scheduling and activation rules, and their
inputs and outputs. In database terms the de-
scriptions of all processes modeled constitute
the database scheme.

Processes are not only modeled in the database
to reflect static features of a real-world enter-
prise, but they are also executed in order to show
how real-world employees perform their official
duties, and how the enterprise as a whole is try-
ing to achieve its strategic aims. Every process
execution is represented in a database by a so
called process instance, which is created and
evolves according to the information included
in a corresponding process model. In general,
every process (client acquisition, advertising,
etc.) may be performed simultaneously and in-
dependently by different actors. Thus, a single
process which is always described by a single
process model, may have an arbitrary number
of instances which live in the database asyn-
chronously. Process instances will be more
deeply considered in Section 2.3.

Every process model evolves during the data-
base life-time in the same way corresponding
execution rules are improved in the enterprise,
in order to maximize its efficiency, profits, qual-
ity of services, etc. This process has a pro-
gressive nature, which means that it is per-
formed step by step through the creation of im-
proved versions of process models. New ver-
sions of process models, however, do not just
replace older versions — they are kept parallel
to them. Preserving historic process model ver-
sions makes it possible to perform roll-backs
in process model evolution, e.g. due to unsat-
isfactory results obtained. On the other hand,
sometimes there is an evident need to return to
previous versions of process models due to a
requirements change or other factors which of-
ten have a cyclic nature, e.g. a process may be
executed always in the same particular way on
every December and differently during the rest
of a year.

76 Database and Transaction Model for Dynamic and Cooperative Workflows

There is also another aspect of process model
evolution. A single process may be some-
times performed in slightly different ways in
the same time period, depending on triggering
events, particular conditions, temporary results
obtained, etc. In this case, instead of a single,
most recent version of a process model, we deal
with many variants of the same process model.
Contrarily to historic versions which reflect the
progressive nature of processes, variants reflect
their alternative nature. Another difference is
that historic versions are normally frozen and
labeled by particular time stamps, being sort of
snap-shots 1n the enterprise history, while vari-
ants may be freely updated.

Most of the updates addressed to a process
model consist of changing their state by access-
ing objects belonging to them. These updates
are called non-versioning updates, due to the
fact that neither a new version of the whole ac-
tivity model is derived, nor are new versions of
objects composing it created. There are also up-
dates, called versioning updates, which derive
new versions of a process model on the basis of
a parent one which is preserved in the database
in its original state.

From the user’s point of view, a database sup-
porting workflow system is composed of a data-
base background and a set of multiversion pro-
cess models. The database background models
an enterprise without processes. It contains all
environments which may be used to define a
new process, which in turn are composed of ob-
jects like actors, resources available, standard
roles that are well defined, however not per-
formed yet, etc. In other words, the database
background contains all objects which may be
useful to execute future processes and can be
foreseen since the beginning of enterprise exis-
tence.

Every process model describes exactly one en-
terprise process. Initially, i.e. after the so called
process initialization, it is composed of logical
copies of some objects contained in the database
background. Afterwards, due to the detailed
process definition, it is dynamically extended
by new objects local to the process being de-
fined, reflecting the specificity of the process.
In particular, it is extended by a specification
of all the activities that may be performed in
frames of the process. Finally, it is also ex-
tended by the semantic relationships among the

objects mentioned above which order activities,
assign them particular roles, point artifacts that
are exchanged between activities or used inter-
nally by an activity, bind external and internal
events to actions which they trigger, etc.

A database example in a way perceived by the
user 1s illustrated in Fig. 1. On the basis of the
database background, four processes have been
initialized. Next, the definition of every process
has been refined by the creation of its new ver-
sions. Bvery process is represented in Fig. 1 by
a stack of soft boxes; each box corresponds to a
single process model version. Initial versions,
filled in the same way, are put at the bottom of
every stack. Also, the most recently released
process model versions, which are put at the
top of stacks, are especially distinguished. The
model of process P4 is available in six versions:
four frozen historic versions and two current
versions, which represent process variants.

All processes are derived (initialized) from the
same database background by selecting subsets
of its objects. These subsets need not be dis-
jointed i.e. some objects stored in the database
background may be shared between activities.
Updates in the database background are allowed
and are automatically propagated to those pro-
cesses which share objects affected. On the con-
trary, newly created objects in the background
are not included in the processes already initial-
ized. They may be used in subsequent initial-
izations of new processes. Updates in processes
are local, which means they do not influence the
background and other processes.

Current versions of process models are grouped
together and are called the database frame-
work. The database framework represents cur-
rent view of the enterprise, i.e. all processes
that are currently executed or may be executed
in the near future. Typically processes are not
quite isolated from each other; similarly to ac-
tivities composing a process, they may also be
partially ordered or one may observe an artifact
flow between them. The notion of the database
framework supports these relationships which
are outside the processes but inside the frame-
work.

Because of different levels of abstraction, the
user’s view of the database is different from that
of the database management system (DBMS).
In the latter case, one must discuss what is the

Database and Transaction Model for Dynamic and Cooperative Workflows 7

time

process version

.. database framework

current versions
W A

initial version

LR N el Rnie}

p

I database background

L

Fig. 1. User’s View of the Database

granule of database versioning and what is the
unit of the database consistency.

At the DBMS level the database is viewed as
a tree of so called database configurations (cf.
Fig. 2). Every configuration is composed of
single versions of objects belonging to a sub-
set of objects stored in the database, and corre-
sponds to a single process model version. The
root configuration corresponds to the database
background. Every object is always addressed
in the context of a previously chosen configu-
ration. Non-versioning updates performed on it
are local to this configuration — they do not af-
fect other versions of the same object belonging
to other configurations. It also concerns updates
performed on object versions that are physically
shared between configurations; in this case a
new object version is created which is local to
the configuration addressed, while the old ob-
ject version remains unchanged and is still avail-
able in other configurations. As a consequence,
database configurations are mutually indepen-
dent and they may evolve without imposing any
constraints on the evolution of other configu-
rations. The only exception concerns the root
configuration (the configuration modeling the
database background); updates performed on
shared objects belonging to it are propagated to
respective child configurations.

The situation is different in the case of ver-
sioning updates. Every update of this type is
preceded by the automatic derivation of a new

(child) configuration which is initially identical
to its parent, i.e. which is a logical copy of its
parent. Afterwards, the update is performed in
the child configuration without affecting objects
in the parent configuration. In other words, af-
ter the versioning update, a new configuration
appears in the system which shares all object
versions with its parent, except the one affected
by the update operation (cf. Fig. 2).

From the afore-mentioned discussion it follows
that a set of database objects is the unit of ver-
sioning — every version of this set becomes a
single database configuration. It is not possible
to derive an object version out of the scope of a
particular configuration. Notice that in two ex-
treme cases a versionable set may be composed
of all objects stored in the database or of a single
object.

2.3. Dynamic Process Instantiation

One aspect is process modeling in order to pre-
cisely represent it in the database, and another -
aspect is process execution according to a pre-
viously accepted process model. In this sec-
tion we will focus on the so called process
instantiation which starts the execution of ac-
tivities embedded in the process according to
patterns included in the process model. The
emphasis will be put on additional modeling

78

Database and Transaction Model for Dynamic and Cooperative Workflows

v] = (.3
T {l’l‘w—/——‘;":”’

\

=n]

\/

® =

|

Fig. 2. DBMS View of the Database

mechanisms rather than transaction manage-

ment mechanisms, which we discuss in Section
3.

As mentioned before, every process may be
composed of an arbitrary number of elementary
activities which are partially ordered. It is also
assumed that, in general, processes are interac-
tive and require intensive information exchange
among users, who are modeled in the system
as actors. One may distinguish three types of
processes represented in the database. The first
type contains read-only processes that read ob-
jects stored in the database, but do not update
them and do not create new objects. Of course,
processes of this type may produce new infor-
mation, e.g. reports, letters, management direc-
tives, etc., displayed or printed to the users. The
second type contains processes that may create
new persistent database objects that are local
to them, i.e. that exist only during process exe-
cution and play the role of artifacts exchanged
between activities in the scope of the same pro-
cess. The third, most general type, contains pro-
cesses that may both update existing database
objects and create new persistent objects that are
retained in the database after process execution.

The main aim of the proposed approach is to
avoid conflicts between processes when they are
executed, and between processes and database
operations described in the previous section,
like process initialization and definition. Most
conflicts arise when different processes try to
access the same objects. Conflicts do not occur
between processes of the type one case, they
may occur between processes of the type two
case, and they are very possible between pro-

cesses of the type three case. The most straight-
forward solution to avoid conflicts is to iso-
late processes by addressing them to different
database configurations. It is relatively easy in
the case of different processes, while not so ob-
vious in the case of processes being instances
of the same process model, which are executed
asynchronously (cf. Section 2.2).

To avoid conflicts between instances of the
same process model, a new database configu-
ration is automatically derived whenever a pro-
cess is instantiated, directly from the configura-
tion which represents a corresponding process
model. This new configuration becomes an ex-
clusive scope in which a newly instantiated pro-
cess is executed. Initially, it comprises logical
copies of all objects included in the parent con-
figuration, i.e. it contains all patterns included in
the process model. Afterwards, it may evolve
due to the changes implied by process execu-
tion.

The process instantiation is illustrated in Fig.
3. Process Py is represented by a single model
version. It has three instances: il, i2 and i3,
which are executed separately. Process instance
i1 is currently performing activity a1, instance
i2 1s performing in parallel activities — a2 and
a4, while process instance i3 has been finished.
The last one has created three new objects, rep-
resented by circles, which are available only in
the database configuration representing i3. No-
tice, also, that parallelly with the execution of
those three process instances it is possible to
refine the corresponding process model which
is included in the parent configuration logically
independent from its children.

Database and Transaction Model for Dynamic and Cooperative Workflows 79

process model

i3 7 /_process instance
—
o R R T
new version
of process model |

P1

inffialization

[background J

Fig. 3. Process Instantiation

Process initialization consists of the creation of
a new database configuration on the basis of
the database background. Process definition

consists of refining a process model by adding-

to it local objects specific to the process and
semantic relationships between them. Activity
instantiation first creates a new database config-
uration and exclusively dedicates it to a single
process execution and then starts the execution
of respective activities embedded in the process.

3. Process Execution

3.1. Survey of Transaction Models

A transaction is an elementary unit of interac-
tion between the user and the DBMS. There are
many advanced transaction models proposed in
the literature (Elmagarmid 1992). Two early
non-traditional models are: nested transactions
and Sagas. Nested transactions (Moss 1985)
support modularity, failure handling and intra-
transaction parallelism. They are very impor-
tant in the development of other, more advanced
models, e.g. ACTA model (Chrysanthis et al.
1990), because they introduce the idea of struc-
turing a transaction into a tree (or hierarchy) of
subtransactions and non-vital subtransactions.
Sagas (Garcia-Molina 1987), based on the com-
pensating transactions, consist of a set of sub-
transactions. They relax the property of isola-
tion by allowing a saga to reveal its partial re-
sults to other transactions before it is complete.
Sagas are useful only when subtransactions are

relatively independent (because of consistency
problems) and each subtransaction can be suc-
cessfully compensated.

There are some advanced transaction models
which are addressed to distributed databases
and multidatabases. DOM transactions (Buch-
mann et al. 1992) extend the concept of nested
transactions proposing, so called, closed nested
subtransactions, open nested subtransactions,
and combinations of the two. Flex transac-
tion model (Elmagarmid et al. 1990) allows
the user to specify a set of functionally equiva-

“lent subtransactions, each of which when com-

pleted will accomplish a particular task. This
model also allows the specification of depen-
dencies on the subtransactions. Polytransac-
tions (Rusinkiewicz et al. 1991) facilitate the
support of interdependent data in multidatabase
environments. Interdependent data is defined
to be two or more data items stored in different
databases that are related to each other through
an integrity constraint.

Finally, there are transaction models support-
ing cooperation between transactions. The most
general approach proposes the cooperative trans-
action hierarchy (Nodine et al. 1984) which
allows to associate transactions encompassed
by a transaction group with individual design-
ers. The notion of correctness defined by seri-
alizability is substituted by the notion of user-
defined serializability. Because isolation be-
tween transactions is not required, the trans-
action hierarchies allow close cooperation be-
tween transactions and also help to alleviate
the problems caused by long-lived transactions.

80 Database and Transaction Model for Dynamic and Cooperative Workflows

Other transaction models from this group are
not so general, since they are addressed to par-
ticular application domains. Cooperative SEE
transactions (Hill et al. 1992) were developed
for software engineering environments. Con-
Tract model (Reuter 1989) is mainly addressed
to office automation, CAD and manufacturing
control. S-transactions (Eliassen et al. 1988)
support cooperation in the international bank-
ing system.

Taking into account the needs of cooperative
workflows in which some activities are per-
formed by groups of collaborating users, co-
operative transaction hierarchies (Nodine et al.
1984) are very promising, since transactions
form the same group are not isolated mutu-
ally and can correspond to different, though
somehow related tasks. Notice, that this ap-
proach, similarly to all other approaches men-
tioned above, uses a tree-structured transaction
model.

An attempt to apply hierarchical transactions
to databases has some disadvantages. Contrar-
ily to flat transactions, hierarchical transactions
require sophisticated transaction management
methods and, as a consequence, additional Sys-
tem overhead which reduces its performance.
Moreover, hierarchical transactions are still not
sufficient, considering expectations of cooper-
ating users, since in many situations the trans-
action correctness criterion restricts wide co-
operation. Finally, they are not so reliable as
flat transactions, since in practice commercial
databases use the latter ones.

In further subsections of this chapter we propose
a solution of problems mentioned above by the
use of flat transactions, in which, in comparison
to classical ACID transactions (Gray 1978), the
isolation property is relaxed.

3.2. Multi-user transactions

A multi-user transaction is a flat, totally or-
dered set of database operations performed by a
group of users (a team) assigned to the same ac-
tivity, which is atomic, consistent and durable.
In other words, a multi-user transaction is the
only unit of communication between a virtual
user representing members of a single team, and
the database management system.

Formally, a multi-user transaction is defined as
a triple:

MT = (Tid, Wid, Aid),

where Tid is a transaction identifier, Wid is an
identifier of the encompassing workflow, and
Aid 1s an identifier of the activity to which MT
1s assigned.

Two multi-user transactions from two different
workflows behave in the classical way, which
means that they work in mutual isolation, and
they are serialized by database management sys-
tem. In case of access conflicts, resulting from
attempts to operate on the same data item in
incompatible mode, one of transactions is sus-
pended or aborted, depending on the concur-
rency control policy.

Two multi-user transactions from the same work-
flow behave in a non-classical way, which means
that the isolation property is partially relaxed for
them. In case of access conflicts, the so called
negotiation mechanism is triggered by DBMS,
which informs users assigned to both transac-
tions about the conflict, giving them details
concerning the operations which have caused
it. Then, using conferencing mechanisms pro-
vided by the workflow system, users can consult
their intended operations and negotiate on how
to resolve their mutual problem. If commonly
agreed, they can derive a new version of a pro-
cess instance, as described in Section 3.3, or
merge their transactions, as proposed further in
this section. In both cases, the users avoid future
access conflict,

A particular mechanism is used in case of op-
erations of the same multi-user transaction, if
they are performed by different users, and they
are conflicting in a classical meaning. There
is no isolation between operations of different
users, however, in this situation the so called
notification mechanism is triggered by DBMS,
which aims to keep the users assigned to the
same transaction aware of the operations done
by other users. We have to stress that it con-
cerns only the situation when a user accesses
the data previously accessed by other users, and
the modes of those two accesses are incompat-
ible in a classical meaning. After notification,
users assigned to the same transaction continue
their work, as if nothing happened. Notice, that

Database and Transaction Model for Dynamic and Cooperative Workflows 81

in case of the users assigned to the same activ-
ity, we assume not only strict collaboration, but
also deep mutual confidence.

Now we focus on the operations which can be
performed on multi-user transactions.

Every multi-user transaction is started implicitly
by initialize(Ti) operation, which is performed
by the system automatically at the very begin-
ning of a corresponding activity execution, af-
ter the first database operation is requested by
one of team members. This team member is
called transaction leader. initialize(Ti) is also
triggered automatically, directly after one of
the team members has performed explicit com-
mit(Ti) operation, or implicit auto-commit(Ti)
database operation. All consecutive transac-
tions of the same team are executed in a serial
order.

After a multi-user transaction is initialized by
the transaction leader, other team members can
enter it at any moment of the transaction exe-
cution, by the use of explicit connect(Ti) oper-
ation, which is performed in an asynchronous
manner. Once connected to the transaction, any
member of the team can perform disconnect(Ti)
operation, providing there is still at least one
user assigned to this transaction. disconnect(Ti)
operation breaks the link between transaction 17
and the user, who can next:

e close his session,

e suspend his operations for a particular time
interval and re-connect to the same transaction
later,

e wait until the transaction commits and con-
nect to the next multi-user transaction of the
same team,

e continue to work with different team in the
scope of another multi-user transaction, pro-
vided he belongs to more than one team.

In cases: 1, 2 and 4, disconnect(Ti) operation
plays the role of sub-commit operation, which
means that the respective user intends to commit
his own operations, and leaves the final decision
whether to commit or not the multi-user trans-
action to his colleagues, whom he trusts.

Operations introduced up till now concern a sin-
gle multi-user transaction. Next two operations:
merge(Ti) and spli#() are special, since they con-
cern two transactions. Transaction Tj can merge

into transaction Ti by the use of merge(Ti) oper-
ation, providing the members of a team assigned
to Ti allow for it. After this operation, transac-
tion Tj is logically removed from the system, i.e.
operation abort(Tj) is automatically triggered
by the DBMS, and all 7j operations are logi-
cally re-done by transaction Ti. These actions
are only logical, since in fact operations of 7j
are just added to the list of 7i operations, and
Ti continues its execution, however, the num-
ber of users assigned to it is now increased. It
means, that until the end of 7i execution, the
team assigned previously to Tj is merged into
the team assigned to Ti. Of course, merge(Ti)
operation is only allowed in the scope of the
same workflow. merge(Ti) can be useful when
an access conflict between two teams assigned
to the same workflow arises.

Similarly to merge operation, split() operation
can be used in order to avoid access conflicts
(cf. Section 3). split() operation causes that
a single multi-user transaction 7i is split into
two transactions: Ti and Tj. After split() op-
eration, a subset of team members, originally
assigned to 7i, is re-assigned to newly created
transaction Tj. Also all operations performed
by re-assigned users are logically removed from
transaction Ti and redone in transaction 7j di-
rectly after its creation.

Contrarily to merge operation which is always
feasible, provided members of the other team
allow it, split operation can be done only in
particular contexts. Speaking very briefly, a
transaction can be split if two sub-teams, which
intend to separate their further actions, have op-
erated on disjoint subsets of data, before split
operation is requested. If the intersection be-
tween the data accessed is not empty, split op-
eration is still possible, provided the data have
been accessed by the two sub-teams in a com-
patible mode (in a classical meaning).

There is one more constraint concerning split
operation. The resulting two transactions are
related to each other in such a way that they can
be either both committed or aborted. It is not
possible to abort one of them and commit the
other, since in this case the atomicity property
of the original transaction (i.e. the transaction
before split operation was requested) would be
violated.

Finally, there are two typical operations on

82

Database and Transaction Model for Dynamic and Cooperative Workflows

a) b)

! MT MT: MT 4
(D) e iz T MT; "T@
~ |
connect —— ;
i i
i i | ,
- H merge I split
connect | 7 ! MT s /
SN B | I
Y Es ¥
Ol IS/)
{ disconnect abort
~ P
el COMMIL = x:l. l —

°)

Fig. 4. Operations on multi-user transactions

transactions: commit and abort, which are per-
formed in the classical manner.,

All the operations presented above are illus-
trated in Fig. 4. Fig. 4a) shows initialize, con-
nect, disconnect and commit operations, Fig.
4b) shows merge operation, while Fig. 4c) shows
split and abort operations.

In our approach we use a multiversion database
(cf. Section 2), which, taken as a whole, is
generally inconsistent. Thus, we further re-
fine the transaction definition in the following
way: a multi-user transaction is a process that
is addressed to a single database configuration
and transforms it from one consistent state into
another consistent state. We distinguish two
multi-user transaction types: model and activ-
ity transactions.

Model transactions are used at the initialization
and definition stages of a process life-time (cf.
Section 2.2); they derive new versions of pro-
cess models and/or update existing versions of
process models.

Activity transactions are used during the process
execution stage to perform operations described
in a respective process model. An activity trans-
action corresponds exactly to a single activity
of a process. It implies two important conse-
quences. First, we assume that an activity, sim-
ilarly to a transaction, is atomic, i.e. may not be
performed partially. This restriction may be re-
laxed if we allow an additional level of process
decomposition, namely tasks, as explained in
Section 2.1. Second, the execution of a process

which is composed of n activities corresponds
to the execution of n transactions in the same
database configuration. Some of them are seri-
alized in the same way corresponding activities
are serialized, while others may be executed
concurrently.

Now, one can briefly discuss conflicts that may
occur between transactions of the two types
mentioned above. Two model transactions con-
flict very rarely because they are usually ad-
dressed to different process model versions, i.e.
they are addressed to different database con-
figurations. If, however, they are addressed to
the same configuration and they access overlap-
ping subsets of objects included in the process
model, then a conflict may occur. There are
no conflicts between a model transaction and
an activity transaction, even if they address the
same process model version. In this case (cf.
Section 2.3), the model transaction is executed
in the database configuration that is a parent
of the configuration in which the activity trans-
action is executed. Also, two activity transac-
tions concerning different versions of a process
model or different instances of the same process
model never conflict. The only possible con-
flict between transactions of this type is when
they perform two activities of the same process
instance that may be executed in parallel (cf.
instance i2 in Fig. 3).

To summarize, conflicts between transactions
may occur if they are physically addressed to
the same database configuration. They may

Database and Transaction Model for Dynamic and Cooperative Workflows 83

be easily resolved by transaction merge, as exX-
plained before. In the next subsection we show
another mechanism of conflict resolution.

3.3. Conflict Versioning

Assume two activity transactions which are ex-
ecuted in the same database configuration and
potentially conflicting (i.e. locking is neces-
sary). What will happen if, after many oper-
ations on disjointed subsets of objects, those
two transactions try to access the same object
in an incompatible mode? In general, they are
long-duration transactions, thus, aborting one of
them is not recommended. The problem may be
solved by providing a new database mechanism
which is called conflict versioning.

Conflict versioning consists of the automatic
derivation of a new private database configura-
tion dedicated to a conflicting transaction (after
detecting its first access conflict). The new pri-
vate database configuration is a logical copy of
its parent configuration which models process
instance, with the exception that it contains all
non-committed updates performed by the con-
flicting transaction, which are also logically re-
moved from the parent configuration. Now,
locking conflicts in the private configuration are
no longer possible. If, because of some reasons
(e.g. user request), the transaction aborts, the
private configuration is simply deleted. Oth-
erwise, i.e. if the transaction is commited, the
system informs the user about the configura-
tion derivation which becomes visible to other
transactions.

After the transaction commitment, the activity
schedule graph must be analyzed. If there is
an activity (node) which requires artifacts from
both separated subgraphs, then ‘before start-
ing it, the two database configurations must be
merged. Otherwise, there is no need for merg-
ing and the process execution may be continued
in two splitted configurations.

The conflict derivation technique is illustrated in
Fig. 5. Transactions T, and T3 are executed con-
currently in the same database configuration,
directly after the commitment of transaction 71
(cf. Fig. 5a). When access conflict arises, anew
database configuration is automatically derived
(cf. Fig. 5b): execution of T is continued in

the parent configuration, while execution of T3
is continued in the child configuration. When
T is commited, T, is initialized in the same
configuration. Transaction T’s requires artifacts
from both subgraphs, which means that, after
the commitment of 75 and T4, one must merge
the two database configurations into a single
one.

Two database configurations may be merged
step by step by an object version comparison.
This process, however, may be very tedious
and usually requires many interactions with the
user. Instead of this, a redo transaction may
be performed. It consists of the automatic re-
execution of operations performed in the child
configuration once again in the parent database
configuration. To support this mechanism, in-
formation about every transaction committed in
the child configuration must be kept in a spe-
cial file, usually called the log-file. During a
redo operation, the contents of the log-file is
interpreted and executed transaction by trans-
action in the parent configuration. After com-
pleting the last operation of the last transac-
tion from the log-file, the redo process is fin-
ished and database configurations may be con-
sidered as merged. The redo operation is imple-
mented as a single, multi-level transaction. Sub-
transactions nested in it correspond to transac-
tions committed in the child configuration.

4. Experimental Evaluation

The concepts presented in Section 3, in particu-
lar: multi-user transactions, negotiation and no-
tification mechanisms, conflict versioning, have
already been experimentally evaluated in Agora
prototype. Agora® is an asynchronous collab-
orative Web-based software prototype which is
built on the top of commercial relational DBMS.
Agorais composed of two main parts. The first
one is a conferencing tool allowing negotiations
between cooperating partners. The second is
a collaborative document writing tool allowing
edition of electronic documents. The database,
being a kernel of the system, is used to store both
negotiation history and collaboratively written
documents. Agora is independent of hardware,
operating systems, browsers and database man-
agement systems, accessible to any Internet user
under condition of proper registration.

1 Agora is available at the following URL: http:/ /aquila.kti.ae.poznan.pl: 1664/ Agora

34 Database and Transaction Model for Dynamic and Cooperative Workflows

T

T, o2
Tfl
eF ey —

\J/ MERGE

Fig. 5. Conflict Derivation

A single conference in Agora corresponds to a
single multi-user transaction, thus participants
of the same conference constitute a single team
working on the same document. Agora provides
conference participants (negotiators) with an
arbitrary number of conferences and arbitrary
number of collaboratively written versionable
documents, with the restriction that only one
document can be associated with a single con-
ference. All conference participants discuss and
present their positions by exchanging electronic
messages. Each participant of a conference sees
all the messages exchanged. Every user can
be involved in several negotiations simultane-
ously, i.e. he can virtually attend different con-
ferences. Negotiations in different conferences
may concern different topics, different aspects
of the same topic, or the same topic discussed
by different partners. Notice, that in terms used
in Section 2, a single conference corresponds
to single activity (currently document writing)
which is performed collaboratively by a team of
users, being conference participants.

The part of Agora devoted to support collabora-
tive writing is required to prepare the final doc-
ument which is the result of negotiations. This
common document is seen by and accessible
to all conference participants. When a confer-
ence participant writes or modifies a paragraph
of the document and confirms the changes, it
becomes instantaneously visible to other partic-
ipants. Next, any participant can modify this
paragraph. Agora window used for the purpose
of collaborative document writing is illustrated
in Fig. 6.

Agora has been implemented in Java language
and connected to the Oracle database manage-
ment system through Java Database Connec-
tivity interface (JDBC) to provide persistency
of both documents and negotiation history. The

use of Java and IDBC provides Agora with plat-
form independence, concerning hardware, op-
erating systems and database management sys-
tem.

The structure of Agora client and server is pre-
sented in Fig. 7. The main part of a client is
Agora Client Applet, which operates on Java
Virtual Machine (JVM). It is accessed through
Internet by the use of a standard WWW browser.
The main part of the server is Agora Server Ker-
nel that also operates on Java Virtual Machine.
It is directly accessible through Internet. It uses
Java-Database Connectivity (JDBC) interface
to access Oracle DBMS.

Concurrency control mechanisms provided by
Oracle DBMS are overridden in Agora Server,
what is necessary to validate the concept of
multi-user transactions and new concurrency
control mechanisms proposed in this paper.

Every document version is stored in one database
table, thus if a document is available in n ver-
sions, then n tables have to be created. The first
version of a document is entirely represented in
a respective table, while in case of derived doc-
ument versions only differences in comparison
to the parent document version are represented,
i.e. paragraphs explicitly modified in the child
document version. This aims to avoid redun-
dancy which can be really painful in case of
documents having many slightly different ver-
sions.

Every paragraph of a document version is stored
in a single raw of a corresponding table, which is
composed of a paragraph content and its layout
attributes. Paragraph content is modeled by a
single attribute of long raw type. It means that a
paragraph can contain not only pure text but also
multimedia data (pictures, sounds, etc.). Lay-
out attributes contain typical information about

Database and Transaction Model for Dynamic and Cooperative Workflows 85

F=iDocument version 1_1.

= @YourDo:umen:
=¥ Remote Method Tov...

@

; wi% However, because

= 'DBBS:{: concepts.

(K
\/P.MJ allows to m,

compiater.

+ BH"‘" to make senz

[Escumenversonr . ——— ———_____________HGIE]
I e R e oo el

RMI allows to manipulate a remote object throw its methods. Tt i
raeans that you access to the remote object only throw its methods
/% In this way, you can pass of refrieve objects. Javal.l uses at this aim
*-‘/.Tava 1.1 proposes... the concept of <i>Serialization=fi> Indeed, if you want an Object to
"fy” throw the Net, you need to have a representabion of this Object

as a sequence of Bytes. This capacity of an Object is called

Seo with senialization, you can exchar
5 E}T‘\C BMIregistry. throw Internet. The second concept
+ [ZFStubs and Skeleto registry<ib></i>. This registry allow: [version 11
exchange of objects.
The BMI registry.
This registry allows to allocate some place on a machine with a
o1 specified port, so that local and remote objects can exchange

& /{;Momover, Microso <i>Seralization</i> .nnmsnmsznmm HEE

exchange senalizable objects

How to make serializable Objects 7
HNothing more easy. You just need b
inplernents the interface Seralizable
“\;ln this way, you. empty ([know that this is strange) at DEMONSTRATIONDOCH

5 ’?‘:\ Please, thoose the version

that you want fo edit

DEMONSTRATIONDOCT 1

DEMONSTRATIONDOCT_2 |

ok | cancel

[[TevE AppletWindow

R allows to manipulate a remote object throw its methods. It
means that you access to the remote object only throw its methods.

g} [Java AppletWindow

Fig. 6. Collaborative document writing

the way a paragraph is visualized to the users,
e.g. color, font, size, indent.

To summarize, let us briefly compare Agora
with other CSCW systems, putting a particu-
lar emphasis on what distinguishes Agora from
them. Almost every CSCW system (Crowley et
al. 1990, Ellis et al. 1991, Ensor et al., Garfinkel
et al., Hill et al., Stefik et al.), including Agora,
provides flexible message exchange between
users who are grouped in a way reflecting the
cooperation structure. Typically, the notion of a
conference or a discussion group is used, which
additionally supports the cooperating users, of-
fering them a variety of asynchronous and syn-
chronous tele-conferencing tools and mecha-
nisms. Similarly to the Agora system, these
tools and mechanisms, provide the users with
mutual awareness, notification and negotiation
support. Taken together, they make an illusion

for the users of working in the same virtual
room. Moreover, most of CSCW systems of-
fer shared white boards and shared documents.
Shared white boards facilitate the discussion be-
tween users, giving them a possibility of visu-
alization or illustration of some concepts and
ideas. Shared documents support the collabora-
tive edition of written materials which are final
outputs of conferences.

Most of the available CSCW systems are
platform-dependent. They are bound to par-
ticular software environments and network ar-
chitectures. On the contrary, Agora is a quite
open system and platform-independent system,
since it is written in Java language. Thus, it may
be accessed by anyone who is connected to the
Internet and runs web browser or Java applet
viewer.

Many CSCW systems (e.g. Lotus Notes) pro-

Client Server

Internet Internet

Browser Agora Server
Agora Client Applet s JDBC (W%
VM VM DBMS

Fig. 7. Agora client and server structure

86 Database and Transaction Model for Dynamic and Cooperative Workflows

vide typical database functions, like object per-
sistency, access authorization, concurrency con-
trol. These functions are, however, imple-
mented from scratch. Agora, contrarily to those
systems, uses commercial RDBMS. It makes
Agora very efficient and reliable, since the data-
base technology is very mature and has been
verified over almost thirty years. Itis worth em-
phasizing that Agora is also independent from
the RDBMS being used, because it communi-
cates with the database through the universal
JDBC interface.

Finally, there are some features of the Agora
system which definitely distinguish it from other
CSCW systems. First, in the Agora an origi-
nal approach to document versioning has been
implemented (Wieczerzycki 1996, Wieczerzy-
cki 1998), in which new versions of documents
are automatically derived by the system when-
ever there is a problem of data access. Second,
since the transaction model of a commercial
RDBMS is too restrictive for the requirements
of cooperation, the Agora overrides the transac-
tion model of RDBMS and implements a new
one. This new transaction model, as presented
in the paper, is addressed to groups of strictly
collaborating users.

5. Conclusions

The main goal of this paper was to propose
a flexible, persistent environment for work-
flow system applications which enables effi-
cient business process modeling and execution.
On one hand, a special emphasis has been put
on the dynamic evolution of process description
over a given time, and on the support for coop-
erative activities performed by teams of users,
on the other.

The basicidea of the proposed approach is to ex-
tensively use object versions which are always
considered in particular contexts, called config-
urations. The configuration is both a granule of
database versioning and a unit of database con-
sistency. When a business process is modeled,
configurations substantially simplify the repre-
sentation of its historic versions, which may be
useful in the near future, and current alterna-
tive versions (variants), which must be kept in
the database simultaneously. When a business
process is executed, configurations support the

avoidance and the resolution of conflicts aris-
ing between concurrently executed transactions
assigned to process activities.

Another important idea of the proposed ap-
proach is to use multi-user transactions and as-
sociate them with activities embedded in the
processes. We feel that the proposed transac-
tion model has many advantages. First of all, it
is very straightforward and not complex, thus
the management of transactions of this type
does not cause substantial problems. Second,
the proposed transaction model allows practi-
cally unrestricted collaboration among people
performing the same activity. As a conse-
quence, it fulfills their requirements and sim-
plifies their work. Third, since the users as-
signed to the same activity preserve their iden-
tity, the database management system can effi-
ciently support users’ awareness and notifica-
tion, which are two very important functions
of every collaborative system. Finally, the pro-
posed model is very close to the classical ACID
transaction model. As we have mentioned be-
fore, it makes the model more reliable and easy
to implement, since classical ACID transactions
dominate at the commercial database market.

It should be emphasized that both the transac-
tion model and transaction management mech-
anisms have been elaborated parallelly with the
development of the prototype collaborative sys-
tem, called Agora. Thus, the proposed approach
is not purely theoretical, but instead, it reflects
the problems and solutions which occurred dur-
ing the implementation of Agora.

References

AIELLO L., NORDI D., PANTI M., Modeling the Office
Structure: A First Step Towards the Office Expert
System, Proc. of 2nd ACM SIGOA Conf., 1984,

BENFORD S., Requirements of Activity Management, in
Studies in CSCW: Theory, Practice and Design,
North—-Holland, 1991.

BRIERLEY E., Workflow Today and Tomorrow, Proc. of
Conf. on Document Management, 1993,

BUCHMANN A., OzsUM.T., HORNICK M., GEORGAKOPOU-
LOS D., A Transaction Model for Active Distributed
Object Systems, in: Elmagarmid A. (ed.), Ad-
vanced Transaction Models, Morgan Kaufmann,
1992

BULLINGER J.H., MAYER R., Document Management in
Office and Production, Nachrichten fur Dokumen-
tation, Vol. 44, 1993.

Database and Transaction Model for Dynamic and Cooperative Workflows 87

BUSSLER C., JABLONSKI S., Implementing Agent Coor-
dination for Workflow Management Systems Using
Active Database Systems, Proc. 4th Int. Workshop
on Research Issues in Data Engineering: Active
Database Systems, 1994,

CHRYSANTHIS PK., RAMAMTITHAM K., Acta: A frame-
work for specifying and reasoning about trans-
action structure and behavior, Proc. of ACM-
SIGMOD Int. Conference on Management of
Data, 1990.

CroWLEY T., MILAZZOP., BAKER E., FORSDICK H., AND
TOMLINSON R., MMConf: An Infrastructure for
Building Shared Multimedia Applications, Proc.
of ACM Conference on Computer Supported Co-
operative Work, October 1990, pp. 329-342.

ELLIs C.A., GiBBS S.J., AND REIN G.L., Groupware:
Some Issues and Experiences, CACM 34:1 (Jan-
uary 1991), pp. 38-38.

BLMAGARMID A. (ed.), Database Transaction Models,
Morgan Kaufmann, 1992.

ELAMAGARMID A., LEU Y., LITWIN W., RUSINKIEWICZ
M., A Multidatabase Transaction Model for Inter-
base, Proc. of VLDB Conf., Brisbane, 1990.

ELIASSEN F., VEUALAINEN J., TIRRI H., Aspects of trans-
action modeling for interoperable information sys-
tems, in: Interim Report of the COST 11ter Project,
1988.

EnsoR J.R., AHUIA S.R., HORN D.N., AND Lucco S.E,,
The Rapport Multimedia Conferencing System: A
Software Overview, Proceedings of the 2nd IEEE
Conference on Computer Workstations, March
1988, pp. 52-58.

GARCIA-MOLINA H, SALEM K., Sagas, Proc.
ACM Conf. on Management of Data, 1987.

of the

GARFINKEL D., WELTI B., AND YIP T., HP Shared X:
A Tool for Real-Time Collaboration, Hewlett-
Packard Journal, April 1994, pp. 23-24.

GEORGAKOPOULOS D., Transactional Workflow Man-
agement in Distributed Object Computing Envi-
ronments, Proc. 10th int. Conf. on Data
Engineering, 1994.

GRAY ., Notes on Database Operating Systems, Oper-
ating Systems: An Advanced Course, Springer—
Verlag, 1978.

HALES K., Workflow Management. An overview and
some applications, Information Management and
Technology, Vol. 26, 1993.

HAWRYSZKIEWICZ 1., T., A Generalized Semantic Model
for CSCW Systems, Proc. of 5th Int. Conf. on
Database and Expert Systems, Greece, 1994.

HENDLEY T., Workflow Management Software, Informa-
tion Management and Technology, Vol. 25, 1992.

HENNESSY P., BENFORD S., BOWERS J., Modeling Group
Communication Structures: An Analysis of Four
European Projects, In SICON 89: Proc. of the
Singapore Conf. on Networks, IEEE Press, 1989.

HiLL R., BRINCK T., ROHALL S., PATTERSON J., AND
WILNER W., The Rendezvous Architecture and
Language for Constructing Multiuser Applica-
tions, ACM Transactions on Computer Human
Interaction 1:2 (June 1994).

Hunns M., N., SINGH M.,P., Automating Workflows for
Service Provisioning: Integrating Al and Database
Technologies, Proc. of 10th Conf. on Artificial
Intelligence for Applications, 1994.

JonEs J.1., MORRISON K.R., Work Flow and Electronic
Document Management, Computers and Industrial
Engineering, Vol. 25, 1993.

KLING R., Cooperation, Coordination, and Control in
Computer Supported Cooperative Work., Comm.
ACM, Vol 34, No 12, Dec. 1991.

LAVERY M., A Survey of Workflow Management Soft-
ware, Proc. Conf. on OIS Document Management,
1992,

MCCLATCHEY R., BAKER N., HArrIS W., LE GOFF J-
M., Kovacs Z., ESTRELLA F.,, BAZAN A, LE FLOUR
T., Version Management in a Distributed Work-
flow Application, Proc. of 8th Int. Workshop
on Database nad Expert System Applications —
DEXA’97, France, 1997.

MEDINA-MORA R., WINOGRAD T., FLORES R., FLORES
F., The Action Workflow Approach to Workflow

Management Technology, Information Society,
Vol. 9, 1993.

Moss J. E., NESTED TRANSACTIONS: AN APPROACH TO
RELIABLE DISTRIBUTED COMPUTING, The MIT
Press, 1985.

NODINE M., ZDONIK S., Cooperative transaction hier-
archies: A transaction model to support design
applications, Proc. fo VLDB Conf., 1984.

REUTER A., Contract: A means for extending control
beyond transaction boundaries, Proc. of 2nd
Workshop on High Performance Transaction Sys-
tems, 1989.

RUSINKIEWICZ M., SHETH A., Polytransactions for man-
aging interdependent data, IEEE Data Engineering
Bulletin, 14(1), 1991.

SCHUSTER H., JABLONSKI S., KIRSCHE T., BUSSLER C.,
A Client/Server Architecture for Distributed Work-
flow Management Systems, Proc. of 3-rd Int.
Conf. on Parallel and Distributed Information
Systems, 1994,

SHETH A., Transactional Workflows: Research, En-
abling Technologies and Applications, Proc. 10th
Int. Conf.. on Data Engineering, 1994.

SMITH H., HENNESSY P., LUNT G., The Activity Model
Environment: An Object-Oriented Framework for

Describing Organizational Communication, Proc.
ECSCW Conf., 1989.

STEFIK M., FOSTER G., BoBROW D.G., KAHN K., LAN-
NING S., AND SUCHMAN L., Beyond the Chalk-
board: Computer Support for Collaboration and
Problem Solving in Meetings, CACM 30:1 (Jan-
uary 1987), pp. 32-47.

88 Database and Transaction Model for Dynamic and Cooperative Workflows

VOSSEN G., WESKE M., WITTKOWSKI G., Dynamic Work-
flow Management on the Web, Fachbericht Ange-
wandte Mathematic und Informatic 24 /96-1, Uni-
versitat Muenster, 1996.

WIECZERZYCKI W., Advanced Transaction Management
Mechanisms for Document Databases, Int. Work-
shop on Issues and Applications of Database Tech-
nology — IADT*98, Berlin, Germany.

WIECZERZYCKI W., Versioning Technique for Collabo-
rative Writing Tools, Proc. of 7th International
Conference and Workshop on Database and Expert
Systems Applications DEXA’96, IEEE Computer
Society Press, Zurich, Switzerland, September
1996, pp. 463-468.

Received: July, 1996
Accepted: March, 1998

Contact address:

Waldemar Wieczerzycki

Department of Information Technology
University of Economics at Poznar
Mansfelda 4, 60-854 Poznan

Poland

Phone: (48) 61 848.05.49

Fax: (48) 61 848.38.40

E-mail: wiecz@kti.ae.poznan.pl

WALDEMAR WIECZERZYCKI received the M.Sc. degree in Computer Sci-
ence from the Technical University of Poznan in 1983, and the Ph.D.
degree in Computer Science from the Technical University of Gdansk
in 1992. From 1984 to 1992 he was with the Institute of Computing
Science at the Technical University of Poznan. From 1992 to 1996 he
was an Associate Professor at the Franco-Polish School of New Infor-
mation and Communication Technologies in Poznan. Since 1996 he has
been with the Department of Information Technology at the University
of Economics at Poznan.

He participated in several industrial projects concerning real-time op-
erating systems, database applications, business process reengineering
and Intranet applications. His research interests include object-oriented
and deductive databases, in particular concurrency control, complex
management objects, and version support and management. Recently
he has been also interested in CSCW applications, in particular work-
flow modeling, collaborative writing and collaborative software design.

He is the author of 4 books and 45 papers in international journals and
conference proceedings.

