Journal of Computing and Information Technology - CIT 6, 1998, 1, 13-26 13

Searching for Examples with
a Programming Techniques Editor

Paul Brna

Computer Based Learning Unit, Leeds University, Leeds, England

Searching through a library of examples for a similar
task or similar solution is one way in which novice
programmers learn to program. Providing help for
novices to become more proficient programmers entails
helping them both to see the significance of the ‘deep’
features of the current task and to take advantage of them
both in searching a library of examples, and in selecting
and using an appropriate case.

In this paper the focus is primarily on the problem of
accessing a suitable case. For detailed consideration,
a programming environment is utilised that features an
‘intermediate description language’. This environmentis
SunTed, a Prolog Techniques Editor — which provides
novice support of various types, including facilities to
retrieve cases.

The basic issues addressed are: whether or not an
intermediate description language for cases is a suitable
means of supporting novices in their learning to pro-
gram; the nature of the fundamental constituents of an
intermediate description language; what can be learned
from a system that implements a specific example of
such an approach; and the consequences for the design
of systems that support learning.

Keywords: case based search and retrieval, intermedi-
ate description languages, Prolog techniques, program
editors

1. Introduction

Searching through a library of examples for a
similar task or similar solution is one way in
which novice programmers learn to program.
However, it is now well accepted that novices
are inclined to index more readily on surface
features of the task or solution than on ‘deeper’
features. For example, if a student is to flat-
ten a list, then he/she might use the program
for ordering a list of integers as the basis of a
solution. Using the term “list” as an index is rel-
atively superficial compared with using “tree”

as the index since flattening a list entails manag-
ing a recursive data structure. However, little or
no research has been undertaken to help novices
search effectively for good examples.

The main problem for those interested in help-
ing the novice to become a more proficient
programmer is how to support and encourage
the novice both to see the significance of these
deeper features and to take advantage of them
in searching a library of examples, and then in
selecting and using an appropriate case.

The approach taken here to the problem of help-
ing the novice is through an analysis of the dif-
ferent learning opportunities that can be pro-
vided. In the case under consideration, the
following significant learning opportunities are
identified:

1. Learning to look through a library of cases
and retrieve an appropriate case (using
‘shallow’ or ‘deep’ criteria)

2. Learning to index tasks and solutions (us-
ing ‘shallow’ or ‘deep’ criteria)

3. Learning to apply a retrieved case (effec-
tively or not)

4. Learning to discriminate between best and
less good cases

These opportunities are the ones which paral-
lel the basic stages involved in the life cycle of
working with cases, namely: generating, stor-
ing, retrieving, and selecting. Each of these
opportunities has been the focus of research
which can inform the provision of automated
support for novices — e.g. [Schult & Reimann,
1995, Reimann ez al, 1993, Weber, 1995, Ross,
1987].

14 Searching for Examples with a Programming Techniques Editor

In this paper, the design issues involved in sup-
porting novices are explored with respect to
only one of the above learning opportunities:
accessing a suitable case (item 1).

For the access problem, three kinds of cases
are distinguished: cases actually generated by
the novice (the use of such cases is sometimes
referred to as ‘remindings’), examples worked
through on paper by the novice, and cases that
have not been studied in any detail (but might
have been seen) by the novice. These latter are
the ones that might be encountered in an ex-
planatory text. The stress here is on the cases
that have not been studied by the novice.

For detailed consideration, a programming en-
vironment that features an “abstract descrip-
tion language”is examined. This environment
is SunTed, a Prolog Techniques Editor — de-
signed to support novices by providing facilities
to retrieve cases. This is used to illustrate the
possibilities.

The basic questions are:

e What is the role of an ‘intermediate de-
scription language’?

e What are the fundamental constituents of
an intermediate description language?

e Is an intermediate description language
for cases a suitable means of supporting
novices in their learning to program?

e What can be learned from a system that
implements a specific example of such an
approach (SunTed, one of the Ted family
of Prolog Programming Techniques edi-
tors)?

e What are the consequences for the design
of learning systems?

It is claimed here that current approaches are
typically insufficient to provide the kind of sup-
port suggested by current cognitive theories of
problem solving, and by current thinking on
how to support learning. There is a need to
provide desirable learning opportunities. Some
indications about the kinds of facilities that are
needed to support novice programmers in the
development of their programming expertise are
briefly provided. This approach is compared
with that taken by Linn and her colleagues in
the “Perspective Library” [Linn et al, 1992].

2. AnlIntermediate Representation for ‘Deep’
Program Structure

The problem of what constitutes a suitable de-
scription language is now addressed, illustrating
this with reference to SunTed. Our aim in se-
lecting any specific description language is that
it should act as an intermediate representation
for novices in their attempt to index cases in a
deeper way. In this way novices can be helped
in their transition to becoming intermediate or
expert programmers. A priori, the description
language: should not involve a big detour in
learning; must be fairly easy to learn; and must
be possible to build upon in future development.
(Linn et al, for example, have provided anecdo-
tal evidence for novices extending the sophisti-
cation of a similar simple intermediate descrip-
tion language [Linn er al, 1992].)

The indices used to retrieve cases ideally should
be easy to develop. A sequence of three classes
of concept that can be incorporated in an index
scheme is provided for in SunTed. An outline
of a natural sequence of intermediate descrip-
tion languages is now given, starting with the
simplest scheme (and the simplest one to im-
plement):

1. Various constraints on the inputs and out-
puts of predicates. These constraints are
very familiar to intermediate Prolog pro-
grammers. They are constraints that make
no direct reference to the code structure.

2. Constraints on the structure of the code:
this incorporates the notion of Prolog Pro-
gramming Techniques [Brna et al, 1991], a
relative of Programming Plans [Soloway,
1986]. Detailed information can be de-
rived from our study of Prolog Program-
ming Techniques [Brna eral, 1991, Bowles
& Brna, 1993]. For the purposes of this
paper, it is sufficient to know that Prolog
Programming techniques can be seen as
ways of constructing (Prolog) programs
in a language dependent manner. The no-
tion generalises to other languages, hence
this work is not specific to Prolog.

3. Constraints on the relationship of the code
to the task being undertaken.

Searching for Examples with a Programming Techniques Editor 15

To take item 1 first, novice Prolog programmer’s
likely familiarity with a fairly primitive notion
of dataflow is utilised. The assumption is that
they can quickly learn to specify a predicate’s
arguments in terms of whether they are input or
output (or otherwise), and a few basic datatypes
(e.g. atoms, integers, lists of atoms etc.). If
programmers can quickly learn to use such a
description language then there is some hope
that the overheads involved in learning to use
the language will be worthwhile. SunTed (see
below) utilises a scheme for describing such
constraints.

Alternative ways of describing constraints can
be used. A scheme that describes various re-
lationships that must hold between two predi-
cate arguments is outlined below. These con-
straints capture a fairly language independent
notion of the dependencies that must exist be-
tween arguments — e.g. that each element of
an input list must be a member of the output
list for a program that computes the union of
two lists. This style of description is algorith-
mic in nature. The techniques editor described
below provides this kind of constraint as part of
its intermediate description language. (Prolog
Programming Techniques are represented and
accessible through a form of ‘cut and paste’.)

The issue of constraints on the structure of code
can be described in various ways. Prolog Pro-
gramming Techniques provide an effective con-
straint on the code — in terms of dataflow
or in terms of control flow. Such techniques
are language dependent and task independent

Old
Task Description

[Brna et al, 1991], but an intermediate descrip-
tion language based on techniques is problem-
atic, partly because, like Programming Plans
[Soloway, 1986] and Design Patterns [Gamma
et al, 1994], many of them are likely to be unfa-
miliar to novice programmers. So the version of
a Techniques Editor described here does not use
techniques as part of the intermediate descrip-
tion language for the search for useful examples.

An ideal model of how to set up the indices for
case-based retrieval would be expected to in-
clude indices both for the task structure (item 3)
and the solution structure (item 2). This is
because learning to program involves —at the
least— learning to write/transform code at the
program language level and map the task level
to the program language level. This process of
linking entities in the task level to the program
level was described by Pennington as building
a situation model [Pennington, 1987].

Indices for solution structure can be constructed
with the help of work on Prolog Programming
Techniques, programming plans or other ways
of abstracting the constraints on the code. How-
ever, defining indices for task structure is harder
— Weber, for example, has developed an inter-
esting, though labour intensive approach, effec-
tively based on constructing a task decompo-
sition for each program in the library [Weber,
1995].

The retrieval would then be constrained partly
by the known structure of the task and partly
by the anticipated constraints on the task solu-
tion (program code). This model of retrieval

Current
Task Description

Old

Programming

Solution

Fig. 1. Representing Case-Based Retrieval based on Task and Solution

Abstract
Description of
Task/Solution

Current
Programming
Solution

16

Searching for Examples with a Programming Techniques Editor

Old

Task Description

Current

Task Description

Abstract

Solution

Description of

Old
Programming
Solution

Current
Programming
Solution,

Fig. 2. Representing Case-Based Retrieval based on only the Solution

is represented crudely by figure 1 in which the
dotted lines indicate some transfer of informa-
tion while the solid lines indicate the path by
which cases are retrieved.

A simpler model, the one used by the designers
of SunTed, the Prolog Techniques Editor which
is explored below, is based only on indices as-
sociated with the constraints on the anticipated
solution — see figure 2. The consequence is
that there is likely to be a greater cognitive load
on the novice in terms of the work required
to match the retrieved solution to generate a
solution to the current problem. Such a situa-
tion will not directly encourage the student to
see the current problem’s deep structure — an
aspect considered to be important in novice—
expert transition [Chi et al, 1981].

A description is now given of a specific in-
stance of an intermediate description language
which was developed for use with an enhanced
structure editor called SunTed [Bowles & Brna,
1993].

3. SunTed: A Case-Based Prolog
Techniques Editor

SunTed is a Prolog Techniques Editor devel-
oped as part of a UK Joint Research Council
grant entitled the “Construction and Evalua-
tion of a Prolog Techniques Editor for Novices”
and which originally involved researchers at the
University of Edinburgh (Bowles, Brna, Pain
and Robertson), the Open University (Kahney

and Brayshaw) and Loughborough University
(Ball, Ormerod and White). The original tech-
niques editor, which we refer to here as MacTed,
was developed for Macintosh computers.

Both SunTed and MacTed are based in part on
the notion that novices should receive some as-
sistance with the syntax of the language. Per-
haps more importantly, SunTed and MacTed
both provided support for users to exploit a
class of Prolog Programming Techniques [Brna
et al, 1991] connected with data flow [Bowles
& Brna, 1993]. Although programming tech-
niques are in some ways relatives of program-
ming plans, it is argued in [Bowles & Brna,
1993 that programming plans possessed some
undesirable features when compared with pro-
gramming techniques.

As part of our work to explore the ways in which
novices can be supported, the evaluation of the
basic issues associated with the use of Prolog
Programming Techniques has been undertaken.
Brna analysed the problems likely to arise from
trying to teach a techniques oriented approach
in [Brna, 1993]. A techniques editor, MacTed,
was developed which incorporated a subset of
seven dataflow techniques that apply to single
program clauses [Bowles & Brna, 1993]. This
“structure editor” permitted a reasonable range
of Prolog programs to be constructed. Empir-
ical work was undertaken by Ormerod to ex-
amine the basis for the claim that techniques
assisted novices in the implementation of pro-
grams [Ormerod & Ball, 1996]. The results
of this study indicated that there appeared to

Searching for Examples with a Programming Techniques Editor 17

Palr: 1/2 larg 2 contalns a sukset of the elements In arg 1 in the same urdeﬂ

% File: 2?7

Fig. 3. SunTed’s Editor with Browser Visible

be some advantages to the use of MacTed in
conjunction with teaching Prolog. More specif-
ically, evidence strongly supported the notion
that teaching Prolog programming techniques
with the help of MacTed promoted more effec-
tive coding of solutions to fairly straightforward
examples.

SunTed was developed from MacTed using
Tcl/Tk and SICStus Prolog v2.1.9, and re-
designed for use with Unix-based workstations.
The resulting editor has some unusual features
which are the subject of this paper: an “in-
termediate description language” that could be
used to retrieve cases from a case library, and
a mechanism for appropriating relevant parts of
the retrieved case. See figure 3 for SunTed’s
basic screen with the browser visible.

SunTed’s basic screen has hotspots which per-
mit the insertion of clauses, subgoals and argu-
ments. In MacTed, the seven basic techniques
are called up from a menu when entering details
about the arguments — details of which are out-
side the scope of this paper. (SunTed has knowl-
edge about the same set of techniques.) SunTed
provides a significantly less restrictive interface,
overcoming many of the problems encountered
with MacTed and reported in [Ormerod & Ball,
1996]. However, the main innovation of the new
version was the incorporation of the case-based
retrieval mechanism.

Case-based retrieval is obtained by asking for
the browser to be shown. Once activated, users
are required to specify the arity (number of ar-
guments) of a predicate. They are also required
to provide the modes and types of each argu-
ment. For simplicity, the modes are described

in terms of dataflow. The user can specify a
mode as ‘input’ or ‘output’ (or both). The types
allowed are restricted to integer, atom and list.
All modes and types are selectable from a pull
down menu. (Note that this is not quite the
normal way in which the term ‘mode’ would be
described in the Prolog community.)

Information can also be entered regarding the
relationships that hold between the various ar-
guments. These are also selectable via a pull-
down menu. The permitted selections are re-
stricted in a conservative manner to ‘sensible’
ones. For example, in the case of a predicate
of arity 2 with one argument an input list and
the other an output atom then the only permitted
relationships concern whether or not the output
argument is an element of the input list. The
full range of relationships can be found in fig-
ure 5. An example of how the information may
be entered is shown in figure 3.

Once the browser is requested to search for
matches, the system uses case-based retrieval to
find relevant programs. These might or might
not be associated with a description of a task for
which the program is a solution. Note that the
search is over program descriptions and not over
task descriptions. See figure 4 for an example of
three retrieved cases with one (delete_one_1.pl)
showing.

So far, nothing has been mentioned about how
the case-based retrieval facilities interact with
the techniques. In MacTed the techniques are
explicitly invoked from mousing on a hot spot
and using a pull down menu. This is not the
case in SunTed, the version of Ted examined in

18 Searching for Examples with a Programming Techniques Editor

T Match - delete one

] Arg: 3 buiput st

jDismisal &

Pair: 1/2 arg Z might be an element of arg 1

Pair: 1/3 arg 3 contains a subset of the elements in arg 1 in the same order| !

44l Pair: 2/3 no refation|

File: delete one_1.pl

delete_one
delete_one([H|T], H
delete one([H|T],
H \== X,
delete_ore(T,
delete_one([],

s T,
, [H|Rest]) :-

X, Rest).
. [1).

File: delete_one_2.pl

File: delete_one_3.pl

Fig. 4. Retrieval of a Relevant Case

this paper. There is no explicit mention of tech-
niques in the interface. Rather, the notion of
techniques can be exploited through the mech-
anism that the system provides for copying im-
portant features of the retrieved case.

The system provides a novel cut and paste
mechanism. When certain parts of an exam-
ple are double clicked the technique’s structure
is copied (this is not necessarily a ‘continuous’
piece of code). A double-click on any of the
arguments of the retrieved case will copy a frag-
ment of the case associated with one of the seven
basic techniques. This ‘copied’ code can then
be inserted as an argument into the program be-
ing constructed. In providing for copying frag-
ments of the retrieved case into the program con-
struction window SunTed does some limited au-
tomatic manipulations: the retrieved predicate
name, for example, will be transformed to the
name of the current predicate being constructed.

Techniques, thercfore, only enter the picture
when the programmer seeks to reuse compo-
nents of the case retrieved — and, even then,
they are not referenced by their names. In this
way, the novice programmer may be able to gain
some knowledge about the kinds of useful struc-
ture of which SunTed is aware without having
to learn a great deal of terminology.

4. A Preliminary Study

In theory, the intermediate description language -
described might well help novice Prolog pro-
grammers — especially when embedded in the
support environment provided by SunTed, but
it was unclear as to whether or not the interme-
diate description language was usable.

The aim of the study was, therefore, to examine
whether or not students with minimal Prolog
experience (but a fair amount of programming
experience) would be able to use the interme-
diate description language with any degree of
precision.

4.1. Subjects

The subjects were 50 second year undergradu-
ates taking a course on Al Programming at the
Computing Department, Lancaster University
during January and February of 1995. All sub-
jects had received four lectures on Prolog but
had no actual programming experience in Pro-
log, and no previous experience with SunTed.
Their main programming language was ADA.
None of them had seen the intermediate descrip-
tion language prior to the experiment.

Searching for Examples with a Programming Techniques Editor 19

4.2. Procedure

The subjects were given a document detailing
the intermediate description language.
were asked to read the text, and then to fill in
the desired information for ten questions (see
appendix A). The time allowed was 40 min-
utes. At the end of this time, the anonymous
responses were collected.

4.3. Method

The subjects were given the problem description

“Write a Prolog program append to
append two lists together”.

as an example. They were informed that de-
scriptions consisted of two parts. The first part
consisted of a mode and type description for
each of the arguments involved in a toplevel
call.

In the example, append will need
three arguments.

The subjects were informed that a type is one
of the tokens ‘atom’, ‘number’ or ‘list’, and a
mode is either ‘input’ or ‘output’. Thus each ar-
gument needed to be given one of the following
descriptions:

input number
output number

input atom
output atom

input list
output list

They were informed that atoms were treated as
including the set of numbers.

In the example, argument 1 is an
‘input list’, argument 2 is an ‘input
list’ and argument 3 is an ‘output
list’.

The subjects were informed that the second part
consisted of a set of descriptions of relation-
ships between pairs of argument in the toplevel
call.

They were also told that relationships were
statements of the form:

< argn >< relationship >< argm >

They -

i.e., statements describing relationships be-
tween pairs of arguments. They were informed
that it was not necessary to describe the relation-
ship between every pair of arguments, nor was
it necessary for all arguments to appear in the
set of relationships; that is, the role of some ar-
guments could be left undefined. The full range
of descriptions as given to the subjects is found
in figure 5.

The subjects were given the example for the
append/3 predicate.

In the example, append might be
described by:

argument 3 contains all the ele-
ments in argument 1 in the same
order

argument 3 contains all the ele-
ments in argument 2 in the same
order.

5. Results

For the 50 students who took part in attempt-
ing 10 questions, each within a fixed period of
time, it was found that there were 430 items
of possible 500 which featured full mode and
type information for the procedure arguments.
Of these 500 items, 411 featured an attempt to
detail the expected relationships between argu-
ments. Thus 82% of the items featured infor-
mation about relations.

The implication is that students in this class
found the description language connected with
modes and types to be straightforward, and that
most of them were able to define some plausible
set of relationships that were expected to hold
between the arguments for the final solution.

One approach to assessing the descriptions pro-
vided by the students was to submit these de-
scriptions to SunTed itself. In its current form,
SunTed has an initial database of 32 different
tasks and 47 different programs (i.e. some tasks
had more than one solution). Each of the tasks
in the experiment had a program solution in the
case library provided. A superficial measure of
success was whether or not the student would

20 Searching for Examples with a Programming Techniques Editor

The Descriptions to Use

..i1s an index into . ..

.. might be an element of . . .
..isanelement of . ..
..1snot an element of . . .

... 1s compared with . ..

..isasublistof ...

.. .1s calculated from all the elements in . .
... 1s calculated from a subset of the elements in . . .
(The term ‘calculations’ implies the computation of a number)

elements of . . . are compared with elements of . . .
elements of . . . are compared with corresponding elements of . ..

.. .1is a mapping of all the elements in . . .

...1s a mapping of a subset of the elements in . . .

(The term ‘mapping’ indicates that each element of one argument is associated
with a unique element of the other argument)

..contains all the elements in . . . in the same order

.. contains a subset of the elements in . . . in the same order
..contains all the elements in . . . in a different order
..contains a subset of the elements in . . . in a different order

The .. . indicates a slot that may or may not be filled. If it is filled; then it is
intended that it should be with a reference to an argument e.g. Argument 1

Fig. 5. The descriptions permitted for relationships between arguments

have retrieved the correct solution (along with
some others).

The ratio of finding to not finding the correct
solution was examined — but only for legal
entries (i.e. syntactically correct). The overall
result was 271:28 or 9.68:1. Hence most stu-
dents with legal entries were able to specify the
solution well enough to retrieve the correct en-
try — possibly along with several others. This
indicates a promising level of success — though
not without some reservations to be discussed
later.

The speculation was whether the ratio find to
not find improved with regard to whether or
not subjects who detailed relationships between
arguments would do as well on this measure
as those who did not detail any relationships at
all. It was found that the find:not find ra-
tio for those detailing relationships was 9.8:1
while for those not detailing any relationships
this ratio was 9.4:1.

Though this result needs very careful interpre-
tation, at first sight, in our experimental con-
text, it made very little difference as to whether

students used the simpler mode and type infor-
mation for retrieval or the full description lan-
guage. This issue was then studied using a dif-
ferent measure: students were selected who pro-
vided full information about modes and types
and at least some information about relation-
ships (the modes+types+rels condition). Their
actual performances on ‘recall’ and ‘precision’
were compared with the performance that they
would have achieved if they had not entered
any information about argument relationships
— 1.e. just modes and types (the modes+types
condition).

The measure of recall used for the data is the
average value of the reciprocal of the number of
results retrieved. Very accurate recall will there-
fore approach unity. The measure of precision
used for the aggregated data is the number of
searches which include the target code in the
set of results retrieved. Maximum precision is
therefore the number of elements in the dataset.

Of the 500 possible items, 314 satisfied
the basic requirement — i.e. full informa-
tion about modes and types. For the

Searching for Examples with a Programming Techniques Editor 21

straight comparison, the find:not find ratio
for the modes+types+rels condition a figure
of 105:209 (approx 1:2) is obtained. For the
modes+types condition the ratio 289:25 (approx
11.6:1) was obtained. This argues strongly that
the system will be difficult to use if the student
is free to enter as many relationships as possi-
ble. As it happens though, SunTed only allows a
single relationship between variables. Even so,
entering up to 6 relationships for a relationship
of arity 4 may prove a) time consuming and b)
might be counter productive unless some other
benefits of defining such relationships can be
identified.

A further investigation was undertaken into the
way in which the somewhat unusual measure
of precision being used was affected by grad-
uvally increasing the number of relationships

Precision
300

permitted. The ratio went from 105:209 for
all relationship information present to 198:116
for dropping a single relationship at random to
264:50 if two relationships were dropped (if
there was only one relationship specified then it
would be dropped). From then on, the precision
was generally good.

The algorithm was then modified to drop more
informative relationships first. The results on
the measure of ‘precision’ used are presented
in figure 6. It can be seen that too much infor-
mation is —as expected— quite unhelpful. The
corresponding notion of recall (again, a some-
what unusual one) provides the anticipated re-
sult that the more information, the more likely
only the exact solution will be retrieved — see
figure 7.

250 |

200

150

100

50

2 3 4

Mo, of Relationships Dropped

Fig. 6. A Measure of Precision

Recall
0,008

0.007 b

0,006

0,005 |

0,004 ¢

0,003 |

0.002 b

0.001

2 3 4

No. of Relationships Dropped

Fig. 7 A Measure of Recall

22 Searching for Examples with a Programming Techniques Editor

6. Discussion

Issues connected with the data are discussed
with a view to developing more useful retrieval
indices.

6.1. What is the Significance of the Data?

First, it should be mentioned that the measures
selected are not necessarily the best ones for
showing how useful the retrieved cases are. The
focus was on whether the correct case (i.e. the
code which corresponded to the task descrip-
tion) could be retrieved. In a pedagogical situ-
ation involving SunTed, perfect retrieval would
not be expected: instead, it would be expected
that a similar case would be sought which could
be adapted by the student to produce the re-
quired solution. Therefore, a more complex
measure could have been developed for the pre-
cision of the search. This could take into ac-
count the ‘quality’ of each case retrieved.

Despite some doubts about the quality of the
data, the evidence suggests that for retrieval the
benefits of a very simple intermediate descrip-
tion language are worthwhile: easy to learn, and
reasonably effective in producing a set of use-
ful cases. Again, for retrieval it would appear
that a more complex intermediate language is
harder to learn and apply, and also less effective
at retrieving useful cases. As to the benefits of a
complex intermediate language in general, the
benefits here are likely to lie with the use of a
selected case. Constructing a set of constraints
on the solution can be seen as a form of code de-
sign. Itis therefore reasonable to expect the use
of the more complex intermediate description
language to be valuable. However, the study
detailed here does not address this issue.

6.2. What is the Value of Task
Descriptions?

It is widely accepted that programmers utilise
some form of case-based reasoning when pro-
ducing a program that satisfies a specification.
For novice programmers, such reasoning draws
on the relatively limited experience that they
have about the programs found as examples in
text books (and elsewhere) as well as the pro-
grams that a novice has written. It is arguable

as to whether or not it is the experience of the
task rather than the resulting programs that is
the basis for retrieval.

Task descriptions are an important part of learn-
ing to program. Robertson and Kahney have
stressed the role of “imitation” in learning to
program [Robertson & Kahney, 1993]. For
them, imitation is a form of analogical reason-
ing which is based on surface features. These
surface features need to be drawn from both
task descriptions and programming solutions.
Robertson and Kahney stress the role and im-
portance of example tasks (specifications). Chi
and her colleagues have both demonstrated the
different ways in which novices and experts
classify tasks, and indicated the significance of
the *so-called’ self-explanation effect [Chi et al,
1989] which is based on the use of both task
descriptions and their worked solutions.

So if tasks are so important, why not incorporate
them in the indexing system? Part of the reason
1s the difficulty of encoding the necessary infor-
mation. Mostly, tasks are presented as informal
(and incomplete) specifications, expressed in
relatively unconstrained natural language. The
entities are much more varied than the set of
entities introduced to the novice programmer.
Relationships between elements in the task do-
main can be expressed in many ways.

Over the last few years, Weber has produced
some impressive results for the automated se-
lection of the best case (based on remindings)
[Weber, 1995, Weber, 1996], but this is at the
cost of producing quite elaborate task analyses
for each program. SunTed’s advantage is that
the information currently used to retrieve cases
is relatively quick to generate.

In the future, SunTed could be used as the basis
for the kind of case-based retrieval that indexes
the library of tasks. The task description lan-
guage has to be developed, and ways found of
applying it efficiently to build a library of cases.

6.3. Intermediate Representations

The development of an incremental approach
based around a series of intermediate descrip-
tion languages is related to the development
of expertise in physics as described by White
[White, 1993]. In White and Frederiksen’s

Searching for Examples with a Programming Techniques Editor 23

PQUEST system, students encountered a num-
ber of kinds of model of an electric circuit. The
various models were not those necessarily held
by experts but they went some way to providing
intermediate models of electricity.

The same can be done — to an extent —
for learning to program. However, the pro-
gramming community has not really devel-
oped widely accepted intermediate represen-
tations. Even within the Prolog community
there are many different ways of describing
the structure of program code. For example,
Richard O’Keefe uses a mathematical formal-

ism to describe the code in his “Craft of Prolog”
™ [O’Keefe, 1990].

Experts typically have different ways of rep-
resenting knowledge about programs and pro-
gramming techniques. Top level experts often
make use of very abstract descriptions of Prolog
Programming Techniques. Some appeal to ab-
stract mathematical theory and may make use of
complex and highly abstract operations to ma-
nipulate techniques in suitable ways. As such
representations are seen as expert-like, there
have been a number of attempts to explicitly
teach programming plans [Soloway, 1986], pro-
gramming techniques [Brna, 1993, Ormerod &
Ball, 1996] and even design patterns [East er al,
1996).

Arguably, students need a simplified non-expert
intermediate description language to provide
the scaffolding that will help them learn to be-
come more proficient. The Prolog Program-
ming Techniques utilised in SunTed have this
kind of role: these techniques are not necessar-
ily the ones the students will ‘end up’ with, but
they can be expected to help students develop
coding skills.

SunTed, the version of Ted utilised in this study,
is not designed to make the novice program-
mer access techniques by name. Rather, the
environment is designed to allow the novice to
exploit the form of a Prolog Programming Tech-
nique once a suitable case has been retrieved via
the intermediate description language provided.
This is a novel approach to supporting students
though as yet there are no results on the effec-
tiveness of this approach.

There is a price to be paid: a programmer learn-
ing a new language —whether Prolog or not —
may be an experienced programmer in another

language or a complete programming novice.
Either way, the first few hours of practical
programming are usually difficult: the novice
doesn’t remember the syntax very well; he/she
has problems understanding how the language
works — see du Boulay and Monk’s notional
machine [duBoulay et al, 1981]; the novice has
a major problem understanding the relationship
between the structure of a program and its func-
tion; and it is hard for the novice to express
his /her intentions in the target language —even
when the way to solve a programming exercise
is well understood at the algorithmic level.

So, won’t an intermediate description language
for case-based retrieval just complicate things?
The evidence that has been produced indicates
that simple constraints such as those given by
modes and types are not difficult to use. The ex-
plicit use of (Prolog) Programming Techniques
for retrieval was not considered — primarily
because it was assumed that novices would not
find it easy to describe programs in terms of
techniques.

As to the description of the constraints that must
hold between the arguments of a predicate, the
question was whether or not novices could sen-
sibly describe the anticipated nature of the so-
lution to a simple programming task using a
specially designed description language.

Some evidence has been provided suggesting
that specifying this class of constraints is rela-
tively unrewarding for the purposes of retrieval
only — though this is dependent, to an ex-
tent, on the case-based retrieval method used by
SunTed. On an anecdotal level, subjects did not
find the task easy. However there is a persuasive
argument for this form of intermediate descrip-
tion language in terms of the value it has for
helping students to think about how a retrieved
case can be exploited. This issues has not yet
been explored but it can be anticipated that the
effort in learning to use this kind of description
language will have long term benefits.

7. Conclusion: Learning Opportunities
Revisited

If learning opportunities can be identified, then
their exploitation requires that novices are not
automatically prevented from engaging in prob-
lem solving. It is tempting, given an effective

24 Searching for Examples with a Programming Techniques Editor

procedure for locating the ‘best’ case, to offer
the novice this best case straight away. Weber
can do this for a set of LISP programming tasks
[Weber, 1995, Weber, 1996]. Doing so removes
an opportunity for the novice to develop im-
proved intermediate descriptions for retrieval.
So a scaffolding tool might support the process
of forming intermediate descriptions. Further,
such a tool might also provide support for ex-
tending the description language — a problem
that has not been addressed here.

Support for novices learning to retrieve may
sensibly follow a MAC/FAC-like approach
[Forbus et al, 1995]: searching using somewhat
superficial criteria before selecting the best case
based on ‘deeper’ criteria. This is consistent
with the use of a simple retrieval language.
Given that SunTed meets the basic require-
ments, extending SunTed to provide coaching
for novices might well be very effective.

Other learning opportunities described in sec-
tion 1 have not been addressed to any great
extent. The extension of systems like SunTed
to allow for novices to develop their own li-
brary of indexed cases would be an advantage.
It would be relatively easy to provide facili-
ties for novices to use the supplied intermedi-
ate description language for constraints on the
solution — but much harder if novices are to
be supported in developing accurate indices for
tasks. If the system can be designed so that it is
not too dependent on requiring accurate indices,
then it may well be able to provide a usable sys-
tem but possibly at the cost of making it harder
to retrieve desirable cases.

Support for the application of the case to the
current task depends to an extent on providing
tools for extracting the useful structure from the
case. SunTed provides an interesting approach
to this, and does provide the necessary founda-
tion. Itis necessary to consider further how such
facilities can be utilised to promote increasingly
effective application.

Acknowledgements Thanks to Judith Good for
her detailed comments, and to Andy Bowles
for the programming of SunTed and MacTed.
The design of MacTed and SunTed is the re-
sponsibility of Andy Bowles, Paul Brna, David
Robertson and Helen Pain. The work was
funded by the Joint Council Initiative in Cogni-
tive Science and Human-Computer Interaction
Grant number G9030396.

References

[Bowles & Brna, 1993] A, BOWLES, P. BRNA, Program-
ming plans and programming techniques, In Arzifi-
cial Intelligence in Education, 1993: Proceedings
of AI-ED 93, (P. Brna, S. Ohlsson, H. Pain, Eds.),
(1993), pages 788-795, AACE, Virginia.

[Brna, 1993] P. BRNA, Teaching prolog techniques,
Computers & Education, 20,1, (1993), 111-117.

[Brna et al, 1991] P. BRNA, A. Bunpy, T. DoDpD, M.
EISENSTADT, C. K. Lool, H. PAIN, D. ROBERTSON,
B. SMITH, M. VAN SOMEREN, Prolog programming
techniques, Instructional Science, 20, 2/3, (1993),
111-133.

[Chietal, 1981] M. T. H. CHi, P. J. FELTOVICH, R.
GLASER, Categorization and representation of
physics problems by experts and novices, Cog-
nitive Science, 5, (1981), 121-152.

[Chi et al, 1989] M. T. CHI, M. BASSOK, M. W. LEWIS,
P. REIMANN, R. GLASER, Self explanations: How
students study and use examples in learning to solve
problems, Cognitive Science, 13, (1989), 145-182,

[duBoulay er al, 1981] J. B. H. DU BouLaY, T. O’SHEA,
J. MONK, The black box inside the glass box:
Presenting computing concepts to novices, Interna-
tional Journal of Man Machine Studies, 14, (1981),
237-249.

[East ez al, 1996] I.P.EAST, S.R. THOMAS, E. WALLING-
FORD, W. BECK, J. DRAKE, Pattern-based program-
ming instruction, In Proceedings of the 1996 ASEE
Annual Conference and Exposition, (1996), Wash-
ington, D.C.

[Forbus et al, 1995} K. D. ForBus, D. GENTNER, K.

Law, MAC/FAC: A model of similarity based
reasoning, Cognitive Science, 19, 2, (1995), 144
205.

[Gamma ef al, 1994] E. GAMMA, R. HELM, R. JOHN-
SON, J. VLISSIDES, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison
Wesley, 1994.

[Linn et al, 1992] M. C. LINN, M. KA1z, M. J. CLANCY,
M. RECKER, How do Lisp programmers draw on
previous experience to solve novel problems?, In
Computer-based Learning Environments and Prob-
lem Solving, (E. Decorte, M. C. Linn, H. Mandl, L.
Verschaffel, Eds.),(1992), pages 67-101. Springer-
Verlag, Berlin.

[O’Keefe, 1990] R. A. O’KEEFE, The Craft of Prolog,
MIT Press, 1990.

[Ormerod & Ball, 1996] T.C. ORMEROD, L.J. BALL, An
empirical evaluation of TEd, a techniques editor for
prolog programming, In Empirical Studies of Pro-
grammers: Sixth Workshop, (W. D. Gray, D. A,
Boehm-David Eds.), (1996), pages 147-161, Ablex
Publishing Corporation, New Jersey.

Searching for Examples with a Programming Techniques Editor

25

[Pennington, 1987] N. PENNINGTON, Comprehension
Strategies in Programming, In Empirical Studies of
Programmers: Second Workshop, (G. M. Olson, S.
Sheppard, E. Soloway Eds.) (1987), pages 100-113,
Ablex Publishing Corporation, New Jersey.

[Reimann ef al, 1993| P. REIMANN, S. WICHMANN, T. J.
SCHULT, A learning strategy model for worked out
examples, In Artificial Intelligence in Education,
1993: Proceedings of AI-ED 93, (P. Brma, S.
Ohlsson, H. Pain, Eds.), (1993), pages 290-297,
AACE,Virginia.

[Robertson & Kahney, 1993] S. 1. ROBERTSON, H. KAH-
NEY, [s analogical problem solving always ana-
logical?: The case for imitation, HCRL Technical
Report 97, HCRL, The Open University, 1993.

[Ross, 1987] B. H. Ross, This is like that: the use
of earlier problems and the separation of similar-
ity effects, Journal of Experimental Psychology:

Learning, Memory and Instruction, 13, (1987),
629-639.

[Schult & Reimann, 1995] T. J. SCHULT, P. REIMANN,
Dynamic case-based reasoning, In Artificial In-
telligence in Education, 1995: Proceedings of
AI-ED'95 — 7th World Conference on Artificial
Intelligence in Education, (J. Greer, Ed.), (1995),
pages 154-161, AACE, Charlottesville, VA.

[Soloway, 1986] E. SOLOWAY, Learning to Program =
Learning to Construct Mechanisms and Explana-
tions, Communications of the ACM, 29,9, (1986),
850-838.

[Weber, 1995] G. WEBER, Providing examples and in-
dividual remindings in an intelligent programming
environment, In Artificial Intelligence in Educa-
tion, 1995: Proceedings of AI-ED’95 — 7th World
Conference on Artificial Intelligence in Education,
(J. Greer, Ed.), (1995), pages 477-484, AACE,
Charlottesville, VA.

[Weber, 1996] G. WEBER, Individual selection of exam-

ples in an intelligent learning environment, Journal
of Artificial Intelligence in Education, 7,1, (1996),
3-31.

[White, 1993] B. J. WHITE, Intermediate abstractions
and causal models: A microworld-based approach
to science education, In Artificial Intelligence in
Education, 1993: Proceedings of AI-ED 93, (P.
Brna, S. Ohlsson, H. Pain, Eds.), (1993), pages
26-33, AACE, Virginia.

A. The Ten Problems

Note that problem 1 and 7 are different wordings
for the same task.

1. Write a predicate delete which takes a list
in its first argument, and an atom in its sec-
ond, and outputs a list which is the same as
the first but with that atom removed. The

elements in the output list should be in the
same order as in the input list.

. Write a predicate len which takes a list in

its first argument, and returns the length of
the list in its second.

. Write a predicate replace which takes a

list and two atoms and returns a list the
same as the input, except all occurrences
of the first atom have been replaced by the
second.

. Write a predicate sum which takes a list of

numbers in its first argument, and finds the

* sum of those numbers in its second.

10.

. Write a predicate doublenum which takes

a list of numbers and a single number and
returns a list of numbers. The output listis
the same length as the input list, and con-
tains elements which are double the corre-
sponding input element if they are greater
than the input number, otherwise they are
the same.

Write a predicate intersection which takes
two lists of numbers and returns a single
list of numbers such that each element of
the answer is found in each of the input
lists.

. Write a predicate delete which takes a list

in its first argument and an atom in its sec-
ond, and outputs a list which is the same
as the first but with that atom removed.

. Write a predicate squarelist takes a list of

numbers and returns a list of the squares
of those numbers.

. Write a predicate alessnum which tests ele-

ment by element whether a list of numbers
is numerically less than another list.

Write a predicate position which returns
the position of a given element in a given
list of atoms.

Received: September, 1997
Accepted: January, 1998

Contact address:

Paul Brna

Computer Based Learning Unit
Leeds University

LEEDS LS29JT

England UK

phone: +44 113 233 4637

fax: +44 113 233 4633

email: paul@cbl.leeds.ac.uk

26

Searching for Examples with a Programming Techniques Editor

PAUL BRNA Paul Brna is a Lecturer in the Computer Based Learning
Unit, the University of Leeds. He has worked on the applications of
Al 1o Education, including research into the interpretation and use of
external representations, and learning environments for program con-
struction and debugging. He has authored over eighty technical papers.

