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Volume Visualization of the Heart Using
MRI 4D Cardiac Images

H. Abrishami Moghaddam and J. F. Lerallut

UTC/GBM UMR CNRS 6600, BP 20529, 60205 Compiégne, France

This paper deals with a system for volume visualization
of the heart using multiphase-multislice cardiac MRI
data. The proposed system is based on a generalized 4D
form of a fuzzy object extraction algorithm in order to
distinguish voxels belonging to cardiac object from noisy
points and surrounding tissues. The system is initialized
by interactive selection of a pixel placed inside the
cardiac muscle in a slice. In some cases, complementary
information might be necessary for segmentation because
of the similarity in grey level information between the
heart and surrounding tissues. We applied an active
contour model and a contour propagation technique to a
variance image for a rough segmentation of epicardium.
The fuzzy approach in combination with the use of a
deformable model for isolation enables us to segment
cardiac object without modifying voxel grey levels and
preserving anatomical details. Fuzzy object extraction
involves problems of enormous combinatorial complex-
ity, but t his ca n be reduced by dynamic programming
leading to practical algorithms for cardiac data sets.
We have implemented these algorithms and tested their
efficiency in preserving heart data during preprocessing.
Different anatomical presentations of the heart have been
used for this purpose, consisting of only a small number
of slices per volume.

Keywords: Volume Visualization, Cardiac MRI, Fuzzy
Object Extraction, Deformable Models.

1. Introduction

Anatomical 3D visualization of human organs
using large 3D medical data sets which re-
sult from routine Magnetic Resonance Imaging
examinations has been the subject of a large
amount of research work during the last two
decades. Most of this work was made on static
organs (e.g. head) where a relatively good spa-
tial resolution is available in a short acquisition
time. With the introduction of cardiac MRI and
the availability of 4D volumetri ¢ time-varying
data sets, a new perspective in cardiac image

analysis and visualization appeared, promising
a more accurate non-invasive quantification of
local, regional and global function of cardiac
cavities and 3D dynamic anatomical visualiza-
tion of the heart with a minimal interaction of
specialist. Clinical cardiac MRI studies consist
of a large number of images, about 80-100, from
which qualitative information about heart func-
tion and its anatomy can be obtained by viewing
the images in a sequence.

Several automatic or semi-automatic, 2D or 3D
based methods of varying complexity and pre-
cision have previously been proposed to detect
cardiac boundaries and to dynamically visual-
ize cardiac cavities using surface reconstruction
techniques. Ranganath [Ranganath 1995] pre-
sented a contour extraction method based on
snakes proposed by Kass et al. [Kass et al.
1987]. In this work a contour propagation tech-
nique was introduced in order to automatically
propagate cardiac contours along the slices in
a volume and through different phases. A 3D
surface reconstruction of left ventricular cav-
ity at systole and diastole using this method
was presented by Abrishami ef al. [Abrishami
et al. 1996]. Such models [Cohen and Cohen
1990, Ranganath 1995, Chakraborty et al. 1996]
were generalized in 2%D and 3D [Terzopoulos et
al. 1988], where the deformable surface evolves
under the forces computed on a 2D image or
a set of 2D images. In contrast to these ap-
proaches, Cohen et al. [Cohen et al. 1992] and
MclInerney and Terzopoulos [Mclnerney and
Terzopoulos 1993] developed a 3D defo rmable
shape model, based on a variational approach
and a finite element method to express the sur-
face in a discrete basis of continuous functions.
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Application of the method to MRI data of hu-
man heart and CT data of canine heart in order
to reconstruct the left ventricle (LV) shape have
been reported by these authors, respectively. A
new family of parametric models, deformable
superquadrics [ Terzopoulos and Metaxas 1991],
were successfully applied to 4D cardiac images
for shape descri ption and particularly for quan-
titat ively analyzing the deformation of the LV
[Bardinet et al. 1994]. Shi ez al. [Shietal. 1994]
developed another approach using the shape
properties of the endocardial-epicardial LV sur-
faces in order to compute point-wise myocardial
motion vector fields between successive image
frames through the entire cardiac cycle. A re-
cent non-invasive technique, the magnetic reso-
nance (MR) tagging of myocardium [Axel and
Dougherty 1989, Zerhouni 1988], has been used
as an alternative quantitative approach, which
creates a magnetizatio n grid that tags the un-
derlying tissue, and uses the grid deformation
to follow the tissue movement over a gated se-
quence [Amini et al. 1994, Park et al. 1996a].
Amini ef al. proposed an energy minimizing B-
spline snakes for tracking myocardial tag lines
in 2D slices and computed myocardial quantita-
tive parameters like strain (Amini ez al. 1994).
Park et al. developed a new class of deformable
3D surface (Park et al. 1996a) and em volu-
metric [Park et al. 1996b] models and applied
them to a tagged MRI data set to extract con-
traction, twisting and rotation motion of the LV
myocardium. Inspired by (Park er al. 1996b),
Declerk et al. [Declerck et al. 1996] defined a
4D polar transformation and proposed a method
to track the motion of the LV, approximating the
shape of the LV as a stretched sphere in the long
axis direction of the heart.

In most of these works, a relatively simplified
surface model of the heart (almost the LV) has
been used. In spite of the clinical value of the LV
surface reconstructions and extracted parame-
ters of the LV function, dynamic 3D volume vi-
sualization of the heart with anatomical details
of cardiac structures has a number of attractive
properties which make it useful for diagnostic
and surgical planning purposes [Vannier et al.
1989]. Here, there is no need for simplifying ge-
ometrical constraints; indeed, pre processing al-
gorithms try to preserve maximum information
in the image as well as voxel grey levels which
contain valuable information for the specialist.
With the progress in cardiac MRI, and the avail-

ability of real time high resolution volumic im-
ages [Irarrazabal et al. 1993, Pauly et al. 1996],
such anatomical views of the patient’s heart can
be used as a platform for the analysis, educa-
tion and surgery simulation purposes. Several
researchers have developed methods and plat-
forms for volume visualization of medical data
[Hohne 1995, Avila et al. 1994, Udupa et al.
1993] and electronic atlases of rigid or static
human organs have been created [Héhne et al.
1992]. However, a limited amount of previous
works was made on volume visualization of the
heart [McVeigh et al. 1994]. The major dif-
ficulties with cardiac MRI are: i) low spatial
and temporal resolutions, ii) poor quality of the
image due to noisy points and non-distinctive
intensity pattern of the heart compared with sur-
rounding tissues and iii) long acquisition time.
In this paper, we pre sent a new method for auto-
matic segmentation of the heart based on a gen-
eralized 4D fuzzy object extraction algorithm.
The idea is to take into consideration the inher-
ent data inaccuracies and the fuzziness of voxel
intensity information. A fuzzy object is defined
by a set of voxels which are connected to an ini-
tial point selected inside the object of interest.
All the grid points in the image are examined
and a measure of connectedness (a number be-
tween 0 and 1) is attributed to them. Because
of the similarity in grey level information be-
tween the heart and surrounding tissues, com-
plementary information might be necessary to
isolate the cardiac object. For this purpose, we
have included motion information of the heart
in the form of a variance image and obtained
a rough segmentation of the epicardium using
deformable models.

The paper is organized as follows: Cardiac MRI
data and image characteristics are described in
the next section. The fuzzy object extraction
is presented in section 3. Section 4 presents a
brief review of snakes and its application for a
rough segmentation of the epicardium. The re-
sults and discussions are given in section 5 and
section 6 presents the conclusions.

2. Cardiac MRI Data

2.1. Data Acquisition

The data set provided by cardiac MRI is essen-
tially 4D, consisting of 8-12 cross-sectional to-
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mographic slices imaged at 8-16 cardiac phases.
The image resolution and signal-to-noise ratio
(S/N) of each voxel are determined by the field-
of-view (FOV), slice thickness and the size of
the acquisition matrix. In addition, the S/N is
determined by the number of acquisitions and
therefore by the duration of measurement. FOV
values of 300-400mm (also 250mm for chil-
dren due to smaller anatomy) is a good com-
promise between S/N, image resolution and
measurement time. S/N is also proportional
to slice thickness and therefore the slice should
not be too thin when selected. For cardiac imag-
ing of adults, 8-10mm generally provides good
anatomical resolution. It should be noted, how-
ever, that in some cases (very slow blood flow)
with spin echo techniques, thinner slices of 5-
6mm may be necessary to achieve sufficient
signal loss of flowing blood. The slice thick-
ness for children or babies should be selected
at around 5-7mm [Siemens 1992]. In the fol-
lowing, we will review four different sequences
which can be used in cardiac examinations:

e Spin echo: The ECG triggered spin echo
(SE) sequence is specially useful with car-
diovascular examinations of the soft tissue
anatomy and a relatively clear contrast ap-
pears both between the different types of
soft tissue and between the soft tissue and
flowing blood. With SE technique, only a
single line of data can be acquired per car-
diac function (TR). A complete image typ-
ically requires 128-512 lines and thus 128-
512 repetitions of the pulse sequence. This
limitation essential ly precludes a conven-
tional SE sequence from being used for
fast imaging.

e Gradient echo: In MRI of the cardio-
vascular system, gradient echo (GE) se-
quences are specilally advantageous for the
dynamic visualization of blood flow and
Cine-MR imaging. In general, the con-
trast of soft tissue is not as good as with
the SE sequences. The advantage of GE
sequences is the possibility to use short
repetition times in order of 50ms which al-
lows 3D acquisitions in a reasonable time
period (e.g. 5-10 minutes). 3D has the ad-
vantage of allowing very thin (e.g. lmm
or less), contiguou s sections with good
contrast and S/N.

e TurboFLASH: With the addition of a ra-
dio frequency preparatory pulse, scan times
of less than 1 second are feasible with
GE sequences. This approach called tur-
boFLASH (Fast Low Angle SHot) can be
used in conjunction with contrast admin-
istration to obtain perfusion images of the
heartin less than 1 minute [Edelman 1995].

e Echo Planar: Echo planar imaging (EPI)
requires substantial hardware modifications
and therefore, is not yet in widespread
use. Using modified hardware, a com-
plete image can be acquired in as little
as 30ms. There are SE and GE variants
of EPI which may prove particularly use-
ful for anatomic, functional, and perfusion
imaging of the heart.

2.2. Data Description

Cardiac MRI studies provide a representation of
four main constituents of the chest cardiac re-
gion, i.e., muscle, fat, blood and air (lungs).
Their appearance in images depends on the
pulse sequence used. In SE images, regions of
blood flow appear dark, whereas in GE images,
they appear bright (Fig. 1). In both types of
studies, muscle has mid-grey intensities and air
is dark. Fat appears bright relative to muscle in
both types of studies, though this contrast seems
larger in SE. Fig. 1(a) and (b) show two differ-
ent localization views used to obtain short axis
images. A transverse view at the ventricular
level (Fig. 1(a)) and along axis view (Fig. 1(b))
have been used as first and second localizers.
MR images in the short axis view provide good
evaluation of the lateral wall, septum and the
papillary muscles of the left ventricle. Fig. 1(c),
(d) and (e) show GE images taken at the base,
middle and apical levels, respectively. Some
anatomical points have been highlighted in the
images. At the base, the ventricular outflow
tracts appear, changing the anatomy substan-
tially compared to the lower levels (Fig. 1(c)).
Fig. 1(d) shows the presence of the papillary
muscles within the blood pool. These appear
darker than blood in GE images and lighter in
SE. Dark regions within the blood pool in Fig.
1(d) taken just below the base are due to signal
loss from turbulent blood flow. Fig. 2(a) shows
a typical SE axial image of the heart in ventric-
ular plane. A granular noise due to the pulsatile
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(2)
1. Right ventricular outflow tract

2. Interventncular septum
3. Posterolateral wall

4, Anterolateral swall

5. Anterolatersl papillary muscle
6. Posteromedial papillary musce 9. Left ventricle

(e}

7. Interventcular septum
8. Right ventricle

Fig. 1. MR gradient echo images in the short axis view (a) first localizer: Transverse (axial) view at the ventricular
level, (b) second localizer: long axis view, (c).(d) and (e) heart in three different slices at base, middle and apex
levels. Some anatomical points have been highlighted in the images.

blood movement, superposed on the image, is
visible. These artifacts are particularly present
on transversal slices at the aorta level which
complicates the image interpretation [Desgrez
et al. 1994]. A series of 4D SE slices has been
shown in Fig. 2(b). The image is composed of 5
different slices (rows) through 5 different time
phases (colum ns). In our data sets (both SE
and GE), we have found the image quality to
be worse when the heart expands from systole
to diastole, exhibiting contrast loss, noise, and
spurious detail. This is due to the rapid expan-
sion of the heart and motion out of plane at this
stage of the cycle. The best images are usually
found at diastole, when the ventricles are filled
with blood and the heart is relatively stationary.

3. Fuzzy Object Extraction

As mentioned above, different sources like pul-
satile or low speed blood movement, degrade
cardiac MRI images. These artifacts and more-
over, data inaccuracies due to the echoes of
structures near or attached to myocard like pap-
illary muscles, involve uncertainty about iden-
tification of the pixels representing the cardiac

object. Since the heart has not an intensity pat-
tern distinctly different from other objects and
dueto the fuzziness of image information, appli-
cation of ordinary segmentation tec hniques in
a hard sense to segment the cardiac object is not
satisfactory. In order to consider these inherent
inaccuracies, we applied a recently formulated
fuzzy object extraction algorithm [Udupa and
Samarasekera 1996]. In the following, we will
briefly review this method and demonstrate its
use for segmentation of the heart. For a de-
tailed discussion on this technique we refer the
reader to Udupa and Samarasekera [Udupa and
Samarasekera 1996].

3.1. Fuzzy Object Definition

Objects in images have two important charac-
teristics. First, they have a graded composition.
In the SE slice of the heart shown in Fig. 2(a),
for example, the object called "LV cavity’ con-
sists of both the blood (dark region) as well
as of the brighter noisy regions due to blood
movement. Second, the image elements that
constitute an object hang together in a certain
way. Again consider Fig. 2(a) which consists



Volume Visualization of the Heart Using MRI 4D Cardiac Images

219

Fig. 2. (a) A middle slice spin echo image of the heart (axial view) before selecting the area of interest. The noise
due to pulsatile blood movement can be observed. (b) a series of 4D spin echo axial slices. Images in each column
represent a slice of the heart imaged at five different time phases.

of two ventricular cavities. The pixels that con-
stitute the LV, including those repres enting the
blood and noisy pixels, hang together to form
an object called ventricular cavity much more
strongly than the pixels that represent blood in
the two ventricles, although they have very sim-
ilar intensity properties (because of the presence
of interventricular septum). Both these graded
composition and hanging togetherness are fuzzy
properties and can be used to define a notion of
fuzzy object. Moreover, independent of any im-
age data, there is a fuzzy adjacency relation (the
closer the points are, the more adjacent they are
to each other) between image elements. In the
following we remind of the two known defini-
tions of fuzzy subset theory: fuzzy subset and
fuzzy relation [Zadeh 1965, Kaufmann 1975].
Let X be any reference set. A fuzzy subset A of
X is a set of ordered pairs

A = {(x, pa(x))lx € X}, (1)

where
pa:X — [0,1] (2)

is the membership function of A in X. A fuzzy
relation p in X is a fuzzy subset of X x X

p = {((x, ), p(x,¥))|(x, y) € X x X}, (3)

where
ppt X x X — [0, 1] (4)

The aim of fuzzy object definition is to capture
the global phenomenon of hanging togetherness

in a fuzzy relation between grid points, called
“connectedness”. We do this first through a lo-
cal fuzzy relation, k, called “affinity”. Affinity
takes into account the degree of adjacency of
the grid points as well as the similarity of their
intensity values. The closer the grid points are
and the more similar their intensities are, the
greater is the affinity between them. The mem-
bership function of the affinity between two grid
points ¢ and d in an image, u(c, d), is defined
by:

Hi(c, d) = palc, d)h(f(c), f(d),  (5)

where 1 (¢, d) represents the membership func-
tion of the fuzzy adjacency relation between ¢
and d which can be defined as follows:

med={ & VS ©

0, otherwise.
and h(f(c), f(d)) can be selected as follows:

R(f(c), F(d))=e~ WDUADU@+f@)-m)/s]*
(7)

In this equation f(c) and f(d) are simply the
intensity of grid points and m and s are the
mean intensity and the standard deviation of
grid points which belong to the object of in-
terest. To see how affinity is used to assign
a “strength of connectedness” to any pair of
grid points, consider all possible connecting
“paths” of grid points between o and ¢ (Fig.
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Fig. 3. Fuzzy object extraction. (a) grid point "0’ is a point over the object of interest (initial point for the algorithm).
(b) in the resulted grid, a measure of connectedness is attributed to each grid point. Values over the connections
between grid points are the affinity measures between them.

3(b)). Each such path is formed from a se-
quence of links between successive grid points
in the path. Each link has the “strength” which
is simply the affinity between the corresponding
two grid points. The strength of a path is simply
the strength of the weakest link in it. Finally,
the strength of connectedness between o and ¢
is the strength of the strongest of all paths. In
defining a fuzzy object, the strength of connect-
edness between all possible pairs of grid points
must be taken into account. Although this task
involves problems of enormous combinatorial
complexity, using dynamic programming [Cor-
men et al. 1991] reduces it dramatically, leading
to reasonable computational times.

3.2. Resulis

A 4D form of the fuzzy object extraction algo-
rithm has been used in our application (see Ap-
pendix A for an example of the algorithm). The
algorithm is initialized by interactive selection
of a pixel placed inside the cardiac muscle using
marker in a slice (Fig. 4(a)). The same func-
tions as Eq. 6 and Eq. 7 and 8-adjacency (in
4D) have been used to calculate the affinity be-
tween each pair of points. The mean value m is
obtained by the intensity lev el of the initial point
and an experimental value has been selected for
the standard deviation. Fig. 4(a) shows five
slices of a SE transversal image. In the third
image, the initial point has been highlighted by
the letter "o’ placed inside the interventricular
septum. Fig. 4(b) shows the resulting fuzzy
connectedness images (values between 0 and 1

have been mapped to grey levels between 0 and
255). Bright regions in these images represent
the points connec ted to the initial point. Note
that because of the similarity in grey level in-
formation between points representing cardiac
muscle and those of surrounding tissues (e.g.
thorax), a large strength of connectedness has
been attributed to the points in these regions.
Images in Fig. 4(c) have been obtained by sup-
pressing the points in the original images (Fig.
4(a)) for which the fuzzy connectedness value
has been less than 0.1.

4. Epicardial Contour Detection

As already mentioned, complementary infor-
mation might be needed for a complete seg-
mentation of the heart because of the intensity
pattern similarity between the heart and sur-
rounding tissues. Based on 4D image infor-
mation, several methods have been proposed to
include motion information in the segmentation
process. Boudraa e al. [Boudraa et al. 1993]
proposed a Fourier analysis method and applied
it to cardiac scintigraphic image (time) series
to provide a phase image used as supplemen-
tary information in a fuzzy clustering algorithm
to isolate cardiac chambers. In a different ap-
proach, [Gorce er al. 1997] applied the optical
flow method to estimate three-dimensional car-
diac velocity fields in a CT data of a canine
heart. This method, based on a variational ap-
proach, is very sensitive to image noise. As MRI
cardiac images have alow S/N, we developed a
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Fig. 4. Fuzzy object extraction algorithm. (a) Five slices of the original SE data. In the third image, *0’ shows the
initial point selected inside the cardiac muscle, (b) the resulting connexity measures (values between 0 and 1 have
been mapped to grey levels between 0 and 255), (c) the image obtained by suppressing the points in the original

image for which fuzzy connectedness value has been hlass than 0.1. Noisy points inside the cardiac caviti es have been
eliminated.

method for epicardial boundary detection using
motion information in the form of a variance
image, assuming better efficiency in the pres-
ence of noise [Vaerman 1997]. The idea is to
consider a stronger grey level variation for vox-
els representing the moving parts (cardiac mus-
cle) compared to those representing stationary
parts (e.g. thorax). We have obtained a vari-
ance image in which each voxel represents the
variance of the same voxel in several images
through different time phases. Bright regions at
the center of the variance image in Fig. 5 rep-
resent the moving parts in the original image.
We have applied an active contour model to ob-
tain the contours of these bright regions which
can represent a good estimation of the epicardial
boundaries. In this section, we present a brief
review of deformable contour model which will
be followed by some details about contour prop-
agation technique with demonstrating results.

4.1. Active Contour Model

A deformable contour is a planar curve which
has an initial position and objective function as-
sociated with it. A special class of deformable
contours called snakes was introduced by Kass
etal. [Kassetal. 1987] in which the initial posi-
tion is specified interactively by the user and the

objective function is referred to as the energy of
the snakes. Let v(s) = (x(s), y(s)) be the para-
metric description of the snake (s € [0, 1]).

1
Esnake:/O‘ [Eint(u(s))+Eext(U(S))]d5 (8)
with:

Ein(s)=(a(s)] vs(s) P+B(s)] vss(s) 12>/%9)
Ei(s) represents the internal energy of the ac-
tive contour, E,(s) represents external (image)
forces, derivations are with respectto s, and v(s)
denotes a point along with the contour. The pa-
rameters o(s) and B(s) influence the degree of
smoothing. A large o (s) penalizes the develop-
ment of positional discontinuities and encour-
ages the contour’s tendency to shrink. Simi-
larly, a large B(s) d iscourages sharp bends in
the contour, whereas B(s) = 0 allows corners
to develop. The external energy term in Eq. &
is responsible for attracting the snake to the fea-
ture of interest in the image. The goal is to find
the snake that minimizes Eq. 8 which is solved
by using the calculus of variations and solving
the following Euler-Lagrange equation for v:

— (V) + (Bs)0")" + VEeu(v) = 0 (10)
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Fig. 5. Five different slices of the variance imaﬁe. Each pixel represents the variance of the grey level of the same

pixel in eight different images representing eig

t time phases of a cardiac cycle. Final positions of the snake have

been superposed on each image.

Discretizing the Euler equation with fi;) =
8Eext/ax,f and ‘B(l) — 3ng:/a)’i,

04i( Vi~ V;_1)— Oy 1(Vigr1— ;)
+Bi-1(Vi—2—20;-1+;)—2Bi(V;—1 —2V;+ Vi1 1)
+Bit1(0Vi—2Vi41+Vi2)+H(f (D), £,(i))=0(11)

with v(0) = v(n). Writing the equation in the
matrix forms, one for x and another for y yields,

Ax +f(x,y) =0 (12)
Ay + fy(x,y) =0 (13)

The final step is to solve for position vectors
iteratively,

X = (A+ }/I)“l(}’Xz—l — (Xt -1, ¥1-1)) (14)
ve = (A+ v (yye1 — fy(x—1, ¥-1)) (15)

In our application, the image gradient has been
used as external energy of snakes:
Eoxt = Eedge == _| v‘r(x': y) |2 (16)
The iterations converge to a local minimum of
the energy field which must be in the vicinity
of the border to be extracted. Checking for the
convergence can be based on the total energy of
the snake, with iterations being terminated when
the change in energy is below the threshold. But
in some cases the external forces can be large
enough to make the snake oscillate around the
equilibrium point. A more complete discussion
and examples of algorithms for active contour
models can be found in [Leroy et al. 1996].

4.2. Contour Propagation Technique

Propagation of epicardial boundaries along spa-
tial direction through different slices [Ranganath
1995] is a part of the algorithm. In general, car-
diac contours are more easily distinguishable

in the middle slices. It is reasonable to propa-
gate contours from the middle slice to the other
slices. Extracted contour in each slice is super-
posed on the next one (spatial adjacent slices)
and the algorithm is reexecuted. In order to
maintain good stability for the system, for the
results shown in this work, large coefficients
have been used for internal energy components
of the snake (c¢;,8)=(10,10). The maximum
number of iterations in each slice is set to 100
for the active contour algorithm. Fig. 5 shows
five different slices of variance image with su-
perposed detected contours. As external forces
for the snake, we have used a binary image pro-
duced by simple thresholding of the variance
image. A recursive implemented optimal gra-
dient filter [Abrishami et al. 1994] has been used
to produce gradient fields. Because of low spa-
tial and temporal resolutions and low contrast
and artifacts specially in GE images, the vari-
ance image is very noisy and specialist’s inter-
action might be necessary for epicardial contour
detection. Extracted contour in each slice is vi-
sualized and if necessary, the procedure can be
recalled with a new initialization and different
parameters. Fig. 6 presents an overview of the
global segmentation algorithm.

5. Results and Discussion

In our experiments, two 4D cardiac data sets
are used, a SE transversal image and a tur-
boFLASH image in short axis view, both of
healthy volunteers. The SE data has a do-
main of 256x256x8x8 with a voxel size of
1.25mmx 1.25mmx 10mm. The turboFLASH
data has a domain of 256 x256 x9x 10, obtained
with TR/TE/Flip angle of 9ms/6ms/30° and
a voxel size of 1.37mmXx 1.37mmx 10mm. In
both data sets the heart can be selected entirely
by a matrix size of 110x 110 pixels.
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MRI data
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!

Snake propagation over the whole
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Isolating the heart by using snake
derived contours as mask

3D reconstruction and visualization

Fig. 6. An overview of the global segmentation algorithm.

Fig. 7. (a) A number of slices from original SE data. Some of the slices have been obtained by interpolating the
original data. (b) the result of fuzzy object extraction and active contour algorithms.

Before applying the fuzzy object extraction al-
gorithm, the original grey level data is interpo-
lated using second order interpolation technique
to obtain cubic voxels. Using shape based in-
terpolation of grey level images [Grevera and
Udupa 1996] may improve the results presented
in this work. The binary volumetric image ob-
tained by active contour method has been inter-
polated using shape based interpolation [Raya
and Udupa 1990]. We implemented fuzzy ob-
ject extraction algorithms in 2, 3 and 4 dimen-
sions within an internal version of the 3DVIEW-
NIX software system (Udupa et al. 1993) from
which the 2D presentions have been obtained.

5.1. 2D Resulis

Performance of the algorithm was evaluated
qualitatively using a series of 2D results. A
clinical expert viewed the segmented images in
both studies and indicated the images which
appeared to be correctly segmented. The qual-
itative evaluation led to 90% and 85% visually

acceptable segmented images for SE and tur-
boFLASH studies, respectively. Many of the
discrepancies between the expert’s interpreta-
tion and the algorithm’s results are related to
apical and basal slices. At the apex level, the
cavity does not appear in all of the volumes
due to heart contraction. In general, epicar-
dial contours are detected interactively at this
level. Moreover, due to the echoes originated
by papillary muscles, the cavity is not easily
distinguishable from noisy points in this region.
In basal slices, the presence of vessels, makes
the procedure of epicardial boundary detection
more complicated and in manually tracing, the
expert tries to estimate the contour position by
reviewing the preceding and subsequentimages.

Fig. 7 compares the result of the algorithm with
the original SE data. A number of intermedi-
ate slices which have been obtained by inter-
polation have been shown. In Fig. 7(b), bright
regions inside the cavities may represent the
papillary muscles or noisy points which have
not been eliminated by the algorithm. In the ab-
sence of reliable low level constraints to distin-
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Fig. 8. Volume visualization of the heart using the SE data. For each image a different number of slices has been used.

guish between papillary muscles and artifacts,
the algorithm make no explici t attempt to deal
with papillary muscles. The specialist has the
possibility to interactively suppress or preserve
these points using a different minimum value
for connectedness; however, large values may
eliminate useful information of cardiac muscle.
Bright regions attached to the epicardium repre-
sent fat tissues. The descending aorta is visible
in all of the images.

5.2. 3D Results

Fig. 8 shows a volume visualization of the heart
using the SE data. Each image has been ob-
tained using a different number of slices. At
the apex level, note the presence of papillary
muscles inside the ventricular cavities. The de-
scending aorta is visible at the top of all images.
Fig. 9 presents a 3D visualization of the heart
using the turboFLASH data. Two ventricles

Fig. 9. Volume visualization of the heart using the turlgoFLASﬁI data. For each image a different number of slices has
cen used,
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Fig. 10. Dynamic volume visualization of the heart using the axial SE data. Anatomical details of the heart through 6
different time phases from diastole to systole are visible.

are visible in these images. Because of the poor
quality of the original data and bl ood move-
ment artifacts, the right ventricle is not entirely
visible in some of the images.

5.3. Dynamic Volume Visualization

Fig. 10 shows a volume visualization of the
moving heart at 6 different time phases from di-
astole to systole, using the 4D SE data. Anatom-
ical details of the heart, including ventricu-
lar muscles and interventricular septum in mo-
tion, are visible. The data in 3D presentations
has been rendered by ray-tracing technique us-
ing the VOLVIS software system (Avila et al.
1994).

6. Concluding Remarks

Based on 4D data available by cardiac MRI,
we developed a system for dynamic anatomical
volume visualization of the heart in which min-
imum interaction of a specialist is necessary.
Segmented 2D images obtained by the algo-
rithm are well correlated with original 2D slices
reviewed by a specialist. Our data set was very

limited to do a complete analysis and, more-
over, a study of variation in the results obtained
by different observers is necessary to gain a bet-
ter idea about the error resulted by the algorit
hm. The algorithm is relatively fast. On a clas-
sic workstation the run time for a 4D version of
the fuzzy object extraction algorithm is about 3
minutes for a threshold value of 0.1.

Characterizing ventricular wall motion is of
great importance for the diagnosis of local ab-
normalities in the myocardium thickening. This
will be the next part of our work which necessi-
tates automatic extraction of quantitative infor-
mation of the LV motion using fuzzy approach,
which is a complex task, especially in gradient
echo images.
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APPENDIX A

A fuzzy connected object O of a scene domaine
C of strength 6, = [x,1], 0 < x < 1, and con-
taining a pixel o consists of a pool O C C of
pixels together with a value indicating “object-
ness” assigned to every pixel. O is such that
o € O, for any pixel ¢ and d in O, the strength
of connectedness between them u(c, d) > x,
and for any pixels ¢ € O and e ¢ O, the strength
ux(c, e) < x. The value of obje ctness assigned
to pixels in O varies between 0 and 1 and the
value assigned to pixels outside O is 0.

For completeness, we reproduce below one of
the algorithms described in [Udupa and Sama-
rasekera 1996], which, given C, k, 0y, and o
extracts a fuzzy object containing 0. Note that,
before entering step 8 in the algorithm, the fuzzy
object information is available in the form of
a “connectivity scene” C, = (C,, f,), where
C,= € and forany.¢ € Cp fol6) = fielo;0)
That is, in this scene, intensity is proportional
to “hanging-togetherness” (Fig. 4(b)).

Algorithm: Fuzzy Object Extraction, k 0,FOE.
Input: C, o, x and 6, as defined above.
Output: Fuzzy object of C of strength 6, con-
taining o.

Auxiliary Data Structures: An nD array rep-
resenting the connectivity scene C, = (C,, f,)
of C and a queue Q of pixels. We refer to the ar-
ray itself by C, for the purpose of the algorithm.
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begin

end.

0. set all elements of C, to 0 except 0
which is set to 1;
1. push all pixels ¢ € C, such that
tx(0, ¢) > 0to Q;

while Q is not empty do

2. remove a pixel ¢ from Q;
3. iffolc) < xthen
4, find fnqr = max[min(f,(d),
deC,
ux(c; d));
5. if Loz = Foll) a0 fonse = %
then
6. setfo(c) :fmax;
ik push all pixels e such
that ug(c,e) > 0to Q;
endif,
endif;
endwhile;

‘8. Output the fuzzy object containing

o from the information in C,;
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