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Selective Medical Image Compression
using Wavelet Techniques:

Alfred Bruckmann and Andreas Uhl
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Selective Image Compression (SeLIC) is a compression
technique where explicitly defined regions of interest
(Rol) are compressed in a lossless way whereas image
regions containing unimportant information are com-
pressed in a lossy manner. Such techniques are of great
interest in telemedicine or medical imaging applications
with large storage requirements. In this paper we
introduce and compare different techniques based on
wavelet transforms and demonstrate their good perfor-
mance which is mainly due to the spatial locality of the
wavelet transform domain.

Keywords: wavelet image compression, region of inter-
est coding, selective image compression

1. Introduction

Wavelet-based image processing methods have
gained much attention in the biomedical imag-
ing community. Applications range from pure
biomedical image processing techniques such
as noise reduction, image enhancement, and de-
tection of microcalcifications in mammograms
to computed tomography (CT), magnetic res-
onance imaging (MRI), and functional image
analysis (positron emission tomography (PET)
and functional MRI) 35, 1].

Image compression methods that use wavelet
transforms (which are based on multiresolution
analysis — MRA) have been successful in pro-
viding high rates of compression while main-
taining good image quality, and have proven
to be serious competitors to discrete cosine
transform-(DCT) [38] or fractal-[11] based com-
pression schemes. Panych [23] and Utriza [36]
discuss aspects of wavelet-based compression

of medical images, wavelet-based compression
of medical video data is described by Ho [15]
and Wang [39].

Medical image compression is constrained by
the fact that most radiologists are not willing to
base a diagnosis on an image that has been com-
pressed in a lossy way. This is partially due to
legal reasons (depending on the corresponding
country’s laws) and partially due to the fear of
misdiagnosis because of lost data in the com-
pression procedure [40]. Therefore, only loss-
less techniques are accepted, which limits the
amount of compression to a factor of about 3
(in contrast to factors of 100 or more achievable
in lossy schemes). On the other hand, many
medical professionals are convinced that the fu-
ture of health care will be shaped by technolo-
gies such as telemedicine. Applications of this
type demand lower data rates as are achievable
with lossless schemes [7]. This shows the need
for efficient and widely accepted techniques for
medical image compression.

This paper presents methods based on wavelet
techniques for the compression of medical im-
ages that allow an image to be selectively com-
pressed. Parts of the image that contain cru-
cial information (regions of interest (Rol), e.g.
microcalcifications in mammograms) are com-
pressed in a lossless way whereas regions con-
taining unimportant information are compressed
in a lossy manner. This leads to considerably
higher compression rates as compared to pure
lossless schemes while critical information is
preserved.

* This work was partially supported by the Austrian Science Fund FWE, project no. P1 1045-OMA and has been awarded a
prize for medically relevant basic research of the Faculty for Natural Sciences, Univ. Salzburg, the so-called “Sackler-Award”.
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Fig. 1. 1-D and 2-D wavelet decomposition: lowpass (Ip) and highpass (hp) subbands, decomposition levels
(level 1 —level 3).

In block-based image compression schemes se-
lective image compression (SeLIC) techniques
may be applied in a straightforward way —
blocks containing Rol are compressed in a loss-
less mode, and the remaining blocks in a lossy
manner (for a SeLIC scheme based on fractal
compression see Sheppard [28]). In contrast to
such compression schemes, wavelet compres-
sion is applied to the entire image. Although
at first sight this seems to be a disadvantage for
wavelet-based SeLIC techniques, it turns out
to allow very efficient SeLIC schemes, a fact
which is mostly due to the spatial locality of the
wavelet transform domain.

2. Wavelet Image Compression

A wide variety of wavelet-based image com-
pression schemes have been reported in the
literature 3, 14, 19], ranging from simple en-
tropy coding to more complex techniques such
as vector quantization [2, 8], adaptive trans-
forms [10, 33], zero-tree encoding [26], and
edge-based coding [12]. The latest compres-
sion algorithms are based on set partitioning
in hierarchical trees [25] and some improve-
ments in arithmetic coding [41]. In most of
these schemes, compression is accomplished by
applying a fast wavelet transform to decorrelate
the image data, quantizing the resulting trans-
form coefficients (this is where the actual lossy

compression takes place) and coding the quan-
tized values taking into account the high inter-
subband correlations.

The fast wavelet transform (which is used in sig-
nal and image processing) can be efficiently im-
plemented by a pair of appropriately designed
Quadrature Mirror Filters (QMF). Therefore,
wavelet-based image compression can be
viewed as a form of subband coding. A 1-D
wavelet transform of a signal s is performed
by convolving s with both QMF’s and down-
sampling by 2; since s is finite, one must make
some choice about what values to pad the exten-
sions with [31]. This operation decomposes the
original signal into two frequency bands (called
subbands), which are often denoted as coarse
scale approximation (lowpass subband) and de-
tail signal (highpass subband). Then, the same
procedure is applied recursively to the coarse
scale approximations several times (see Figure
l.a).

The classical 2-D transform is performed by two
separate 1-D transforms along the rows and the
columns of the image data, resulting at each de-
composition step in a low pass image (the coarse
scale approximation) and three detail images
(see Figure 1.b); for more details see Mallat
[20].

The techniques described in the next section
may be applied to all compression schemes us-
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Fig. 2. Block-based and arbitrarily-shaped RoL

ing a scalar quantization procedure with sub-
sequent entropy coding including the most ef-
ficient and recent ones [26, 25, 41]. If vector
quantization [8] is to be used, SeL.IC is restricted
to the block-based approach.

3. Selective Wavelet Medical Image
Compression

In this work we do not cover the question as to
how Rol may be determined automatically (e.g.,
this could be achieved using wavelet techniques
again for the detection of microcalcifications in
mammograms [30]). We assume that Rol are
determined interactively by marking these (ar-
bitrarily shaped) regions on the screen, usually
by an expert (radiologist). We have developed
a graphical user interface which allows such in-
teractive marking of Rol.

All types of algorithms described in Sections 3.1
and 3.2 allow the selection of arbitrarily-shaped
Rol. In the block-based approaches (Section
3.1) the selected Rol are approximated by a
set of square blocks. Therefore, image data
not contained in the Rol are coded in lossless
mode due to additional boder data caused by the
approximation error. In the non block-based
methods (Section 3.2 — “generic wavelet ap-
proaches”) only image data belonging to the

Rol are coded in lossless mode via the informa-
tion of the importance map (see Figure 2 for the
representation of these techniques in the graph-
ical user interface).

Previous work on compressing different regions
in an image with different rates has been per-
formed by Jawerth [17] — in this early work the
interaction between lossless and lossy schemes,
details on quantization aspects, and the actual
image coding are not discussed. Emphasis is
given to the theoretical investigation of assign-
ing different weights to coefficients in the trans-
form domain.

It should be noted that the algorithms introduced
are composed of entirely independent compo-
nents (i.e. lossless coding, lossy wavelet cod-
ing, and shape coding of the Rol) resulting in
a modular structure. Only in a concrete im-
plementation it is determined which technique
is used for which component of the algorithms
(e.g., the lossless compression of the Rol may
be performed using any type of lossless cod-
ing including runlength, Huffman, arithmetic,
Lempel-Ziv, lossless predictive, or arithmetic
coding).

3.1. Block-based Techniques

The image data to be compressed consist of two
types of blocks (typically of size 32 x 32). The
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Fig. 3. Algorithms 1 and 2: marked regions are covered with the lossless mode.

first type is compressed in a lossless mode. The
second type is compressed in a lossy mode with
the wavelet coder. This leads us immediately
to the question of how to compress image sub-
blocks with a wavelet coder.

Significant work has already been done cov-
ering related topics, ranging from discussions
concerning border treatment in wavelet trans-
forms [31] to the construction of interval-based
wavelet transforms and algorithms [6, 21].
Moreover, block-based waveletimage compres-
sion schemes have been investigated extensively
using fixed image tilings [4, 16], adaptive
image tilings [32], and the “Double Tree Al-
gorithm” [13, 24].

We propose the following algorithms:

e Algorithm 1: The blocks not to be coded
in lossless mode are compressed lossy with

the wavelet coder (unmarked blocks in
Figure 3 left) which

1a uses aclassical wavelet transform with
periodic padding at the edges of the
image.

1b usesaclassical wavelet transform with
cutoff at the edges of the image.

1c uses aclassical wavelet transform with
mirroring at the edges of the image.

1d uses an interval-based wavelet trans-
form with especially designed border
filters [6].

s1x uses one of the techniques mentioned
above and subsequent smoothing of
the borders of the image blocks (e.g.,
Algorithm sla consists of applying
Algorithm la with subsequent smo-
othing operation).

e Algorithm 2: Usually, wavelet algorithms
achieve better results for larger blocks
(block border effects and the amount of
side information increase for smaller
blocks).  Therefore we recombine all
blocks which are to be compressed in lossy
mode to larger blocks instead of apply-
ing the wavelet coder to each small block
separately (see Figure 3 right). Similarly,
instead of compressing the Rol on a block-
by-block basis as in Algorithm 1, the Rol
blocks are recombined as well prior to the
lossless coding procedure. In analogy to
Algorithms 1 we may again distinguish
among Algorithms 2a — 2d and Algorithms
s2a —s2d.

3.2. Generic Wavelet Techniques

The image data to be compressed consist of dif-
ferent components (as in the previous section):
the Rol and the remainder. The Rol data con-
sist of one or more arbitrarily-shaped parts of
the image to be compressed in lossless mode;
the remainder (again with arbitrary shape) is
to be compressed in a lossy mode. The Rol
data consist of two parts — the actual image
data (gray values, texture information) and in-
formation about the shape and position of the
region. Shape and position are represented by
a binary image consisting of 0’s (for already
lossless compressed regions) and 1’s (for the
remainder). We denote this binary image as
“Importance map”. In the emerging MPEG-
4 standard a similar concept for coding shape
and position of objects in different video ob-
ject planes (VOPs) is denoted as “alpha plane”
concept [29].
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Fig. 4. Rol (gray region on the left side) and corresponding wavelet domain importance map (right side).

e Algorithm 3: After having compressed
the Rol, the region is

3a either left in the image where it was

3b or subtracted from the image and re-
placed by a region consisting of pixels
with uniform gray-value.

Subsequently the resulting image is com-
pressed using a regular wavelet coder
(which is applied to the entire image);
therefore, the Rol data are partially coded
twice.

Algorithm 4: The remainder of the im-
age is compressed in a lossy manner by
applying a wavelet transform to the entire
image.

The importance map is projected into the
wavelet domain (see Figure 4). The wave-
let domain importance map determines the
wavelet coefficients which belong to the
remainder of the image. This side infor-
mation is used in the quantizer and coder
step — these operations are performed tak-
ing into account which part of the data be-
longs to the remainder on a coefficient-by-
coefficient basis. Coefficients with a 0 at
the corresponding position of the wavelet
domain importance map are simply dis-
carded.

The possibility of performing this opera-
tion on a coefficient-by-coefficient basis
is due to the spatial locality of the wavelet
transform domain. This technique is not

4. Experimental Results

The following components are used for the al-
gorithms in our experiments:

e Lossless coding: we apply a 2-D adaptive

linear prediction with subsequent Huffman
error coding (similar to [18]). Other pos-
sible choices are described by Nijim [22]
and Shen [27].

Lossy wavelet coding: we use Daubechies’
compactly-supported wavelets [9] with 10
filter taps (we successfully used the corre-
sponding family of filters in our previous
work [33, 34], see Villasenor [37] for a
discussion about proper filter choice for
wavelet coding) and maximal decomposi-
tion depth (depending on image or block
size). The lowpass approximation is coded
in lossless mode, whereas highpass sub-
bands are adaptively scalar-quantized us-
ing a variance-based bit allocation proce-
dure. The quantized coefficients are coded
by employing a combination of Huffman
and runlength coding (similar to the JPEG
algorithm).

Rol shape/position coding: the impor-
tance map is compressed using a tech-
nique derived from facsimile compression
(a variant of runlength coding combined
with an XOR operation). This and other
possiblities are investigated within the
MPEG-4 standardization process [29].

possible using, e.g., a Fourier or DCT ap- ~ We have chosen relatively large Rol in order
proach where only global frequency infor-  to present results of borderline applications —
mation is available. if smaller Rol are considered, the achievable
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Fig. 5. Test image (8bpp, 512 x 512 pixels Lung CT) with one Rol within the graphical user interface (a) and
corresponding rate/distortion performance for Algorithms 1 and 2 (b).

compression rates are much higher. (Consider-
ing a Rol which covers 20% of the entire image
and a maximal lossless compression rate for this
region of 2.5, we obtain an upper bound com-
pression rate of 12.5 for the entire image; this
bound may only be reached if no data of the
“unimportant” regions are stored. )

The compression rate is defined as

number of bits in the original image

number of bits in the compressed image

Peak signal-to-noise ratio (PSNR) is used as
an objective measure of image quality and is
defined as follows (measured in deciBel dB):

2552

2
€ins

PSNR = 10log;,

where 255 is the maximal gray-value of the
original image and e2, is the average sample
mean-squared error.

L e .
ens = 37 D _(f(.0) = F(i.))?
i=1 j=1

where f(i, /) and £ (i, j) represent the N x N orig-
inal and the reproduced images, respectively.
The data of the compressed image obviously

consist of both the lossless and lossy coded
parts, plus the necessary side information (e.g.
in which way particular blocks are coded or the
importance map in the generic wavelet case).

We use three test images with 8 bits/pixel (bpp)
and 512 x 512 pixels each. Figure 5.a shows
a Lung CT with one large Rol, Figure 5.b dis-
plays a comparison of Algorithms 1a, sla and
2a for this image. The superior performance of
Algorithm 2a is clearly exhibited. Also, we note
the better behavior of the algorithm with block
smoothing, which is even more pronounced by
visual inspection (see Figure 6). The same ef-
fect may be observed in even stronger fashion
for the digital angiogram (with two Rol, see
Figure 7.a) in Figure 7.b, where we notice a
PSNR gain of up to 3.5 dB for compression
rates above 2. These observations hold for all
smoothing techniques. Concerning the variants
a—din Algorithms 1 and 2, there is a clear rank-
ing: cutoff performs worst, interval filters best,
and periodizing and mirroring perform almost
equally between the two former modes.

The effect of different block sizes in Algorithms
1 and 2 is documented in Figure 8.a. We ob-
serve increasing image quality along with in-
creasing block sizes. These results are due to the
large amount of side information and poor per-
formance of the wavelet coder for small block
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Fig. 7. Digital angiography (8bpp, 512 x 512 pixels) with Rol (a) and corresponding rate /distortion performance for
Algorithms la (with and without smoothing) and 2a (b).

sizes. Of course, this effect is limited at block
size 32, because at size 64 too much image infor-
mation outside the Rol is coded in lossless mode
to achieve competitive results. Additionally,
these results depend strongly upon the shape of
the Rol.

Figure 8.b shows a comparison among Algo-
rithms 3a, 3b, and 4. Algorithm 4 gives the
best results (as we expect), whereas it is some-
how surprising that Algorithm 3a outperforms
3b. This is probably due to the discontinuities in

the transform domain introduced by Algorithm
3b.

Finally, we compare the performance of Algo-
rithms 2a and 4 (i.e. the best block-based and
the best generic algorithms). Figure 9 compares
the effects if two differently structured Rol are
chosen within the same image. Whereas Fig-
ure 9.a displays the rate/distortion performance
for one large Rols (compare Figure 5.a), Figure
9.b documents the same measurements for two
smaller Rols (compare Figure 2). The superior
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Effects of Different Block Sizes
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Fig. 8. Rate/distortion performance for different block-sizes in Algorithms la and 2a (a) and comparison of
Algorithms 3 and 4 (b) (applied to the image and Rol in Figure 5.a).
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Fig. 9. Comparison of rate/distortion performance of Algorithms 2a and 4 with one large Rols (see Figure 5.a) (a)
and two smaller Rols (see Figure 2) (b).

performance of algorithm 4 is clearly exhib-
ited in both cases. Moreover, it is evident that
the gap between block-based and generic ap-
proaches is much larger in the case of two Rols.
The obvious reason is that the amount of side in-
formation does not change for the generic algo-
rithm whether one or more Rols are considered,
whereas the opposite is true for the block-based
algorithm. The better results of the generic ap-
proach are confirmed when performing a visual
comparison — the images in Figure 10 (Rol as
given in Figure 5.a) are compressed with a rate
of sligthly more than 6 and correspond to image
quality of 25.5dB {Algorithm 2a - Figure 10.a)
and 30.5dB (Algorithm 4 - Figure 10.b). As it
is commonly known, it is problematic to judge
image quality using “objective” numerical qual-

ity measures. In our case, numerical results and
visual inspection confirm the same trend: the
visible differences are as high as would have
been expected from the numerical data (com-
pare also Figures 5.b and 6 ). Figure 12 again
shows a comparison of rate/distortion perfor-
mance between Algorithms 2a and 4 (applied
to the radiography in Figure 11). Whereas with
Algorithm 4, we achieve compression rate 16
with acceptable quality (30.5 dB), Algorithm
2a already shows a much lower quality (27.5
dB) at compression rate 10. Additionally, in
this case, Algorithm 2a is not even capable of
achieving compression rates much higher than
10, regardless of the quality achieved.
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Fig. 10. Visual quality of reconstructed images achieved by Algorithms 2a (a) and 4 (b) at compression rate 6 for Rol
in Figure 5.a.

(a)

Fig. 11. Original digital radiography (8bpp, 512 x 512 pixels) of a pregnant female (a) and corresponding Rol (b).

5. Conclusion

We observe that for a selective application of
image compression a block-based wavelet com-
pression approach is less suitable. Comparing
generic approaches, the technique integrating
the importance map and side information di-
rectly into the quantization and coding proce-
dures turns out to be superior.

The demonstrated compression performance and
the already known properties of common wave-

let-based image compression, such as suitability

for progressive transmission and low computa-

tional complexity make wavelet-based selective

image compression an excellent choice for all

types of telemedical and medical imaging ap-

plications.
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