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for Medical Image Registration
in Radiological Diagnosis and Image
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Registration of images is a key technique for numerous
medical applications from diagnosis to image guided
therapy. In the present paper we focus on gray-value
based registration methods. Of special interest is the
so-called similarity measure which must be optimized. It
is the intention of the paper to emphasize the fact that a
successful registration requires a similarity measure that
is carefully chosen with respect to the underlying medical
application. Two single-modality examples are presented
in the paper, i.e. the diagnostic tool of digital subtraction
angiography and an intervention guidance under X-ray
fluoroscopic control. We discuss new similarity mea-
sures, i.e. the class of one-dimensional histogram based
measures and the pattern intensity, designed for these
applications and compare them with frequently used mea-
sures like the cross-correlation function, cross-structure
function and deterministic sign change criterion. It
is demonstrated that the results obtained with the new
measures are superior to the results obtained with the
latter mentioned ones.

Keywords: Image registration, single modality, similar-
ity measure, pattern intensity, energy, digital subtraction
angiography, image guided surgery.

1. Introduction

For diagnosis and therapy it is often necessary
to merge information from different images.
These images may be of the same modality,
but acquired at different times to judge and con-
trol the success of an intervention. They may
show a patient before and after injection of con-
trast agent as in the case of digital subtraction
angiography (DSA) or they may represent dif-
ferent modalities such as MRI, CT, PET etc.
and provide complementary information about

a patient. In every case, the images must be reg-
istered to obtain morphologically correct image
overlays, because the patient has usually been
differently positioned in the imaging devices or
slightly moved during an image acquisition ses-
S§101.

Registration may be done point-based, surface-
based or voxel-based (Van den Elsen, 1993).
In the latter case, a similarity measure is eval-
uated for a given transformation between the
image coordinate systems and registration is
performed by optimizing the similarity measure
with respect to the parameters of the transfor-
mation. Especially for multi-modality registra-
tion, i.e. registration of images obtained from
different acquision techniques, it is very dif-
ficult to define a suitable similarity measure
leading to a proper registration result. Ma-
jor advances have been made recently in that
context with the application of mutual informa-
tion (Collignon et al., 1995a/b). But even in
the case of single-modality registration, well-
known similarity measures such as the cross-
correlation function (Pratt, 1974, Rosenfeld and
Kak, 1982), cross-structure function (Schulz—
Dubois and Rehberg, 1981, Svedlow et al.,
1978) and correlation coefficient (Hua and Fram,
1993) fail in various applications. Though
the images represent the same modality they
may differ because of the injection of contrast
agent, surgical instruments or implants visible
in one but not in the other image, anatomical
differences due to an intervention or various
other reasons. To cope with such problems,
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further similarity measures such as determin-
istic sign change (Venot and Leclerc, 1984,
Venotetal., 1984, 1988), histogram-based mea-
sures (Buzug et al., 1997) and pattern intensity
(Weese et al., 1997a) have been developed.

There is, however, no similarity measure which
is in general superior to the others. It depends
on the properties of the images and on appli-
cation requirements such as computation time
which measure performs best for a specific ap-
plication. In this contribution we derive for two
medical applications — registration for digi-
tal subtraction angiography image enhancement
and 2D/3D registration for navigation support
inimage guided surgery — the requirements for
similarity measures and discuss to what extent
the above mentioned measures are suitable.

In the following section the medical applica-
tions are presented and the requirements for the
similarity measures are derived from typical im-
ages and application requirements. In the third
section the similarity measures are briefly intro-
duced and the capabilities as well as limitations
with respect to the considered applications are
discussed. The fourth section includes exam-
ples illustrating the most important points. The
conclusions are summarized in the fifth section.

2. Medical Applications

Two X-ray fluoroscopy-based medical applica-
tions are described and requirements for the
similarity measure are derived in the follow-
ing subsections. The first application is digi-
tal subtraction angiography (DSA) which is a
well-known tool in vessel diagnosis (Chilcote
et al., 1981). The second application is reg-
istration of 2D X-ray fluoroscopies with 3D
CT images. The registration result can be
used to support navigation when placing pedi-
cle screws in spine surgery (Lavallee et al.,
1996) or a stent in the treatment of abdomi-
nal aortic aneurysms according to the Trans-
femoral Endovascular Aneurysm Management
(TEAM) procedure which is considered in the
EC project EASI (Buurman, 1996).

2.1. Digital Subtraction Angiography Image
Enhancement

Digital subtraction angiography (DSA) is a stan-
dard diagnostic tool for the examination of blood
vessels. For this method X-ray images are taken
from a patient before and during injection of a
radio-opaque contrast agent through a catheter.
The first image of such a sequence, the mask im-
age, is not affected by the contrast agent. This
image is subtracted from a contrast image, i.e.
an image acquired during injection of the con-
trast agent, to visualize the vessels. Usually the
patient moves slightly which leads to disturbing
artifacts in the subtraction image.

In clinical routine the mask image is manually
shifted with respect to the contrast image to per-
form a rough patient motion compensation and
to reduce the motion artifacts. To improve this
procedure an algorithm working automatically
in a region-of-interest defined by the physician
is desired. Such an algorithm must be very ro-
bust, highly reliable and at least as fast as the
manual correction which is performed within a
few seconds. Otherwise, it won’t be acceptable
in clinical routine. In addition, more complex
transformations than a shift may be applied to
further increase the image quality.

A suitable algorithm for DSA image enhance-
ment consists, for example, of the following
steps (Buzug et al., 1996):

1. Subdivision of a user-defined region-of-inte-
rest into a set of quadratic, disjunct tem-
plates.

2. Computation of the template shift in the mask
image with respect to the contrast image. In
that way a motion vector field is obtained.

3. Approximation of the motion vector field by
an affine transformation using singular value
decomposition (Press et al., 1990).

4. Subtraction of the affinely corrected mask
image from the contrast image.

As an example, Fig. 1 shows a mask image (a),
contrast image (b), uncorrected subtraction im-
age (c) and enhanced subtraction image (d) of
the head. The region-of-interest is drawn as a
rectangle and blown-up for better visualization
of the motion vector field which is indicated
as white lines attached to the template centers.
Thanks to the affine motion compensation, most
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Fig. 1. Mask (a) and contrast (b) image of head fluoroscopies. A motion-vector field is estimated via template matching, As a
result a set of homologous point landmarks are obtained and indicated as white and dark crosses in the mask and contrast image,
respectively. The motion — visualized with white lines attached to the crosses in the contrast image (see blown-up region) is
compensated inside a user-defined region-of-interest indicated by white rectangles. Figure (c) shows the manual-shift corrected
subtraction result to demonstrate the motion artifacts and figure (d) shows the affinely corrected subtraction result.
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o X-ray source

Projectionl planel

Fig. 2. Setup for the generation of pseudo projections. The corresponding coordinate systems of the segmented CT
3D-template as well as the projection plane are indicated.

of the cloudy artifacts, visible in the uncorrected
subtraction image, vanish in the enhanced sub-
traction image.

2.2. 2D/3D Registration for Navigation
Support in Image Guided Surgery

Given a 2D X-ray fluoroscopy and a 3D CT
image, the location and orientation of the CT
image with respect to the geometry of the X-ray
imaging device can be determined by 2D/3D
registration. The geometrical setup is indicated
in Fig. 2. The registration result can be used to
superimpose information from the CT or CTA
image onto the X-ray image. If a suitable cal-
ibrated X-ray device is used for intra-operative
imaging, the registration result can also be used
to display surgical instruments tracked by a nav-
igator system in the CT image.

For this purpose a novel registration method has
been proposed recently (Weese et al., 1997a).
The basic idea of this method is to use a rigid
structure as e.g. a vertebra for registration and
to rub out all structures due to the object-of-
interest in the X-ray fluoroscopy using pseudo
projections of the CT volume with the object-of-
interest. In the case that all structures vanish,
the correct location and orientation of the CT

image with respect to the X-ray device has been
found.

The corresponding 2D/3D registration algo-
rithm consists of the following steps:

1. Segmentation of the object-of-interest in the
pre-operatively acquired CT image.

2. Subtraction of the average gray-value of the
tissue around the object-of-interest from the
CT image.

3. Computation of pseudo projections taking
into account only the CT 3D-template ob-
tained by segmentation (Fig. 2). In that way
a 2D projection template is obtained show-
ing only the gray-value variation due to the
presence of the object-of-interest.

4. Scaling of the projection template’s gray-
values and their subtraction from the X-ray
image. For a proper gray-value scaling and
the correct location and orientation of the CT
image, the structures in the X-ray projection
corresponding to the object-of-interest will
vanish, and overall there will be less struc-
tures visible after subtraction.

5. Calculation of an appropriate similarity mea-
sure characterizing the ‘structuredness’ of
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vertebra of interest

Fig. 3. Slice of CT image showing a vertebra slice (a) and segmented vertebra (b). The intra-operatively acquired
vertebra fluoroscopy (c) as well as subtraction result (d) are illustrated.

the X-ray image after subtraction of the gray-
value scaled projection template.

6. Optimization of the ‘structuredness’ with re-
spect to the gray-value scaling and the pa-
rameters characterizing location and orien-
tation of the CT image. Within each itera-
tion of the optimization, steps 3 to 5 must be
repeated.

Pre-processing of the CT image in steps 1 and
2 can be done prior to the intervention where
time is not crucial. Registration itself is done in
steps 3 to 6 and takes about 60-90 s (WEESE
et al., 1997a) which is nearly acceptable for an
intervention. However, most time is spent in the
computation of the pseudo projection from the
CT 3D-template and time for the evaluation of
the similarity measure can be neglected.

As an example images of a TEAM procedure are

used. Fig. 3a shows a slice of a CT image with a
vertebra which is the object-of-interest, Fig. 3b
a projection template, Fig. 3¢ an intra-operative
X-ray image, and Fig. 3d the intra-operative
X-ray image with the registered projection tem-
plate subtracted. After registration all structures
due to the vertebra-of-interest vanish, indicating
proper registration. There are, however, struc-
tures left. Air bubbles in the intestine as well as
a catheter are clearly visible in the area of this
vertebra. This means that the projection tem-
plate and the corresponding template in the X-
ray image differ not only by a gray-value scaling
and a gray-value offset representing a homoge-
neous background. There are further structures
overlaid to the template in the X-ray image and
for a reliable and accurate registration result it
is most important that the similarity measure is
robust with respect to such structures and not
disturbed by them.



170

Voxel-Based Similarity Measures

3. Similarity Measures

In the following subsections cross-correlation
function, structure function, correlation coef-
ficient, deterministic sign change, histogram-
based measures, mutual information and the
pattern intensity are introduced. The proper-
ties of these measures as well as their capabil-
ities and limitations are discussed. Particular
attention is paid to the question whether and to
what extent they can be used for DSA image
enhancement and 2D /3D registration.

Within the following subsections g1(x,y) de-
notes the reference image to which the image
g2(s,y : p) is registered. The latter image de-
pends on the parameters p. The set M defines
the points over which the similarity measure is
evaluated and # M denotes the number of points
in this set. In the case of DSA the parameters p
are the horizontal and vertical shifts » and s of a
template in the mask image with respect to the
contrast image. For a template of size L x K
with its corner at (xq, yo), the set M is given by

{y)xo <x <xo+LAyy<y < yo+ K}

In the case of 2D /3D registration, the param-
eters p describe gray-value scaling as well as
location and orientation of the CT image used
to generate the pseudo projection. The set M
contains the pixels of the pseudo projection for
which the corresponding X-ray intersects the
object-of-interest.

3.1. Cross-Correlation Function

The cross-correlation function (Pratt, 1974,
Rosenfeld and Kak, 1982) is defined as

GB) = 5 O (81(xy) —m)x

(x.y)EM
x (g2(x,y:p) —ma), (1)

where
1
m) = w Z gl(xay)a
(xy)eMm 2)
1
"2 = e Z 82(x, y; p)
(x,y)eM

are the average gray-values in the area of the
template. By maximizing this function similar

templates can be found. If a constant gray-value
is added to one of the images, the maximum
remains unchanged, because the average gray-
value is subtracted from each image. The loca-
tion of the maximum also remains unchanged if
one image is scaled with a positive factor. The
templates in both images need, therefore, not
be completely identical. They can differ with
respect to a positive gray-value scaling and a
gray-value offset without influencing the result
obtained with the cross-correlation function as
similarity measure.

If a gray-value gradient or a structure is over-
laid onto one template, problems with the cross-
correlation function can occur. In the case of
DSA, difficulties have been observed if there
is a contrasted vessel in the template (Hua and
Fram, 1993, Fitzpatrick et al., 1987, 1988). Dif-
ficulties are also expected for 2D /3D registra-
tion, because the background of the object-of-
interest is usually not constant and may show
surgical instruments or other organs.

3.2. Cross-Structure Function

The cross-structure function, first mentioned in
(A. N. Kolmogorov, 1941), is defined by

S = 5z X (81003) -2 B ()

(x,y)eM

and must be minimized for registration. Regis-
tration with this function can be considered as
a Least-Squares method (PRESS et al., 1990)
where g1(x, y) are the data, g;(x, y; p) the model
and p the parameters which are fitted. Good re-
sults are, therefore, expected in the case of iden-
tical templates and every dissimilarity degrades
the result. Compared to the cross-correlation
function, results obtained with the cross-structure
function are sensitive to a gray-value offset and
a gray-value scaling in one of the templates.

In the case of DSA, similar difficulties as for the
cross-correlation function are expected if there
is a contrasted vessel in the template. In order
to use the cross-structure function for 2D/3D
registration, an additional parameter represent-
ing the gray-value of the background must be
introduced and fitted. Nevertheless, in clini-
cal practice the background of the object-of-
interest may not be constant and overlaid struc-
tures should cause problems.
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3.3. Correlation Coefficient

Considering registration with the cross-structure
function as a Least-Squares method, a gray-
value scaling G and a gray-value offset mg can
be treated within this concept. For that purpose
these parameters are inserted in Eq. (3) leading
to

1
Y > (a1lx,y)
(x,y)eM

— Gga(x, y: p) — mo).

S(ﬁs GJ 1110) =

4)

Minimization with respect to the gray-value
scaling G and the gray-value offset myg can be
done in a Least-Squares sense (see e.g. Press et
al., 1990). In that way the equation (5)

Z (81(x, y)—m1)?

(x,y)eM

» (gl(xuy)mml)(gz(x,y;ﬁ)—m))z

(x,y)eM

#M Y (ga(x, y:p)—ma)?
(x,y)eM

(=5

(

()

is obtained. The first term in this equation is
the gray-value variance of the template in the
reference image g;(x, y). The second term rep-
resents the reduction of the gray-value variance
due to registration of g»(x, y;p). The ratio of
both terms

C(p)=

(515, 3) 1) (g2, 35 ) -m) )
(x,y)eM

> (105 y)—mi)?3 (820%,y;P)—m2)? ()

(x,y)eEM (x,y)eM

SN

is the square of the well-known correlation co-
efficient C(p). The correlation coefficient is
frequently used as a similarity measure in med-
ical imaging (see e.g. Hua and Fram, 1993) and
shows essentially the same characteristic prop-
erties as the cross-correlation function.

3.4. Deterministic Sign Change

The deterministic sign change (Venot and Leclerc,
1984, Venot et al., 1984, 1988) is defined in a
3-step procedure:

I. Addition of a periodic pattern to one of the
images:

g(x,y)=g1(x, y)+0 if x+y is even (7)
g(x,y)=g1(x, y)—6 if x+y is odd,
where § is the so-called pattern depth. The
pattern depth & may be chosen in the same
order of magnitude as the standard devi-
ation of the noise in the images and it has
been shown that there is no advantage in se-
lecting the pattern depth more than 2 times
larger (Venot and Leclerc, 1984).

II. Subtraction of images:

d(x,y;p) = &i1(x,y) — g2(x, y;9).  (8)

III. Evaluation of criterion:

D(p) : number of sign changes in the
template of the difference image

d(x, y; p) scanned line by line
(9)

This similarity measure is based on the idea
that in the case of misregistration most parts of
the periodic pattern are hidden whereas in the
case of registration all structures except for the
periodic pattern vanish in the difference image
d(x, y; p). The deterministic sign change does,
however, not only work in the case of two iden-
tical templates, but also if part of the periodic
pattern is hidden by an additional structure as
e.g. a contrasted vessel. It can also be applied if
one of the templates shows a gray-value offset.
To compensate for this, the average gray-values
in the area of the templates can be subtracted.

There are, however, some problems related to
the application of the deterministic sign change.
Since image statistics vary largely with image
position, type of examination, and acquisition
hardware, it may be necessary to introduce the
pattern depth and, as mentioned above, the gray-
value offset as dynamically adaptable parame-
ters (K. J. Zuiderveld et al., 1989a/b). Further-
more, this measure is not a smooth function and
not differentiable with respect to the parame-
ters p, because it is based on counting. For that
reason many optimization methods cannot be
used (Venot et al., 1988), and optimization is
difficult or, at least, very time-consuming.
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As indicated above, the deterministic sign change
can cope with additional structures overlaid to
one template and should hence be suitable for
DSA image enhancement as well as for 2D/3D
registration. In the case of DSA a horizon-
tal and a vertical shift have to be determined
which is a solvable optimization problem, be-
cause, in principle, a full search in the parameter
space is possible. Nevertheless, with those op-
timization strategy it is hard to meet clinical
requirements concerning computation time. In
the case of 2D/3D registration where six pa-
rameters describing location and orientation of
the CT image and the gray-value scaling must
be adjusted, reliable and fast optimization is,
however, nearly impossible.

3.5. Histogram-Based Similarity Measures

One-dimensional histogram-based similarity
measures have been proposed in the context of
DSA image enhancement (Buzug et al., 1996).
They are defined in a 3-step procedure:

I. Subtraction of images:
d(x,y;p) = g1(x,y) — ga(x,¥; ). (10)
IL. Calculation of gray-value histogram:

Pk - fraction of pixels in the template of
the difference image d(x, y; p) with
gray-value k. These fractions depend
on the parameters . (11)

III. Evaluation of criterion:

M(p) = f(pr) (12)
k

using a function f(p) which is strictly con-
vex for p > 0. Suitable functions are, for
example,

filpe) = prlog py, (Information)

falpe) = P%, (Energy)
f(pr) = —/Pr, (negative branch of
square-root)  (15)

The starting point for histogram-based mea-
sures is the observation that in the case of reg-
istration the histogram is peaky, whereas mis-
registration leads to gray-value dispersion and a

much broader histogram. M(p) measures gray-
value clustering and it has been proven that for
all strictly convex functions f, M(p) increases
for increasing gray-value clustering (Buzug et
al., 1997). In the case of maximum dispersion,
i.e. if all gray-value fractions p; have the same
value, M(p) has its global minimum.

For identical templates the histogram shows one
large peak in the case of registration. A gray-
value offset in one template shifts this peak,
but does not influence dispersion or clustering
and the measure M(p) remains, therefore, un-
changed. An overlaid structure, as e.g. a ves-
sel, will cause another peak in the histogram,
but will not significantly increase gray-value
dispersion, if the overlaid structure has a rel-
ative constant gray-level. For that reason, one-
dimensional histogram-based measures are as-
sumed to be suitable for DSA image enhance-
ment as well as for 2D /3D registration. How-
ever, problems are expected if e.g. a strong gra-
dient is overlaid to one template, because a gra-
dient may cause a considerable gray-value dis-
persion.

3.6. Mutual Information

Mutual information has been introduced re-
cently as a similarity measure for 3D multi-
modality image registration. This measure is
based on the so-called feature space or scatter
plot p(gk, g;) which are two-dimensional his-
tograms describing the frequency of voxels with
gray-values g; and g; at corresponding spatial
positions in the images to be registered. Given
the scatter plot, mutual information can be eval-
uated according to

- og( P8k 81
= ; Pla )] g(pi (g1)p2(gx)

). (16)
where pi(g) and pa(g) represent the frequency

of voxels with gray-value g in each of the im-
ages (Collignon et al., 1995a/b).

This similarity measure is motivated by the ob-
servation that registration goes along with clus-
tering in the scatter plot and mutual information
quantifies this clustering. There have also been
defined a variety of other functionals to char-
acterize the scatter plot (Haralick et al., 1973,
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Bro-Nielsen, 1997) and some of them may also
be suitable for quantifying clustering. Espe-
cially, all strictly convex weighting functions
introduced in the previous section lead to useful
similarity measures. The concept of mutual in-
formation is similar to that of one-dimensional
histogram-based similarity measures, but more
general because it can be applied to multi-
modality image registration.

Mutual information has been applied with great
success to 3D image registration of different
modalities as e.g. CT, MR and PET (Collignon
et al., 1995a/b). However, in the case of DSA
image enhancement and 2D /3D registration dif-
ficulties arise, because both are 2D problems
and templates with less than 500 pixels may be
used. Compared to that, the scatter plot has
a huge amount of bins as e.g. 65536 for im-
ages with a gray-value resolution of 8 bits, and
the scatter plot will only sparsely be occupied.
This leads to a poor statistics, and therefore,
the mutual information as well as other scatter
plot-based measures are not subsequently con-
sidered.

3.7. Pattern Intensity

With the registration becoming better, corre-
sponding structures in the images should erase
each other in the difference image and gener-
ally the number of structures should decrease.
To characterize the ‘structuredness’ in the dif-
ference image d(x, y; p), a small value may be
assigned to points in the neighborhood of struc-
tures such as gray-value edges or lines and a
large value to points in the areas showing only
little gray-value variation.

A suitable quantity leading to the desired effect
is the pattern intensity (Weese et al., 1997a):

PR,O’(ﬁ) -

o2
Z Z o2+ (d(x, y; p)—d(v, W§l7))2(17)

XY (x—v)2+(y—w)

It depends on two parameters. The parame-
ter R defines the size of the neighborhood in
which gray-value variations are taken into ac-
count. The parameter o is the sensitivity defin-
ing whether a gray-value variation is considered
to be a structure or not. Evaluation of the pattern
intensity is time-consuming, because for each

pixel in the template of the difference image the
gray-values of a number of neighboring pixels
have to be considered. The pattern intensity de-
pends, therefore, on the spatial distribution of
the gray-values in the difference image. This is
an important difference compared to the simi-
larity measures mentioned above which give a
value that is not related to the spatial gray-value
distribution.

The pattern intensity is not affected by a gray-
value offset in one template and should also
work if structures are overlaid onto one tem-
plate. Nevertheless, it is not suitable for DSA
image enhancement, because evaluation of the
pattern intensity is very time consuming and
computational efficiency is highly important for
this application. In the case of 2D /3D registra-
tion time for evaluation of the similarity mea-
sure is less important, because a major part of
the computation time is spent during generation
of the projection template.

4. Discussion and Examples

In this section it is shown that voxel-based single
modality registration is a challenging problem
if there are additional structures overlaid onto
one of the images. In this case well-known
similarity measures as e.g. the cross-correlation
function fail and measures especially adapted to
cope with such additional structures must be ap-
plied. For DSA image enhancement the cross-
correlation function, the cross-structure func-
tion, deterministic sign change and histogram-
based measures are taken into consideration and
the influence of a contrasted vessel is illus-
trated. In connection with 2D/3D registration
the correlation coefficient, the entropy of the
gray-value histogram and the pattern intensity
are evaluated.

4.1. DSA Image Enhancement

For the DSA algorithm outlined in the second
section the choice of an appropriate similar-
ity measure used to calculate the motion vector
field is most crucial for success. It is not suffi-
cient that the similarity measure works for the
templates which are nearly identical in mask and
contrast image. As the physician will always
choose a region-of-interest containing vessels,
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Fig. 4. Mask (a) and contrast image (b) of the abdomen. The aorta, superimposed to the vertebra, is strongly
contrasted by injection of the contrast agent in (b). Two (128x128)-pixel templates are indicated in the images.
Template A is not affected by contrast agent. Hence, nearly identical templates can be found in the mask and contrast
image (indicated by arrows). For template B the location has been chosen to include large gray-value dissimilarities
due to the contrasted aorta.

it is most important that the similarity mea-
sure leads also to the correct shift for templates
which are overlaid by a vessel and strongly af-
fected by the injection of contrast agent.

Fig. 4 shows a typical DSA image pair of the ab-
domen. In the mask image part of the vertebra
column and a catheter inserted in the aorta but
not the aorta itself are visible. In the contrast
image the strongly contrasted aorta is superim-
posed to the vertebra column. Two templates
have been selected to demonstrate the effect of
additional structures on the quality of the simi-
larity measures. They have a size of (128 x 128)
pixels and are indicated by white boxes in both
images. Template A is not affected by injec-
tion of contrast agent and nearly identical tem-
plates can be found in mask and contrast image.
For template B the location has been chosen
to include part of the contrasted aorta. This
template is considerably different in mask and
contrast image, because approximately one half
of it is covered by the contrasted aorta. Fig.
5 and 6 (corresponding to templates A and B
in Fig. 4) show the dependence of the cross-
correlation function, the cross-structure func-
tion, the deterministic sign change criterion and
three histogram-based measures (information,
energy and (negative)square-root) on the shift
values (r, s) for templates A and B, respectively.
The maximum of the similarity measures is ex-

pected at (r, s) = (0, 0), because mask and con-
trastimages have been manually shift-corrected.
The range of the shifts is r, s € [—15, 14].

Fig. 5 illustrates that the cross-correlation as
well as the cross-structure function work for
Template A, but both functions fail completely
for Template B (Fig. 6). In the latter case
they have only a bump but no optimum around
(r,s) = (0, 0). This shows that a contrasted ves-
sel can have a considerable influence on these
measures which makes them inappropriate for
DSA image enhancement. A further discussion
of the cross-correlation function, correlation co-
efficient, cross-structure function and similar
functions like the sum of absolute differences
in the context of DSA can be found in (Sved-
low et al., 1978, Fitzpatrick et al., 1989, Tran
and Sklansky, 1992).

The deterministic sign change shows a better
result than cross-correlation and cross-structure
functions, because it is more robust with respect
to vascular structures in one template. Never-
theless, for Template B with the overlaid aorta
this similarity measure is very rough. This com-
plicates optimization which may be trapped in
a local maximum. The reason for this effect
is that a major part of the periodic pattern is
hidden by the overlaid structure and that, con-
sequently, only arelatively small number of sign
changes is observed, which leads to poor statis-
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tics. For further discussion on the determin-
istic sign change in comparison to the sum of
absolute differences and cross-correlation see
(Fitzpatrick et al., 1987).

The similarity measures based on strictly con-
vex weighted histograms lead to good results for
Template A as well as for Template B. Informa-
tion, energy and (negative) square-root have a
significant maximum at the expected position
of (r,s) = (0, 0). The similarity measure plots
are smooth and show a relatively large attrac-

tive basin of approximately +15 pixels. This
holds for Template A as well as for Template
B. The shape of the maximum differs slightly
for the different functions. The energy which
has the smallest slope for p — 0 yields the nar-
rowest peak, whereas the negative square-root,
which has the steepest slope for p — 0, shows
the broadest peak. For the DSA application the
energy is preferred as similarity measure, be-
cause it can be evaluated very fast and integer
arithmetic can be used.
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Fig. 7. Fluoroscopy of the vertebra and three templates derived from pseudo rojections of the segmented 3D
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vertebra. Template

Optimal parameters obtained from correlation coefficient, Template II: Optimal parameters

obtained from entropy, and Template III: Optimal parameters obtained from pattern intensity.

4.2. 2D/3D Registration

In order to assess suitability of similarity mea-
sures, it must be checked whether they have
a pronounced maximum for parameters corre-
sponding with a good registration. In addition,
the similarity measure should show a reason-
able convergence range enabling reliable opti-
mization. In the case of 2D /3D registration it
is difficult to illustrate these properties by us-
ing plots of the similarity measure, as it was
done in the previous subsection for DSA im-
age enhancement, because the six parameters
characterizing location and orientation of the
CT image as well as the projection template’s
gray-value scaling must be estimated. For that
reason, registrations using various different start
values have been performed.

For this purpose the images of Fig. 3 have been
used. The CT image has 512x 512 x 123 voxels,
a resolution of 0.488 mm in a slice, a slice-to-
slice distance of 2 mm, and a slice thickness of §
mm. The intra-operative X-ray projection refers
to a geometry defined by an image intensifier of
127 diameter and an X-ray source 1 m above it.
The projection template showing the vertebra
of interest has a lower sharpness than the intra-
operative X-ray projection, because of the CT
slice thickness. In order to reduce this differ-
ence, the X-ray projection has been smoothed
with a 5 x 5 pixel moving average filter. In
addition, its resolution has been reduced from
512x512x512to 128 x 128. The resolution re-
duction speeds up computation of the projection
template by a factor of 16 which is necessary to
perform registration in a reasonable time.
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Registration has been performed using the cor-
relation coefficient, the entropy of the gray-
value histogram (negative information, see Eq.
13), and the pattern intensity with parameters
(r = 3, 0 = 10). Optimization of the similarity
measure has been done as described in (Weese
et al., 1997a). Fourteen different sets of start
values have been generated by adding a rotation
of about 10 deg to the rotation parameters ob-
tained by manual registration. The translation
parameters have been roughly adjusted to get
an overlay of the projection template with the
vertebra of interest in the X-ray projection. Fig.
7 shows typical projection templates after opti-
mization together with a magnified part of the
X-ray image. For visualization the gray-values
of the projection template have been inverted
and scaled. Projection template 1 does obvi-
ously not correspond with the vertebra of inter-
est in the X-ray image. Template II matches
much better, though it is slightly rotated to the
left around an axis perpendicular to the projec-
tion plane. Template III shows the best corre-
spondence. Using this template all structures in
the X-ray image caused by the vertebra of in-
terest can be rubbed out, which indicates proper
registration (Fig. 3d). The deviation of rotation
parameters is about 23 deg. for templates I and
I and 13 deg for template IT and IIL.

With the correlation coefficient, results far from
a good registration have been obtained. In par-
ticular, the most pronounced maximum corre-
sponds with Template I and has the value of
0.54. On the other hand, the correlation coeffi-
cient was much lower, only about 0.42 for area-
sonable registration result such as Template IIL.
As it has been shown for DSA image enhance-
ment, correlation is not robust with respect to
overlaid structures and the misregistration can
be explained by the catheter overlaid to the X-
ray image and the organ behind the vertebra of
interest.

The maximum found for the entropy (negative
information, see Eq. 13) of the gray-value his-
togram has the value of 0.31 and corresponds
with Template II. This is a much better result
than that obtained with the correlation coef-
ficient though there is a clear deviation from
Template III which shows the best agreement.
The improvement can be explained by the fact
that the entropy of the gray-value histogram can
cope with overlaid structures. Registration re-
sults spread, however, around a considerable

area without the entropy varying much. For
projection templates very similar to templates I
and III, for example, values of about 0.3 have
been found. This shows that entropy is not sen-
sitive to all the parameters characterizing the
location and orientation of the CT image and
that robust and reliable registration cannot be
done with this measure.

For the pattern intensity (r = 3, 0 = 10) the
most pronounced maximum had a value of 1850
and Template III was obtained. In general, op-
timization converged to this maximum and the
standard deviation of the resulting parameters
was less than 0.5 deg for the rotation, less than
0.2 mm for the translations parallel to the pro-
jection plane and about 2.5 mm for the height of
the CT volume above the projection plane. In
our experiments there was only one set of start
values for which optimization was trapped in
a local maximum significantly away from opti-
mal registration and with much smaller pattern
intensity of 640. It should also be noted that the
pattern intensity was 237 and 131 for templates [
and II, respectively. All results indicate that this
similarity measure has a very well-pronounced
maximum corresponding with a good registra-
tion and that it has a reasonable convergence
range enabling reliable optimization. That the
pattern intensity maximum corresponds with a
good registration is supported by the first re-
sults on accuracy derived from the comparison
of registration results for three different verte-
brae of a spine phantom (Weese et al., 1997b).

5. Conclusions

Two medical applications requiring voxel-based
registration methods have been considered. DSA
image enhancement and 2D/3D registration.
Both applications have been described and the
requirements to be met by the similarity mea-
sures have been derived using examples of clini-
cal images. For both applications it is important
that the similarity measure is robust with respect
to structures such as contrasted vessels or surgi-
cal instruments visible in only one of the images
to be registered. Several voxel-based similarity
measures have been described and their prop-
erties have been discussed. In particular, two
similarity measures recently introduced for reg-
istration of medical images have been presented.
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Examples have shown that voxel-based single
modality registration is a challenging problem
if there are additional structures overlaid onto
one of the images. In this case well-known
similarity measures as e.g. the cross-correlation
function fail and measures especially adapted
to cope with additional structures must be ap-
plied. The class of histogram-based measures
has been shown to be robust with respect to con-
trasted vessels overlaid onto one of the images
and is, therefore, suitable for DSA image en-
hancement. In addition, these measures can be
evaluated very fast making it possible to satisfy
clinical requirements concerning computation
time. For 2D/3D registration the pattern inten-
sity leads to good results. This measure can
cope with surgical instruments or organs over-
laid onto one of the images to be registered
which is beneficial for clinical applications.
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