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A Hybrid Thinning Algorithm for 3D

Medical Images
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Thinning is a frequently used method for extracting
skeletons in discrete spaces. This paper presents an effi-
cient parallel algorithm for thinning elongated 3D binary
objects (e.g., bony structures, vessel trees, or airway
trees). The proposed algorithm directly extracts medial
lines as shape features from 3D hinary objects by apply-
ing a brand-new class of thinning strategy called hybrid
method. Our topology preserving algorithm makes easy
implementation possible and gives satisfactory results
for synthetic data tests and for MR angiography brain
studies.
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[ntroduction

Skeletonization provides shape features that are
extracted from binary image data. It is a com-
mon preprocessing operation in raster—to—vector
conversion or in pattern recognition. Its goal is
to reduce the volume of elongated objects to
their skeletons. In the 3D Euclidean space, the
skeleton of an object is the locus of the cen-
ters of all maximal inscribed spheres (Blum,
1967). In discrete spaces, the thinning proce-
dure is a frequently used method for generating
an approximation to the continuous skeleton in
a topology preserving way (Kong & Rosenfeld,
1989). Thinning is similar to peeling an onion.
One step of the iterative method removes the
outmost layer of an object and the entire pro-
cess is repeated until only the “skeleton” is left.

There are two major methods of shape represen-
tation. The first method describes the boundary
that surrounds an object. The second one gives
a representation of the region that is occupied
by the object to be analyzed. Boundary—based

techniques are widely used but there are some
deficiencies which limit their usefulness in prac-
tical applications especially in 3D (Székely,
1996):

¢ methods of differential geometry are rather
sensitive to noise;

+ occlusion may seriously disturb boundary—
based descriptors;

¢ they are not appropriate to catch global
shape features and to make them explicit;

e they can rather poorly reveal the hierarchi-
cal organization of the shape.

The concept of skeletonization should be able to
help exactly at the points listed above. The local
object symmetries represented by the skeleton
certainly cannot replace boundary—based shape
descriptors, but they complement and support
them.

The importance of the skeleton as a region—
based shape feature shows an upward tendency.
Some important applications have appeared in
medical image processing, too. Van den Elsen
et al. (1992) extracted ridge-like features in
their medical image registration method. They
used 3D thinning to eliminate unwanted thick
ridges and blobs. Various authors built dis-
tance maps from the extracted features in their
registration methods (Borgefors, 1988; Jiang
et al.,, 1992). More accurate matching based
on distance transformations can be reached if
thinned feature data set is used. Thinning pro-
vides relevant information and reduces the fea-
ture search space of the geometric model to be
evaluated. Gerig et al. (1993) used 3D thin-
ning for symbolic description of cerebral vessel
tree. Székely etal. (1995) applied a 3D thinning
algorithm in structural description of cerebral
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Fig. 1. A 3D synthetic picture containing a character “A” (left); its medial surface (centre); its medial lines (right). A
point of a 3D binary picture can be modelled by a lattice point or by a unit cube. In this figure cubes represent black
points.

vascularity. Ma & Sonka (1996) developed a
3D algorithm for thinning airway trees extracted
from 3D CT studies. Néf et al. (1997) proposed
skeletons for the characterization and recogni-
tion of 3D organ shape. A method has been
published by Tari et al. (1997) for extracting
shape skeletons from medical images.

In this paper, a new 3D thinning algorithm is
proposed which directly extracts medial lines
(consisting of arcs and/or curves instead of sur-
faces). Each iteration step contains 10 succes-
sive subiterations. Subiterations can be exe-
cuted in parallel. It means that the object ele-
ments that satisfy the actual deletion conditions
are to be changed to background elements si-
multaneously. We use a brand-new approach;
both directional and subfield methods are com-
bined. The proof of topology preservation of the
proposed algorithm is given in the Appendix.

Thinning Methodologies

In discrete spaces, only an approximation to the
continuous skeleton can be produced. There are
two major requirements to be complied with
(Székely, 1996). The first one is geometri-
cal. It means that the “skeleton” must be in
the “middle” of the object and invariant under
geometrical transformations. The second one is
topological requiring that the “skeleton” must
be topologically equivalent to the original ob-
ject. The major aim of thinning is to reduce the
object in a topology preserving way.

A 3D binary picture is a mapping that assigns
value of 0 or 1 to each point with integer co-

ordinates in the 3D digital space denoted by
Z>. Points having the value of 1 are called
black points, while 0’s are called white ones.
Black points form objects of the picture. White
points form the background and the cavities of
the picture. Both the input and the output of a
picture operation are pictures. An operation is
reduction if it can delete some black points (i.e.,
changes them to white) but white points remain
the same. There is a fairly general agreement
that a reduction operation is not topology pre-
serving if any object in the input picture is split
(into two or more ones) or completely deleted, if
any cavity in the input picture is merged with the
background or another hole, or if a cavity is cre-
ated where there was none in the input picture
(Kong, 1995). There is an additional concept
called hole in 3D pictures. A hole (that dough-
nuts have) is formed by 0’s, but it is not a cavity.
Topology preservation implies that eliminating
or creating any hole is not allowed. (Formal
definitions of the concepts of digital topology
and the criterion of topology preservations can
be found in the Appendix.)

Existing 3D thinning algorithms can be classi-
fied from several points of view. One of them
is the classification on the produced skeletons:
most of the developed algorithms result in me-
dial surfaces (Reed, 1984) and a few can pro-
duce medial lines (see Fig. 1). The aim of the
thinning algorithms that are developed to ex-
tract medial lines is to shrink an object to one
point width line segments.

Some algorithms have been developed for gen-
erating medial surface (Gong & Bertrand, 1990;
Bertrand & Aktouf, 1994; Bertrand, 1995; Ma,
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1995; Saha & Dutta Majumder, 1997), others
allow producing medial surface and medial lines
as well (Tsao & Fu, 1981; Lee et al.,, 1994;
Bertrand & Aktouf, 1994) and there are some
for extracting medial lines without creating me-
dial surface as intermediate result (Ma & Sonka,
1996; Paldgyi & Kuba, 1997).

Three types of parallel thinning methodologies
have been proposed.

e The first type examines the 3 x 3 x 3 neigh-
bourhood of each border point. The iter-
ation steps are divided into a number of
subiterations. Only border points having
the prescribed 3 x 3 x 3 neighbourhood can
be deleted during a subiteration. It means
that each prescribed neighbourhood gives
a deletion condition. Prescribed neigh-
bourhoods can be usually associated to
a direction (e.g., up, down) depending
on the position of the border points to
be deleted. These algorithms use border
sequential or directional strategy. Each
subiteration is executed in parallel (Tsao
& Fu, 1981; Gong & Bertrand, 1990; Lee
et al., 1994; Bertrand, 1995; Palagyi &
Kuba, 1997) (i.e., all black points satis-
fying the deletion condition of the actual
subiteration are simultaneously deleted).
Most of the existing parallel thinning al-
gorithms are border sequential. Generally,
6 subiterations are used (with the excep-
tion of Paldgyi & Kuba (1997)).

A directional algorithm consisting of k
subiterations can be sketched by the fol-
lowing program:
repeat
for i=1 to k do
simultaneous deletion of the black
points that satisfy the condition
assigned to the i—th direction
until no points are deleted

e The second type of algorithms does not
need subiterations. In order to preserve
topology, the existing two fully parallel al-
gorithms investigate some points that are
in the 5 x 5 x 5 neighbourhood but not in
the 3 x 3 x 3 neighbourhood (Ma, 1995;
Ma & Sonka, 1996).

These algorithms can be sketched by the
following program:

repeat
simultaneous deletion of the black
points that satisfy the global condition
until no points are deleted

e The third approach is the subfield sequen-

tial method. The set of points 72 is sub-
divided into more disjoint subfileds which
are alternatively activated. At a given iter-
ation step, only black points of the active
subfield are designated to be deleted.

A subfield based algorithm consisting of k
subfields can be sketched by the following
program:
repeat
for i=1 to .k do
simultaneous deletion of the black
points in the i—th subfield
that satisfy the global condition
assigned to each subfield
until no points are deleted

Two subfield sequential 3D thinning algo-

rithms working in cubic grid 77 have been
proposed so far (Bertrand & Aktouf, 1994;
Saha & Dutta Majumder, 1997).

This paper presents an algorithm, which be-
longs to a brand-new class of thinning meth-
ods called hybrid algorithms. It applies both
directional and subfield strategies. A hybrid al-
gorithm containing k; directional subiterations
and k, subfields is described by the following
program:

repeat
remark the k; directional-type subiterations
for i=1 to ky da
simultaneous deletion of the black
points that satisfy the condition
assigned to the i—th direction
remark the ky subfield-type subiterations
for j=1 to ky do
simultaneous deletion of the black
points in the j—th subfield that satisfy
the global condition assigned to each
subfield
until no points are deleted
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Fig. 2. The 8 deletion directions associated with the 8 vertices of a cube (a). These directions are denoted by
USW.,...DNE. A 3D 3 x 3 x 3 “chessboard-like” pattern determined by the two subfileds (b). Points in §F 4 and
& Fp are labelled by A and by B, respectively.

The New Thinning Algorithm

In this section a hybrid 3D thinning algorithm is
described that directly creates medial lines (i.e.,
without extracting medial surface as intermedi-
ate result).

One iteration step contains 8 directional-type
subiterations (according to the selected 8 dele-
tion directions) and 2 subfield-type subitera-
tions (according to the 2 subfields). The 8 dele-
tion directions are associated with the 8 ver-

tices of a cube. These directions are denoted by
USW, DNE, USE, DNW, UNE, DSW, UNW,
and DSE, see Fig. 2 (a). Note that each direc-
tional 3D thinning algorithm uses the 6 dele-
tion directions associated with the 6 faces of
a cube (with the exception of Paldgyi & Kuba
(1997)). The set Z is subdivided into two dis-
joint subfields called F 4 and Fp. The pattern
determined by the two subfields is presented in
Fig. 2 (b). These two subfields are given by the
following formulae:
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Fig. 3. Templates D1-D6 form the set of templates Tusw- (Note, that at least one point marked “x” is 1 (black) in
each of the templates D1-D3 and at least one point marked “y” is 0 (white) in each of the templates D4-D6.)
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SFa={(ty2|xyz2)e?’
and x +y + z is odd },

SFp={(xy2)|(xy2)eZ
andx +y + z is even }
- Z3\Sf,4>

Each iteration step contains 10 parallel subiter-
ations. (8 successive directional-type subitera-
tions are followed by 2 subfield—type ones.)

The new value of each voxel depends on its
3 x 3 x 3 neighbourhood in each subiteration.
This dependence is given by a set of configura-
tions of 3 x 3 x 3 lattice points called deletion
templates. A black point is to be deleted if and
only if its 3 x 3 x 3 neighbourhood matches at

least one element of the given set of templates.
Templates usually contain three kinds of ele-
ments, 1 (black), O (white), and “ (“don’t
care”), where a “don’t care” element matches
either a black point or a white point in a given
picture.

The set of templates Tygw = {D1, ..., D6}
assigned to the deletion direction USW are
given by Fig. 3. The other seven sets of tem-
plates assigned to the other seven directional-
type subiterations can be derived from the ap-
propriate rotations and reflections of the tem-
plates in T{yqyy- 1t means that different deletion
conditions are assigned to the 8 directional-type
subiterations.

The two subfield-type subiterations have a com-
mon global deletion condition given by the set
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Fig. 4. Base templates SF1-SF7 and their all rotations and reflections form the set of templates Tsr. (Note, that at
least one point marked “x” is 1 (black) in each template SF1 and SF7; at least one point marked “y” is 0 (white) in
each template SF2 and SF3; and at least one point marked “z” is O (white) in the template SF2.)
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Fig. 5. One iteration step of the Hybrid Algorithm. The original object is a
3 x 8 x 3 cuboid (top left); the result of the 8 directional-type subiterations (top right); the object produced by the
1st subfield-type subiteration (bottom left); the result of the 2nd subfield—type subiteration (bottom right).

of templates Tgz. This set of templates is rep-
resented by seven, what is called base templates
SF1-SK7, see Fig. 4. All reflections and all
rotations around the axes of the base templates
are templates, too. (The rotation angles are 90°,
180°, and 270°. The numbers of template ver-
sions belonging to the base templates SF1, .. .,
SF7 are 6, 12,24, 12, 12, 6, and 8, respectively.

Suppose that the 3D picture to be thinned con-
tains finitely many black points. Therefore, it
can be stored in a finite 3D binary array. (Out-
side this array every voxel is white.) Reduction
operations associated with the 8 directional—
type subiterations are called deletion_from USW,

, deletion from DSE. The two operations
belonging to the subfield—type subiterations are
called deletion_in SFA and deletion in SFB.
We are now ready to present the proposed algo-
rithm formally.

HYBRID ALGORITHM:

Input: binary array X that represents
the picture to be thinned

Output: binary array Y that represents
the thinned picture

Hybrid Algorithm(X,Y) ;
begin
Y=X;
repeat
remark the 8 directional-type
subiterations

= deletion_from USW(Y);
= deletion_from DNE(Y);
= deletion from USE(Y);
deletion_from DNW(Y);
= deletion_from UNE(Y);
= deletion_from DSW(Y);
= deletion_from UNW(Y);
= deletion from DSE(Y);
remark the 2 subfield-type

e - T O e
i

subiterations
Y deletion_in SFA(Y);
Y = deletion_in SFB(Y);
until no points are deleted;

end.
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Fig. 6. Sensitivity of the Hybrid Algorithm to object position. Two objects of the same shape whose appropriate
points are in different subfields (left) and their medial lines (right).

Fig. 7. Relative invariance under object rotation. Two objects of the same shape (left); their medial lines produced by
Hybrid Algorithm (centre); medial lines extracted by a directional algorithm (Paldgyi & Kuba, 1997) (right).

The steps of the Hybrid Algorithm are demon-
strated in Fig. 5. The proposed algorithm ter-
minates when there is no black point deleted by
the last iteration step. Since all considered in-
put pictures contain finitely many black points,
it will terminate after a finitely many iteration
steps.

Discussion

Thinning based skeleton extraction concentrates
on the topological requirement. A thinning al-
gorithm uses the distance induced by its ob-
ject reduction strategy. This distance cannot
be regarded as a good approximation to the
Euclidean distance. Therefore, thinning algo-
rithms are not invariant under geometrical trans-
formations. Directional and fully parallel algo-
rithms are able to produce invariant results un-
der object translation. Unfortunately, it does not

hold for subfield sequential algorithms. That is
the reason why the Hybrid Algorithm is sen-
sitive to the object position (see Fig. 6). On
the other hand directional algorithms are more
sensitive to object rotation (see Fig. 7).

The Hybrid Algorithm has been tested for sev-
eral synthetic pictures. Here we present some
examples. The results of thinning for four syn-
thetic 3D objects can be seen in Figs. 8-9. Our
algorithm creates nearly regular and symmetric
medial lines from regular and symmetric ob-
jects. The Hybrid Algorithm was also tested for
thinning 3D binary objects extracted from mag-
netic resonance angiographies (MRA studies).
An example is shown in Fig. 10.

The skeleton represents local object symmetries
(Blum, 1967). In 3D, skeletal surface points
represent mirror symmetry and skeletal line
points represent axial symmetry. Some of the
general symmetry about an object can be found
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Fig. 8 Thinning of two synthetic pictures sized 24 x 24 x 24. The original objects (left) and their medial lines
extracted by the Hybrid Algorithm (right).

in the skeleton but others are suppressed. Ex-
tracting medial lines is more relevant for some
types of medical images than producing medial
surface. These types of medical images con-
tain blood vessels, bones or airway trees (after
segmentation).

Most 3D thinning algorithms are capable of pro-
ducing medial surface, therefore, those ones are
not suggested to the objects listed above. Some
authors (for example Tsao & Fu (1981)) have
proposed a 2-phase process for medial lines
thinning. After the first phase, each object in
the original picture is reduced into its medial
surface. After the second phase, each medial
surface is converted into medial lines. It is
shown in (Paldgyi & Kuba, 1997) that the 2—
phase method produces a lot of unwanted par-
asitic line segments. That is the reason why
the Hybrid Algorithm directly extracts medial
lines.

We give the deletable points of the Hybrid Algo-
rithm by sets of templates (instead of checking

windows (Tsao & Fu, 1981) or labelling proce-
dure and Euler—table (Lee et al., 1994)). It is
easy to see that each template can be replaced by
a Boolean formula. Therefore, the Hybrid Al-
gorithm makes easy implementation possible.
It has been proved that the Hybrid Algorithm
preserves topology. (Proofs can be found in the
Appendix.)

Both of the published subfield sequential 3D
thinning algorithms use 8 subfields (Bertrand &
Aktouf, 1994; Saha & Dutta Majumder, 1997).
It is not by accident, since the proof of topology
preserving is trivial in that case. Our algorithm
is an example to illustrate that it is possible to
develop 2—subfield thinning algorithms with the
help of other technique (e.g., directional thin-

ning).
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Fig. 9. Thinning of two synthetic pictures sized 40 x 40 x 20. The original objects (left) and their medial lines extracted by the
Hybrid Algorithm (right).

\
”g
i

Fig. 10. Thinning of brain blood vessels by the Hybrid Algorithm. The binary objects were extracted from a (greyscale) 3D MRA
study of dimensions 256 x 256 x 124. The top-down projection of the original binary objects (top left) and their medial lines
(top right). The left—right projection of the original binary objects (bottom left) and the medial lines extracted from them (bottom
right). Projections of these pictures are displayed by using the 3DVIEWNIX software system (Udupa et al., 1994).
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Appendix

In this section, we prove that the Hybrid Algo-
rithm preserves topology. At first some con-
cepts of the digital topology and the applied
results are presented.

The set Z> is a 3D digital space that con-
tains points with integer coordinates. The three

most important adjacency relations in 72 are the
6—, the 18—, and the 26—adjacency. The set of
points that are j—adjacent to a point p is denoted
by Nj(p), for j = 6, 18,26 (see Fig. 11). The
point pis said to be j—adjacent to the non—empty
set of points X if there exists a point x € X so
that x € Nj(p). The sequence of distinct points
(xg, X1, - - -, Xn) is a j-path of length n > 0 from
point x to point x, in a non—empty set of points
X if each point of the sequence is in X and x; is
j—adjacent to x; 1 for each 1 < i < n. (Note
that a single point is a j—path of length 0.) Two
points are j—connected in the set X if there ex-
ists a j—path in X between them. A set of points
X is j—connected if any two points in X are j-
connected 1n X.

/21 /II(F /22

3 p 4

11/ 2 121’{81 /6
16

}/1 5/ 24/l

Fig. 11. The frequently used adjacencies in 7. Points
in Ng(p) are marked 1-6; points in Nyg(p) are marked
1-18; points in Nyg(p) are marked 1-26. (Note, that
point p is in sets Ne(p), Nig(p), and Nag(p).)

The 3D binary (m,n) digital picture P is a
quadruple P = (Z3,m, n, B) (Kong & Rosen-
feld, 1989). A point in B C Z* is called black
point; a point in 7°\B is called white point. Pic-
ture P is called finite if B is a finite set. Value
of 1 is assigned to each black point and value

of 0 is assigned to each white point. m and n
are two adjacency relations for black points and
white points, respectively. Picture P is referred
to as (m, n) picture, shortly. To avoid con-
nectivity paradoxes, different adjacencies are
treated. Most thinning algorithms deal with
(26, 6) pictures. Equivalence classes of B under
m—connectivity are called black m—components

or objects. Equivalence classes of Z>\B under
n—connectivity are called white n—components.
In a finite picture there is a unique infinite white
component, it is the background. A finite white
component is called cavity in a 3D picture.

Iterative thinning algorithms delete black points
that satisfy certain conditions. The entire pro-
cess is repeated until there are no more black
points to be changed. Each thinning algo-
rithm should satisfy the requirement of topol-
ogy preservation. We prove that the Hybrid Al-
gorithm is topology preserving for any (26, 6)
pictures. Our proofs include the following re-
sults:

A black point is called simple point if its dele-
tion does not alter the topology of the picture.
We make use of the following criteria for (26, 6)
pictures:

THEOREM 1 (Saha & Chaudhuri, 1994). Black
point p is simple in picture P = (Z?,26,6, B)if
and only if all of the following three conditions
hold:

1. The set (B\{p}) N N2g(p) contains exactly
one 26—component.

2. The set (Z>\B) N Ne(p) is not empty.
3. Any two points in (Z*\B) N Ng(p) are 6-
connected in the set (Z*\B) N Nig(p).

According to Theorem 1 simplicity can be de-
cided locally by examining the 3 X 3 x 3 neigh-
bourhood of black points.

Parallel reduction operations delete a set of
black points and not only a single simple point.
We need to consider what is meant under topol-
ogy preservation when a number of black points
are deleted simultaneously.

DEFINITION 2 (Ma, 1994). Let P be a pic-
ture. The set D = {dy, ..., d} of black points
is called simple set of P if D can be arranged
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in a sequence (d,,, .. ., d;,) in which each dj is
simple after {d;, ..., d;_,} is deleted from P,
forj =1,...,k (By definition, let the empty
set be simple.)

This definition implies the next one.

DEFINITION 3 (Ma, 1994). A 3D parallel reduc-
tion operation is fopology preserving if, for all
possible 3D pictures, the set of all points that
the operation simultaneously deletes is simple.

Fortunately, we do not have to test the algo-
rithms for all possible 3D pictures. We only
need to check a rather small number of config-
urations to prove topology preserving. Let a
unit lattice square be a configuration of points
ofsize T % 222, 2o 1 w ZiorDox 8% 1. Tha
configuration of 2 x 2 x 2 points of Z? is called
a unit-lattice cube.

THEOREM 4 (Ma, 1994). A 3D parallel re-
duction operation preserves topology for (26,6)
pictures if all of the following conditions hold:

1. Only simple points can be deleted.

2. If two black corners, p and g, of a unit lat-
tice square are deleted, then the set {p, g}
is simple.

3. If three black corners, p, g, and r, of a
unit lattice square are deleted, then the set
{p, q, r} is simple.

4. If four black corners, p, g, r, and s, of a
unit lattice square are deleted, then the set
{p, q, r, s} is simple.

5. No black component contained in a unit
lattice cube can be deleted completely.

Instead of proving the conditions of Theorem 4,
we use the following more general conditions:

THEOREM 5. Let 7 be a parallel reduction op-
eration. Let p be any black point in any pic-
ture P = (23, 26, 6, B) so that p is deleted by
7. Let Q be any set of black points so that
Q C (Nig(p)\{p}) N B in picture P and each
point is Q is deleted by 7. Operation 7 pre-
serves topology for (26,6) pictures if all of the
following conditions hold:

1. pis simple in the picture (7>, 26, 6, B\Q).

2. No black component contained in a unit
lattice cube can be deleted completely by
operation 7T .

It is easy to see that Condition 1 of Theorem
5 implies Conditions 1-4 of Theorem 4, and
Condition 2 of Theorem 5 corresponds to Con-
dition 5 of Theorem 4. (It is obvious that the
set Nig(p) contains any unit lattice squares in
which p is a corner. Point p is to be regarded
as the last element of the simple sequence of
corners while the preceding ones are in set Q.
If Q = ), then we get Condition 1 of Theorem
4.)

We will prove that the directional-type subitera-
tion corresponding to the direction USW and the
first subfield-type subiteration (as parallel re-
duction operations) are both topology preserv-
mng.

In order to prove both conditions of Theorem 3,
we classify the elements of templates and state
some properties of the sets of templates Tusw
and 7?5' F.

The template element marked p in Fig. 11 is
called central. A non—central template element
is called black if it is always black. A non—
central template element is called white if it is
always white. Other non—central template ele-
ment which is neither white nor black, is called
potentially black. A black or a potentially black
non-central template element is called non—
white. A black point is USW-deletable if and
only if it can be deleted by at least one template
in the set of templates 7{jqy. A black point
is SF—deletable if and only if it can be deleted
by at least one template in the set of templates

Ts#.

Let us state some properties of the set of tem-
plates Tyygyy (see Figs. 3 and 11).

OBSERVATION 6. For each template in T{jqyy,

each index in the set {7, 8, 11} corresponds to a
white template element.

OBSERVATION 7. For each template in Tusw:
the index corresponding to any template ele-
ment is in the set {14, 17, 18}. (In other words,
each black template element is 18-adjacent (but
not 6-adjacent) to the central element.)
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Fig. 12. Labels assigned to the non—white elements of the base templates D1 and DM4. Template D4 is decomposed
into two ones denoted by D4’ and D4'". Thick lines represent the required 6—paths in (Z3\B) N Nig(p)-

OBSERVATION 8. If a black point p can be
deleted by a template in Tyyqyy and the black
point g coincides with a black element of that
template, then point g is not USW—deletable. (It
is implied by Observations 6 and 7.)

OBSERVATION 9. For each template in T{jqyy at
least one index in the set { 1, 2, 3} corresponds to
a white element. (In other words each template
contains at least one white element 6—adjacent
to the central template element.)

We are ready to prove that the directional—-
type subiteration corresponding to the direction
USW is topology preserving. The following
two lemmas correspond to the two conditions
of Theorem 5.

LEMMA 10. The first directional-type subitera-
tion of the Hybrid Algorithm satisfies Condition
1 of Theorem 5.

PROOF. Let p be a USW-deletable point in a
(72, 26, 6, B) picture and let O be a set of USW-
deletable points so that QO C (Nig(p)\{p}) N B.
It is to be shown that p is simple after the dele-
tion of Q.

We distinguish the following two cases:

(a) 0=0.
(b) O #0.

In case (a), we have to prove that p is simple.
We show that all of the conditions of Theorem
1 are satisfied.

The set of template 7y;qyy contains the six tem-
plates D1-D6. It is easy to see that D2 and D3
can be derived from D1 by arbitrary chosen ro-
tations and reflections. Similarly, DS and D6

can be derived from D4. Simplicity is invariant
under those kinds of transformations, therefore,
we deal only with the two base templates D1
and D4. Let us suppose that point p can be
deleted by D1 or D4.

Condition 1 of Theorem 1 says that (B\{p}) N
N6(p) must contain exactly one 26—component.
It is shown with the help of Fig. 12. Labels A
and B are assigned to the black template ele-
ments. Labels aandb are assigned to non—white
elements 26—adjacent to the black element la-
belled by A and B, respectively. Obviously,
a point may be 26-adjacent to more certainly
black points. In this case, it is multiply la-
belled. We show that there exists a 26—path
containing only non—white positions between
any two non—-white points.

The only black element in base template D1 is
labelled by A. We can state that all potentially
black points are labelled by a in these templates.
It is easy to see that any two non—white points
are 26—connected via an at most two—length 26—
path. The sequence of labels in this path can be
{a,A) or (a, A, a).

Base template D4 contains two black elements
labelled by Ab and aB, respectively. All po-
tentially black elements are labelled in these
templates, too. It is easy to see that any two
non—white points are 26—connected via an at
most three—length 26—path. The sequence of
labels in this path can be

{(a?, Ab, a?),

{(a?, Ab, aB, ?b), or

(?b, aB, ?b),
where "?" can be replaced by the appropriate
characters a, b, or the empty string. Note that
any prefix of a path is a path, too.
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We can state that (B\{p}) N Nas(p) contains
exactly one (non—empty) 26—-component if p is
deleted by D1 or D4.

Condition 2 of Theorem 1 (i.e., set (Z>\B) N
Ns(p) is not empty) is fulfilled by Observation
9.

Condition 3 of Theorem 1 says that any two
points in (Z*\B) N Ne(p) must be 6-connected
in the set (Z3\B)N Nig(p). Itis shown with the
help of Fig. 12, too. The required 6-paths are
marked thick lines.

Ithas been shown that any USW-deletable point
is simple.

Let us deal with the case (b).

It is to be shown that p is simple after the dele-
tion of Q, where Q # 0.

There is no black template element that coin-
cides with any point in Q by Observation 8.
Therefore, each point in Q must coincide with
a potentially black template position. Simplic-
ity of p does not depend on the potentially black
template positions (see the proof of case (a)). O

LEMMA 11. The first directional-type subitera-
tion of the Hybrid Algorithm satisfies Condition
2 of Theorem 5.

PROOF. Letus suppose that the two sets of points
X = {x1,x2,x3, x4} and ¥ = {yy, y2,¥3, y4}
form a unit lattice cube in a picture as it is il-
lustrated in Fig. 13 (a). Let C be an object
contained in this unit lattice cube.

Two cases are to be distinguished:

(@A) CNX#£0
b)CNnX =10
. |
/ /
) Y3
X3 X4
/ /
Yl————X

a

In case (a), no point in X can be deleted by Ob-
servation 7.

Incase (b), CNY # 0, since object C contains at
least one point. Let us suppose that there exists
a point in Y that can be deleted. It contradicts
Observation 8, since CN X = (.

In both cases, object C cannot be deleted com-
pletely. O

It has been proved that the subiteration associ-
ated with the deletion direction USW satisfies
both conditions of Theorem 35, therefore, it is
topology preserving. Let us deal with the first
subfield-type subiteration. Some properties of
the set of templates 75+ and the applied sub-
field subdivision are to be stated (see Figs. 2
(b),4,and 11).

OBSERVATION 12. Let p be a SF-deletable
point in a picture. Then any black point
q € (Nas(p)\N1g(p)) U (Ns(p)\{p}) is not
SF-deletable (because g is in the opposite sub-
field that is not active when p can be deleted).

OBSERVATION 13. For each template in the set of

templates Ts#, the index of each black element
s i Lysncss By 19y 5 5 2263

OBSERVATION 14. If a black point p can be
deleted by a template in 75+ and the black point
q coincides with a black element of that tem-
plate, then point g is not SF-deletable. (It is
implied by Observations 12 and 13.)

OBSERVATION 15. Each template in T5£ con-
tains at least one white element 6-adjacent to
the central template element.

b

Fig. 13. Two unit lattice cubes formed by the sets of points X = {x1, x2, x3, x4} and ¥ = {y1, y2, ¥3, y4}.
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We are ready to prove that the first subfield—
type subiteration is topology preserving. The
following two Lemmas correspond to the two
conditions of Theorem 5.

LEMMA 16. The first subfield—type subiteration
of the Hybrid Algorithm satisfies Condition 1
of Theorem 5.

PROOF. Let p be a SF-deletable point in a
(Z3,26, 6, B) picture and let Q be a set of SF—
deletable points so that Q@ C (N1s(p)\{p}) N B.
It is to be shown that p is simple after the dele-
tion of Q.

We distinguish the following two cases:

(a) 0 =0.
(b) O # 0.

In case (a), we have to prove that p is simple.
We show that all of the conditions of Theorem
1 are satisfied.

For the sake of brevity, only a sketch is given.

Condition 1 of Theorem 1 is fulfilled if p is 26—
adjacent to only one 26—component of Nag(p) N
(B\{p}). It can be carried out as it was shown
in the proof of Lemma 10. The same labelling
procedure can be applied for each template in
Tsr. Each non—white point can be labelled
and any two non—white points can be con-
nected via a n—length 26—path (POs - - +» Pn)s
where p; is a black template element, for each
1 <i<(n-1),and n > 2 if both pg and
Pr correspond to potentially black template el-
ements.

Condition 2 of Theorem 1 (i.e., set (Z*\B) N
Ng(p) is not empty) is fulfilled by Observation
15

Condition 3 of Theorem 1 says that any two
points in (Z*\B) N Ng(p) must be 6-connected

in the set (Z*\B) N Nig(p). It can be proved as
it was done in the proof of Lemma 10.

It can be carried out that any SF—deletable point
is simple and its simplicity does not depend on
potentially black template elements.

Let us deal with the case (b).

It is to be shown that p is simple after the dele-
tion of Q, where Q # (.

" There is no black template element that coin-

cides with any point in Q by Observation 14.
Therefore, each point in Q must coincide with
a potentially black template position. Simplic-
ity of p does not depend on the potentially black
template positions (as it was stated in the sketch
of the proof of case (a)). O

LEMMA 17. The first subfield—type subiteration
of the Hybrid Algorithm satisfies Condition 2
of Theorem 5.

PROOF. Letus suppose that the two sets of points
X = {x1,x2,x3,x4} and ¥ = {y1,¥2,¥3, Y4}
form a unit lattice cube in a picture as it is illus-
trated in Fig. 13 (b). We can state that sets X
and Y are in opposite subfields. Let C be an ob-
ject contained in this unit lattice cube. We know
that black points in subfield SF 4 are meant to
be deleted during the first subfield—type subit-
eration. :

Two cases are to be distinguished:

() X C SFa,and ¥ C SFpg,
() Y C SF4and X C SFz.

We will deal with only the case (a). The case
(b) can be carried out analogously.

Case (a) is divided into the following two sub-
cases:

(aa) CNX =0,
(ab) CNX # 0.

In case (aa), CNY = Y # (), since object C
contains at least one point. No pointin Y is SF—
deletable, since ¥ C SF . Therefore, object C
cannot be deleted completely. As far as (ab) is
concerned, we distinguish two additional cases:

(aba) there is a point in C N X so that it is not
SF—deletable.
(abb) for each point in C N X is SF—deletable.

In case (aba), there is no problem. In case
(abb), CNY # ( by Observation 13. No pointin
Y is SF—deletable, since Y C SF . Therefore,
object C cannot be deleted completely either. O

We are ready to state the main theorem.

THEOREM 18. The Hybrid Algorithm is topol-
ogy preserving.
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PROOF. The first directional-type subiteration
(associated with the deletion direction USW) is
topology preserving by Lemmas 10 and 11. Tt
can be proved for the other seven directional—
type subiterations in a similar way.

The first subfield—type subiteration is topology
preserving by Lemmas 16 and 17. This prop-
erty can be proved for the second subfield-type
subiteration in a similar way.

It is obvious that a complex operation consist-
ing of a sequence of topology preserving oper-
ations is topology preserving, too. Therefore,
the entire Hybrid Algorithm is topology pre-
serving. O

We managed to prove that the Hybrid Algo-
rithm is topology preserving. New conditions
have been given for topology preservation that
make relatively short proofs possible. We hope
that Theorem 5 — that contains less and more
general conditions than Theorem 4 — will be
useful for other algorithms, too.
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