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Biplane and digital subtraction angiography (DSA) have
brought about important advances in the diagnosis and
treatment of cardiovascular anomalies by allowing for
blood flow measurements, estimation of the regional wall
stress and study of myocardium motion. Segmentation
of the coronary arteries is a critical first step towards an
automated interpretation of angiographs. We present an
analysis of neural network methods based on a Radial Ba-
sis Function (RBF) and back-propagation (BP) network
applied to segmentation of the coronary arterial tree.
The results of the neural network based segmentation
are compared with segmentation techniques based on a
delineation algorithm. Features like vessel diameter and
centerline coordinates are extracted for segmented im-
ages and compared for the various segmentation methods.
The network methods are based on first evaluating the
best number of cluster partitions and then automatically
obtaining the vectors for training. The pixel gray-level
values in a small neighborhood along with information
of ridges are utilized to provide the training vectors. The
ridge locations indicate high likelihood of continuous
points on the artery. A discussion of the learning and
generalization characteristics for segmentation, by the
networks, is presented for multi-view DSA images and
tube phantom simulations.

1. Introduction

Quantification of the three dimensional (3-D)
properties of coronary arteries has been of sig-
nificant interest. The state of these vessels has
traditionally been obtained by visual exami-
nation from multiple views. Each angiogram
provides a two dimensional projection of the
three dimensional arterial tree. A clinician then
correlates these views through experience and
assesses the degree of disease of the arteries.
However, this task can be quite difficult and
subjective. Computer analysis of angiograms
and two dimensional representation of the ar-
teries through automatic segmentation and edge
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detection, has emerged as an important area of
research. Accurate segmentation of the coro-
nary arteries, allows for improved interpreta-
tion and subsequent 3-D reconstruction of the
arterial tree.

Angiograms are acquired as a sequence of x-
ray images during the injection of a contrast
agents into the circulatory system to be imaged.
Blood vessels must be correctly identified while
false positive detection of noise and interfer-
ence by irrelevant anatomical details must be
avoided. The need for automated vessel detec-
tion remains critical in computer based systems
performing complex tasks, such as quantifying
the coronary blood flow, reconstruction of the
3-D vascular structures and tracking vessels in
the temporal sequences of angiograms. Thus,
the calculation of the diameter of lumen along
the vessel is clinically significant. However,
the segmentation of the coronary arterial ves-
sels is a difficult problem due to presence of
motion artifacts, contrast inhomogeneity, and
the unstationary nature of the background. The
vessel-diameter typically decreases at the lower
levels of the arterial tree. Emphasis has recently
shifted to processing of the entire arterial tree, as
the entire tree provides the relationship between
branches and other valuable arterial information

Some relevant work has been done for obtain-
ing accurate lumen measurements for coronary
arterial branches [1,2]. However, such work has
provided results for a branch or sub-section of
the arterial tree. The coronary vessels exhibit
a ridge-like profile for the gray-scale values ac-
quired in the angiogram. A ridge detection al-
gorithm can provide the ridge points present in
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the image. A cubic facet model can model the
local region in the image, and then use the infor-
mation to obtain the direction maximizing the
second derivative. The ridge extrema can then
be taken to be present along the zero-crossing
of the first derivative [3]. The magnitude of
the second derivative provides information on
the sharpness and height of the ridge, while the
zero-crossing provides sub-pixel information on
the location of the ridge. Such ridge informa-
tion is relevant for indicating presence of a pixel
on an artery at its peak or ridge-point location.

Maximum Likelihood Classification (MLC)
[4.5] and delineation based edge-detection [6]
have been previously applied to this problem,
along with numerous other techniques involyv-
ing statistical and heuristic methods. Clustering
techniques can be applied for the segmentation
problem as various regions can be partitioned
based on their gray-level values. Fuzzy clus-
tering approaches have been applied for unsu-
pervised clustering and classification without
a priori information of the number of clusters
[7]. A validity measure is provided for fuzzy
c-partitions (FCM) [8] based on compactness
and separability of various clusters. It has been
shown that fuzziness offers an advantage com-
pared to the hard-clustering approaches by of-
fering some flexibility of membership selection
for the data vectors belonging to more than one
cluster.

The neural networks provide another classifi-
cation paradigm, with considerable potential.
Neural networks do not require underlying class
probability distribution for accurate classifica-
tion. Rather, the decision boundaries are adapted
through an iterative training process. The varia-
tionin image quality among various angiograms,
and introduction of noise in the course of image
acquisition, emphasizes the importance of such
an adaptive scheme. The selection of training
points can be automatic, and so training or cal-
culation of new weights can be inexpensively
performed for each instance of segmentation.
This is further supported by the parallelism in-
herent in feed-forward neural networks. Re-
cently, radial basis function (RBF) networks
have provided good results for classification [8]
and are gaining wide acceptance. The RBF
method has been previously used for interpola-
tion for non-linear multi-dimensional functions,
by using a large number of randomly selected

RBF center locations. Alternate learning meth-
ods, based on orthogonal least squares, have
been applied [9]. The RBF network provides
a suitable substitute for other two layer archi-
tectures. The method used by Broomfield and
Lowe [10] provides a suitable basis for the appli-
cation of RBF to signal processing applications.

2. Methods

We evaluate the performance of neural net-
work classifiers utilizing image gray-scale pixel
neighborhood values and pixel contrast infor-
mation as features for clustering. The contrast
value of a pixel is the largest difference in gray-
scale value between a pixel and its 8-connected
neighbors. The second derivative values at ridge
points, is a likely indicator for a point on the
artery, and is used to provide training points
for the network. A multi-resolution approach is
applied and it offers advantage in improved ac-
curacy and speed, for this problem. We present
results of applying various networks, with dif-
ferent configurations, for our problem. Specif-
ically, we present a novel method of applying
an RBF network, based on initial fuzzy cluster-
ing of the data, for coronary arterial segmenta-
tion, and compare its performance with a back-
propagation network and a delineation method.
The effect of network configuration on classi-
fication performance is analyzed in this paper.
The data used for validation consist of simu-
lated tube phantoms and pig coronary arterial
images.

2.1. Selection of Training Vectors Based
on Fuzzy Clustering

The feature vector has up to 10 elements and
consists of the gray-level value of a pixel and
surrounding eight neighbors, combined with the
contrast value at the pixel. The initial coarse im-
age segmentation, however, uses only the con-
trast information in the 3 x 3 neighborhood for
a 9 element vector. The ridge points in the im-
age are evaluated by using a cubic facet model
fit in the local neighborhood of the pixel. The
bivariate cubic function is fit in a local window
surrounding a pixel at row and column location
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(r, ¢) and is given by:

flre) =

+ C77° + Cgr’c + Corc? + Cioc”
(Equation 1)

The coefficients are estimated based on the
gray-level values of the underlying image within
a window using least square fitting. The func-
tion provides information of the first and second
derivatives around the central pixel. The pixel is
labeled a ridge if the first derivative taken along
the extreme direction of the second derivative
has a zero crossing sufficiently close to the cen-
tral pixel [3]. The conditions to be satisfied for
a ridge point are: f'(p) = 0 and f"(p) < O
where p is small distance from the center of the
pixel taken along a direction given by:

G
VL + G (Equation 2)
.
V€2 + €3 (Equation 3)

This feature detects the presence of a continu-
ous set of points on the arterial branch, for a
given window. This is an important attribute
for discriminating an artery from noise. A 5 x 5
window was taken for this work. Cluster anal-
ysis 1s based on partitioning a set of data into
similar groups [11]. The fuzzy c-means cluster-
ing minimizes the following objective function.

T = Zzude X;, V

i e (Equa‘[lon 4)
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(Equation 5)
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Where, A is a pXp positive definite matrix
and p is the dimension of the vectors X; (j =
1,2...n), V; the centroid of cluster i, ¢ is the
number of clusters, n the number of data vec-
tors, u; the fuzzy membership and m is the
fuzziness index. The fuzzy c-means algorithm
has the following steps [12]: (i) Randomly ini-
tialize membership u;; for vector X; belonging

c
to cluster 7 such that 3, (ii) compute the fuzzy
i=1
centroid, and; (iii) update the fuzzy member-
ship. The above steps are repeated till the cost
function J,, does not change any further. The
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fuzzy clustering validity set function is utilized
for measuring the overall average compactness
and separation of the fuzzy c-partitions. The
ratio I'l; = o/n; is the compactness of data vec-
tors in class i, where o is the variance of the data
from the cluster center and »; is the number of
vectors in the class. The separation s = d2,
represents the minimum distance between clus-

ter centroids [9].

dnin = min;; |Vi — Vj| such that a capital s in-
dicates that the clusters are well separated. The
best partition of the data vectors represents the
smallest measure S, where:

C
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=

S = =
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2 ViV
i=1j#
(Equation 6)
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The denominator has been modified from that
in [9] and the deviation from the average set of
shortest distances (for all clusters) is considered
instead of the smallest distance between any
one pair of clusters. The above cost function
will provide improved overall solution by con-
sidering the global average separation between
clusters instead of the worst case cluster pair
separation. The above method provides infor-
mation of the best number of clusters for a given
set of feature vectors. These data are obtained
from the coarse image obtained by taking aver-
age gray-scale value of 4 x 4 set of pixels. This
information is subsequently used to provide an
initial segmentation based on the pixel contrast
data in a local (3 x 3) window around pix-
els. Thus, improved computational efficiency
is obtained by using the scaled image for the
initial segmentation. The foreground training
vectors are taken at the ridge point on the seg-
mented arterial region of the coarse image, and
the background-training vector is taken from
the immediate background vicinity of this point.
The training and test features are then taken to
be gray-scale values in the local window, along
with the contrast value at that particular pixel in
the original image. The selection of appropriate
training points is critical for accurate segmen-
tation, and so the following conditions have to

be satisfied for foreground point P{ to be part
of the training point set (P{, Pg . P,);)
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Obtain ridge detected
image, using facet
mode:

Digitally
subtracted Angiogram
image.

Obtain contrast
image.

Obtain coarse (scaled
-by 4) version of
original image.

Obtain contrast
image.

Select the best number

of clusiers from the coarse
image using fuzzy c-means
method by validation measure
using contrast features.

Obtain initial segmentation
using the selected number of
clusters and applying the fuzzy
c-means method.

image.

Select training points for
background and foreground
based on ridge and contrast

l

Train RBF network by

using above training points

and for known number of
clusters, with gray-scale and
contrast informations of pixel
neighborhood in training vector.

l

Test the vectors from the
original image using training
weights of the RBF network
for segmentation.

Obtain medial axis and
diameter values of arterial tree.

Fig. 1. Arterial Segmentation Algorithm.

e The points should not belong to the back-
ground of the segmented coarse image,

e C; > 0o,
o P[ ¢ (R;,Ry,R5...Ry)

Where C; is the contrast value of pixel at loca-
tion i, o, is the standard deviation of the contrast
values of the entire image and (R, Ry, R3 .. . Ry)
is the set of ridge points detected by the cubic
facet model. The background vectors are taken
in the immediate vicinity of the foreground

point such that: Pj " ¢ (R, Ry, R3...Ry,) and
for point j with minimum contrast value C; s.t.
J € N(i), or neighborhood of point i.

The feature values are all normalized to be unit
variance, and as such, the range of values for
features with large variability is scaled and in-
creased for features with smaller variability.

Thus, the overall relative significance of each
feature is preserved. Equal number of training
vectors are selected from the foreground and
background of the original image so that typ-
ically, no more than 1% of the points of the
complete image are taken as training points.
The segmentation of the entire arterial tree is
investigated [14]. Details are shown in Figure

2.2. Radial Basis Function Network
Classification

The principle of RBF derives from the theory of
functional approximation. Given N pairs

(X, i) (¥ € R, y; € R)
We require a function, of the form f(X) =
Ef-il w;¢(|X — ¢;|) for K RBF centers, where
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Fig. 2. Radial-Basis-Function neural network.

w,; ¢(|X — ¢i|) is the weighted RBE. The RBF is
. &

defined as ¢(x, i) exp( ) )

This represents a function of the Euclidean dis-
tance between the components of the function
to be approximated, and the location of each
of the 1 centers of the RBEF, in a n dimensional
vector space. The maximum value of 1.0, is re-
alized for the RBE, when the value X is at one of
¢; center locations, and it becomes 0 when this
separation is large. The function f(X) should
approximate the N pairs and minimize the error
function,

N
B() = 3 01— £GP + 2BAP
i (Equation 7)

The first part of the error equation minimizes
the total error of the approximation and the sec-
ond part is a stabilizer that forces the function
to be as smooth as possible.

The RBF neural network is applied here as
a single layer of linearly weighted, radially-
symmetric basis functions summed together to
provide the output. The variables in this net-
work are the position, variance, and the weights
for the RBF node output in the network. Typ-
ically, RBF has approximation characteristics
which are comparable to multi-layer sigmoid
neural networks and which have been shown to
be universal approximators.

The j** instance of input vector x with com-
ponents (1,2...N) is presented to each input.
Each RBF node has center ¢;, as the location of
the RBF, the variance o2 or the width and the

output of each unit weighted by w;;, as shown
in Figure 2.

To account for large variances, the output of the
Gaussian nodes 18 normalized to sum to 1.

f: ijqb(X, i)

Flx i) = L= U (Equation 7)

The network weights can be calculated by: y =
Fluxp)W, where the elements of F(,x,) are the
activation functions. Typically, F,y,) 1s over-
determined and so the least mean square error
is computed for the solution. The weights can
be calculated by a pseudo-inverse,

W=[F'.F+al]"'.F'.y  (Equation 8)
The constant o is a regularization constant,
present to avoid singularity for matrix F [12].
The center of the nodes is determined by the
fuzzy c-means clustering, as mentioned previ-
ously. The variance or width of an RBF node
is based on the variance of neighbor clusters.
The network consists of a single hidden layer
and an output summation unit. The cluster cen-
ters are taken to be the position of RBF center
[12]. Variance of each RBF is taken by con-
sidering the nearest neighbors of the particu-
lar cluster and weights calculated as mentioned
above. The application of this network is shown
in Figure 1. Each RBF is placed at the location
of a cluster and ideally we require background
and foreground clusters. However, we need ad-
ditional RBF nodes to improve the conditioning
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Fig. 3. Back-propagation trained neural network architecture using 15 training vectors, 5 intermediate and 2 output
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nodes and 0.028 RMS convergence error.

of the solution. Moreover, noise and other arti-
facts are observed in angiogram data, indicating
presence of additional classes.

The training set consists of input vector and
the expected output so that discrimination can
be made between a test point being an object
point and a background point. Training and
testing are performed on a local window of size
3 x 3. The window slides, sequentially, over all
the pixels of the image. The gray-scale values
of pixels in the window along with the con-
trast value of the pixel constitute elements of
the training and test vectors. The output of
the network is modulated by passing it through
a sigmoid in the (—1, +1) range and the seg-
mentation threshold is set at 0.0, during the test
phase. The architecture of the network is quite
important, as the quality of segmentation is di-
rectly dependent on the number and size of clus-
ters taken. The effect of number of clusters is
shown in Figure 6 and Figure 7.

2.3. Back-propagation Trained Network
Segmentation for Comparative
Evaluation

It has been shown that back-propagation trained
feed-forward neural network (BPNN) with one
hidden layer can approximate any continuous
function over the compact space Rn [15,16].
The universal approximation property is an ex-
istence property. Such a feed-forward neu-
ral network classifier (with back-propagation
training) for detecting vascular structures in an-
giograms has been previously implemented by
Nekovei et al. [4]. The classifier consisted of

a multi-layer feed-forward network window in
which the center pixel of a window was clas-
sified using gray-scale information within the
window. The network was trained by using the
back-propagation algorithm with a momentum
term. Factors like network topology, rate pa-
rameters, training sample set and initial weights
contribute to the accuracy of segmentation.

The BPNN is the input data vector similar to the
RBF case. The momentum variable is used in
the back-propagation algorithm to increase the
speed of learning. The network is applied to the
entire image, after training for convergence to a
suitable error. The background and foreground
are each represented by an output, and a pixel is
classified as a background or foreground pixel
depending on which of the two outputs has the
strongest response [4]. Window sizes between
3 x3and 9 x 9 are used. Two hidden lay-
ers form higher dimensional features and can
provide improved classification. So, the testing
involved up to 2 hidden layers. The learning rate
0f 0.05 and a momentum term of 0.25 was used,
as they provided appropriate learning. The ini-
tial weights were randomly selected in the range
[-0.5, 0.5]. The number of inputs required are
obtained by the window size.

Two outputs are present, for the background and
foreground class respectively. The number of
hidden layer neurons is selected as a user pa-
rameter. The two output nodes are trained to
provide the object and the background signals
respectively so that the object neuronis setto 1.0
when the input training vector is a window from
the object, and the background neuron is set to
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1.0 when the vector from background window
is input. The node with greater intensity is taken
to be the output during testing (segmentation)
and this approach resembles a winner take all
scheme. However, back-propagation, like other
gradient descent algorithms, is prone to getting
stuck in local minima. Another problem is de-
termining the minimal yet optimal architecture
for the best possible classification. This step
involves some trial and error.

2.4. Probabilistic Linear Delineation for
Comparative Evaluation

The Probabilistic Linear Delineation (PLD) is
able to detect a centerline of the coronary arte-
rial tree, without first detecting the associated
edge points [6]. The proposed method consists
of multiple stages as mentioned below:

First, automatically delineate the artery pixels
from the background pixels and create one-
dimensional description of the arterial segments
which represents the centerline of each segment;
next, assign confidence levels to the pixels along
these centerline descriptions. Finally, the cen-
terline pixels are aggregated so as to form a fully
connected arterial tree skeleton. The algorithm
mentioned below:

e Convolve the image with a blurring function.

» Along each row, search for local maxima in the
horizontal direction (in the left and right direc-
tions). This search is accomplished by perform-
ing the following steps at each pixel location:

> Starting at a pixel continue to move to the
right by single pixel increments provided
the new pixel has a smaller grey-level value
than the current pixel. Record the minimum
found mingp,.

> Repeat the above step for the opposite direc-
tion and record minimum found minjef.

> Choose maximum of the two minima found,
Milporiz = max(mlnrighla mmleﬂ)-

e Repeat the above steps for the vertical direc-

tion, such that minp, = min(MiNperiz, MiNyer)-

e Define the magnitude of the local maximum,
B, to be the absolute value of the difference
between pixels.

e Grey-level value, o and the background in-
stance, minyy, B = | — miny, |.

The above procedure provides an effective
method for finding points along the centerline
and edges of a given artery. As a side benefit,
the minimum value found would be an instance
of the background. This is an important feature
since it provides the mean value of the back-
ground at each point in the image. This implies
that we should be able to derive a global vari-

ance for the image. The global variance, o? can
be defined as follows:
& Z min ,ubg (Equation 9)

where N is the number of pixel locations, ming,
is the instance of the background, and L, is the
local mean estimate of the background taken for
all pixel locations. A 1-D median filter applied
to the cross section of each artery segment will
provide an estimate of the background. The
orientation of the arterial cross sections is not
known a priori. To circumvent this problem,
a series of 1-D median filters arranged in four
different orientations (0, 45,90, 135 degrees,)
are applied at each pixel location. Itis then as-
sumed that at least one of these filters should
be approximately aligned with the cross section
of the segment (orthogonal to the segment) at a
particular position and the median value will be
lowest along the cross section. The background
value for pixels on and off the arteries can be
obtained similarly.

Thus, for each pixel location, the local mean of
the background in a window of approximately
15 by 15 pixel size, the magnitude of the local
maximum at the pixel location, and the global
standard deviation of the background can be
obtained. This information can be utilized for

detecting the edges and centerline of the arterial
fhige 6],

3. Validation Data

A tube phantom was created by taking a stan-
dard 5/16 inch tube and filling it with a mix-
ture of gelatin, milk and blue ink, to approxi-
mate a viscous fluid with some level of opacity.
This mixture was then set in the twisted flexible
tube along with glass capillaries. The capillar-
ies have 0.214 inches width across its widest
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Fig. 4. Tube phantom simulating Arterial Vessels.

Fig. 5. Pig-cast coronary arterial tree with 5.6 variance white Gaussian Noise.

portion. This phantom was then imaged with a
Hitachi CCD camera (DK-7000) and digitized
to a 512 by 512 pixel image with 8 bit represen-
tation per pixel. The resolution was 0.46 mm.
per pixel. The gray-scale images are shown in
Figure 4 and Figure 5. Pig arterial-tree cast
was used for the angiogram images. Additional
noise was added for critically testing the algo-
rithms. A sequence of pig-cast DSA images at
three views was used for arterial tree segmen-
tation analysis. The imaging parameters were
as follows: polar angles were 66° and 102° and
azimuth angles were 30° and 5° for view-1 and
view-2 respectively; source to image-intensifier
distance was 900 mm.; and pixel resolution was
0.41 mm. per pixel for both views and the image
size was 512 by 512 pixels.

4. Algorithm Results

Results are shown for phantom and pig-cast seg-
mentation with the number of clusters selected
by the modified fuzzy c-means algorithm. The
number of clusters greater than this number
will provide comparable results, but increase
the computation cost. In case the number of
clusters becomes too high, then the noise is in
effect learnt as a valid class and segmentation
is poor. Up to 16 clusters were adequate for
this problem. The results did not show large
variability between 12 and 14 clusters. The
cluster evaluation curve is shown in Figure 9,
from which the value of about 10 clusters is se-
lected to correspond to the point at which the
curve starts increasing again. Also shown are
the ridge points detected by the facet model
ridge detector, superimposed on the angiogram.
As mentioned, these ridge points guide the se-
lection of training points. A small value for the
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Fig. 6. RBF Segmentation of Phantom Data simulating vascular structures; 5 cluster and 5 clusters with different test
cases.

Fig. 7. RBF Segmentation of Angiogram Data of Pig-cast (view 1) Phantom with training and testing on the same
image with 10, 12 and 14 clusters respectively.

regularization constant is necessary, so we do
not introduce excessive smoothing. Therefore a
value of 0.001 was taken for weight calculation
for the RBF network. The tube phantom results
are quite good as compared to actual or true
measurements. White Gaussian noise with 5.6
variance was added for providing a hard data set.
The training cases are taken by the automatic
point selection method mentioned previously.
It should be mentioned that an advantage of this
network is that the architecture of the RBFNN
depends on the number of clusters only and the
vector length is fixed at 10.

While different BP networks (BPNN) topolo-
gies showed no significant effect on perfor-

mance, both the learning process and the classi-
fication performance were sensitive to the rate
parameters. The best result was obtained with
a small learning rate of 0.05 and a momentum
of 0.25. A three layer network (with 9-5-2 neu-
rons) was adequate for the problem and showed
good generalization to the entire angiogram and
other images.

The results are good and can be compared on

‘the basis of the number of pixels classified cor-

rectly. It was observed that over generalization
was possible in case the training was prolonged.
As expected, a biased training data set resulted
in a bias towards the dominant class. Training
was relatively short in the range of 200 to 600
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Fig. 8. RBF Segmentation of Pig-cast Phantom (view 2) with training and testing on different images with 10, 12 and
14 clusters respectively.
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Fig. 9. Ridge Points (by facet model) shown on original image; value of Fuzzy Evaluation Function for different
number of clusters, with ridge points and Cluster Evaluation,

epochs. The segmentation did well from one
image to the next because a relative classifica-
tion scheme was used with the maximum and
minimum gray-scale values of background and
object used to normalize the input to the image.
The larger the window, the more details seemed
to be extracted, but higher level of noise was
also present as in Figure 11.

It should be mentioned that the training set
for the BPNN method was selected manually
by visual inspection and not by the automated
method as for the RBF network based algorithm.

The probabilistic delineation algorithm was also
applied on the pig arterial phantoms and the re-
sults are shown in Figure 13. The objective of
this algorithm was to obtain a width coded cen-
terline of the object that would provide a diam-
eter for comparison with the RBFNN method.

5. Discussion

The larger the window, the more details seemed
to be extracted, but greater noise is present for
the neural networks methods. A comparison
of the phantom image segmented diameter with
the actual measured values, indicates that the
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Fig. 10. BPNN Segmentation of Phantom data simulating vascular structures, using 15 training vectors, 5
intermediate and 2 output nodes and 0.028 RMS convergence error, using a 3 by 3 window.

Fig. 11. 11 BPNN Segmentation of Angiogram Data of Pig-cast (view 1) Phantom for 75 training cases, with training
and testing on the same image, 5 intermediate and 2 output nodes, 0.028 RMS error of convergence, usinga 3 by 3, 5
by 5 and 7 by 7 window respectively.

results for the RBFNN method are quite en-
couraging. A comparison of the error of seg-
mentation by RBFNN and a BPNN is shown in
Figure 14. A fixed window size of 3 x 3 was
taken for both networks and 5 partitions were
the best selection from the modified FCM algo-
rithm, for the RBFNN. The RMS error for the
RBFNN was (.76, and 0.97 for BPNN. The er-
ror was computed for various points lying along
the rows of comparable image (Tube Phantom
1). The diameter was computed along direction
perpendicular to the medial axis for the selected

point. The results indicate that the RBF net-
work performed more accurate segmentation for
the window size considered here, as shown in
Figure 14.

A comparison between the diameter from the
RBFNN segmentation method and PLD was
performed. The diameter is calculated of the
arterial tree shown in Figure 13, at periodic
row intervals. The RBFNN method appears
to provide better continuity and less variability
among adjacent diameter measurements along
branches, compared to the PLD method. The
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Fig. 12, 12 BPNN Segmentation of View 2 Angiogram Data of Pig-cast (view 2) Phantom for 75 training cases, with
training and testing on different images, with 3 by 3, 5 by 5 and 7 by 7 windows respectively.

Fig. 13. Pig-cast Coronary Arterial tree (View 1, View 2) width and centerline extraction by PLD.

PLD method can cause some loss of accuracy
due to the smoothing (averaging) of gray-level
values in the local window being considered.
Pearson’s product-moment correlation coeffi-
cient [15] P, was calculated to be 0.872 for
the two sets of diameter measurements shown
in Figure 15. Assuming x; and y; are the two
diameter sets, P, is:

Z(xi — ) (yi — Hy)
\/Z(xi — iy )? \/Z(yi — py)?

i
P, =
I 1

(Equation 10)

6. Conclusion

This paper has presented a RBF neural network
based segmentation algorithm for coronary ar-
teries. The automated selection of training vec-
tors from one of a set of images is adequate
for generalized segmentation. However, even
though we have demonstrated generalization,
training and final segmentation for the same
image are possible by this algorithm, as the
computation cost is not too high. The com-
plete algorithm took 18 seconds to process on a
Ultra-1 workstation for one pigcast angiogram
(view 1 or view 2.) Fuzzy clustering by the
modified evaluation function, combined with a
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Fig. 14. Diameter error comparison of Radial Basis Function and Back-propagation trained neural networks for a
3 x 3 window. Diameter computed by using Euclidean pixel distances for tube phantom by training on the first and
testing on the second.
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Fig. 15. Diameter comparison of Radial Basis Function neural networks and Linear Delineation. Diameter is
computed by using Euclidean pixel distances for coronary arteries by training on the first view and testing on the
second.

multi-resolution approach for image feature se-
lection offers an algorithm capable of giving
accurate results. It should be noted, that it also
offers parallel processing characteristics similar
to other neural networks and that the network
size is fixed by the number of fuzzy cluster par-
titions.

Back-propagation NN provided good results us-
ing a 3 or 4 layer architecture with 2 output
neurons. The BPNN training is iterative and so
computation time is proportional to the number
of epochs necessary. Appropriate selection of
the number of layers and the neurons per layer
is typically experience based. The RBFNN per-
forms a pseudo-inverse and so the time for train-
ing is a variable of the number of clusters.

The accuracy of segmentation is shown in the
previous section and the RBFNN results are
quite promising, as compared to other ap-
proaches. Moreover, the RBFNN seems to offer
more robustness to architecture changes and a
3 x 3 window was quite adequate for this prob-
lem using the automated algorithm described in
Figure 1. The RBFNN results were compared
to those from PLD algorithm, applied to fube
like structures approximating coronary arteries.
However, PLD has limitations due to its strong
dependence on manual selection of parameters
like median filter size, size of mask for smooth-
ing regions, distance between the branches to
connect etc. intuitively based on the noise level
and contrast of angiogram.
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