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This paper describes some achievements in the segmen-
tation of medical images using artificial neural networks.
We have identified three main sources of a priori in-
formation available to help perform the task of medical
image segmentation: anatomical knowledge about the
imaged region, the physical principles of image genera-
tion and the “regularities” of biological structures. The
exploitation of each of these forms of knowledge can be
effectively achieved with suitable neural architectures,
three of which are described in the paper. An important
lesson learnt from using these architectures is that dif-
ferent kinds of knowledge unavoidably induce different
limitations in the resulting segmentation systems, either
in terms of generality or of performance. Our experience
indicates that in several applications some of such limita-
tions can be overcome through a careful exploitation and
integration of available knowledge sources via proper
neural modules.
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Introduction

In computer vision, segmentation is a crucial
step in building systems for understanding the
imaged “world”. In the case of medical im-
ages, the general objective of segmentation is to
find regions which represent single anatomical
structures (both normal and pathological). For
example, the availability of regions which rep-
resent single structures makes tasks such as in-
teractive visualization and automatic measure-
ment of clinical parameters directly feasible. In

addition, segmented images can be further pro-
cessed with computer vision techniques |[Bal-
lard & Brown, 1982] to perform higher-level
tasks such as shape analysis and comparison,
recognition and clinical decision-making.

Unfortunately, segmenting medical images is
a very challenging task for the following two
reasons. First, standard computer vision tech-
niques cannot always be applied satisfactorily
to the segmentation of medical images because
the physics of “natural-scene” image genera-
tion on which such techniques rely is quite
different from the physics of medical image
generation. Second, medical images have a
number of unusual features [Macovski, 1983,
Webb, 1991], such as high noise intensity, the
presence of semi-transparent structures, bio-
logical shape variability, tissue inhomogeneity,
imaging-chain anisotropy and variability, which
severely hamper their segmentation.

In order to overcome these problems most re-
searchers have adopted the strategy of exploit-
ing different kinds of a priori information about
the imaged structures. However, segmenta-
tion systems based on conventional algorithmic
techniques or on symbolic knowledge-represent-
ation and processing have often shown a limited
robustness and, in most cases, have required
considerable efforts for eliciting knowledge.

Artificial Neural Networks (ANNs) can par-
tially overcome these drawbacks thanks to the
following properties: capability to learn from
examples and to generalize what has been learnt
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(as in the case of feed-forward nets), noise re-
jection, fault tolerance, optimum-seeking be-
havior (which is typical of most recurrent nets)
[Rumelhart & McClelland, 1986, Kohonen, 1989,
Hopfield & Tank, 1985].

In our research in the area of medical imaging,
we have explored the features of ANNs to help
improve the performance and reduce the devel-
opment time of image segmentation systems.
Several neural architectures for medical-image
segmentation have been developed, which ex-
ploit different kinds of a priori information.
Available knowledge sources are: the anatomy
of the imaged region and the structure(s) of
interest inside it, the physics on which the
adopted imaging modality is based, and the typ-
ical “regularities” of biological structures [Marr,
1982, Reuman & Hoffman, 1986]. In the fol-
lowing section we discuss how these forms of
knowledge can be used to drive the segmenta-
tion of medical images.

In the third section we describe three architec-
tures, which exploit such sources of knowledge,
and give some examples of the results they pro-
duce. The first architecture exploits anatomical
knowledge as a source of a priori information
to train a set of feed-forward neural modules
operating at different resolutions. Knowledge
about the physics underlying the imaging tech-
nique is exploited by the second feed-forward
neural system which uses a tissue classification
strategy based both on statistical properties of
Magnetic Resonance (MR) multi-spectral im-
ages and on anatomical knowledge. A strategy
based on the exploitation of visual “regularities”
derived from properties of natural structure has
been used in the third neural architecture based
on Hopfield’s neural networks.

In the fourth section of this paper, we summarize
the properties of these architectures. As will be
shown, different kinds of knowledge unavoid-
ably induce different limitations in the resulting
segmentation systems either in terms of general-
ity or of performance. Our experience indicates
that in several applications some of such lim-
itations might be overcome through a careful
exploitation and integration of different knowl-
edge sources via different neural modules.

Knowledge Sources for Medical Image
Segmentation

Anatomical Knowledge

Anatomical knowledge about the typical shape
and appearance of the structures being imaged
is the most obvious, and widely used, source of
a priori information on medical images. How-
ever, the use of anatomical knowledge is not
easy and requires the solution of two difficult
problems.

First, in order to exploit anatomical knowl-
edge for medical-image segmentation it is nec-
essary to define adequate models that represent
the structures being considered. Such models
should combine the appropriate level of detail
with a representation as invariant to changes of
scale, translation, rotation and deformation as
possible.

Second, the input data must be correctly match-
ed against an internal model which is used to
produce a priori expectations about the image
content.

Symbolic systems based on anatomical knowl-
edge that were proposed in the past by several
authors [Stansfield, 1986, Raya, 1990] have par-
tially solved these problems. However, in gen-
eral, those systems have not achieved fully sat-
isfactory results. As recognized by most au-
thors (for example, see [Sonka eral, 1996]) this
is mainly due to the intrinsic complexity and
variability of biological objects which heavily
hamper the elicitation and the use of knowl-
edge. For this reason, alternative approaches to
the exploitation of anatomical knowledge have
been largely investigated (e.g. see [Bajcsy &
Kovacic, 1989]).

Physics of Image Generation

Some imaging techniques, such as MR, allow
for reproducible measurements of parameters
which characterize different tissues. Such mea-
surements can be exploited in developing clas-
sification algorithms for image segmentation.

For example, MR spin-echo image sequences
are generated by a physical process that can
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be summarized by the following approximate
equation [Webb, 1991]:

_IE
I=k(p, T, TR)e T2

where I is the measured signal intensity in one
pixel, p is the proton density, Ty and T, are the
relaxation times, TE is the echo time, TR is the
excitation-sequence repetition time and K is a
coefficient which depends on tissue and acqui-
sition parameters. The parameters p, T1 and 17
are tissue-dependent, while 7E and TR depend
on the acquisition sequence and can be set by
the operator. The above equation shows that the
characteristics of spin echo images strongly de-
pend on T, and that contrast between different
tissues can be adjusted with a suitable choice
of TE. Given a set of MR images of the same
slice acquired with different TEs (multi-echo
sequence), T, can be estimated for each pixel
[MacFall ez al., 1986], thus allowing for T,-based
tissue classification.

Several authors have reported encouraging re-
sults obtained on the segmentation of MR im-
ages of the brain using statistical, fuzzy, and
neural-network approaches based on this idea
[Ozkan et al., 1990, Gerig er al., 1992, Hall et al.,
1992]. However, a critical problem to be tack-
led is the presence of different tissues of similar
appearance, which hampers classification based
only on MR physics. In the case of brain tissues,
misclassifications mainly affect sub-cutaneous
fat and white matter, as reported in [Piraino eral,
1991] and as we verified in our early experi-
ments. In theory, this problem can be solved by
integrating knowledge about the physical prin-
ciples of the imaging device with some other
form of a priori knowledge about the imaged
structures [Lundervold & Storvik, 1995, Wells
III et al., 1996].

Perceptual Regularities

Biological vision is ruled by principles such as
perceptual grouping, selection, discrimination,
etc. which mostly depend on regularities of na-
ture such as cohesiveness of matter or existence
of bounding surfaces. These properties are cer-
tainly valid also for the anatomical structures
contained in medical images, and can be ex-
ploited to build general-purpose segmentation
systems for that kind of images.

From the perceptual standpoint, the optimum
segmentation algorithm for medical images
should be sensitive to small-size and low-contrast
structures (high discriminating power), and ro-
bust with respect to noise, texture and slow
intensity-changes (high grouping power).

These requirements counteract each other and
a trade-off solution is necessary. The trade-off
can be set at design-time and embedded in a
segmentation algorithm, as it is often done in
standard computer vision algorithms [Ballard
& Brown, 1982], or can be optimized for each
image so as to obtain maximum performance
in terms of grouping and discriminating power.
In this case the problem of medical image seg-
mentation can be formulated as a problem of
combinatorial optimization. This will be clari-
fied in the following section.

Neural Architectures for Medical Image
Segmentation

Segmentation Based on Anatomical
Knowledge

Feed-forward ANNSs can naturally integrate ana-
tomical knowledge with the information con-
tained in the images without requiring the for-
mulation of explicit descriptions of objects. In
fact, the output of a trained neural network relies
both on the input data and on the a priori ex-
pectations that have been stored in the network
connections during the learning phase. Thanks
to this property ANNs can effectively face the
problems encountered in knowledge-based seg-
mentation of medical images.

On the basis of these ideas we developed a sys-
tem (based on feed forward-networks trained
with the back—propagation algorithm [Rumel-
hart & McClelland, 1986]) for the segmentation
of target structures in tomographic images, and
of lung nodules in standard projection radiogra-

phy.

The system consists of a set of basic modules
(one for each kind of structure to be segmented)
such as the one shown in Fig. 1. Each module
includes three major blocks: a retina, an Atten-
tion Focuser (AF) and a Region Finder (RF).
The retina is the input section of the system. It
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Fig. 1. Basic-module architecture of a segmentation system based on anatomical knowledge.
input units

receptive fields

Region Of Interest O

foveal receptive
fields

output units

low resolution

oo e e >
T oo e e

high resolution

A
Y )
1

~

Fig. 2. Structure of the retina.

preprocesses the input image to produce a low-
resolution output picture, utilized by AF to lo-
cate the desired structure, and a high-resolution
output picture, used for segmentation by RF.

The retina is composed of an input layer in-
cluding as many neurons as image pixels, and
an output layer with a reduced number of neu-
rons (see Fig. 2). As in biological retinas, the
connections between the input and the output
neurons are local and are arranged in overlap-

ping receptive fields centered on each output
neuron. Let w(x, y) be the connection weight
between a given output unit and the input unit
at position (x, y). For MR and Computed To-
mography (CT) images we use receptive fields
with Gaussian weights:

2. y2
202

For X-ray images we utilize Laplacian of Gaus-

1
w(x,y) = mexp —
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The shape of both types of receptive fields
1s tuned through the o parameter. Gaussian-
shaped receptive fields allow for the smooth-
ing of input images with minimal distortion in
both space and frequency domain [Marr, 1982].
On the other hand, the LoG-weighted receptive
fields are useful to filter out the low-frequency
components of X-ray images which are primar-
ily responsible for background variability. The
retina also includes a moving region, called the
fovea, which performs the same operation at a

higher spatial resolution on a Region of Interest
(ROI) selected by AF.

As to AF, we have designed two different struc-

tures illustrated in Fig. 3. When a single entity
has to be segmented, AF is a fully connected net
with: a) as many input neurons as the number
of pixels of the low-resolution image produced
by the retina, b) two hidden layers and c¢) an
output layer which encodes the coordinates of
the centroid of the structure under consideration
(Fig. 3a). When multiple instances of the struc-
ture of interest may be present, AF net has: a)
an input layer arranged as a square mask which
scans the image, b) two hidden layers, and c)
one output neuron whose output is high when
a target structure is centered in the input mask
(Fig. 3b). The network scans the low-resolution
picture like a convolution operator. The points
where AF output is high (with respect to a pre-
defined threshold) are marked as attention foci
and indicate possible lesions.
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It is worth noting that the use of an attention-
focusing mechanism has two main advantages:
a) the overall computation load is reduced (only
the ROl is processed at high spatial resolution),
b) the produced segmentation is insensitive to
translation. Moreover, the use of overlapping
receptive fields provides a certain degree of tol-
erance to shape distortion [Hubel, 1988].

Once the centroid of the structure considered
has been computed by AF, the fovea processes
the ROI at the higher spatial resolution and RF
extracts the pixels belonging to the structure
of interest. The topology of RF is depicted in
Fig. 4. RF is a block-connected multi-layer net
which operates like a nonlinear space-varying
filter by processing, for each pixel: a) the gray
level of the pixels contained in a square mask,
b) the position of the mask (given by an appro-
priate encoding of the coordinates of its cen-
tral pixel). As shown in the figure, these dit-
ferent kinds of information are processed in-
dependently by two different fully connected
sub-networks joined in a common layer. This
network topology provides an optimal integra-
tion of input data with a priori knowledge. The
activation of the output unit indicates whether
the processed pixel belongs to the considered
structure.

The architecture described has been used to seg-
ment MR and CT images [Coppini e al., 1992]
and to detect lung nodules, which appear as
small low-contrast blobs in standard chest ra-
diographs [Coppini ez al,, 1993b].

Tomographic Images

In the experiments with tomographic images
(represented by 256x256 matrices), we have
considered the segmentation of a) the brain from
MR head slices, and b) the spinal column from
CT thorax scans. In both cases, the retina pro-
duces 16x 16 Gaussian filtered low-resolution
images (typically we used o = 4.5). A fovea
region with 256 x 256 input units and 128 x 128
output units and ¢ = 1.5 was used for brain im-
ages. For spinal-column images, the fovea has
80 x 80 input units, 40 x 40 output units and
o= L3

AF has been implemented as a network with
an input layer with 16x16 units, two hidden
layers each having 32 units, and 2 x 16 out-
put units (each coordinate being encoded by 16
output units). The typical topology adopted for
RF includes: a) in the gray-level-processing
sub-network, 9 x 9 input units, two hidden
layers with 10 and 5 units respectively, b) in
the position-processing sub-network, 32 input
units (16 units per coordinate), two hidden lay-
ers each with 16 units. The output of the two
sub-networks converge into a three-units layer
which, in turn, feeds a single output unit.

Two different image-sets were utilized: the first
one composed of 80 MR brain images from 6 pa-
tients, the second one including 120 CT thorax
images from 8§ patients. An expert radiologist
labelled all the images of both sets by providing

gray level processing

segmented
structure

position processing

Fig. 4. Region Finder topology.
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Fig. 5. Segmentation of the brain from an MR image sequence using the architecture presented in Fig. 1.

the position of the considered organ and tracing
the related boundary using a graphic interface.
Afterwards, we utilized half of the images in
each set to train a corresponding segmentation
system. The remaining halves were used as test
sets. In all cases, the rate of correct classifica-
tions with respect to radiologist’s segmentation
was above 95%, with remarkable sensitivity and
specificity. In the case of brain slices, the rate
of correct pixel-classification was 97%, sensi-
tivity being about 95% and specificity 98%. In
the case of spine images, we observed a rate of
correct classifications of about 96% (sensitivity
95%, and specificity 97%).

In Fig. 5 we show a sequence of MR tomo-
grams of the head: the contours of the brain as
segmented by the system are superimposed on
the original images.

Chest Radiographs

In the experiments with chest radiographs (each
represented by a 768768 matrix), the retina
produces LoG filtered low-resolution 256 x 256

images, with o = 8. The fovea operates at full
resolution and has 60 x 60 output units, with
o = 2.5. AF has been implemented as a net-
work with 19x 19 input units, two hidden layers
each having 32 units, and a single output unit.

RF analyzes the ROIs around the attention foci
produced by AF and, for each of them, produces
a binary output which represents the segmenta-
tion of nodule-like patterns. The grey-level-
processing sub-network includes 19 x 19 input
units, three hidden layers with 10, 6 and 3 units,
while the position-processing sub-network has
12 input units {6 per coordinate), and three hid-
den layers with 6, 6, and 4 units respectively. As
in the case of tomographic images, the two sub-
networks share the final layers including 3 units
and a single output neuron. The segmentation
can then be analyzed by a neural recognition
system (a three-layer fully-connected network
with 21 x 21 input units, two hidden layers with
4 and 2 units, respectively, and 1 output unit),
which labels each region as nodule-like or nor-
mal.

The data set used to train and test the system in-
cludes 62 standard antero-posterior chest radio-
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Fig. 6. Steps of the segmentation of lung nodules exploiting anatomical knowledge: original image analysed by a
radiologist (top left); output of the Attention Focuser (top right); regions segmented by the Region Finder (bottom
: right); structures classified as nodular (bottom right).

grams. All images were examined by an expert
radiologist who identified and manually seg-
mented nodular lesions (having an approximate
size from 3 to 30 mm, corresponding to a range
from 5 to 55 pixels) . A sub-set of 32 images
(with 92 nodules) was adopted as training set.
The remaining radiograms were used as a test
set, 6 of them coming from normal subjects and
16 with lesions (for a total of 18 nodules). Ex-
perimental results indicate good sensitivity and
reasonable specificity in detecting parenchyma
lesions. In particular, as to the segmentation
phase, the rate of correct pixel-classifications
has been above 93%, with a sensitivity of about
94% and a specificity of 96%. As concerns
the global system performance, all the nodules
were correctly identified with no false negative
and a total number of 7 false positives. In the
images from normal patients we have observed
4 false alarms.

In Fig. 6 we illustrate the typical operation of
this system. The four panels show (top to bot-
tom, left toright): aradiogram with a malignant
nodule encircled by the radiologist, the attention

Jfoci produced by AF, the regions segmented by
RF and the structures classified as pathological.

Combined Use of Physics of Image
Generation and Anatomical Knowledge

In the previous section we pointed out that the
physics of image generation is an important
source of prior knowledge. Even if its sole
use can lead to poor segmentation results, its
use combined with anatomical knowledge can
provide more accurate results [Sonka er al,
1996, Lundervold & Storvik, 1995]. We ex-
plored this idea in a neural system for the seg-
mentation of MR spin echo images of the brain
[Cagnoni er al, 1993] where the ambiguity be-
tween fat and white matter was removed thanks
to the use of anatomical knowledge.

The system includes three main modules (see
Fig. 7) which accomplish the following compu-
tational processes: a) enhancement and analysis
of the information provided by signal decay over
time; b) detection of the brain parenchyma; c)
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Fig. 7. Overall structure of a segmentation system that uses anatomical knowledge and the physics of image
generation.

pixel classification into five predefined tissue
groups. The first two modules are based on
feed-forward networks trained with the back-
propagation algorithm. The neural classifier
which performs the actual segmentation is im-
plemented with a Kohonen topology-preserving
map [Kohonen, 1989], whose units have been
labeled after training according to the class of
patterns to which they respond maximally.

The first module, that we have called Sequence
Reconstructor {SR), enhances information re-
lated to signal decay and improves the signal-
to-noise ratio of the image, thus emphasizing
the differences among different tissues [Cagno-
ni er al, 1992]. SR generates two low-noise
long-TE (150, 200 ms) images, which could
not be reliably obtained otherwise (e.g. via con-
ventional extrapolation techniques or direct ac-

quisition). The neural network that performs
such a task consists of four layers with 18, 6, 6,
and 2 units. The inputs are the gray levels of
two 3 x 3 windows taken in the same position
from two short-TE (50, 100 ms) images of a
given slice. The outputs represent the estimated
intensity values of the central pixel of such win-
dows in two images with long TEs. Therefore,
by successively processing pairs of 3 x 3 win-
dows centered on each pixel of the input images,
the network synthesizes whole long-TE images.
The four-image sequence produced by this net-
work is considerably less noisy than the one
obtainable via direct acquisition. This can be
justified by considering that the number of de-
grees of freedom of the network is much smaller
than the number of pixels used to train it, so that
the network cannot (over)fit the noise.
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The second module, termed Brain Detector (BD),
supplies the neural classifier with a priori anatom-
ical knowledge. The architecture of BD is de-
scribed in the previous subsection. BD has been
trained to produce an image in which pixels
belonging to brain parenchyma are enhanced.
As pointed out in the introduction, knowledge
about the brain location is essential to discrim-
inate between the tissues (subcutaneous fat and
white matter) that have similar p, Ty and T,
and therefore have very similar gray levels in
all images of the sequence.

The outputs of SR and BD are processed by
a neural classifier. This module performs the
segmentation of the sequence by assigning each
pixel to one of the following five classes: gray
matter, white matter, cerebrospinal fluid, skin or
sub-cutaneous fat and background. The imple-
mented classifier is based on a one-dimensional
256-unit Kohonen self-organizing map used
jointly with a unit labeling algorithm [Wolpert,
1992]. This paradigm has the advantage of
faster training with respect to standard back-
propagation and of reliable encoding of the sta-
tistical properties of the training set [Kohonen,
1995].

A total of 2500 examples were taken from 25
images coming from three spin-echo multislice
sequences (TE = 50, 100 ms, TR = 2000 ms)
and from the corresponding segmented image,
generated by BD. These examples were clas-
sified by an expert radiologist. Half of them
(50 examples per image) were used to build the
training set. The other 1250 were used to test
the system.

Table 1 shows the confusion matrix calculated
on the test set. In the matrix, the elements Cj
with i = j indicate the percentage of patterns
belonging to class i that have been correctly
classified; elements Cj with i # j indicate the
percentage of patterns belonging to class i that
have been misclassified as belonging to class
J. The test resulted in a global accuracy of
94%. The classifier’s best performance (99%)
was obtained (thanks to the anatomical infor-
mation) on skin and sub-cutaneous fat, while
the worst (90%) was obtained on cerebrospinal
fluid. Not surprisingly, if the output of BD is
not used, performance is remarkably worse, as
the accuracy drops to about 70% in the case
of patterns representing skin and sub-cutaneous
fat.

| | GM WM CSF S/F BG |
GM [ 918 6.1 16 05 0
WM | 69 914 1.0 0 0.7
CSF|1 39 13 895 53 13
S/F | 05 0 0 990 05
BG 0.4 1.0 04 04 978
Global accuracy % 94.24

Table 1. Segmentation of MR sEin-echo images:
confusion matrix for the test set. The element i 18 the

percentage of image pixels belonging to class i that have
been classified as belonging to class j. The classes

considered are: grey matter (GM), white matter (WM),
cerebrospinal-fluid (CSF), skin or fat (S/F), and
background (BG).

The results we have obtained by the system are
illustrated in Fig. 8, in which the two input im-
ages are shown in the top row, the two long-TE
images produced by SR in the mid row, and the

Fig. 8. Segmentation combining anatomical knowledge
and physics of image generation: input images (fop
row); output of the Sequence Reconstructor (mid row);
output of the Brain Detector (bottom left); final

segmentation (bottom right). -
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Fig. 9. Structure of the Hopfield’s segmentation network.

output of BD and the final segmentation in the
bottom row.

Segmentation Based on Perceptual
Principles.

The requirements of maximum discriminating
power and maximum grouping power for an
ideal segmentation algorithm counteract each
other and a trade-off solution is always neces-
sary. If this needs to be achieved for each im-
age, rather than being built into the algorithm,
a quantitative criterion of goodness of segmen-
tation needs to be explicitly defined. Once this
is available, it can be optimized by the segmen-
tation procedure for any specific image. Un-
fortunately, for any given image the space of
possible segmentations is huge and cannot be
explored effectively with standard optimization
procedures.

Continuous Hopfield’s networks [Hopfield, 1984]
are dynamic systems evolving towards stable
states which are the minima of an energy func-

tion E,,, of the form:

1 N N N
Ena v =5 > Tyvivj= ) ivi
i=1

i=1 j=1

where v; is the output of neuron 7, i; is its ex-
ternal input and T;; is the weight of the con-
nection from neuron j to neuron i. Thanks
to this minimum-seeking dynamics, Hopfield’s
networks can be used to solve optimization
problems [Hopfield & Tank, 1985, Hopfield
& Tank, 1986]. Following similar approaches
in the field of natural scene segmentation [Bil-
bro et al, 1987, Darrell er al, 1990, Darrell &
Pentland, 1991, Reed, 1992, Wang et al., 1992],
we decided to use Hopfield’s neural networks
to solve the medical-image-segmentation opti-
mization problem [Poli & Valli, 1997]. In the
following we describe the steps required to do
this.

The first step is to find a binary representation
for segmentations, so that they can be mapped
into the states of the neurons of a Hopfield’s net-
work. We have adopted a representation which
has been suggested by the analogy between the
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process of segmentation and the one of color-
ing geographic maps. A well-known theorem
in graph theory states that in order to represent
the states in a geographic map (regions of an
image), only at most 4 colors are needed, as far
as different colors are given to bordering states
(connected regions). Thus, we can represent
the results of the segmentation of an image with
4 bit maps (layers of neurons) each of which
represents a different color. As illustrated in
Fig. 9, the segmentation of an image can there-
fore be represented by the activations of a three-
dimensional array of neurons. The activations
are converted into a standard region-based seg-
mentation (in which each separate region has
a different label) by applying an algorithm for
the detection of connected components to each
layer (blob coloring).

The next step is to define a cost function E,,,
whose minimization provides an optimal solu-
tion to the segmentation problem. In our ap-
proach E,, is the sum of two terms: i) a syntax
energy Egynrax which prevents the network from
settling into non-binary states or states which
cannot be mapped back to segmentations, ii) a
goodness energy Eg,oqness Which drives the net-
work towards points in state space which repre-
sent good segmentations.

The syntactic correctness of the solutions re-
quires that one and only one neuron be active
among the neurons representing a given pixel.
This syntax constraint can be restated mathe-
matically as: Vi, y3!1 : vy = I, where Vyt
denotes the activation of the neuron which rep-
resents the presence of label ! for the pixel
of position xy. In order to enforce this con-
straint, the syntax energy should be devised so
that states which do not respect syntax rules
have a very high energy. This can be ob-
tained by including, for each pixel, the en-

ergy term le Zlﬁﬂl Vil Vayl, and a correc-
: 2 .
tive term (Zl L 1) , which prevents the

network from settling into the non-valid null
solution vy, = 0, V1.

The syntax energy is obtained by summing up
those terms for all the pixels in the image:

vynrat = 2 E E K E E VaylVyyi

i#l

+K> Z Vyyl — 1

!

where K| and K, are constant values.

The goodness energy has to drive the network
towards segmentations which are as good as
possible from the perceptual point of view. As
we already mentioned, in the case of medical
images, the best segmentation would be the one
which reveals any transition between different
tissues but which does not contain any spurious
regions produced by noise or by texture. Unfor-
tunately, no segmentation method reaches both
objectives at the same time. Therefore, any
criterion of goodness of segmentation must be
a combination of two terms: a discriminating
power term and a grouping power term, which
provides an optimal trade-off.

The discriminating power term of Egm,dnes %
should make the network reveal any transition
between different tissues, i.e. any change in the
image gray-levels. In order to obtain this effect,
we must include terms which increase when
neighboring pixels lying across a boundary have
the same label. To this end, we can use the fol-
lowing energetic term:

di(x, y)
ZVL')[V)QE dn x }) _X y)

where (x, y) and (%, §) are two neighboring pix-
[(](—H)y} 1s the directional derivative of
the image I(x, y) in the direction 7(x, y, %, ) =
(89)~ ()
I1(%,3) = Ce)I" e '
for all pixels lying in a neighborhood B of

(x,y). B* should not contain pixels which are
too close to or too far from (x,y). We have
adopted the simplest neighborhood which meets
these requirements:

2</ (5

The aim of the grouping power term is to force
the net to construct large regions which have a

els, and

This expression must be present

FL{ﬁy

nyQJ}
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Noise ¢ 0

5 10

20 40 80

Wrong assignments (%)

L7

1.32 | 1.46 | 16.38 | 52.88

Table 2. Segmentation of synthetic tomograms: wrong pixel assignments (%) vs. noise standard deviation.

high probability of representing single anatomi-
cal structures. We can obtain this effect with the
following constraint: pixels which are close to
each other should have the same label. In order
to implement it we require the energetic term
— > 1 VayiVagr to be minimum, for all the pixels
(%, 9) in the 4-connected neighborhood N*? of
each pixel (x, y).

By summing up the above terms for all pixels,
we get the complete expression of the goodness
energy:

1
Egoor]ness:“z“ ZZ K
x oy

o dlx,y)
dii(x, y, X, §)

E E Viyl Vil X

(xpeb™ |

— Ky E > Vil Visi

(FHENX |

where K3 and K4 are constant values.

Once the energy function E,,; has been defined,
the weights T;; and inputs i; of the network
can be computed by direct term-matching as
in [Hopfield & Tank, 1985]. The calculations
show that two kinds of connections are present:
a) excitatory and inhibitory intra-layer connec-
tions which implement perceptual grouping and
discrimination principles, and b) inhibitory inter
layer connections which enforce syntactic cor-
rectness. Syntactic correctness is also favored
by the excitatory external inputs which prevent

i

the network from settling into the meaningless
null state.

The segmentation network described is imple-
mented by numerically integrating the motion
equation of Hopfield’s nets until a stable state is
reached. As mentioned before, this state is then
mapped back into a segmentation using blob
coloring techniques.

The network described has been tested quanti-
tatively on synthetic tomographic images and
qualitatively on real tomographic ones.

Synthetic images were generated by simulating
the operation of a real tomographic device on an
ellipsoidal organ (grey level 230) surrounded by
a homogeneous tissue (grey level 30). In order
to test the robustness of the method, in addition
to the blurring caused by the finite thickness
of the slices (partial-volume effect), Gaussian
white noise with zero mean and increasing stan-
dard deviation ¢ was included in the images.
The resulting images were segmented using the
network described above and then compared
with the exact segmentation obtained manually
with images in which noise and partial-volume
effect were absent. Table 2 shows the average
errors obtained in these experiments for several
different values of o. The table reveals that
the method is quite insensitive to noise until
this reaches relatively high levels (o =40-80).
(For o < 40 the misclassification errors can be
entirely attributed to the partial volume effect.)

Fig. 10. Segmentation of an MR image of the thorax using a Hopfield’s network that exploits perceptual regularities,
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Fig. 11. Segmentation of a CT image of the thorax using a Hopfield’s network as in the case of Fig. 10.

The good accuracy shown by the method in
the experiments with synthetic images has been
confirmed qualitatively by numerous experi-
ments with real tomograms. Fig. 10 illustrates
the results obtained on an MR image of the tho-
rax. The segmentation of the original image
(left) is shown after blob coloring (right). The
algorithm has correctly segmented most of the
anatomical structures of clinical interest such as
lungs, sub-cutaneous fat, muscular tissue, right
atrium, right ventricle, backbone, pulmonary
artery, etc. In Fig. 11 we display an original CT
image of the thorax and the related segmenta-
tion. The segmented image contains four main
regions: the two lungs, the soft tissue and the
background. There are also a number of small
regions (rib borders, main tracts of bronchi, part
of backbone, etc.) which, due to their high con-
trast, have not been grouped with surrounding
tissue.

Discussion and Conclusions

By exploiting different kinds of a priori infor-
mation, each of the approaches described above
provides different solutions to the problems usu-
ally encountered in the segmentation of medical
images. In the first architecture, trained neural
networks have been able to easily extract knowl-
edge about the anatomy of the imaged regions
during the learning phase. Such knowledge has
been used to segment different kinds of bio-
logical structures in MR, CT and radiographic
images. In the second architecture, anatomical
knowledge has been integrated with knowledge

about the physics of image generation. In the
third example, perceptual principles of group-
ing and discrimination have been implemented
by a Hopfield’s neural network which segments
images through a relaxation process.

An important lesson learnt from using these ar-
chitectures is that different kinds of knowledge
unavoidably induce different strengths and lim-
itations in the resulting segmentation systems,
either in terms of generality or of performance.

Anatomical knowledge alone seems to be suffi-
cient to guarantee a reliable segmentation of
medical images. However, most representa-
tions of such knowledge (including the sub-
symbolic one used in this paper) are point-of-
view dependent. This means that systems based
on such representations can work properly only
if the orientation, shape and appearance of the
structures to be segmented are sufficiently sim-
ilar to those used to build the knowledge repre-
sentation adopted. In the first system we pre-
sented in the previous sections this means that
networks trained to perform the segmentation of
an organ sliced along transversal planes would
be entirely unable to segment the same organ if
sliced along differently oriented planes.

The physics of image generation is a more gen-
eral kind of knowledge, and is expected to be
much less dependent on the orientation and
shape of the structures considered. Unfortu-
nately, the fact that different structures may
include tissues producing very similar signals
leads to ambiguities which cannot be resolved
without the use of other sources of knowledge.
In our system we did this using anatomical
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knowledge. Nevertheless, it must be pointed
out that changes of image acquisition parame-
ters or acquisition devices may render this type
of knowledge unusable.

On the other hand, trained networks are char-
acterized by an intrinsic simplicity of knowl-
edge acquisition (the training sets can directly
be generated by experts through simple graphic
interfaces). To a certain extent, this could be
exploited to override some of the previously
mentioned limitations by using a different mod-
ule, based on the same architecture, for differ-
ent structures of interest, for different points-
of-view, and for different image sequences or
imaging devices. However, in general, the
construction of the corresponding training sets
might become long and tedious.

The regularities of nature are an even more gen-
eral form of knowledge. They do not depend
either on the point-of-view or on the shape of the
structures to be segmented, or on the imaging
parameters. When noise is not too strong and
texture not too marked, this form of knowledge
leads to general-purpose segmentation systems.
In many kinds of tomographic images this is true
and, indeed, our third system performed good
segmentations on such images. However, the
experiments with synthetic images have shown
that this generality may be paid with a reduced
robustness with respect to systems in which
more specialised forms of knowledge are used.

Our experience with the second system indi-
cates that a careful exploitation and integration
of available knowledge sources via proper neu-
ral modules can lead to the systems which over-
come some of the limitations implicit in each
source. A lot more can be done in this direc-
tion. We will devote our future research to this.

In any case, the properties shown by ANNs in
our work lead us to believe that they are supe-
rior to the symbolic segmentation methods we
developed in the past [Calamai ez al,, 1990, Cop-
pini et al, 1993a]. Therefore, we think neu-
ral nets should be favored when choosing the
architectures to exploit the sources of knowl-
edge available in medical images. In addition
we wish to point out that, besides image seg-
mentation, ANNs can help solve other difficult
problems of medical computer vision, such as
the recovery of 3-D shape from incomplete data
[Coppini er al, 1995] and the classification of
biological structures [Rucci et al,, 1995].

On the basis of our experience, we cannot
imagine ways of obtaining maximum perfor-
mance and generality at the same time. This
is after all the well known strong-methods vs.
weak-methods dilemma which has been afflict-
ing Al search techniques for decades [Russel &
Norvig, 1995]. However, it is possible to imag-
ine that, for different applications, a different
combination of the three sources of knowledge
we have identified and exploited above could
give optimum performance/ generality trade-offs.
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