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Ultrasound Image Segmentation using
Stochastic Templates

C. A. Glasbey

Biomathematics and Statistics Scotland, JCMB, King's Buildings, Edinburgh EH9 3JZ, Scotland

Point distribution models (PDMs) are incorporated
into Bayesian image analysis, thus combining two ap-
proaches to the fitting of stochastic templates. Manually-
segmented images are used to identify both a PDM and
a likelihood function, leading to a posterior distribution
from which inferences can be drawn. The methodology
is explored and illustrated using [44 ultrasound images
of sheep. A pseudo-likelihood is found to give better
results than a likelihood based on the distribution of pixel
values in the training images. Estimates of sheep fat and
muscle depths are shown to be comparable in accuracy
with manual interpretation of images.

Keywords: Bayesian methods, Likelihood, Point distri-
bution models.

Introduction

Templates are examples of objects to be located
inimages. The use of rigid templates is well es-
tablished, but is usually inadequate in biological
applications where natural variability ensures
that shapes are not identical. Stochastic, or de-
formable, templates generalise rigid templates
by allowing variation within prescribed prob-
ability distributions. Two methodologies have
recently emerged in the machine vision and sta-
tistical literature, each with distinct strengths
and weaknesses.

e The machine vision approach is based on
point distribution models (PDMs), which
are extracted from manually-interpreted
training images, and used to specify active
shape models (ASMs) which are fitted to
new images to match edges (Cootes et al.,
19953).

e The statistical approach is a form of Bayes-
ian image analysis, where a prior model

specifies what is expected in an image.
This is combined with the likelihood of an
observed image conditional on the model,
resulting in a posterior distribution from
which inferences can be drawn (Grenander
and Miller, 1994, and Phillips and Smith,
1994).

The strength of the machine vision approach
is the ease of template formation, whereas the
statistical approach provides a powerful set of
tools for fitting a template to data.

This paper reports an experiment to gain the
benefits of both approaches. In §2, ultrasound
images of sheep are introduced, which present
a challenging problem for automatic segmen-
tation. In §3, training data, in the form of
manually-specified templates, are used to iden-
tify a PDM for use as a prior distribution.
Bayes’ theorem is used to combine the PDM
with a likelihood function of simple form, but
the resulting posterior distribution has a mode
which does not consistently coincide with the
parameter values in the original template. There-
fore, in §4, a new method is proposed in which
the training data are further used to modify the
likelihood function. Results for the training
data, and for a validation data set, show that
sheep fat and muscle depths are estimated as ac-
curately as for manual interpretation. Finally, in
§5, generalisations of the method are discussed.

Ultrasound Images

Non-invasive imaging techniques such as ultra-
sound, X-ray computed tomography (CT) and
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Fig. 1. Ultrasound images of the backs of three sheep.

magnetic resonance imaging (MRI) are ubig-
uitous in hospitals. They are also increasingly
used in animal science and production to predict
body composition (Simm, 1992). In particular,
ultrasound has become widely used in animal
breeding to assist in selection for leaner animals,
because it uses cheaper and more-mobile imag-
ing equipment than either X-ray CT or MRL
Unfortunately, ultrasound images are far more
susceptible to noise and are therefore far harder
to interpret, as can be seen in Figure 1. This is
particularly true in this application, because we
are using an old instrument which lacks a video
output. The instrument operates by sending a
pulse of sound waves of very high frequency
into a subject (a ‘squeak’, about 250 times the
highest frequency audible to the human ear).
When the sound wave meets a boundary be-
tween two tissues, partial reflection occurs. The
greater the difference in acoustic impedance be-
tween the two tissues, the greater the reflection.
For example, more energy is reflected from a
muscle-bone interface than from a muscle-fat
one. This faint echo is received by the instru-
ment and converted into electrical signals which
are displayed on a video monitor, with time de-
lay interpreted as depth.

A Vetscan ultrasonic instrument was used to
scan the backs (at the 13th thoracic vertebra) of
each of 72 Suffolk ewe lambs in two consec-
utive weeks (Glasbey et al., 1996). A subset
of the images, the pairs from 24 sheep, were
interpreted manually, by using a mouse to con-
trol a screen cursor and identify 4 tissue bound-
aries. For example, Figure 2 shows manually-
identified boundaries for the images in Fig-
ure 1. The topmost piecewise-linear line lo-

cates the boundary between the skin (above) and
the fat (below). The piecewise-linear line be-
low this identifies the fat-muscle boundary. Fi-
nally, the two lowest lines, which are piecewise-
quadratic, show the top and bottom of a rib and,
on the left of each image, part of the backbone.

The aim of the image interpretation is to esti-
mate the average fat depth and maximum mus-
cle depth for each sheep, from which whole
body composition can be estimated. Obtaining
these measurements manually is a slow and te-
dious task, and the results will vary between sci-
entists. Itis desirable to fully automate the anal-
ysis. Some success has been achieved with low-
level image processing algorithms (Glasbey et
al., 1996), but these are unlikely to generalise
easily to other scanners, sheep breeds or scan-
ning positions. Trainable models have been ap-
plied in the interpretation of human echocardio-
grams (Baldock, 1992). Therefore, the segmen-
tation problem looks well suited for stochastic
templates, whereby high-level knowledge on
anatomical structure can be incorporated into
a segmentation algorithm.

Bayesian Approach

The templates can be summarised by 15 land-
mark points, which are also shown in Figure 2.
The top 10 points specify the top and bottom
of the fat boundary, while the bottom 5 points
specify the rib and backbone. In the latter case,
quadratic interpolation has been used and the rib
is constrained to a fixed width. Sixteen param-
eters are required to specify the 15 landmarks,
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Fig. 2. Ultrasound images from Figure 1 with manually-identified boundaries superimposed.

namely 15 row locations, together with the col-
umn location where the rib joins the backbone.
The remaining 14 column locations are fixed, or
defined relative to this single column location.

We assessed the 16 parameters from the 48
training images for multivariate normality. Fig-
ure 3 shows normal probability plots for the
first 4 principal components (see, for example,
Krzanowski, 1988), which account for 91% of
the variability. The linearity of these plots sup-
ports the assumption of normality. Similarly,
the pairwise scatter plots in Figure 4 are consis-
tent with normality. Therefore, the prior proba-
bility can be specified by

P(B) = 2 1),,1/26 P [—%ﬁTﬁ],

where 3 denotes the vector of the first m princi-
pal components. Figure 5 shows the effects of
the first 4 principal components on the template.
As can be seen, the first principal component
mainly influences the fat depth, the second one
specifies the position of the scan relative to the
backbone, the third one changes rib angle and
the fourth makes more subtle changes to the fat
depth and rib position.

If the top-most black and light-grey bands in
the images (the first 18 rows of each image,
which show the transducer-skin boundary) are
ignored, the templates in Figure 2 partition
the images into 5 segments, corresponding to:
(1) skin, (2) fat, (3) muscle, (4) bone and (5) in-
ternal organs. For simplicity, pixels in segment
k are assumed to be independently, identically,
normally distributed with mean fi;, standard de-
viation 0. Therefore, the likelihood of the im-

age, conditional on a template specified by f3, is
given by

P(y|B) = HH\/QT:f

1 2
—F(}’m - MJg.J) )

Lf

X exp

where ‘| denotes ‘conditional on’, y; i is the
pixel value in row i column j of the image and f; ;
denotes its segment label (an integer between 1
and 5), which is a function of §, but, to prevent
the notation from becoming too complicated,
this dependence has not been indicated. The
independence assumption is clearly inappropri-
ate, because correlations between adjacent pix-
els are evident in Figure 1, but has been used
by others (Phillips and Smith, 1994), so we will
start by using it here. Alternatively, we could
have tried using the ASM methodology (Cootes
et al., 1995) to align edges, but the presence of
multiple and very noisy edges in the images
made us favour a statistical approach. A benefit
of this model is that P(y|f) is fast to compute,
using

y]ﬁ H H 27‘60- gk,_,’ Bk— 1,})/2 X
k=1 j
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Fig. 3. Normal probability plots of first four principal component scores for 48 training images.

where g, ; denotes the last row of segment k in
column j, 8o, is set to 18,

h h
2
Apj = Zyi,j and  Bp; = Zyu ;
i=0 i=0

which can be computed recursively down each
column, by

Ah:j — A11~1J+y%1j and Bh,j = Biz—l,j+y11:j d

Parameters (1, and o, can be estimated from

the 48 training images, as the sample means
(1)

and standard deviations of pixel values yij for

which fl(j”) = k, where u = 1...48 indexes
the 48 images. This is equivalent to maximis-
ing [[,P(»™)|B). These estimates are given
in the first row of Table 1. All images were
standardised to have the same mean intensity,
and pixel values range from 0 to 255, with 0
corresponding to black and 255 to white. As
we would expect from inspection of the images,
segment 2 (the fat layer) has the highest mean
pixel value, and segments 2 and 4 (fat and bone)
have the largest standard deviations.

Bayes’ theorem gives the posterior probability
for the template, conditional on an image, pro-
portional to the product of the prior probability
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Py My M3 Py Hs10 Oy O3 Oy Os
estimates 77 120 31 65 20157 64 26 63 16
modified values | —68 2 20 84 19|49 67 45 99 27

Tuble 1. Values of parameters in likelihood.

and the likelihood, that is,

p(ply) = LEHE)

(See, for example, O'Hagan, 1994.) The divi-
sor, P(y), is a normalising term which ensures
that P(B|y) integrates to unity. Because P(y) is
a constant we can ignore it when maximising
P(Bly). It would have been possible to place
prior distributions on p and o, but we found it
to be simpler and as effective to keep them fixed.
The Bayesian framework also gives us the op-
tion to explore the full posterior distribution to
assess the range of templates compatible with
an image, but at present we have concentrated
solely on the distribution mode.

We maximised P(f|y®) for each of the 48 im-
ages in the training set, using the Nelder-Mead
optimisation algorithm (NAG, 1993) from 20
starting positions, each being the best of 100
randomly chosen values from the prior distri-
bution for B. We also experimented with alter-
native optimisation methods, in particular the

X
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1 WX X xxx
o PR nlk
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(. X XXX % ><><><
=1 XK X
%
%
-2 X x %
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use of Markov Chain Monte Carlo (Phillips and
Smith, 1994), but found them to be less effec-
tive for finding the mode than for studying the
posterior distribution. The results we present
are based on using m = 4 principal compo-
nents. Very similar results were obtained using
more components, but would not extend soread-
ily to the approach taken in §4 and so they are
not given here. Although the manual template
was approximately recovered in most cases, this
was not consistently the case. Figure 6 shows
the results for 3 images. In particular, it can be
seen in Figure 6(b) that the rib has been mis-
placed. The algorithm also had trouble locating
the backbone, but we are less surprised by this,
because information on the backbone is very
sparse in the ultrasound images. Overall, fat
depths estimated by the algorithm agreed well
with those from the manual template, with a
sample correlation coefficient of 93%, but mus-
cle depths agree less well, with a correlation of
24%.

PC 4

Fig. 4. Scatter plot of principal component scores for 48 training images: (a) first v. second, (b) third v. fourth.
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(c) (d)

Fig. 5. Average template + 2 standard deviations (solid line) and average template — 2 standard deviations (dotted
line) for: (a) first, (b) second, (c) third and (d) fourth principal component.

Fig. 6. Ultrasound images from Figure 1, together v;ith poorly located boundaries based on simplistic likelihood
unction.

Modified Likelihood

P(B)P(y|B)"
The main reason for the poor results in the pre-
vious section is that the likelihood, P(y|B), is  withy < 1, because adjacent pixels in an image
only a crude approximation to the distribution  are not independently distributed. We searched
of y, and it dominates P(f3) in the expression for ~ for values of Uk, O and y to optimise the recov-
P(Bly). We found that the templates were re-  ery of the templates, by maximising the criterion
covered more consistently if the likelihood was

downweighted by using X

Vi T -2
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where u indexes the 48 training images,

X(“)zlogP(ﬁ(”)ly{”))—— max
y Bies(u)

o_ 1 (1)
X_4SZM:X 4

and S® is the set of integer values of 8’ within
3 standard deviations of the mean template, but

excluding those values near ,B(“), ie.
{B" : B/ =43,£2,+1,0 for i=1...4;
max |6 — 8] > 1},

[log P(B'ly™ )] ;

which has 74 — 2% = 2385 elements. Alter-
natively, randomly-selected values of 8 could
have been used. Ideally, we would like all the
X to be positive, because then P(S)]y®)
would be larger than P(B’|y™)) for any other
value of B’. The criterion we used is some-
what ad hoc, but is a differentiable measure of
positivity of the X’s, which is invariant to mul-
tiplying factors in the probabilities.

The Nelder-Mead optimisation algorithm was
used from multiple starting points. The max-
imum value found for the criterion was 1.01,
which, if the X’s are approximately normally
distributed, implies that in 16% of cases X will
be negative. For comparison, the criterion was
only —0.26 for the original set of parameters.
The new values are given in the second row of
Table 1, and y = 1/1700. These values can be
seen to be quite different from the first set, and
to make no physical sense because pixels do not
take negative values. Therefore, the likelihood

should be regarded as an empirically-derived
cost function. We also experimented with other
functional forms for the likelihood, but found
none better, and so retained the original form
because of its computational convenience.

The choice of value for y can be understood by
considering the dependence structure in images.
Examination of one image indicated

cov(zij, zx,1) = 0.927H x 0.98804,

where z;; is the (i, j)th pixel value, after stan-
dardisation to zero mean, unit variance, i.e.

Yy~ by,
4ij = ?

i

The effective degrees of freedom of z is

AR )P
(L T )

2
n
Y e 32, 0.92140.9880~1

obtained by approximating Zzﬁj by a x2-
distribution, where n is the number of pixels in
an image. An appropriate value of y is v/n.
For example, if the observations are indepen-
dent, then v = n and y = 1, whereas if all
observations are perfectly correlated, v = 1
and y = 1/n. The above correlation structure
indicates y = 1/3000.

The posterior probability based on the modified
likelihood was again maximised for each of the
48 images in the training set, using the Nelder-
Mead optimisation algorithm. The results are

Fig. 7. Ultrasound images from Figure 1, together with boundaries based on modified likelihood function.
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Fig. 8. Depths identified by algorithm plotted against those in manual template, for the training data: (a) average fat
depth, (b) maximum muscle depth.

much improved, as can be seen in Figure 7, al-
though they are less than perfect: the maximum
muscle depth is overestimated in Figure 7(a),
as is the fat depth in Figure 7(c). Agreement
between manual and automatic results is better
than before: the correlation 1s 95% for esti-
mates of fat depths (Figure 8(a)), and 52% for
muscle depths (Figure 8(b)). Note that corre-
lations were not calculated on a leave-one-out
basis, which would have involved recomputing
the modified likelihood parameters 48 times.

For these data we do not know the true depths,
but we can assess the accuracy of the methods
by comparing the results for weeks 1 and 2 for
the same sheep. Fat and muscle depths will be
almost identical in the two scans, except for a
small amount of growth in the intervening week.
Figures 9(a) and (b) show estimated fat depth
for the manual and automatic methods. It can
be seen that the manual results are more consis-

tent, with a correlation between weeks of 97%,
while the automatic method has a correlation
of 91%. The situation is reversed for muscle
depth, shown in Figures 10(a) and (b). Here
the automatic method, with a correlation be-
tween weeks of 72%, is far superior to the 24%
for the manual method. We therefore conclude
that manual estimation of muscle depth is in-
consistent, and that more of the inaccuracies in
Figure 8(b) are due to the manual method.

The algorithm was applied to a validation data
set consisting of pairs of images from a fur-
ther 48 sheep. As is to be expected, the fit is
not quite so good as for the training data. Fig-
ure 9(c) shows estimates of fat depth for weeks
1 v 2, for which the correlation is 65%. Fig-
ure 10(c) shows muscle depth, with a correla-
tion of 58% which is still larger than the 24%
produced by the manual method on the training
data. Figure 11 shows the two sheep for which

804

week 2
week 7

80
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week 2

01 oE L X

week1

(b)

Fig. 9. Average fat depth for week 1 plotted against that for week 2, obtained using: (a) manual template applied to
training data, (b) algorithm applied to training data (c) algorithm applied to validation data (images corresponding to
circled points are displayed in Figure 11).
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Fig. 10. Maximum muscle depth for week 1 plotted against that for week 2, obtained using: (a) manual template
applied to training data, (b) algorithm applied to training data (c) algorithm applied to validation data (images
corresponding to circled points are displayed in Figure 11).

Fig. 11. Two sheep in validation data set for which worst results produced, as indicated by circled points in Figures 9
and 10: sheep 1, (a) week 1, (b) week 2; sheep 2, (c) week 1, (d) week 2.

the worst results were obtained, indicated by the
circled points in Figures 9(c) and 10(c). It can
be seen that, in Figures 11(a) and (d) the fat
depth is overestimated, whereas in Figure 11(c)
the muscle depth is underestimated. It is not
apparent why these errors occurred, so it is dif-
ficult to see how to further modify the method

in order to overcome them. We conclude that,
overall, the results are encouraging, especially
when the poor quality of the original images
are borne in mind: estimates of sheep fat and
muscle depths are comparable in accuracy with
manual interpretation of images.
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Discussion

We have demonstrated how training data can
be used in a Bayesian approach to identify not
only the prior distribution but also the likeli-
hood function such that the mode of the poste-
rior density coincides with the template. Thus,
we have maximised the amount of information
obtained from the training data. Alternative ap-
proaches would be to repeatedly return to each
training image and modify the fitting strategy
until all images are correctly segmented, to at-
tempt to model the distributions in the training
data more systematically, or to develop a mech-
anistic model taking account of animal physiol-
ogy and ultrasound technology.

Further work is needed to explore alternative fit-
ting strategies using Markov Chain Monte Carlo
methods to estimate the posterior distribution.
Experience is needed in applying the method to
sheep of other breeds and to scans obtained at
other anatomical locations, such as the lumbar
region where the fat boundary has a different
shape and ribs are absent. We will develop the
methodology, and extend it to handle hierar-
chical structures (Phillips and Smith, 1994), to
segment X-ray CT images of sheep. We also
intend to place this work in the wider context of
semi-automatic image analysis, an area much
neglected from a methodological perspective.
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