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In this paper, we describe the use of an evolutionary
algorithm (EA) for the problem of visiting rides in a
theme park. Generating a tour of the rides in a theme
park is an instance of the time dependent traveling
salesman problem (TDTSP) in which the cost of visiting
any two rides depends not only on the distance between
the rides, but also the time to wait in line and ride each
ride. We describe the implementation of the evolutionary
algorithm, including EA’s ability to satisfy the constraint
of scheduling lunch in the theme park. We present
several test problems and compare both the running
times and costs of tours generated by the EA to those of
a previously described dynamic programming heuristic.

1. Introduction

Millions of people annually include visits to
theme parks such as Walt Disney World in Or-
lando, Florida as part of their vacation plans.
These theme parks regularly attract so many
customers that an entire industry exists whose
sole purpose is to write guidebooks that help
plan such visits [6][7][8]. Those guidebooks typ-
ically cover every aspect of the visit, including
where to stay, where to eat, and how to see the
more popular rides while avoiding long waits in
line. This last problem, of seeing the most pop-
ular rides in the shortest amount of time, is an
instance of the time dependent traveling sales-
man problem (TDTSP) [9] and is thus amenable
to computer-generated solutions. This paper
describes a Java-based system available on the
World Wide Web that uses an evolutionary algo-
rithm (EA) to help plan efficient visits to Walt
Disney World’s Magic Kingdom theme park.

The TDTSP is similar to the time dependent
vehicle routing problem (TDVRP), which is a
variant of traveling salesman problem (TSP)
where the amount of time it takes to travel from

one city to arother varies depending on the time
of day. This varying travel time enables model-
ing of real world conditions such as heavy traf-
fic, road construction or repair, and accidents
[9]. In our theme park problem the salesman
is replaced with a customer, cities are replaced
with rides, and heavy traffic is replaced with
large crowds. The solution, an ordered list of
rides, is called a touring plan (TP) [6]. Also,
most TDTSP and TDVRP solutions omit one
essential fact: the vehicle drivers and salesmen
have to eat [4][10][11]. Theme park customers
have to eat, too, so our solution gives its users
the ability to specify at which theme park restau-
rants they would consider eating lunch. Further,
users can specify whether the time to eat lunch
is a rigid (e.g., “Meet me at the Liberty Tree

Tavern at noon.”) or flexible (e.g., “Let’s eat

around twelve-thirty.”) constraint. The system
then chooses a restaurant from the list of possi-
ble restaurants such that the overall touring plan
cost 1s minimized.

If the lunchtime constraint specification can
be based on fuzzy membership [15] then the
TDTSP becomes a fuzzy constrained optimiza-
tion problem [17]. These types of constrained
problems have been successfully solved by EAs
[17].

EAs are robust, adaptive, search procedures
based on natural selection [20]. Unlike genetic
algorithms (GAs), which traditionally have rep-
resented individuals as binary strings, EAs make
use of a variety of data structures to represent
individuals [20]. In contrast to most search al-
gorithms, which operate on a single candidate
solution (CS), EAs operate on a population of
individuals where each individual represents a
CS. After an initial population of randomly gen-
erated individuals has been produced, each in-
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dividual in the population is assigned a fitness
by an evaluation function. Individuals within
the population are selected to be parents based
on their fitness. The parents create offspring
(which are also individuals that represent CSs)
by either mutating themselves slightly (asexual
procreation ), mating with other parents (sexual
procreation) or both. The offspring are then
evaluated to determine their fitness and are pos-
sibly added to the population, usually replacing
lesser-fit individuals in order to keep the popu-
lation size constant. This process of selecting
parents and allowing them to procreate based
on their fitness is continued until an individual
representing an optimal or near optimal CS has
been evolved.

Evolutionary search has been successfully used
to solve a wide variety of problems in such ar-
eas as machine learning, pattern recognition 1],
communication networks [21], constrained opti-
mization and robotics [20], to name a few. EAs
are well-suited to the TDTSP and our theme
park problem because they are adaptive systems
that have proven effective at solving complex
optimization problems [1]|. Like simulated an-
nealing and tabu search, EAs can be queried at
any time for the best solution found so far [20].

The remainder of this paper is organized as fol-
lows. Section 2 provides a brief overview of
TDTSPs and methods previously used to solve
instances of this class of TSPs. In Section 3, an
Evolutionary Tour Planner that is better suited
to theme park tour planning than the systems de-
scribed in [12] and [22] is described in detail, in-
cluding it’s implementation on the World Wide
Web. In Section 4, a test suite of its problems is
described and in Section 5 the performance of
the Evolutionary Tour Planner is compared and
contrasted with the approaches proposed in [22]
and [12]. A number of conclusions are stated
in Section 6 and some directions for future re-
search are discussed in Section 7.

2. Overview of the Time-Dependent
Traveling Salesman Problem

The typical TSP starts with a list of N cities
labeled (1,2, ..., N) and an N x N cost matrix
D in which the value Dj; is the distance from
city i to city j [11]. The goal is usually stated
as finding the minimal cost tour of the cities in

which each city is visited exactly once and the
salesman returns to the starting city at the end of
the tour [4][5]. The TDTSP is a special instance
of the TSP where the salesman must still visit
each city, but the cost of traveling from city i
to city j depends on both the distance matrix D
and the time of day the travel takes place [10].
The additional cost associated with the time of
day can be computed by first dividing the day
into ¢ discrete timeslices of fixed duration, then
constructing a cost matrix W where W is the
cost of traveling from city i to city j at timeslice

k[9].

Although the TSP and TDTSP are both NP-
hard [11], published results for TDTSP prob-
lems seem to indicate thatitis a much more diffi-
cult problem than the TSP. While exact solutions
to TSPs involving several thousand cities have
been reported [26], exact solutions to TDTSPs
have been reported for only a few dozen cities
[24]. Typically, these exact solutions also in-
volve restrictions on the problems solved, such
as requiring the travel time from city to city to be
completed in a single time period [11][24]. Be-
cause the TDTSP i1s NP-hard, heuristics are usu-
ally combined with other methods to generate
near-optimal solutions in reasonable amounts of
time [11].

Malandraki and Daskin [9] used a mixed integer
linear programming (MILP) model combined
with several variations of the nearest-neighbor
heuristic [13] on randomly generated TDTSP
problems of up to 25 cities. Vander Wiel and
Sahinidis [11] use a different MILP formulation
coupled with a time-dependent Lin-Kernighan
heuristic which produced solutions within 4.4%
of the optimum known solution, on average, for
TDTSP problems of up to 100 cities.

Malandraki and Dial [22] implemented a re-
stricted dynamic programming (DP) algorithm,
based on the nearest neighbor heuristic, that
outperformed the MILP model described in [9]
for TDTSPs of up to 55 cities. The restricted
DP heuristic retained at each stage only a user-
defined subset of all possible partial tours, which
reduced the amount of memory and CPU re-
sources required by exact DP solutions. The
DP heuristic performed better than the MILP
model when as few as 100 partial tours were
retained at each stage.

Ahmadi [12] used a hybrid approach to generate
optimal TPs for theme park customers. First, a
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neural network model called the Ride Capacity
Model (RCM) was built that analyzed histori-
cal data on customer arrivals and departures at
each ride to determine that ride’s observed ca-
pacity to handle customers. The output of the
RCM was used as input into a MILP-based Ca-
pacity Management Model (CMM), along with
the data on which rides customers tended to
go to immediately after riding some other ride
(the customer’s transition patterns). With this
data the CMM was able to determine the opti-
mal passenger capacity of each ride at different
times of the day, based on each ride’s operating
expenses, the perceived value of the ride to the
customer, and the maximum wait in line at each
ride. Output of the RCM was also used to feed
a MILP-based Flow Pattern Model (FPM). The
FPM was created to help the theme park man-
agement modify the customers’ observed tran-
sition patterns so that large variations in each
ride’s wait time in line throughout the day was
reduced. Like the CMM, the FPM also helped
management set the number of customers each
ride could service. Finally, the output of the
CMM and FPM was fed into a MILP-based
Tour Design Model (TDM), whose goal was to
maximize the number of rides each customer
visited. The TDM produced optimal TPs in
two stages: initially the day was divided into
time intervals (e.g., morning, afternoon, and
evening). The task of choosing which rides to
visit during each time interval, called the Ride
Selection Problem (RSP), was solved first, us-

ing a variation on the multiple-choice knapsack
problem. Once rides were grouped into time
intervals, the TDM had to find the order of rides
in each interval to minimize the customer travel
time. This problem, known as the Ride Visiting
Order problem (RVP), was solved using space
filling curves. The author stated that this hybrid
approach to generating TPs took 18 minutes on
average with a maximum time of 37 minutes,
running on a 66-Mhz HP Vectra 486 machine.

3. The Evolutionary Tour Planner

In this section, we describe the construction of
the EA in detail. Section 3.1 is an overview of
the entire algorithm. Section 3.2 details the cost
(i.e. fitness) function used by the EA. Section
3.3 describes the various operators we evaluated
for the EA, including the one we selected. Sec-
tion 3.4 gives the algorithm for scheduling lunch
with both a rigid or flexible time constraint, and
section 3.5 describes the optimal touring plan
generated by the algorithm.

3.1. Overview

Previous research [5] has shown that EAs alone
do not perform as well as those incorporating
some sort of local search heuristic. Therefore,
our EA starts by creating an initial population
of TPs using a simple time-dependent nearest

Begin
Initialize timer to s seconds

Let o = Mutate( p )
Let ¢,= the cost of 0

Delete j from P
Insert o into P
Done

Foreach TP i in P do

Done
Endif

End

Function TPGEN(R, s, to, tu tw L 1o L, by, B}

Initialize pool P with time-dependent Nearest-Neighbor heuristic using R
Calculate cost ¢ for each TP in P ¢;= Cost( g ) for all g in P.
While timer has not expired do

Select a TP p from P using binary tournament selection

Let j = the TP in P with the highest cost ¢;

If ¢, < ¢; and o is not already in P then

If customer wants to schedule lunch then

Insert lunch information into i
Recalculate ¢; with new lunch information

Retumn the TP iy in P having lowest cost ¢; mm

Fig. 1. The TPGEN Function.
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neighbor heuristic [11]. The complete algorithm
for creating TPs is shown in Figure 1.

The algorithm accepts the following input pa-
rameters:

R: the list of rides the customer wants to visit.

s: the number of seconds the customer wants
the algorithm to run.

to: the time of day the customer will arrive at
the park.

t4: the time of day the customer will depart
the park.

t: the weekday the customer will visit the
park.

1,: the time of year the customer will visit the
park.

1;: the time the customer indicated s /he wants
to eat lunch.

L: the list of restaurants the customer will
consider eating at.

b;: aboolean flag indicating whether the cus-
tomer indicated #; was the exact time to
eat lunch or an approximation.

b,: aboolean flag indicating whether the cus-
tomer is eligible for early entry into the
park.

The elements of R are integers from 0 to 36,
corresponding to the 36 rides in the park plus
the end of Main Street. The elements of L are
integers from 37 to 49, corresponding to the 13
restaurants in the park. Through our web site,
the customer can choose a specific restaurant to
eat lunch at, or can ask the EA to consider a
list of restaurants. If L contains only one ele-
ment, then the customer has indicated he will
eat lunch at that restaurant. If L contains more
than one element, the EA will schedule lunch
at the restaurant in L that results in the lowest
cost TP. If L is empty, then it is assumed the
customer does not want to schedule lunch in the
park. Also, the customer can use b to specify
whether the time to eat lunch is an absolute or
approximate time. Indicating an exact time, for
example, might be useful if the customer is part
of a large group that is touring the park inde-
pendently but has agreed to meet for lunch at a
certain time and place. Exact lunch times im-
pose an additional constraint on the EA, since

enough time must be allocated to allow the cus-
tomer to walk from the last ride visited to the
restaurant before the lunch time indicated. Cus-
tomers with more relaxed schedules can tell the
EA to fit lunch into the TP at approximately
the time indicated, freeing the EA from having
to satisfy the exact-time constraint. Finally, b,
indicates whether the customer is eligible for
early entry into the park. Early entry is usually
available only to theme park customers who are
also staying at one of the Disney-owned hotels,
and it is only permitted on certain days of the
week. Customers eligible for carly entry are
usually allowed to enter the theme park one and
one-half hours before the general public. This
allows the early entry customers to tour the park
more efficiently, since a smaller number of other
customers are competing with them to visit the
same rides.

The algorithm begins by initializing a timer to
the number of seconds the customer specified
the EA should run. When the timer expires the
algorithm’s main loop will stop. Next, a pool
P of initial touring plans is created. The main
data structure in each TP is an array of size R
that holds a permutation of the elements of R
[4]. For example, if a customer indicated s/he
wanted to visit rides 1, 2, 4 and 32, a sample
array might be {4, 2, 32, 1}. The number of in-
dividual TPs in P is fixed at 30, corresponding
to the number of rides in the park plus the end of
Main Street. When creating P, the EA ensures
that at least one TP in P begins with each ride in
R. A simple time-dependent nearest neighbor
heuristic [5][11] is used to order the remaining
rides in R for each TP in P.

3.2. Cost (Fitness) Function

After the initial pool P is created, cach of the
TPs in P must be evaluated to determine how
long it would take a customer to complete the
tour. This cost is measured in minutes, and con-
sists of three parts: the time it takes to walk to
the ride, plus the time the customer can expect
to wait in line at each ride, plus the number
of minutes the ride lasts. The cost function is
shown in Figure 2.

The cost function accepts the following input
parameters:

p:aTPin P

W: the wait time matrix
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Begin
Initialize tour cost to 0

If ¢,= park opening time ¢, then

Else

Endif

For eachride 7 in p do

clock = clock + ride time at »
If r is not the last ride in p then
Endif

Done

Return tour_cost
End

Function Cost( p, W, D, R, 1, t4 to, We Wy
Initialize clock to #,, the customer’s arrival time at the park
tour_cost = tour_cost + (walk time from end of Main Street to first ride * w,)

clock = clock + (walk time from end of Main Street to first ride * w,,)

tour_cost = tour_cost + (walk time from park entrance to first ride * w,,)
clock = clock + (walk time from park entrance to first ride * w,)

tour cost = tour_cost + (wait time at r * w,)
clock = clock + (wait time at » * w,)

tour_cost = tour_cost + ride time at r

tour_cost = tour_cost + walk time from r to next ride in p
clock = clock + walk time from # to next ride in p

Fig. 2. The Cost Function.

D: the distance matrix
R: the ride time matrix

t,: the time of day the customer will arrive at
the park.

t4: the time of day the customer will depart
the park.

I,: the time of day the park will open.

: the relative preference the customer has
for walking versus waiting in line.

wg: the relative preference the customer has
for waiting in line versus walking.

Appendix A lists the 36 rides and 13 restau-
rants in the Magic Kingdom, plus an entry for
the park entrance and the end of Main Street.
These additions are necessary because the tour-
ing plan will start at the end of Main Street if the
customer arrives at the Magic Kingdom at the
park’s opening time, but at the entrance to the
Magic Kingdom if the customer arrives later [7].
From this list a (symmetric) distance matrix D
(Appendix B) was created containing the fixed
cost in minutes of walking from one place in
the list to any other!. For example, entry Dy is

2, illustrating the assumption that the walking
time from the Swiss Family Treehouse ride to
the Jungle Cruise ride is two minutes.

The ride time array R (Appendix C) is a 50 row
by 1 column matrix that contains the duration
in minutes of each ride. For example, the Space
Mountain ride lasts approximately 3 minutes,
80 its entry, Rpg 1 is 3. The ride time matrix
is similar to the service time in the TDVRP [9]
and was obtained from [7]. The duration of each
ride 1s assumed fixed.

The wait time matrix W (Appendix D) holds
the amount of time a customer can expect to
wait in line at each ride at different times of the
day. W was obtained by first dividing the day
into discrete intervals of fifteen minutes start-
ing with the time the Magic Kingdom opened
each day. Each row in W represents a different
ride, restaurant or place in the Magic Kingdom.
Each column represents a time interval. Next,
the wait time in minutes at each time interval,
rounded to the nearest minute, was estimated
using measurements obtained during two vis-
its to the Magic Kingdom and [7]. For exam-
ple, Wag 5 holds the amount of time a customer
could expect to wait in line if he arrived at the

! The distance and wait time measurements in this paper are approximate and were obtained during two visits to the Magic

Kingdom in 1996 and 1997.
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Space Mountain ride at 9:15 AM, Wpg 3 holds
the amount of time a customer could expect to
wait in line if he arrived at 9:30 AM, and so on.
If an attraction is not open at certain times of
the day (e.g., rides that close early) the entries
in W for that ride at those times are set to large
integer values.

3.3. Operators

Once the initial pool P is generated and the
cost of each tour in P is calculated, a TP p,
in P is chosen for mutation. A binary tourna-
ment selection function [18] is used to choose
p. Next, p is copied to an offspring 0. A
swap mutation operator is applied twice to o in
which the positions of two different, randomly
chosen rides in o are switched. For example,
if o contains {1, 12,32, 4, 15, 9} and rides 12
and 15 are chosen for mutation, then o would
contain the TP {1, 15, 32, 4, 12, 9} after muta-
tion. The swap mutation operator is applied
twice to 0. Mutation was chosen as the only
operator, although several traditional crossover
functions were also tested. Specifically, the
authors implemented versions of the partially
matched crossover, order crossover and cycle
crossover functions from [1], the sub-inversion
and sub-rotation operators from [3], and a new
crossover function the authors named “modified
Lebby crossover (MLX)?”, described fully in
Appendix E. Using the swap mutation operator
described above consistently vielded superior
results over each of these crossover functions,
so it was retained. The superiority of mutation
over traditional crossover operators for certain
applications has been explored by others, in-
cluding Fogel and Atmar [27], and Eshelman
[16].

After swap mutation has been applied twice to
o, the cost of the new TP in o is calculated.
The decision of whether to retain o in pool P
is made using a (P + 1) reproduction [19] ap-
proach. Specifically, let g be the TP in P with
the highest cost. The costs of o and g are com-
pared, and if 0 has a lower cost than g, then g is
deleted from P and o is retained.

3.4. Scheduling Lunch

The algorithm performs the selection, mutating,
and (possible) insertion of offspring repeatedly
until the timer has expired. Once the timer ex-
pires, the algorithm begins an optional second
phase of scheduling lunch for the customer. The
decision to defer the scheduling of lunch to out-
side of the main loop was based on the obser-
vation that inserting the lunch information into
a TP takes a significant amount of computation
compared to the rest of the main loop. Schedul-
ing lunch inside the main loop would reduce
the number of alternate TPs that could be gen-
erated before the timer expires, thus limiting the
number of TPs considered by the EA. On a 133
Mhz Pentium computer with Netscape Naviga-
tor 3.01 the EA was able to execute about 245
iterations of the main loop in two minutes of
real time, on average, when scheduling lunch
inside the main loop for a 21 city problem. The
TPs produced after 245 iterations had an aver-
age cost of 849 minutes. The EA was able to
execute about 2,500 iterations in two minutes of
real time, on average, of the main loop when the
code to schedule lunch was removed from the
main loop. The TPs produced, when the main
loop was able to execute more, had an average
cost of 736 minutes.

To schedule lunch effectively there are two con-
straints that must be satisfied. First, the cus-
tomer must indicate a time to eat lunch. The
customer may also indicate that that time is a
rigid constraint (e.g., “I must eat lunch at noon
at the Liberty Tree Tavern.”). Alternatively, the
customer may indicate that the time to eat lunch
is more flexible, if she is less concerned with
eating at a specific time (e.g., “Let’s stop to
eat around twelve-thirty, wherever we're at.”’).
We believe that most of the guests at theme
parks have relatively flexible scheduling needs
for lunch.

The customer must also indicate a list of restau-
rants to consider eating lunch at, and it is the
EA’s responsibility to produce a TP that routes
the customer to one of those restaurants at the
lunch time indicated. On our web site, the cus-
tomer has two mutually exclusive options for
selecting restaurants: she can indicate a single,

% The Lebby crossover function, a composition of permutations, was described by Dr. Gerald Lebby of North Carolina A&T
State University in a class taught there in 1996. To our knowledge, no other published results of the MLX operator’s effectiveness

exist.
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specific restaurant to each lunch at, or she can
create a non-empty list of restaurants to consider
eating lunch at. The restaurant information is
passed to the EA as a list L of restaurants. If
L contains no elements, it is assumed the cus-
tomer does not want to schedule lunch. If L
contains a single restaurant, that restaurant is
considered the customer’s “definite” choice. If
L contains more than one restaurant, the EA will
try scheduling lunch at each restaurant / in L for
each TP pin P to see which restaurant/ TP com-
bination yields the lowest cost TP. That lowest
cost TP is retained.

The process of finding the correct position in a
" TP for lunch at some restaurant [ is straightfor-
ward. Recall that a TP p contains an ordered
list of rides, for example {1, 7, 4, 5, 9}. For any
ride r; , i > 1, the time the customer arrives at
r; can be calculated by the formula:

arrival time at r; = arrival time at r;_1 +
wait time at r;_; + ride time at r;_ 1+
walk time to r;

Using this formula, we first calculate the cus-
tomer’s arrival time at each ride in p. Next, we
traverse p from the beginning to find the ride r;
in p with an arrival time greater than or equal
to the time the customer wishes to eat lunch.
Once r; is found, the algorithm checks whether
the customer has indicated that the lunch time
is rigid. If the lunch time is not rigid, [ is in-
serted in p between r;_1 and r;. If the lunch
time is rigid, the algorithm verifies the customer
has enough time to travel from r;_; to [ in the
time allotted. If enough time exists, the lunch
restaurant is inserted into p between r;_; and
ri. If there is not enough time to travel from
ri—1 to [ the algorithm will try in successive at-
tempts to schedule lunch after r;_5, r,_3, and so
on. To recalculate the cost of p with the lunch
restaurant inserted in the path, the cost function
treats the lunch restaurant as it would any ride:
the amount of time it takes to be served at the
restaurant corresponds to the ride wait time, and
the time it takes to eat lunch corresponds to the
ride’s ride time.

It is worth noting that delaying the scheduling of
lunch until after the main loop has completed led
to a significant decrease in the average cost of
the TPs generated. By deferring the scheduling
of lunch to outside the main loop, the amount

of computation inside the main loop was re-
duced. This allowed the main loop to execute
faster, which generated more offspring. While
the exact reasons for the improvement are the
subject of further research, the authors believe
that generating more offspring leads to a wider
search of the solution space, allowing the EA
to identify TPs of much lower cost. Also, the
bulk of the work in scheduling lunch lies in
finding the correct position between two rides
in the TP to insert the lunch restaurant. The
additional overhead to satisfy arigid lunch time
versus a flexible one is relatively small. Thus,
it makes sense to delay the scheduling of both
the rigid and flexible lunch constraints to out-
side the main loop. The authors also note that
restaurants are well distributed throughout the
Magic Kingdom, so customers never have to
walk far to eat. This helps the EA by not im-
posing a large cost penalty for generating TPs
that put the customer far away from a restaurant
at lunch time. Whether the EA can produce TPs
of similar quality when such penalties exist is
the subject of further study. However, if more
constraints are added to the EA, such as for mul-
tiple, user-defined breaks in the touring plan, it
is doubtful that all of the constraints could be ef-
fectively postponed until after the main loop has
completed. However, existing EA-based opti-
mization problem solvers such as GENECOP II
[20], which defer some constraints at each it-
eration, show that not every constraint need be
satisfied with every generation.

3.5.The Generated Touring Plan

After the timer has expired and any lunch
scheduling is completed, the web site prints the
complete touring plan. Should the customer
specify more rides than can be visited before the
customer’s indicated departure time, a warning
message is displayed in the touring plan after
the last ride visited before the departure time.
This warning message notifies the user that their
stated departure time has been reached, and sug-
gests either leaving the park or adjusting their
departure time appropriately. The rest of the
touring plan is then displayed, so that the cus-
tomer can plan accordingly. A sample touring
plan with a 35 minute lunch scheduled for 12:30
PM at the Plaza Pavilion is shown in Figure 3.
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Here is the Touring Plan:

The Magic Kingdom opens at 07:30 a.m.

Time Scheduled
of Day Attraction

Total minutes touring 1739
Total minutes on attractions : 293
Total minutes of walking : 144
Total minutes of waiting ~ : 302
--End--

You arrive at the Magic Kingdom at 07:30 a.m.
Your scheduled departure time is 24:00 p.m.

Your touring plan will start at the end of Main Street when the park opens.
It takes about 3 minutes to walk to the first attraction.

07:33 a.m. Alien Encounter 0m 12m 8m
07:53 a.m. Peter Pan's Flight 5Sm 4m llm
08:13 a.m. Tomorrowland Transit Authority Om 10m 4m
08:27 a.m. Space Mountain 15m 3m 16m
09:01 a.m. Big Thunder Mountain Railroad Om 4m 2m
09:07 a.m. Splash Mountain Om 10m 5m
09:22 a.m. Pirates of the Caribbean 5m 8m  3m
09:38 a.m. Country Bear Jamboree 20m 15m 8m
10:21 a.m. It's a Small World 10m 1lm 2m
10:44 a.m. Haunted Mansion 25m 9m 10m
11:28 a.m. Donald's Boat Om 5m Im
11:34 a.m. Mickey's Country House 25m 22m  13m
12:30 p.m. The Plaza Pavilion Om 30m  5m
13:13 p.m. The Jungle Cruise 45m Sm 12m
14:19 p.m. Carousel of Progress 23m 18m 1lm
15:11 p.m. Diamond Horseshoe Saloon Revue 30m 40m  1m
16:22 p.m. Hall of Presidents 22m 23m  4m
17:11 p.m. Swiss Family Treehouse 5S5m 13m  7m
17:36 p.m. The Timekeeper 12Zm 20m 1lm
18:19 p.m. Legend of the Lion King 30m 16m  6m
19:11 p.m. Bamnstormer@Goofy's Wiseacres 15m 10m  1m
Farm
19:37 p.m. Minnie's Country House I5m Im  Om

Approximate Plan completion at 19:53 p.m.

Wait Ride Walkto
Time Time Next
(est) (est) Attraction

Fig. 3. A Sample Touring Plan.

4. Test Problems

We chose the dynamic programming heuristic
described in [22] as the algorithm to compare
against our EA for two reasons. First, the DP
heuristic has been shown to perform better than
MILP models for TDTSPs of up to 55 cities,
and so appears to be the best known approach
to solving TDTSPs. Second, the MILP model

described in [9] had many tens of thousands of
temporal and capacity constraints, which ap-
peared to be solvable on only large, commer-
cial linear programming software. In contrast,
the DP heuristic was coded and tested over the
course of a few days by one of the authors.

Both the DP heuristic and EA were coded as
Java applets [23], for distribution on the World
Wide Web. Since Java applets run in the context

Dynamic Programming Heuristic

Evolutionary Algorithm (100 Trials)

Retained Elapsed Best Path | Best Path | Elapsed Average Median Standard Best Path | Average
Partial Time Cost / Best Time Path Cost | Path Cost | Deviation Path/Best
Tours (sec) Known (Sec) Known
10 <1 179 1.072 60 167 167 0.0 167 1.000
100 <1 167 1.000

Fig. 4. Results for 5 Ride Tour.
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Dynamic Programming Heuristic Evolutionary Algorithm (100 Trials)
Retained Elapsed Best Path | BestPath | Elapsed Average Median Standard Best Path | Average
Partial Time Cost / Best Time Path Cost | Path Cost | Deviation Path/Best
Tours (sec) Known (Sec) Known
10 <l 313 1.098 60 285.89 286 0.31 285 1.003
100 <1 286 1.004 120 285.82 286 0.12 285 1.003
1,000 2 285 1.000
10,000 51 285 1.000
15,000 92 285 1.000
Fig. 5. Results for 10 Ride Tour.
Dynamic Programming Heuristic \ Evolutionary Algorithm (100 Trials)
Retained Elapsed Best Path | Best Path | Elapsed Average Median Standard Best Path | Average
Partial Time Cost / Best Time Path Cost | Path Cost | Deviation Path/Best
Tours (sec) Known (Sec) Known
10 <1 559 1.075 60 524.44 523 1.26 520 1.009
100 <1 540 1.038 120 522.51 522 1.26 520 1.005
1,000 15 521 1.002 180 522.86 521 4.84 520 1.006
10,000 739 520 1.000 300 521.13 521 0.69 520 1.002
15,000 3,841 520 1.000
Fig. 6. Results for 15 Ride Tour.
Dynamic Programming Heuristic Evolutionary Algorithm (100 Trials)
Retained Elapsed Best Path | Best Path | Elapsed Average Median Standard Best Path | Average
Partial Time Cost / Best Time Path Cost | Path Cost | Deviation Path/Best
Tours (sec) Known (Sec) Known
10 <l 819 1.119 60 749.68 749 1.84 736 1.024
100 1 789 1.078 120 745.18 746 1.59 734 1.018
1,000 33 769 1.051 180 743.13 744 2.50 733 1.015
1,430 60 769 1.051 300 742.31 743 2.28 732 1.014
2,100 120 756 1.033
2,655 180 756 1.033
10,000 2,602 754 1.030
15,000 25,862 748 1.022
Fig. 7. Results for 20 Ride Tour.
Dynamic Programming Heuristic Evolutionary Algorithm (100 Trials)
Retained Elapsed Best Path | BestPath | Elapsed Average Median Standard Best Path | Average
Partial Time Cost / Best Time Path Cost | Path Cost | Deviation Path/Best
Tours (sec) Known (Sec) Known
10 <1 1,873 2.386 60 835.44 837 7.39 801 1.064
100 1 857 1.092 120 824.87 821 2.63 791 1.051
1,000 51 849 1.082 180 813.44 809 3.77 786 1.036
1,100 62 849 1.082 300 803.91 801 4.73 785 1.024
1,575 120 841 1.071
2,000 189 834 1.062
10,000 4,275 823 1.048
15,000 13,994 822 1.047

Fig. 8. Results for 25 Ride Tour.

of a Web browser, measuring the CPU utiliza-
tion of the applet directly is not feasible. Thus,
we measured the running time of each algo-
rithm in seconds of real time. Both algorithms
were tested on a 233-megahertz Pentium com-
puter, running Microsoft Windows NT 4.0. The
browser was Microsoft Internet Explorer ver-
sion 4.01. The Java compiler was Symantec
Café version 1.0.

Both algorithms were tested on 5, 10, 15, 20
and 25 ride tours. The tours were programmed
to start at 9:00 A.M. on an “early-entry” day
in the Magic Kingdom park. The performance
and running time of the DP heuristic was mea-
sured when it was allowed to retain 10, 100,
1,000, 10,000 and 15,000 partial tours at each
stage, except the 5 and 10 ride tours. For the
20 and 25 city tours, additional tests were run
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in which the number of partial tours retained by
the DP heuristic was adjusted so that the run-
ning time of both algorithms would be equal.
This allowed us to compare the performance of
both algorithms with the same amount of run-
ning time. The EA was measured by allowing
it to run for 60, 120, 180 and 300 seconds. The
results of the tests are shown below.

In addition, the authors had previously tested
TPs containing 21 rides with different lunch
scheduling needs. All tests were performed on
a 166 Mhz Pentium computer with 64 MB of
RAM and Netscape Navigator 3. The tours
were programmed to begin at 7:30 A.M. on an
“early-entry” day in the Magic Kingdom park.
When the EA did not have to schedule lunch,
the average TP produced had a cost of 709 min-
utes. When the EA was asked to schedule a
thirty-minute lunch around noon at any of the
restaurants in the park, the average TP produced
had a cost of 746 minutes. When the EA sched-
uled a thirty-minute lunch for exactly noon at
any of the restaurants in the park the average
TP was 751 minutes. The difference between
the TPs with no lunch and those with flexible
lunch scheduling was only 37 minutes. Since
30 of those 37 minutes were for the lunch itself,

only 7 minutes of slack time were introduced
" by adding a flexible lunch constraint to the TP.
Adding a rigid lunch constraint introduced only
twelve minutes of slack time, still within an
acceptable margin of the best-case scenario of
zero minutes of slack time. While the EA did
not produce any TP exhibiting the worst-case
lunch scheduling scenario, that worst-case sce-
nario is easy to describe. A TP would exhibit
worst-case characteristics if the last ride before
lunch was scheduled so that the customer did
not have enough time to walk from that ride to
the restaurant and still arrive at the restaurant on
time. For example, a TP with a rigid lunch time
of noon at the Liberty Tree Tavern could not
have the customer departing the Space Moun-
tain ride at the opposite end of the park at 11:59
AM.; the walking time would be more than
one minute, violating the rigid lunch constraint.
In this case, the EA would schedule lunch be-
tween the ride scheduled before Space Moun-
tain and Space Mountain, and build slack time
into the schedule to satisfy the rigid lunch time
constraint. This has the potential to greatly in-
crease the overall cost of the TP, since the slack

time could not be used to tour the rest of the
park.

5. Comparison with Other Approaches

The authors implemented the dynamic program-
ming heuristic described in [22] to compare
against the tours produced by the EA. The tours
produced by the dynamic programming heuris-
tic have been shown superior to those produced
by MILP models [22] for TDTSPs of up to 55
cities.

For the 5 and 10 ride tours the dynamic pro-
gramming heuristic provides equal or superior
results in less time than the evolutionary algo-
rithm. This conclusion is not surprising; due
to the relatively small number of tour permuta-
tions, brute force methods can be used to solve
TDTSPs of this size as well, in a similar amount
of time.

For the 15 ride tour, the performance of the DP
heuristic and the EA is roughly equivalent, with
the DP heuristic producing slightly better re-
sults. The DP heuristic produces a tour whose
cost 1s within 1 minute of the best known tour,
in about fifteen seconds. The median tour pro-
duced by the EA with 60 seconds of run time is
within 3 minutes of the best known tour. How-
ever, we see with this problem that the running
time of the DP heuristic increases sharply when
15K partial tours are retained. This is probably
due to the relatively large number of tour per-
mutations, combined with the large number of
partial tours that have to be processed at each
stage.

The EA exhibits superior performance on the 20
and 25 ride tour problems, both in terms of run-
ning time and tour quality. For the 20 ride tour
problem, the average path generated by the EA
with sixty seconds of running time is superior
to the best path generated by the DP heuristic
in forty-three minutes of running time. Also,
the EA produces a better tour with 120 seconds
of running time than the DP heuristic can with
over seven hours of running time. For the 25
ride tour problem, the results are similar. The
DP heuristic requires over an hour of process-
ing time to produce a tour of comparable quality
to the average tour produced by the EA in two
minutes.
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Also, the authors believe the EA described in
this paper exhibits several improvements over
the techniques described in [12] for planning
tours of theme parks. The TDM/RSP mod-
els in [12] segment the day into optimal morn-
ing, afternoon and evening tours of rides in
close proximity to each other, but ignores glob-
ally optimal tours which would require walking
slightly longer distances to save time standing
in line. Our EA approach considers such tours
while factoring in the customer’s preferences
for walking versus waiting in line.

In addition, while the TDM /RSP model creates
TPs of only the rides in a theme park, our ap-
proach includes practical considerations such as
scheduling time to eat lunch. The algorithm to
schedule lunch can be extended in a straightfor-
ward manner to encompass other user-defined
breaks in the day, such as dinner.

Finally, our EA has a convenient, user-friendly
front end, and is available on the World Wide
Web at http://www.eng.ncat.edu/ testa/html/
mk_ plan.html. A browser that supports both
Java and JavaScript, such as Microsoft Inter-
net Explorer 4.01 or Netscape Navigator 4, is
required.

6. Summary

In this paper we have described the problem of
planning efficient tours of a theme park as an
instance of the time-dependent traveling sales-
man problem. Past approaches to solving sim-
ilar problems through MILP models and dy-
namic programming were detailed, and an evo-
lutionary algorithm with local search heuris-
tics was described. The EA’s exclusive use
of a swap mutation operator, rather than tra-
ditional crossover operators, to produce off-
spring was stated, as was the effectiveness of
the swap mutation operator over these tradi-
tional crossover operators. Test problems and
results were shown which demonstrated that for
touring plans with a significant number of rides,
the EA produces better quality tours in less time
than the previous best known algorithm, a dy-
namic programming heuristic. Additionally, it
was shown that the EA efficiently scheduled
lunch with either rigid or flexible time con-
straints, although the satisfaction of those con-
straints was deferred until the final step of the

EA. It was stated that delaying the constraint
satisfaction until the last step allowed genera-
tion of more offspring, which allows a better
search of the solution space. Several other ben-
efits of this new approach over existing models
were also described, including the considera-
tion of user-defined preferences (such as walk-
ing versus waiting in line) in the overall TP, and
availability on the World Wide Web.

7. Future Directions

The authors are actively exploring several di-
rections of future research for this application.
The authors noted dramatic improvement in the
quality of the TPs produced when the schedul-
ing of lunch was deferred outside of the main
loop. Whether this is due to the geography of
the restaurants in the Magic Kingdom is an area
of future research. The question of whether
other constraints, such as stopping for snacks,
shopping, or restroom breaks can be deferred
successfully on other kinds of TDTSPs is an-
other area of future research.

Many large organizations, such as church,
school, or scouting troops that tour the Magic
Kingdom often separate into smaller groups that
rendezvous periodically throughout the day. A
“head group” usually keeps track of, and han-
dles the administrative tasks for the smaller
groups. The addition of rendezvous constraints
will allow for the efficient coordination of the
smaller group’s multiple, independent tours.
Currently, most rendezvous are centralized,
meaning all of the small groups must gather to-
gether at a single place and time to meet with the
head group. By incorporating a decentralized
rendezvous approach, a larger portion of the
theme park can be visited in the same amount of
time. The decentralized rendezvous approach
will allow the head group to meet at different
times, different locations, and with different sets
of groups, and can be implemented through the
use of a number of rendezvous constraints.

Finally, the customer should be able to rank the
importance of each ride to their theme park visit,
especially if the customer does not have much
time to spend in the park. Ranking the rides by
importance would allow the EA to generate TPs
that visit the most important rides first, ensur-
ing the customer does not spend valuable time
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on less-important rides. To accomplish this, the
cost function would have to be augmented to
consider criteria other than time in the fitness of
the TP.

One application of this research is adapting the
algorithm to run in real time on a portable, hand-
held device such as the Palm Pilott. The authors
envision an integrated system where theme park
customers would select the rides they wished to
visit from a list on a rented hand-held device.
Computers installed at each ride would send
estimates of that ride’s current wait time to a
central computer. The central computer would
broadcast these wait times to receivers attached
to the hand-held devices (perhaps using current
digital pager technology), which would dynam-
ically recalculate and redisplay the remainder of
the touring plan based on the most recent wait
times at each ride. Global positioning could
be used to keep track of where the customer
is located in the park so the time to walk to

Appendix A: Rides and Restaurants at
Walt Disney World’'s Magic Kingdom

The Rides

Swiss Family Treehouse
The Jungle Cruise

Pirates of the Caribbean
Cinderella’s Golden Carousel
Dumbo the Flying Elephant
It’s a Small World
Legend of the Lion King
Mad Tea Party

Mr. Toad’s Wild Ride

10. Peter Pan’s Flight

11. Snow White’s Adventure

OOk W=

12. Twenty Thousand Leagues Under the Sea

13. Big Thunder Mountain Railroad
14. Country Bear Jamboree

15. Diamond Horseshoe Saloon Revue
16. Splash Mountain

17. Tom Sawyer’s Island

18. Riverboat

19. Mike Fink Keelboats

20. Hall of Presidents

21. Haunted Mansion

22. Minnie’s Country House

23. Mickey’s Country House

24, The Barnstormer @ Goofy’s Wiseacres Farm 48.

25. Astro-Orbiters
26. Take Flight

the next ride could be included in the calcula-
tions. Such a system would assist management
at the theme park by helping distribute cus-
tomers evenly throughout the park. Customers
would minimize waits in line, which should im-
prove overall satistaction with the theme park.
A nominal rental fee for each hand-held device
could offset the cost of the system.
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27. Alien Encounter

28. Grand Prix Raceway

29. Space Mountain

30. Carousel of Progress
31. Tomorrowland Transit Authority
32. Skyway to Fantasyland
33. The Timekeeper

34. Donald’s Boat

35. Encanted Tiki Room

36. Skyway to Tomorrowland
37. End of Main Street

The Restaurants

38. Casey’s Corner

39. The Plaza Restaurant

40. Tony’s Town Square Restaurant
41. The Crystal Palace

42, El Pirate y El Perico

43. Columbia Harbor House

44. Liberty Tree Tavern

45. Diamond Horseshoe Saloon Revue
46. Pecos Bill Cafe

47. Aunt Polly’s

The PinoZhio Village Haus

49. King Stefan’s Banquet Hall
50. Cosmic Ray’s Starlight Cafe
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Appendix B: Sample of Distance Matrix

A sample of the distance matrix is shown below. All times are in minutes.

Origination Swiss Family Jungle Cruise Pirates of the Cinderelia’s
Destination Treehouse Caribbean Golden Carousel
Swiss Family 0 2 3 9
Treehouse
Jungle Cruise 2 0 2 12
Pirates of the 3 2 0 11
Caribbean
Cinderella’s 9 12 11 0
Golden Carousel

Appendix C: Sample Ride Time Array

Name of Ride Ride time (minutes)
Swiss Family Treehouse 13
Jungle Cruise 9
Pirates of the Caribbean 8
Cinderella’s Golden Carousel 2

Appendix D: Sample Wait Time Matrix

A sample of the wait time matrix is shown below. All times listed are in minutes.

Time
Ride - 9:00AM 9:15AM 9:30AM 9:45AM
Swiss 0 0 0 5
Family
Treehouse
Jungle 0 10 15 20
Cruise
Pirates of 0 5 5 10
the
Caribbean
Cinderella’s | 0 10 10 10
Golden
Carousel
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Appendix E: The Modified Lebby Crossover

(MLX) Function

The original version of this crossover function
was devised by Dr. Gerald Lebby of the Depart-
ment of Electrical Engineering at North Car-
olina A&T State University for use in EAs to
solve traditional TSPs. When used on two par-
ent strings of equal length, it avoids the problem
of generating an offspring with an invalid tour
[1]. For a TSP with N cities, each parent string
consists of a permutation of the numbers 1..N.
The original Lebby crossover function steps
through each position in the first parent string
and uses the value found in each position as an
index into the second parent string. The value
found at that index in the second parent string is
transferred to the offspring. The original Lebby
crossover function is shown in figure E1 below.

The following example shows how the OLX
function would produce an offspring from two
parent strings of five cities each.

Let parent1 = {4,5,1, 3,2}
Let parent2 = {1,2,3, 5,4}

Step 1

The value of the 1% element in parentl
is 4. Find the value in the 4" position of
parent2 and insert it into the 1% position in
offspring. The value in the 4" position of
parent2 is 5, so the partially constructed

path in offspring is {5}.
Step 2
The value of the 2" element in parentl

is 5. The value in the 5 position of par-
ent2 is 4, so place 4 in the 2™ position of

offspring: {5, 4}.

Step 3

The value in the 3™ position of parent] is
1, and the value in the 1st position of par-
ent2 is 1, so the 3" position of offspring
is 1: {5,4, 1}.

Step 4

The value of the 4" element of parent! is
3. The value in the 3™ position of par-
ent2 is 3, so the value in the 4™ position
of offspring should be 3: {5, 4, 1, 3}.
Step 5

The 5™ position of parentl is 2, and the

2 position of parent2 is 2, so let the 5th
position of offspring be 2.

The algorithm stops when there are no
more elements in the parents to process.
The complete path of the offspring is
{5,4,1,3,2}.

The original OLX function was modified to
mate parents whose strings contained tours of
M cities chosen from N possible cities, M < N.
The MLX algorithm expects parent2 to be a
permutation of parentl. That is, each city in
the tour of parentl must also be in parent2, and
vice versa. Along with the two parent strings
the MLLX function takes a third parameter which
must be a list of the cities in parentl, sorted in
ascending order. The MLX algorithm is shown
in figure E2.

As an example of the MLX function, let parent1
= {4,5,9,3,2}, parent2 = {9,2,3,5,4} and
ordered_list= {2,3,4,5,9}. The output of the
MLX function would be an offspring with a path
{3,5,4,2,9}.

Begin

Done

Return offspring
End

Function OLX( parentl, parent2) returns offspring

For k=1 to (number of elements in parent]) do
Let j = the value of the kth element in parent]
Let m = the value of the jth element in parent2
Set the kth element of offspring to m

Fig. EI The Original Lebby Crossover Function
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Begin

Done

Return offspring
End

Function MLX(parent!l, parent2, ordered_list) returns offspring

For k=1 to (number of elements in parentl) do
Let j = the value of the kth element in parent!
Let m = the position in ordered_list that contains the value ofj
Let s = the value of the mth element in parent2
Set the kth element of offspring to s.

Fig. E2.
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