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The paper investigates the optimization of additively
decomposable functions (ADF) by a new evolution-
ary algorithm called Factorized Distribution Algorithm
(FDA). FDA is based on a factorization of the distribu-
tion to generate search points. First separable ADFs are
considered. These are mapped to generalized linear func-
tions with metavariables defined for multiple alleles. The
mapping transforms FDA into an Univariate Marginal
Frequency Algorithm (UMDA). For UMDA the exact
equation for the response to selection is computed under
the assumption of proportionate selection. For truncation
selection an approximate equation for the time to conver-
gence is used, derived from an analysis of the OneMax
function. FDA is also numerically investigated for non
separable functions. The time to convergence is very
similar to separable ADFs. FDA outperforms the genetic
algorithm with recombination of strings by far.
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additively decomposed functions, genetic algorithm,
factorized distribution

1. Introduction

A genetic algorithm is a population-based search
method. A set of points is generated, promis-
ing points are selected and new points are gen-
erated using the genetic operators recombina-
tion/crossover and mutation. The simple
genetic algorithm (Goldberg, 1989) selects
promising points according to

73, 1) = pl, r)—ggf(—’;)). (1)

Here y = (y1,V2,...,yn) denotes a vector of
discrete random variables (genotype), p(y, t) is
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the distribution of y at generation 7 and g(¢) =
> ply, 1)g(y) is the average fitness of the pop-
ulation. For simplicity we assume binary vari-
ables y; € {0, 1}. The above selection scheme
is called proportionate, because above average
genotypes increase in proportion to their fitness
values. Selection should guide the creation of
new points, therefore one would like to generate
new points according to

p(y,t+1) =p’(y, 1). (2)

A discrete density is defined by 2" parameters.
This means that a straightforward implemen-
tation of this equation is computationally pro-
hibitive. Therefore the central question of a
genetic algorithm, as well as for any population-
based algorithm, can be formulated as follows:
If and how can Equation 2 be approximated
with substantially less than exponential compu-
tational effort? Instead of extending the genetic
algorithm, we take a new approach based on
probability theory. We try to approximate the
equation by explicit aggregation.

A possible structure for aggregation is a schema
(Holland, 1992). We just give an example for a
schema. Extending the usual notation

H(yhyk) = (*7 sy Ky Vi Ky ey Ky Vi Ky *)

(3)
defines a schema where the values of y; and yi
are held fixed, the other variables are free. If we
sum Equation 1 over all y which are members of
schema H, we obtain the probability of H after
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selection

P (H(yi, i)

ZP . (4)

yeH

In probability terms p*( H(y;, yi), t) is amarginal
distribution which we abbreviate by p*(y;, vk, t).
In fact, all schemata define corresponding margi-
nal distributions. We can now state our question
in terms of probability theory: Does a set of
marginal distributions exist which gives a good
approximation to Equation 2 and which can be
computed in polynomial time?

The simplest choice are first order schemata or
univariate marginal distributions. They are used
by the Univariate Marginal Distribution Algo-
rithm (UMDA) (Miihlenbein, 1998). Here new
points are generated according to

Hp (vi, 7). (5)

p*(vi, t) is the density of a first order schema
defined by the gene at loci i. If the distribu-
tion p*(y, t) in Equation 1 is complex, first or-
der schemata give a bad approximation. Tt is
often claimed by using the Schema Theorem
(Goldberg, 1989) that creating new points by
Mendelian recombination is a good approxima-
tion to Equation 2. But Miihlenbein (1998) has
given numerical and theoretical evidence that
Mendelian recombination behaves similarly to
UMDA, i.e., it approximates more Equation 5
than Equation 2.

py,t+1)=

In order to get a better approximation for com-
plex distributions higher order schemata have to
be used. But which schemata should be used?
We illustrate the problem with an example. If
three loci (n = 3) are given and second order
schemata are used, then in general

p(y,t) # p(y1, y2, t)p(y1, ¥3, 1)p(y2, 3, 1).

In fact, there exists no closed expression which
gives p(y) as a function of bivariate distribu-
tions. This problem is discussed in detail by
Miihlenbein et al. (1998).

In this paper we consider fitness functions which
allow a factorization of p*(y, ) into a product

of marginal distributions. An example are ad-
ditively decomposable functions (ADF)

)
)= glys), (6)
j=1
,nyand JS; ={1,...,n}.

The outline of the paper is as follows. First we
investigate separable functions, i.e. §; N S; =
(.In Section 2 we transform the given functlon
into a function with metavariables defined for
multiple alleles. For this problem an exact equa-
tion of the response to selection is computed.
From this equation Fisher’s (1958) fundamen-
tal theorem of natural selection follows for gen-
eralized linear functions. In Section 4 a weak
form of Fisher’s theorem is proven for arbitrary
fitness functions. Then we examine the relation
between the structure of the response equation
and the structure of the fitness function. The re-
sults are used to compute an approximate solu-
tion for linear fitness functions. In Section 7 we
investigate a special function where the defining
sets overlap in one variable. Here conditional
distributions have to be used.

where S; C {1,...

The last two sections deal with truncation selec-
tion. Here only approximate solutions are ob-
tained. We define and evaluate the Factorized
Distribution Algorithm (FDA) with numerical
examples. FDA is an extension of UMDA us-
ing a given factorization.

2. Mapping to Metavariables with Multiple
Alleles

We assume that the probability p*(y, ¢) can be
expressed as a product

Z) - HP(YSp I) (7)
el

where I = {1,...,
disjoint and

[} and the index sets S; are

USiZ {1 s 55k

i€l
We combine all y; with j € S; into one metavari-
able x; with more than two alleles. Let

A= {1,...,2% — 1}

Ny T Ayl {0} (8)
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Then the given fitness function g(y) can be for-
mulated as a fitness function f(x) with metavari-
ables x; with values from A; by a one to one
mapping ¥; : {0, 1}/ — A;. We demonstrate
the mapping with some examples.

Example 1: Let n = 2. Then

g(y)=g1(y1, ;V2)=Ofo+0ﬁy1+062y2+0612y1)zz-)
9
We define a metavariable x; = W¥i(y1, y2) =
y1 + 2 yy with x; € {0, 1,2, 3}. The function
is transformed to

3
filxi) =co+ Y v

=1
with
; I wmj=y
A= 0 athe
0 otherwise
1
cp = Qp, ¢y = O0p + o,

2

] = o + a, C?=a0+051+052+0612.

Example 2: Let n = 2m and

m

gy) =) gilyai-1,72)-
=1

With metavariables x; = ¥;(y2i_1, y2i) = Y2i—1
+2y2; we obtain a generalized linear function

£ = filx)
i=1

with fi(x;) = gi(y2i—1, y2:).
Example 3: Now higher order interactions are
considered. Let n = 2m and

n

g(y) = Z gi(y2i—1, y2i)+
i=1

Z gii(y2i=1, y2i ¥2j-1, ¥25)-

i<j
We first choose x; = Wi(y2i—1, y2i) = y2i—1 +
2yy; and get

f(x) = 5 fl) +> filxi x)
i1 i<j
with x; € {0, ...

3}

where fi(x;) = gi(y2i—1, y2;) and fij(xiv x;) =
gij(¥2i-1, Y2, ¥2j-1, ¥2j)-

We can also use metavariables with a larger al-
phabet, e.g. combine four bits into a metavari-
able. We assume that m is even and the index
sets (i, /) with g # O are disjoint. For sim-
plicity we assume a chain, i.e. g;;+1 # 0. We
set x; = Wi(yaiz3, Yai—2, Yai—1, Yai) = Yai-3 +
2y4i—2 + 4y4i—1 + 8y4; and get

n/4

fx) =) filx) with x€{0,...,15}
i=1

with suitable f;. This mapping transforms g into
a generalized linear function.

Example 4: Now consider the inverse map-
ping. Let a function f(x) with x; € {0, 1, 2, 3},
i€ {l,...,m} be given. Then set n = 2m and

Va1 — (XI' MOD 2) ¥Y2i = (xiDIV 2).

In this way, we have

¥i(v2i-1; y2i) = yai-1 + 2y
¥ (x;) = (x; MOD 2, x; DIV 2)

!

Flx) = Pl - o 050m)
== g(yla Y2, .y ¥2m—1, y2m)
— g(xyl—l(xl)’ Ceey IPPT_II(X’?I))
by defining
g(Y) ()’uyz, ---:yZm—IayZm)

=8
= f((yl T 2y2); ) ())Zm—l + 2}’2}71))
f(qjl(yla yZ): feey \Pm(ymela y2m))-

If the metavariables are defined by Equation 8,
then the given fitness function is transformed
into a generalized linear function. This may
lead to a large set A;. For computational rea-
sons it might be necessary to partition the set S;
and use a separate metavariable for each parti-
tion. This was done in example 3. In this case
the transformed function might be non linear.
Therefore in the next section we compute the
equation for the response to selection (Miihlen-
bein, 1988) for the general case.
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3. The Exact Equation for the Response

In the following we will call x; a variable, keep-
ing in mind that its domain of definition is dis-
grete. ‘Then® = (¥iy: ..,xm) is a vector of
discrete random variables. Furthermore

I)= Hp(xi, 1), (10)
icl
Z Hp xi, 1) f(x).  (11)

iel

Letv; be a shorthand notation for x; = v;. v; will
be an element of A; or A;. For the next proof
we will consider p(v;, ) =: p[v;] to be variables
of f(z). Thus p[v;] denotes a variable of the
function f(z), whereas p(x; = v;, 1) denotes the
value of the corresponding marginal probabil-
ity distribution. Then f(f) is a polynomial in
plvi]. In order to distinguish the interpretations
we also write

W(p) := f(1).

Note that p(x; = 0) is not a free parameter,
because we have the additional constraint

pl=0,1)=1~ Z plvi, t).

ViEN;

(12)

We will later derivate W = f(¢) with respect to
plvi]. For this operation additional definitions
are necessary.

Definition 1. Let J be a subset of I, J C I. Let
vy € Ay, where Aj denotes the product space

[TA;
jes
gri= (-1 )i-/\ (13)
p(es, 1) = [ s ) (14)
jeJ
Z F(x) sum over all x
Xo=v ithxgje Jfieed  (15)
T = (A1, .. .,JACMJ with
X i ¢ J
Ag = ; 16
A { 0 ieJ 1)
o, W w o (17)
where the p[ 4 are multiplied formally.

Following the proof in (Miihlenbein, 1998) for
binary genes we will compute the exact equa-
tion for the response to selection. We will need
the expressions

f_(b’,‘,f) = Z f Hp x]at
X|xi=v; J#i
F(vir t) Gms fl(via f)-—‘f—(f). (19)
Then
Z Z p(vi, )F(v;, 1) (20)

€l yieh;

defines the additive genetic variance (Miihlen-
bein, 1998). By appropriate summation of
Equation 1 and using Equation 2 we obtain dif-
ference equations for the univariate marginal
frequencies

(v
p(vla t + 1) (vh )+p(via f) ' ‘I

Now we are able to define UMDA.

Definition 2. The Univariate Marginal Distri-
bution UMDA algorithm generates new points
according 10

plx, 41 (22)

pr,,r+

el

In the original space UMDA generates new
points according to

= [ plys,t +1).

el

ply,t+1) (23)

p(ys;,t + 1) can be derived from p(x;, t + 1)
by using the mapping ¥;"!. Therefore UMDA
defines a Factorized Distribution Algorithm in
the original space. If the size of the index sets
|S;| is bounded by a fixed constant k, then only
[ x 28 = O(n) marginal distributions p(ys,, )
have to be computed. This is an enormous re-
duction compared to the 2" — 1 needed without
a factorization,
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Theorem 1. For UMDA with multiple alleles
and proportionate selection, the response to se-

lection R(t) = f(t + 1) — f(¢) is given by
Vi
R =
=L+
¥Z Z p Vi T )p(wjv T)F(Wh )
w2
LIEL yie A
WjEAj
_ew
dp[vi|op[wj]
32 Hﬂp vj, 1)F(vj, t) )GWW“%
|J|=3 weA,jES
(24)

Proof: We start with a multidimensional Taylor
expansion of R(z) = f(r + 1) — f(r), where ¢ is
considered fixed and p[v;] are variables. With
the notation defined before, we have

e
Rr)_z _ ZZAPV“ ] W
k>1 i€l vieA 1
with
Ap(vi, t) = p(vi, t + 1) — p(v;, t).
From (21) it follows that
Ap(vi, t) = p(vi; 1) - F(;;f l

Because of the structure of W (Equation 11) we
_a_
have Bp[v] 3p[w ]W 0. Therefore we have al-

ready proven that part of the expression where
derivatives of order 2 or higher are involved.
We now calculate the first derivatives of W.
Choose i € 1. We will use the shorthand no-
tation 0; := (x; = 0). The parameter ¢ will be
omitted in the following.

w=>_ > fxee) [ pl)

viEA; X|Xi'_vi J#i
=Y p() > F&® ][] e+
ViEN; X|xi=v; JFi
> fx) {1— L p(wﬂ 1170
X|x;=0 ViEA J#i

W=>" p(v) (F(Vz)*

:ZP (Zf pr;

ViEA; X|xi=v J#i
Zf prj )-l—Zf prj
X|xi=0 J'#'! X|x;=0 J#i

=2 p0

ViEA;

FO)=£(0)) +£(0).  (25)

We now interpret p(v;) as the variable p[v;].
As the term in the parentheses is independent
of p[vi], we get

aow
Ip(vi

= F(vi) = F(0) = F(v;) — F(0;). (26)

The first term of R is thus

PP IFELHRL

i€l vieA;

MW

i€l vieA;

F(vi)—F(0;)} (27)

From (25) it follows that

ViEA;
= > p)F)=—(1= 3 plvi) ) F(0)
ViEN; ViEA;

Therefore we obtain

I

i€l vieA;
S Y sl ZF 55 s
i€l vicA; i€l vEeA;
=Y > pvi)FA(w).
i€l yeh;
O

Theorem 1 gives the response to selection for ar-
bitrary fitness functions. Separable fitness func-
tions can be transformed into generalized linear
fitness functions. For these function Fisher’s
theorem (1958) is valid.
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Corollary 1: For a generalized linear function

m
= filx) mel
i=1

the response for UMDA with proportionate se-
lection is given by

R(t) = % (28)
Proof: We have
ow - _
oy =)~ FO).
Now
=> > o) [[ e 1)
k=1 X|x;=v; J#i
=)+ > > flx) [[ o 2)
ki X|xi=v; J#i

For v; = 0 this gives

FO) = £+ > > flw) [] plxin 1)

ki X|xi=v; J#i
Combining the equations we obtain
ow
Ip[vi]

Thus the first derivatives of W are independent
of p. Therefore all higher derivatives will be

zero. This gives R(7) = % O

= filvi) — fi(0).

For the sake of completeness, we will show
that for non linear fitness functions higher order
derivatives of W do not vanish in general.

Corollary 2: For fitness functions with second
order interactions like

= ng(xkflaxk)

kecG

withG = {2,4, 6, ..., m}, second order deriva-
tives of W will not vanish.

Proof: We have for i even

fo= > (ng(xk—hxk))np(xﬁ )

xlxi=vi \kEG J#L
= > &l 3o []ebed)
vi_1€A x|xi=vi JFE
Xi—1=Vi—1
+3°> T sl x) [ o 1)
kEG X|xi=vi J#i
kti
This yields
oW - ~
— Y e PO
8p[vi] f(vi) f( L)

=Y [givie1, vi) — &i(vie1, 0)]p(vie1, 1)

Vic1€AL]
and we have
9*w
aplviloplvi-1]
=gi(vi-1, vi)—8&i(vi-1, 0)—&i(0, vi)+8:(0, 0).

Therefore the second order derivatives will not
vanish in general. a

4. A Weak Version of Fisher's Theorem

Fisher’s theorem is only valid for generalized
linear functions. For arbitrary functions we
can only show that the response R(t) is always
greater or equal to zero if new points are gen-
erated according to Equation 21. The proof is
based on the general form of the inequality by
Baum and Eagon (1967), written here in our
notation.

Theorem 2. (Baum, Eagon) Ler W(p) =
W({pij}) be a polynomial with nonnegative co-
efficients homogeneous of degree n in its vari-
ables ppielje Ai. Let p = {p;} be any
point in the domain D : p;; > 0, ZPU = .. Lel

p’ denote the point given by the coordmates

Pijg_whi
Dij
=t ()
Z Pikapik[p
kEA;

Then W(p') > W(p) unless p’ = p.
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Theorem 3. For UMDA and proportionate
selection we have R(t) > 0 unless all marginal
frequencies remain the same.

Proof: We consider W = f(z) to be a function

of the variables p[v;] = p(v;) withv; € A;. p(0;)

is considered a variable. We define p; = p(v;)

with v; = j. Then the constraint ) p; = 1 s
f

obviously fulfilled. Next we have to show that
Equation (29) is identical to Equation (21) for
the univariate marginal frequencies.

We easily obtain
ow o
apy|p f( i

= J, 1)

where f(x; = j, ) is defined in Equation 18.
Furthermore

szkf(xi =kt)=W

keA;

is valid. Therefore the marginal frequencies of
UMDA fulfill the assumptions of Theorem 2.

O

Thus UMDA has a numerically very useful
property that the average fitness of the popu-
lation always increases. This property can be
used to terminate the algorithm. In the next
section we investigate the relation, which ex-
ists between the vanishing of all higher order
derivatives of W and the structure of f.

5. Relation between f and W

In the following, the parameter ¢ will be consid-
ered fixed and is omitted in the formulas.

Theorem 4. If for all J C I, |J] > k > 2
and for all vy € Ay : 0,,W = O, then for all
subsets K with |K| < k there exist functions
fx : Ax — R with fx(0) = 0 for K # 0 and
fx(x) =0 forx ¢ Ak and

=3 fl).

|K|<k

(30)

The proof is by induction over |J|. Tt is lengthy
and will be omitted. The theorem states that the

number of interacting variables is at most k if
all order k and higher derivatives of W vanish.
We just give two examples.

Corollary: Assume that all derivatives of W
except the first vanish, then

fx) = filx), (31)
i=1

that is, [ is a generalized linear function.

For binary variables this was already conjec-
tured in (Miihlenbein, 1998).

Let A; = {0,1}. Assume that all derivatives
except the first and second vanish, then f is of
the form

n
FX)=co+ Y _cxi+ > cjrix.
i=1

i<j

(32)

In the next section we will approximately solve
the difference equations (21) for linear func-
tions.

6. Linear Fitness Functions

Now we will use the theory to obtain the re-
sponse equations and the change in allele fre-
quencies for linear fitness functions with an ar-
bitrary alphabet. Let an arbitrary linear function
be given

f(X) = 0p+ Z Clix

icl

withx; € A;. (33)

Then

f@)=a0+ > > awip(vi1).

el viEA,

(34)

The marginal frequencies after one step of pro-
portionate selection are given by Equation 21:

flvi, 1)
p(viyt+ 1) = p(vi, t) -
f(@) 35)

= plvi, t) + p(vi, 1) - ‘__

where f(v;) is now given by

flonty=o0+ (Hp(xk: f))zam

X|xi=v; ki Jel
(36)
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Theorem 5. Forlinear functions marginal dis-
tributions and the response to selection are
given for UMDA with proportionate selection
by

plvi,t + 1) = p(vi, 1)+
avi— ., ouwip(wi,t)
pvi, 1) ””'E;;‘(t) (37)

R(r) = ‘;}é Z Z o2

el v
plvi, r)(l — p(vi,1))*. (38)

Proof: We sort Equation 36 according to multi-
nomials p(vy, t) for ¢ fixed and J C I\ i and
vy € Ay, that is, we substitute p(0;,7) = 1 —
>~ p(vi, t). In order to obtain a given multino-
ViEA
mial p(vy, t), we see that all x; with k ¢ J have
to be zero, whereas the x; with j € J might be
zero or vj. For x; = 0 a change in the sign of
the product is involved. This leads to

flvi,t —O¢0+Z Z (v, 1

JCI\ivieh;s

' Z Ep (oc,-v,- + Z oakvk).

Jcy ket

H{vy)

Itis evidentthat " epopy; =0 V@ CJ CL
e
For |J| > 1, each term ogvy in H(vy) occurs
exactly 2M1=1 times with alternating signs, such
that
J|>1 = H{v,)=0.

For |J| = 1 we obtain H(v;) = +a;v;, and
H(0) = a;v;. This yields
Font)=ag+owi+ > > agvp(vjt)
JEL viEN;

As derivatives of W of order 2 or higher vanish,
we finally get the following equations:

pvi,t+1) = p(vi, t) -
oo+ avi + 3 > aywip(wj, t)
JEILWiEA;
- (40)
f(t)

= p(Vi, I) +
civi — z a;wip(wt-, Z)
wiEA;
plvi, 1) 0 (41)
0

The difference equations 37 can be easily com-
puted numerically. An analytical solution is
nevertheless complicated. In the following we
will derive an approximate solution for a special
case.

Theorem 6. For A; = {0, 1}, 00 =0,0; > 0

and p(x;,0) = 5 with pi(t) := p(x; = 1, 1), we
can approximate the marginal frequency by

pi(t) = 1 — qoa; (42)
o — (Z; (1 + C{Z"af )
a = /(43
o — O
1 — i
o= o 44
qi e (44)

with

Proof: From Equation 37 we obtain

1—pi(t)
5

We calculate the frequencies for two genera-
tions:

pi(t + 1) = pi(2) (1 +

1
18 =1-40-9)
| -
pi(2) =1 (1 4+ %) |1+ a2 L
e %Zaj(l-&—a’)
L J

1 i [ & —
_§(1+%) +a1a2+5}
:1+1g+1g“2—0‘3

2 2 o 2a0{2+ﬁ
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Using the ansatz p;(t) = 1 — g;a; we obtain the
equations

qiai =5 (1= )

2 2
21 i o %
=412 1+ G55

Dividing the second equation by the first one
we get a; and then g;. O

The OneMax function is definedby a; = 1, i =
1, ..., n In this case we obtain

This is the exact solution of Equation 37. For
OneMax our approximation is exact.

Next we consider a more difficult function. Let
n=10,A; = {0, 1}, op = 0, &; = 2°~1. Thus
the fitness function is

f(xl,...,X5):Z2f_lxi- of filx) ==
i
(45)
From Theorem 6 we compute the numerical val-
ues forag, ...,ajgandgsg, ..., g0
ain — 0.437 qdi0 — 0.571
dg = 0.765 qo = 0.490
ag = 0894 gz = 0489

We numerically compare the approximate val-
ues with the exact values. The resultis shownin
Figure 1. The frequencies (1 — p;) are plotted
on a logarithmic scale, which leads to almost
linear graphs as predicted.

0.1

0.01

0.001 X8 —o— T =
X9 -+-- E*-\‘_.; E
x10 -8-- ‘B ]
approx. - 3

0.0001 L : L :
0 2 4 6 8 10

Fig. 1. Approximated vs. exact allele frequencies

7. Conditional Probability Distributions

If the index sets S; overlap, then the analysis
becomes much more difficult. The probability
distribution is no longer the product of inde-
pendent distributions. We have to introduce
conditional probabilities.

In order to describe the problems associated
with this factorization, we take as a simple ex-
ample the index sets {1,2} and {2,3}. The
probability distribution factors into

p(—xl,XZ, X3, I) — p(x1, X2, I)p(JC3|XQ, t)' (46)

As the factors and the product must be proba-
bility distributions, we have the constraints

p(0,0,1)
1—p(0,1,1)— p(1,0,1) — p(1, 1,1) (47)
Vxa @ p(Olxa, 1) = 1 — p(1|xo, t). (48)

pisdetermined by 5 parameters. A general dis-
tribution with 3 variables has 2° — 1 parameters.
So we have a slight reduction in the number of
free parameters. Our goal is to calculate the
response. We will omit the parameter # when
the value is clear from the context.

Using Equations 1 and 2 we obtain

S(x1, 00, x3)

f@)
(49)

p(x1, X2, X3, t4+1)=p(x1, X2, %3, 1)

These are eight equations. By suitable aggrega-
tion we can derive the difference equations for
the five distributions defining the probability p.
We formulate the result as a theorem.

Theorem 7. The response to selection for a
fitness function with sets {1, 2} and {2, 3} giv-
ing the factorization p = p(x1, x2, t)p(x3|x2, 1)
is obtained by
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(x1, x2)%+

VCZ Z p(xl, X2, I)F

X1,%2

> plosber, 02

X2,43

Fx3]x2)?

where v and w have to be chosen consistently
for xo and be actual parameters, that is v €

{(0, 1), (1,0), (1, 1)} and w € {(1]0), (1|1)}.

Proof: Summing equations 49 and 46 for x3 =
0 and x3 = 1 we get

f(xl,X2)
W

)C3 'xz, I)

p(xl,xg, I 1) = p(xl,xz, I)

Zf

f(xla-xZa ) W.

xl X2, 1

F(xl,xp_, ) (50)

This leads to

p(.XhXQ, I+ 1) - p(X],XQ, I)
F T
(xlax2a ) (51)

74

Ap(.X], x?) =

= p(x1=x2: I)

The same procedure is done by inserting x| = 0
and x; = 1 yielding

p(xrg, -+ l)p(x3|x2, I+ 1)
p(o; X2, f)f(O, X2, JC3)+

p(l, X9, I)f(l,)CQ, xﬂ].

1
= ’[ R—
plxs|xz )W

where p(xy, t) denotes the univariate marginal
frequency of x2. Using the above formulas, we
get

flxg, Zf

X1,X3

Obviously, f(xy =
Setting

0) + flx2 = 1) = f(1).

x31x27

Zf

f(x3 [X2, 1‘)

xl,JQ, I) and (52)

W
.f(x27 I) - (53)

F()Cg‘xz, I) =

we have

f 1) W
p()C3‘}C2, l‘+1) f('x3‘x2 )

:p(JC3 |)C2, 1‘)

This leads to the difference equations

Ap(1lx2) = p(1|xz, 2 4 1) — p(1|x2, 2)

F(l X2, I)
= pl1ja 2T

It should be noted that this result is formally
similar to the non-conditional one. But the term
F(x3|x2, 1) is much more complex than the usual
term F(x3, t). Atedious calculation finally gives
an expression of the first derivatives of W and
therefore the conjecture. O

Formally we have succeeded to obtain the ex-
act response equation for a simple example with
overlapping sets. The analysis can be extended
to a chain of overlapping variables. But the
interpretation and the calculation of the condi-
tional terms is difficult. Moreover, if the sets
S; overlap in a more irregular manner, it can
be very difficult to obtain a factorization of the
probability at all. We will therefore investigate
these problems numerically by simulation and
by approximations derived from our theory.

8. The Factorized Distribution Algorithm

FDA is based on a factorization of the distribu-
tion p(y, t). In its most general form we assume
that

)= H P(YN|¥R> 1)

el

py, 1 Nis B © A ly0 st}

(55)
where N; U R; = §;. We will not mathemat-
ically discuss the factorization problem here.
This is done in (Miihlenbein et al., 1998). But
the reader should get an idea, how to obtain the
factorization from the examples we will discuss
in detail. If the sets §; are disjoint, then N; = §;
and R; = (. The transformed fitness function is
a generalized linear function.

Proportionate selection is well suited for math-
ematical analysis, but it is not suited for a
practical optimization algorithm. It selects too
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weakly in the final stages of the algorithm
(Miihlenbein, 1998). Therefore FDA is nor-
mally used with truncation selection.

FDA,

e STEP 0: Sett < 1. Generate (1 — r) %
N > 0 points randomly and r x N points
according to Equation 56.

e STEP 1: Selection (e.g. proportionate or
truncation -select TN, T < 1 points) .

e STEP 2: Compute the conditional proba-
bilities p*(yy,|ygr,?) with the selected
points.

e STEP 3: Generate a new population ac-
cording to p(y, ¢ + 1) = 11 p*(ymilyx, )

S

e STEP 4:
FINISH.

e STEP 5: Add the best point of the pre-
vious generation to the generated points
(elitist).

o STEP 6: Sett <=t + 1. Goto STEP 2.

If termination criteria is met,

FDA is obviously an extension of UMDA, work-
ing in the original space. For separable func-
tions both algorithms generate the same search
points. FDA combines mutation and recombi-
nation of genetic algorithms into one operator
using probability distributions. The factoriza-
tion of the probability defined by Equation 56
can also be used at the initialisation. For faster
convergence, a proportion of r * N individuals
can be generated with a local approximation of
the conditional marginal distributions. This is
done as follows:

bgf(yN[’yR[)
- T pei(ZniYg,)

Zy;

P(Yn,| ¥R 1) (56)

with arbitrary b. The larger b, the “steeper” the
distribution, whereas » = 1 yields a uniform
distribution. & should be chosen so small that

all p(yw,|yz, 0) > 0.

FDA has a micro and a macro structure. If the
subsets S; are disjoint, the fitness function is just
a generalized linear function with macro vari-
ables X; which can be defined as the integer
representation of S;.

For proportionate selection we have analyti-
cally derived exact difference equations for the
marginal distributions. For truncation selection
we have not yet been able to compute exact dif-
ference equations. Therefore we will show the
similarity between UMDA and FDA in the next
section mainly by simulation.

9. Convergence Results for Truncation
Selection

We have previously analyzed UMDA for the
simple fitness function OneMax in detail. One-
Max just counts the number of bits in the given
string. This approximation will be of relevance
for our FDA. Therefore we recall the theoretical
results (Miihlenbein et al. 1994, Miihlenbein,
1998).

Assuming for all loci identical univariate margi-
nal distributions for the initial population (p;(x;
= 1,1 = 0) = pp), the difference equation for
p(t) can be obtained from the equation for the re-
sponse to selection R(1) = np(t + 1) — np(t) =~
I+ V()12 V(1) denotes the variance of the
population and I denotes the selection intensity.
For OneMax we have V(1) = np(1)(1 — p(1)).
Therefore we obtain the difference equation for

p(1)

plt+ 1) = plr) + /()T — (). (57)

From the difference equation a differential equa-
tion can be derived. This has the solution

p()=0.5 (l-i-sin (%t—k—arcsin(Zpo—l))) ;
(58)

This equation completely describes the dynam-
ics of UMDA for OneMax.

For the sake of completeness we show for se-
lected truncation thresholds the corresponding
selection intensities (Miihlenbein, 1998) in the
following table.

0,125
1:65

0.25
.27

0.04
2.14

[T[0.75[0.5
[T]042[038

Table 1. Selection intensity
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Next we compute GEN,, the number of gen-
erations until convergence. Convergence is
achieved when the average fitness of the pop-
ulation is equal to the best fitness. GEN, is
obtained by setting p(z,) = 1.

GEN, = (g — arcsin(2py — 1)) ? (59)
GEN, depends on the size of the problem, the
size of the population N and the truncation
threshold 7. By looking at our results for pro-
portionate selection, we expect that FDA and
UMDA behave very similarly, also for trunca-
tion selection. Therefore we conjecture:

o GEN, will be proportionate to /7.

o GEN, will be inversely proportionate to /.

The second conjecture is a statistical property
and has been confirmed in (Mihlenbein, 1998).
The first conjecture is valid if the population size
N is larger than a critical population size N*,
defined as the minimal population size needed
to find the optimum with high probability, e.g.
99%. The determination of the critical popula-
tion size N* is very difficult. We have not yet
succeeded with an analytical formula.

10. Numerical Results

We will first test the conjecture concerning the
number of generations until equilibrium. For
this we will use the following three functions

F1(X) = ix,— x; € {0, 1}
i=1
[

F2X) = Y flx) x€{0,1,..,7}
= |
{

F3(X) = > flx) xe{01,..,7}
i=1

For the function F2 we set f>(x;) to the values
of a OneMax function of order three. F; is thus
identical to Fj. For F3 we set f3(7) = 10 and
all other values to zero.

Given our theory, we expect the following re-
sults. GEN, should be equal for F1 and F2.

n Fl F2| F3 | GEN,39)
30 7.0 740 | 62 12
60 10.0 | 10.0 | 9.0 10.1
90 122 | 12.3 | 11.0 12.4
120 | 142 | 144 | 129 14.4
GAr | 18.8 | 18.8 | 21.3

150 | 16.0 | 16.3 | 14.1 16.0
180 | 17.2 | 17.8 | 15.9 I'7.5

Table 2. Generations until convergence, truncation
threshold 0.3

GEN, should be smaller for F'3 because here
FDA has only two main alternatives — x; = 7
and all the rest.

The results from Table 2 confirm our prediction.
Note how precisely Equation 59 predicts GEN,
obtained from actual simulation with FDA. GA1
is a genetic algorithm with truncation selection
and uniform crossover. It needs slightly more
generations for OneMax, as already mentioned
in (Miihlenbein et al., 1994). For the function
I3 the genetic algorithm needs almost twice as
many generations as FDA, which has knowl-
edge about the micro-structure of F3.

We will now turn to non-separable fitness func-
tions. The following test suite is used.

Let u denote the number of bits turned on in
the sub-string. Sub-function f3,. is defined as
follows:

09 for u=0

f3 _ 0.8 for u=1
dec 00 o =2
1.0 for u=3.

f3,. is used to define the separable deceptive
function of order three

!
Fpec(y) = ) fuec(Vs,).
i=1

The factorization of the distribution is obvious,
because the function is separable.

The next function is composed of two sub-
functions:

[ for u=0
fA={1-1 for u=3
0 for else.
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Function fzf has only one non zero element,

A(1,1,1) = . These two functions are used
to define the function Fo_ppax

-1

Fo_peax(y) = > _ filys,) + £(ys)

i=1

where S; N Siy1 = x2:41. This function is non
separable, it has a chain like interaction struc-
ture. The variables xp;; are contained in two
sets.

This function is very difficult to optimize. The
global optimum is x = (1,1,...,1) with
Fo_peag = (I — 1) + 1. This optimum is
triggered by fi. Itis very isolated, the second
best optimumis givenby x = (0,0, ..., 0) with
a function value of [( — 1).

For this function a factorization with N; =
Si\Si—1,S0 = @ and Riy1 = x4, Ry = 0
will be used.

For numerical comparison we also consider the
separable function

-1

Feuan(y) = ) fiys) + f(ys,),
i=1

where $; N S;11 = 0.

The last example is a two dimensional Tsing
System.

Frsivg(y) = Z Z Jijsis

with J;j € {—1,1} and 5; € {—1, 1}. The sum
is taken over the four spatial neighbors N(i),
but each J;; is used only once. We have used the
following factorization for an 11 = 11 grid. The
spins are sequentially numbered from 1 till 121

p(s) = p(s1, 82, S12, 513) p(53, S14]82, 512) %
... % p(5121]5109, 5110, $120)-

All distributions use four variables. Each vari-
able appears exactly once at the left side from
the conditional sign |. All grid interactions are
covered by the factorization. For this class of
Ising models exact solutions can be computed.
We have computed a fairly difficult free bound-
ary problem.

Table 3 gives the numerical results. In order
to shorten the computation time, the runs have
been stopped after the first occurrence of the
optimum, after all individuals are equal, or after
a specified maximum number of generations.
GEN gives the generation count when stopped.

The surprising result is that GEN mainly de-
pends on n, despite the great differences of the
fitness functions. There is even not a large
difference between Fygjyg and the separable
Fceyamn, if the same number of variables is
considered. For separable functions an initial-
ization according to the marginal probabilities
speeds up the convergence. This can be seen
with Fpre. For all functions Equation 59 ob-
tained for OneMax is a very good prediction for
GEN.,.

I jEN(i)
F n [ Alg. | GEN | popsize | best
Fpec 90 30 | FDAgo 11 1000 30
Fpee 90 | 30 | FDAy 5 7 1000 30
Fpec 90 | 30 GAT 32 5000 | 27.1*
Fouan 60 20 | FDAy 5 5 1000 400
Fepaiv | 90 | 30 | FDAg 5 7 1000 900
Feopan 120 | 40 | FDAg 5 9 1000 1600
Fopain 90 | 30 GAT 25 5000 900
Fo_prar | 51 25 | FDAg o 6 1000 601
Fo_pear | 101 | 50 | FDAg 9 2000 2451
Fo_peax | 151 | 75 | FDAy 13 5000 5511
Fo_pparg | 101 | 50 GAT 30 5000 | 2450%
Frsivg 121 FDAg 5 11 1000 178
Fising 121 FDA 5 11 2000 178
Fisine 121 GAT 40 5000 174*

Table 3. Numerical Results, truncation threshold 0.3
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GEN remains constant if the population size is
larger than the critical population size. This is
shown with the last entries of the table concern-
ing the ISING model. The different complexity
of the optimization problem is only reflected in
the population size! The more difficult the func-
tion, the greater the population size has to be.
The ISING model needs a surprising small pop-
ulation size, whereas the critical population size
is very large for Fg_pgak. For this function the
critical population size increases dramatically.
This has to to be expected.

For comparison we also note the results of a
genetic algorithm GAr with uniform crossover
and truncation selection. The genetic algorithm
is not able to solve the separable function Fpgc
and the very difficult function Fp._prax. The
solution of the 2-dimensional Ising model seems
surprisingly simple. Even GAy found the opti-
mum once in 10 runs.

In all cases FDA outperforms the genetic al-
gorithm by far, in quality of solution obtained
and/or in number of function evaluations
needed to obtain the optimum.

11. Conclusion

The factorized Distribution Algorithm FDA is
an extension of UMDA for non separable ADFs.
For separable functions it behaves exactly like
an UMDA for functions with multiple alleles.
For proportionate selection we have derived dif-
ference equations for the marginal frequencies.
For truncation selection we confirmed numeri-
cally that the number of generations until con-
vergence can be estimated by an equation de-
rived for the simple linear OneMax function.
If a certain percentage of the initial population
is generated by using the factorization, GEN,
becomes even smaller.

We have shown that FDA is also very efficient
for non separable ADFs. Here the correspond-
ing factorization is given by conditional prob-
abilities. There is almost no difference in the
convergence speed of optimizing separable or
non separable functions. The difficulty of the
optimization problem is only reflected in the
population size needed to obtain the optimum.

We do not want to give the impression that FDA
should always be preferred to UMDA or genetic

algorithms. In principle, UMDA can be seen as
the simplest FDA implementation. The set of
functions which can be solved by UMDA is sur-
prisingly large. FDA should only be used for
functions with acomplex gene interaction struc-
ture. Furthermore the success of FDA critically
depends on a correct probability model. This
problem and constraint optimization problems
are discussed by Miihlenbein et al. (1998).
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