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The paper investigates the optimization of additively 
decomposable functions (ADF) by a new evolution­
ary algorithm called Factorized Distribution Algorithm 
(FDA). FDA is based on a factorization of the distribu­
tion to generate search points. First separable ADFs are 
considered. These are mapped to generalized linear func­
tions with metavariables defined for multiple alleles. The 
mapping transforms FDA into an Univariate Marginal 
Frequency Algorithm (UMDA). For UMDA the exact 
equation for the response to selection is.computed under 
the assumption of proportionate selection. For truncation 
selection an approximate equation for the time to conver­
gence is used, derived from an analysis of the OneMax 
function. FDA is also numerically investigated for non 
separable functions. The time to convergence is very 
similar to separable ADFs. FDA outperforms the genetic 
algorithm with recombination of strings by far. 
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1. Introduction 

A genetic algorithm is a population-based search 
method. A set of points is generated, promis­
ing points are selected and new points are gen­
erated using the genetic operators recombina­
tion/ crossover and mutation. The simple 
genetic algorithm (Goldberg, 1989) selects 
promising points according to 

s g(y) 
p (y, t) = p(y, t) g(t) . (1) 

Here y = (y 1, yz, ... , y 11 ) denotes a vector of 
discrete random variables (genotype), p(y, t) is 
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the dist1ibution of y at generation t and g(t) = 
I: p(y, t)g(y) is the average fitness of the pop­
ulation. For simplicity we assume binary vari­
ables Yi E { 0, 1}. The above selection scheme 
is called proportionate, because above average 
genotypes increase in proportion to their fitness 
values. Selection should guide the creation of 
new points, therefore one would like to generate 
new points according to 

p(y, t + 1) = p5 (y, t). (2) 

A discrete density is defined by 2n parameters. 
This means that a straightforward implemen­
tation of this equation is computationally pro­
hibitive. Therefore the central question of a 
genetic algorithm, as well as for any population­
based algorithm, can be formulated as follows : 
If and how can Equation 2 be approximated 
with substantially less than exponential compu­
tational effort? Instead of extending the genetic 
algorithm, we take a new approach based on 
probability theory. We try to approximate the 
equation by explicit aggregation. 

A possible structure for aggregation is a schema 
(Holland, 1992). We just give an example for a 
schema. Extending the usual notation 

H(yi, Yk) = ( *, · · ·, *,Yi, *, · · ·, *, Yk, *, · · · *) 
(3) 

defines a schema where the values of Yi and Yk 
are held fixed, the other variables are free. If we 
sum Equation 1 over ally which are members of 
schema H, we obtain the probability of H after 
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GEN remains constant if the population size is 
larger than the critical population size. This is 
shown with the last entries of the table concern­
ing the ISING model. The different complexity 
of the optimization problem is only reflected in 
the population size! The more difficult the func­
tion, the greater the population size has to be. 
The ISING model needs a surprising small pop­
ulation size, whereas the critical population size 
is very large for F o - PEAK· For this function the 
critical population size increases dramatically. 
This has to to be expected. 

For comparison we also note the results of a 
genetic algorithm GAT with uniform crossover 
and truncation selection. The genetic algorithm 
is not able to solve the separable function F DEC 

and the very difficult function Fo- PEA K· The 
solution of the 2-dimensional Ising model seems 
surprisingly simple. Even GAy found the opti ­
mum once in 10 runs. 

In all cases FDA outperforms the genetic al ­
gorithm by far, in quality of solution obtained 
and/ or in number of function evaluations 
needed to obtain the optimum. 

11. Conclusion 

The factorized Distribution Algorithm FDA is 
an extension ofUMDA for non separable ADFs. 
For separable functions it behaves exactly like 
an UMDA for functions with multiple alleles. 
For proportionate selection we have derived dif­
ference equations for the marginal frequencies. 
For truncation selection we confirmed numeri­
cally that the number of generations until con­
vergence can be estimated by an equation de­
rived for the simple linear OneMax function. 
If a certain percentage of the initial population 
is generated by using the factorization, GENe 
becomes even smaller. 

We have shown that FDA is also very efficient 
for non separable ADFs. Here the correspond­
ing factorization is given by conditional prob­
abilities . There is almost no difference in the 
convergence speed of optimizing separable or 
non separable functions. The difficulty of the 
optimization problem is only reflected in the 
population size needed to obtain the optimum. 

We do not want to give the impression that FDA 
should always be preferred to UMDA or genetic 

alg01ithms. In principle, UMDA can be seen as 
the simplest FDA implementation. The set of 
functions which can be solved by UMDA is sur­
prisingly large. FDA should only be used for 
functions with a complex gene interaction struc­
ture. Furthermore the success of FDA critically 
depends on a correct probability model. This 
problem and constraint optimization problems 
are discussed by Mtihlenbein et al. (1998). 
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