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The volume data is generally in the form of the large
array of numbers. In order to render the object hidden in
the volumetric data, we need to reconstruct or interpolate
data values between the samples. The novelty presented
in this paper is B-spline interpolation in the volumetric
space. We show that this approach is better than cur-
rently used methods. We also present a hybrid approach,
analyze this approach in frequency domain and compare
it to B-spline interpolation.

To enhance the quality during the volume visualization
process it is important to enhance the quality of the recon-
struction. It is of crucial importance to explore different
undesired effects. If better reconstruction is performed
the more accurate result of volume visualization process
is achieved.

Keywords: B-spline, volume rendering, volume recon-
struction

1. Introduction

The volume visualization is based on the three-
dimensional scalar or vector field. Object that
should be visualized is represented by the array
of discrete samples. During rendering of the ob-
ject it is necessary to reconstruct the continuous
three-dimensional function, defined by the sam-
ples, for any method applied. Classification of
the methods for the volume visualization can be
done regarding the space where they basically
work. Development of the new methods extend
the basic classification proposed by Kaufman
[5]. There are three groups of methods: the
object space methods, the image space meth-
ods and methods that are based on transformed
object space.

The object space methods mainly create poly-
gons or classic geometric primitives and project

them in the projection plane [8]. Methods that
are based on the image space start from the
image plane and cast the rays from each pic-
ture element into the scene [7]. Methods that
are based on the transformed object space work
in transformed space, for example in the fre-
quency domain [13] or in the wavelet domain
[3]. There are also some hybrid methods that
employ coherency characteristics from differ-
ent spaces. The object space is first traversed to
reorganize data to be prepared for traversing in
the image space. During traversing the image
space, rays are cast from each picture element in
the object space [6]. Organization of the volume
elements is very important, because significant
performance benefits can be achieved if volume
elements can be easily fetched along cast ray.

Durii:g the volume rendering there are several
layers where reconstruction is necessary, and
the error caused by reconstruction may occur.
Reconstruction is done in the three-dimensional
space based on the values of the volume el-
ements. We must be able to interpolate the
function at arbitrary locations to obtain the vol-
ume densities. Numeric integration along the
ray path uses reconstructed values at sample
points. To calculate the value assigned to the
ray, values in the sample points along the ray
are accumulated. Final reconstruction is done
based on each ray in order to produce the final
image (Fig. 1).

It is important to be aware of limitations of the
reconstruction, because it can significantly in-
fluence the accuracy of the result. Investigation



246

The B-spline Interpolation in Visualization

Picture element

Projection plane

-‘—\_‘—‘_ -
e Reconstruction

P ® —— Volume elements

Fig. 1. Reconstruction in the volume rendering.

of the reconstruction or the interpolation is re-
quired to achieve compromise between different
undesired artifacts and to accomplish optimal
result.

2. Reconstruction in the Computer
Graphics

Development of new rendering algorithms for
visualization of the three-dimensional scalar
fields is a recent area of research. Usually, re-
lated papers put the main accent on the proposal
of new methods, while less attention is paid to
the problem of reconstruction.

Aliasing is problem present in many areas of
computer graphics. Objects are usually defined
procedurally and they are synthetic. Prefiltering
of such representation is not practical. Further-
more, transformation between continuous and
discrete representation is often required. Alias-
ing may occur on every transformation of repre-
sentations, and this problem also appears when
resampling is required. Multilayer resampling
is often required and each layer may cause ad-
ditional error. This problem is well recognized
in the computer graphics, and investigated by
many authors.

Display of the computer-generated image 1s in-
put object to our visual system, and it is not

completely understood how our visual system
works. Sensitivity of the human eye is specific,
so minimal deviation in mathematical sense dif-
fers from the most pleasant result for our per-
ceptual system. Even a little distortion in gray
levels can cause unpleasant psychovisual result,
especially in the areas with smooth changes.

In the analysis based on the perceptual ap-
proach, rather than mathematics, some authors
prefer little aliasing in order to avoid other vi-
sual defects that result from trying to remove
alias completely. The appearance of aliasing
is investigated when family of piece-wise cubic
filters is applied to image reconstruction [10].
Mitchell also presents [11] how stratified sam-
pling reduces variance of the mean value of the
image picture elements.

The problem is to numerically express the result
that depends on our visual system. Marschner
and Lobb [9] propose metric that can be used
to measure the filter characteristics, in terms
of smoothing and postaliasing. On the three-
dimensional test signal they show the results,
when different reconstructions are used. The
proposed test function is highly sensitive to the
aliasing, and different undesired effects are vis-
ible on the results. A disadvantage is in that the
proposed test function is continuous, so draw-
back caused by discontinuity usual in real data
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will not appear. In volume rendering, gradient
information is used for shading and classifica-
tion of the data set in combination with the voxel
intensities. Bentum presents the analysis of gra-
dient estimators in frequency domain, and pro-
poses taking the derivative of the interpolation
function itself [1].

Machiraju and Yagel characterize and measure
error by applying Taylor series expansion. They
characterize errors as truncation error and non-
sinc error. The methods for error measurements
are based on the spatial domain analyses. The
Taylor series expansion of the convolution sum
[12] leads to the quantitative and qualitative
compression of the reconstruction and deriva-
tive filters. The analysis is based on the BC-
splines defined by Mitchell.

It is important to distinguish approximation and
interpolation approaches. The approximation
curves are used to approximate control poly-
gon, and interpolation curves must pass through
the defined vertices. Toraichi used interpola-
tion quadratic B-spline for image reconstruction
[14], and Unser presented B-spline transforms
for the image interpolation [15].

3. Prealiasing and Postaliasing

Volumetric space consists of volume elements.
Each volume element may represent result from
real world object sample, from numeric simula-
tions, or may represent some pure mathematical
value. The samples are taken from continu-
ous space, but object with sharp edges in that
space creates discontinuity. According to Shan-
non theory, signal can be reconstructed from its
samples if two conditions are valid. First, spec-
trum of the signal must be bandlimited, and
sampling frequency must be twice as high as
the largest frequency present in the signal. The
alias that occurs during sampling stage is called
prealiasing and postaliasing is caused by the re-
construction.

Natural forms often contain discontinuity, so
their spectrum is not bandlimited. Before sam-
pling, lowpass filtering must be applied. If ideal
(box) lowpass filtering is performed, Gibss phe-
nomena will appear on each discontinuity. So,
discontinuity creates unbandlimited spectrum.
Therefore, ideal lowpass filter, used to elim-
inate higher frequencies, cause ringing effect

near discontinuity. When discontinuity exists
on piecewise linear function, Fourier series of
function overshoots the function value near that
discontinuity. Limes limy,—..c Sy(f, x,) of the
n-th partial sum S,(f, x,) of the Fourier series
on the first local maximum (minimum) x,, near
discontinuity converges to higher (lower) value
than the value of the function. Wilbraham-
Gibbs constant quantifies the degree of over-
shoot. On each side of discontinuity the limiting
crest of the highest wave converges to 8,949%
of the discontinuity height. This is an inheri-
ted property that should be taken into further
consideration.

In the two-dimensions, ringing exhibits on ev-
ery discontinuity in gray levels of the image.
In the three-dimensions, volume elements es-
cape over the edge of the object and create vi-
sual artifacts that manifest as clouds around the
object. Some volume elements dive into the
object creating caves in the object surface. To
avoid ringing, continuous impulse response of
the lowpass filter is required. Instead of box
lowpass filtering, filters having smooth impulse
response should be used. For lowpass filtering
in two or three dimensions Gaussian filter will
be used, although further detailed investigation
is required.

Data acquisition can be achieved by different
scanners: CT (Computer Tomography) or MR
(Magnetic Resonance), for example. During
the sampling process some lowpass filtering is
performed, but information about it for the se-
quences of slices available on Internet, is usually
unknown. If the sampling is not done correctly,
information can be irrecoverably lost.

The resolution of scanned slices is usually high,
but the number of slices is often insufficient
because of radiation risks for the patient. To
enlarge the number of slices, interpolation be-
tween the slices is required. Compression of
the volume data is also desired because the size
of dataset is large. Thus the reconstruction of
the compressed volume, interpolation between
slices, or interpolation of the volume elements
become important steps.

The reconstruction is a term that is usually used
in signal processing, and interpolation is a term
used in mathematics or computer graphics. In
this paper those two terms will be used inter-
changeably. Both approaches: one from the
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interpolation of curves and the other from sig-
nal reconstruction, will be confronted in order
to analyze the problem.

4. The B-spline Interpolation

When designing the curves and surfaces for
CAD applications, some characteristic demands
on the behavior of the curves and surfaces are
required [2], [4]. The B-spline was created to
fulfill certain requirements that will reflect very
well in solving of our problem.

4.1. The Approximation B-spline

The approximation B-spline curve with degree
k of each polynomial segment is defined with

= 1 Nig(w), (1)
i=0

where rj are points of the control polygon, and
N; x(u) are called B-spline weight functions, or
B-splines. The control polygon has # + 1 con-
trol points. The N;(u) are defined based on
knot sequence:

{u(), Uly vee }, (2)

with recursion formula:

1

Uknor

i < U< Uiy (3)
otherwise,

(1 — ui) Nig—1(u)
Uip — U
Uj —u) Nippg—1(u
‘E‘( i+k+1 ) +Lk l( ) (4)
Ujtkrt - Uiyl

Ni(u) =

When the denominator is equal to zero, frac-
tion is assumed to have value of zero. In our
consideration we restrict on the uniform case,
where parametric intervals between successive
knot values are equal to one, and with no mul-
tiple knot values.

Uior = {1,2,3,..om}. . (5)

In that uniform case, periodic segment can also
be determined by the equation:

k+1
k,Z (k-l—l)x
X(x—l-l—k—i_Tl) H(xi+]f—j_—1~),(6)

where k is degree of each polynomial segment
and H(x) is Heaviside step function. For further
analysis the equation (6) can be rewritten with
recursive relation:

Br(x) = (Bx—1* Bo)(x), (7)

where operator * denotes convolution. If f(x)
is used for weight function, the approximation
B-spline curve is:

oo
= > flx—1i), (8)
i=—o0
where r; is infinite sequence of control points.

For the uniform case, when k = 3 (cubic case),
formulation of the i-th B-spline segment is:

-1 3 =31 i

1 3 -6 30 ri

A — 3 .2 b = i
pl(u)—[u u ul]ﬁ. 230 30 Fit
1 4 10 Tiy2

where u € [0, 1). For the uniform cubic case
derived from (1) and (4), or from the equation
(6), four points control each segment. The seg-
ment of curve p;(u) will approximate the control

polygon.

Boundary conditions can be handled by using
closed curves or circular repetition of the control
points, by zero padding, or by setting some end
conditions. For the sake of simplicity circular
repetition of the control points will be applied.
The derived form (9) is identical to the cubic
BC-spline derived by Mitchell [10], by setting
B=1 C=0:

1 3|x|” —6[x[" +4 x| <1
k(x):‘é = [af 46 [uff —12 x| 8 T 2] «2.
0 otherwise

(10)

With few arithmetic manipulations and repa-
rameterization we can prove that (9) and (10)
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represent the same reconstruction form. It is
obvious that for the reconstruction in two di-
mensions (e.g. images) approximation spline
causes blur, because smaller or greater values
only approximate gray levels of the image. In
spite of that, many authors use BC-spline de-
fined by Mitchell [6], [1], [12].
dimensions fine details are lost, and surface is
smooth. The interpolation, as opposite to ap-
proximation of the control points, will signifi-
cantly improve the resulting image.

The properties of the B-spline curves or sur-
faces extend in the image or volume reconstruc-
tion very well. These properties are continuity,
convex hull, local control, variation diminishing
and representation of the multiple values.

The convex hull property ensures that each point
in the curve lies in the convex hull of no more
than k£ + 1 nearby control points. Thus, sam-
ple points bound the space of the reconstructed
curve, surface or volume, so reconstructed val-
ues will not escape outside the convex hull. The
local control property makes far points less in-
fluential on the segment of consideration. In
terms of signal processing the local control
property implies narrow impulse response of the
reconstruction filter. The impulse response of
ideal reconstruction filter is sinc function, which
is very wide. The points far from the point of
reconstruction can have undesired influence.

Variation diminishing property prevents varia-
tions of the curve, or variations in the gray levels
of the reconstructed image. The curve is not in-
tersected by any straight line (or plane) more
often than the control polygon. For a cubic
case, control polygon consists of the four con-
trol points and there are at most three intersec-
tions between straight line and curve. This prop-
erty is very important in the image reconstruc-
tion, because the human eye is very sensitive to
small changes of the intensity, especially in the
areas where gray levels are changing smoothly.

4.2. The B-spline Interpolation

To build the B-spline interpolation it is crucial
to find the control polygon of the B-spline ap-
proximation, such that the resultant curve passes
through the requested points. For the cubic
uniform closed curve, the matrix form defines

In the three

points of the control polygon:

Po 410..001 ro

P1 1 141...000 r

Poz2| 0]000.141 |rea]

Pn-1 100..014 'n—1
(11)

where p; is the known sequence of points that
must be interpolated, and r; is an unknown se-
quence of points of the control polygon. This
expression also describes a circular convolution.
Evaluation of the iaverse threediagonal matrix
or the LU-decomposition can be applied to find
ri. The resulting points rj are used in equation
(1) to find the interpolating function. To facili-
tate the analysis it 1s convenient to consider the
convolution form (8) in the frequency domain.
From this equation in the frequency domain we
can show that:

Plw) = R(w)By(w), (12)

where P(@), R(w) and By(w) are Fourier trans-
forms of p(x), r and B(x) respectively. This

suggests that spline coefficients can be deter-

mined by the inverse filtering:

B 1
- Bi(w)

R(0)=S()P(0)==—P(0).  (13)
Using equation (13) we can also determine fre-

quency response of the B-spline interpolation
(17}

4.3. Hybrid Reconstruction

In the volume visualization reconstruction is
usually done with trilinear interpolation in the
sample point. Trilinear interpolation is simple
and it is not time consuming, because it uses
only eight neighboring elements for the com-
putation of the reconstructed value. In further
analysis we reconstruct a function from sample
points in two ways. The first approach is hy-
brid, and the idea is to magnify the volume ele-
ment space two times in each coordinate direc-
tion, using B-spline interpolation. After mag-
nification, trilinear interpolation is used during
the volume rendering. The second approach is
based on direct implementation of the B-spline
interpolation in the volume visualization algo-
rithm. In the second approach 64 neighboring
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elements are required for the computation of
each reconstructed value, but the volume ele-
ment space 1s eight times smaller than in the
previous case. Frequency responses of these
two approaches will be derived to emphasize
the difference, which us usually neglected.

In order to compare these two approaches we
derive the frequency response for one-dimen-
sional case. Frequency response of the fy(x)
is:

(i)

(14)

) = Zine (%) .

Frequency response of the B-spline approxima-
tion can easily be determined from (7):

Bo(w) = S0(2)
2

Bi(w) = sinc®+! (501) : (15)

¥/

In order to find frequency response for the B-
spline interpolation we have to determine S(®)

1 T T

in (13). For the B-spline interpolation, pre-
filtering is required in order to find appropriate
control polygon for the B-spline approximation.
Frequency response of the prefiltering is:

1 1
Sk(w):Bk(CU): L%J

Bi(0)+2 ; Br(i) cos(iw)

(16)
Frequency response of B-spline interpolation is
defined by frequency response of prefiltering
Si(w) and with frequency response of B-spline
approximation (15). For the cubic case, when
k = 3 frequency response of the B-spline inter-
polation is:

. 4£
Sy()Bsy(0) = 50 (5)

~ 2+4cos(w)’ 17)

For the hybrid approach the volumetric space
is first enlarged eight times (two times in each

i
! — Hj(w)
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Fig. 2. Frequency responses of hybrid reconstruction (18) and direct implementation of B-spline interpolation (17).

Fig. 3. Three-dimensional example of a) hybrid approach and b) direct implementation of B-spline interpolation.
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Fig. 4. Six different reconstructions: reconstruction with sinc, nearest neighbor, 3-rd order B-spline approximation,
linear interpolation, Mitchell reconstruction with B = C = 1/3 and 3-rd order B-spline interpolation.

direction) and then rendering with trilinear in-
terpolation is applied. Frequency response of
this hybrid reconstruction is:

2+ cos(w)

H3(w)=sinc? (;jr) cos? (4)
(18)

Figure 2 illustrates frequency responses of
these two approaches. It is obvious that direct
B-spline has better passband and stopband char-
acteristics. Although the direct implementation
of B-spline interpolation is better, overall char-
acteristics of the hybrid reconstruction, when
compared to other reconstruction methods, im-

2+cos (2)

ply that the hybrid reconstruction is also accept-
able.

Figure 3.a illustrates a three-dimensional ob-
ject reconstructed by the hybrid method, while
figure 3.b shows the result of direct implemen-
tation of the B-spline interpolation.

5. Results

Six different reconstruction filters in the two
and three-dimensional space are used. Ap-
plied reconstructions are: sinc function, nearest

Fig. 5. Six different reconstruction methods in 2D. a) reconstruction with sinc function, b) nearest neighbor, ¢) 3-rd
order B-spline approximation, d) linear interpolation, e) Mitchell reconstruction with B = C = 1/3 and f) 3-rd order
B-spline interpolation.
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Fig. 6. Six different reconstruction methods in 3D. a) reconstruction with sinc function, b) nearest neighbor, ¢) 3-rd
order B-spline approximation, d) linear interpolation, e) Mitchell reconstruction with B = C = 1/3 and f) 3-rd order
B-spline interpolation.

neighbor, B-spline approximation, three-linear
interpolation, Mitchell reconstruction with BC-
spline B = C = 1/3 and B-spline interpolation.
Reconstruction error is measured between ini-
tial and reconstructed objects as mean square
error (Fig. 4).

Reconstruction with sinc function exhibits
strong ringing artifact, although mean square er-
ror is minimal. Nearest neighbor interpolation
(Fig. 5.b 6.b) exhibits strong artifacts. Third or-
der B-spline approximation is very blurred (Fig.
5.c). In three dimensions the reconstructed
waves get shallower (Fig. 6.c). Trilinear in-
terpolation causes variations in the height of the
circular crests (Fig. 6.d). Reconstruction kernel
proposed by Mitchell is of the same size as the
B-spline interpolation. In the 2D images recon-
structed with B-spline interpolation the result
is sharper than the image reconstructed using
Mitchell kernel. In the three-dimensional space
the difference is in sharper and darker shadows
on the waves. The best result is achieved for the
B-spline interpolation.

Further illustrations are made for the hybrid ap-
proach. In visualization programs trilinear in-
terpolation is usually used, and optimization is
often done for this interpolation. If we want
to enhance quality of the result, volume can be

enlarged and then rendered with trilinear inter-
polation. Direct implementation of the B-spline
interpolation yields better result, but it can be
also used to enlarge volume and enhance the
quality when visualization programs with tri-
linear interpolation are used.

The two-dimensional examples (Fig. 5) and
the three-dimensional examples (Fig. 6) of the
six reconstruction methods are presented. For
the three-dimensional example the test function
proposed by Marshner and Lobb [9] is used.
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