
293CIT. Journal of Computing and Information Technology, Vol. 24, No. 3, September 2016, 293–309
doi: 10.20532/cit.2016.1002861

An Object-Oriented
Approach of Keyword
Querying over Fuzzy XML

Ting Li
School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China

As the fuzzy data management has become one of the
main research topics and directions, the question of
how to obtain the useful information by means of key-
word query from fuzzy XML documents is becoming
a subject of an increasing needed investigation. Con-
sidering the keyword query methods on crisp XML
documents, smallest lowest common ancestor (SLCA)
semantics is one of the most widely accepted seman-
tics. When users propose the keyword query on fuzzy
XML documents with the SLCA semantics, the query
results are always incomplate, with low precision, and
with no possibilities values returned. Most of keyword
query semantics on XML documents only consider
query results matching all keywords, yet users may
also be interested in the query results matching par-
tial keywords. To overcome these limitations, in this
paper, we investigate how to obtain more compre-
hensive and meaningful results of keyword querying
on fuzzy XML documents. We propose a semantics
of object-oriented keyword querying on fuzzy XML
documents. First, we introduce the concept of "object
tree", analyze different types of matching result ob-
ject trees and find the "minimum result object trees"
which contain all keywords and "result object trees"
which contain partial keywords. Then an object-ori-
ented keyword query algorithm ROstack is proposed
to obtain the root nodes of these matching result object
trees, together with their possibilities. At last, exper-
iments are conducted to verify the effectiveness and
efficiency of our proposed algorithm.

ACM CCS (2012) Classification: Information systems
→ Data management systems → Query languages

Keywords: fuzzy XML, keyword, query, object-ori-
ented, possibility

1. Introduction

Large quantities of fuzzy data appear in vari-
ous real-world application domains, and how
to manage the fuzzy data becomes more and

more important. Extensible Markup Language
(XML) is rapidly emerging and has been the de
facto standard for representing and exchang-
ing data on the Web. Also, how to manage the
fuzzy data stored with XML becomes an impor-
tant research topic. Keyword query is one of the
most effective paradigms for information dis-
covery, and it is a user-friendly query method.
Users can obtain the corresponding query re-
sults only by proposing one keyword or sev-
eral keywords, without understanding or mas-
tering the complex structure query languages
(such as XQuery) and the document’s schema.
Therefore, the study of keyword querying on
fuzzy XML documents becomes an important
research issue.
Recently, many researchers have devoted their
efforts to the representations and query methods
of uncertainty data in the forms of XML. For the
probabilistic XML data, the data models [1], [2]
and query methods [3], [4], [5] on probabilistic
XML documents have been studied. And for the
fuzzy XML data, the researchers have also pro-
posed some models [6], [7] for the representation
of fuzzy information and query methods [8], [9],
[10] on fuzzy XML documents. Ma and Yan [7]
propose a fuzzy XML data model by introduc-
ing the possibility distributions to represent two
types of fuzziness. Panić et al. [6] combine in-
definiteness in the values of XML and indefinite-
ness in the structure of XML into a single fuzzy
XML extension. Liu et al. [8] propose a holistic
twig matching algorithm LTwig to evaluate twig
queries with AND, OR and NOT connectives in
fuzzy XML. While for the research of keyword
query methods on uncertainty XML documents,
the existing achievements are mainly focused

294 295Ting Li An Object-Oriented Approach of Keyword Querying over Fuzzy XML

on the keyword query methods on probabilistic
XML documents [4], [5].
Many keyword query semantics and methods
have been proposed for the crisp XML docu-
ments, and the existing keyword query methods
are mainly based on the Lowest Common An-
cestor (LCAs) semantics and their variants
(e.g., SLCA, ELCA and VLCA). Xu and Pa-
pakonstantinou [11] propose the Smallest Low-
est Common Ancestor (SLCA) semantics, and a
SLCA of a set keywords is a lowest node whose
subtree is the smallest tree containing all key-
words. A smallest answer subtree of a set of
keywords is an answer subtree such that none
of its subtrees is an answer subtree. Also, two
algorithms of Indexed Lookup Eager and Scan
Eager are proposed for searching the SLCA se-
mantic results. The Exclusive Lowest Common
Ancestor (ELCA) semantics is proposed by
Guo et al. [12], and an effective algorithm, In-
dexed Stack, for the keyword queries with
ELCA semantics is proposed accordingly in
[13]. Li et al. [14] introduce the notion of
Valuable Lowest Common Ancestor (VLCA) to
improve the accuracy and completeness of key-
word query. In addition, some researchers focus
their attentions on the query problem of return-
ing paths from each LCA (or its variants) node
to its descendant nodes as the keyword query
results which is named "path return query" [15],
[16].
Among these keyword query semantics, SLCA
semantics is the most widely accepted one. Let
us consider the keyword query over the fuzzy
XML document with the SLCA semantics. Fig-

a

f c d

z1

z4 z5

z3

z1 z4

d1

Dist
(conjunctive)

Dist
(disjunctive)

val

poss x1

val

poss x2

x3 x4

x5

x1 x3 x2

val

poss z3

val

poss z1

gh

0.8 0.9 0.7 0.8

d2

x4

z3

x3 x4

z4
Dist

(disjunctive)

z2

x6

val val

poss

0.9

z4 poss z2 z3

x5 0.7 x3 x6

Figure 1. A tree structure of fuzzy XML document.

ure 1 shows a tree structure of a fuzzy XML
document, node a represents the node which
directly contains a. Node zi is an attribute node
and xj is the value of the attribute (e.g., x4 is the
value of attribute z5). When users propose key-
word queries over fuzzy XML document with
the traditional SLCA semantics, they face sev-
eral problems.
(1) For example, when we propose the key-

word query {x1, x2} on this tree, the query
result nodes will be the node Dist (con-
junctive) and node c under the traditional
SLCA semantics. However, the result
node Dist is a fuzzy node and should not
become the result (the information in the
subtree which is rooted at the fuzzy node
is incomplete).

(2) For the users, they may not only be inter-
ested with the results matching all key-
words, but also the results matching par-
tial keywords, such as node h and node g.
Node h can be a result node matching key-
word x1, as node h has an attribute z1 and z1
has a value x1. Node g can be a result node
matching keyword x2, as node g has an at-
tribute z2 and z2 has a value x2.

(3) As the fuzzy XML document contains
fuzzy information which is represented by
the membership degrees associated with
elements and the possibility distributions
among the values of attributes, a SLCA
result should be given a possibility value
with the consideration of the fuzzy infor-
mation (membership degrees) on the path

The rest of the paper is organized as follows.
We first introduce the preliminary knowledge
on fuzzy sets, possibility distributions and the
fuzzy XML data model in Section 2. In Section
3, we introduce the concept of "object tree", an-
alyze the relationship between two connected
object trees, propose the semantics of ob-
ject-oriented keyword querying on fuzzy XML
and give the methods for the possibility com-
putation of matching result object nodes. The
algorithm ROstack for generating the matching
result object nodes and their possibilities is in-
troduced in Section 4. The experimental results
are reported in Section 5. Section 6 concludes
the paper and outlooks the future work.

2. Preliminaries

2.1. Fuzzy Sets and Possibility
Distributions

In real-world applications, the information is
often imperfect (e.g., ambiguous, uncertain and
imprecise). In order to reflect this characteris-
tic, researchers have introduced different kinds
of imperfect information [17] into the database
system. Imprecision, inconsistency and uncer-
tainty are three major kinds of imperfect infor-
mation. To model the imperfect information in
database, many approaches are proposed, and
they can be grouped into two large catego-
ries: the symbolic and quantitative models [7].
Fuzzy sets [18] have been widely used for the
quantification of imprecision and uncertainty.
Let Η be universe of discourse and F a fuzzy
set in Η. A membership function μF: Η → [0, 1]
is defined for F, where μF (ηi), for each ηi ∈ Η,
denotes the membership degree of ηi in the
fuzzy set F. Then, the fuzzy set F is described
as follows:

F = {μF(η1) / η1, μF(η2) / η2, …, μF(ηn) / ηn} (1)

When Η is not a discrete set, the fuzzy set F can
be represented by:

 () /
i

F i in H
F µ η η

∈
= ∫ (2)

In the above two formulas, μF (ηi) is used to rep-

from the root node of the document to the
keyword nodes which contain keywords in
the subtree rooted at the SLCA node. Ob-
viously, the traditional SLCA semantics
and algorithms cannot compute and obtain
the possibilities of result nodes.

It is shown from the descriptions above that
it is necessary to obtain the complete and ac-
curate results of keyword querying on fuzzy
XML, which are the results with their possibili-
ties matching all keywords and the results with
their possibilities matching partial keywords.
For this purpose, the object-oriented concept
is adopted to capture the smallest information
objects which contain all keywords in the ob-
jects and the information objects which contain
partial keywords in the objects, and return more
meaningful results at the object-level. Based
on this idea, we propose the semantics of ob-
ject-oriented keyword querying on fuzzy XML
documents. In this paper, firstly, we introduce
the concept of object tree into the fuzzy XML
document, and a fuzzy XML tree can be divided
into many object trees, which can be crisp ob-
ject trees and fuzzy object trees. We analyze
the types of matching result object trees which
contain all keywords or partial keywords. Then
the object-oriented keyword query semantics is
proposed. The possibility computation meth-
ods for different types of matching result ob-
ject nodes are given in the following. On these
bases, we propose an effective algorithm ROs-
tack to obtain the matching result object nodes
and their possibilities.
We summarize the contributions of this paper
as follows:

 ● We define the object-oriented keyword
query semantics on fuzzy XML documents
through introducing the concept of object
tree. We analyze the types of matching
result object trees and give the possibility
computation methods for different types of
matching result object nodes.

 ● We propose an algorithm ROstack to find
the matching result object nodes together
with their possibilities. It can also find the
matching result object nodes and their pos-
sibilities by scanning the relevant keyword
nodes only once.

 ● We conduct experiments to evaluate the
performance of our algorithm.

294 295Ting Li An Object-Oriented Approach of Keyword Querying over Fuzzy XML

on the keyword query methods on probabilistic
XML documents [4], [5].
Many keyword query semantics and methods
have been proposed for the crisp XML docu-
ments, and the existing keyword query methods
are mainly based on the Lowest Common An-
cestor (LCAs) semantics and their variants
(e.g., SLCA, ELCA and VLCA). Xu and Pa-
pakonstantinou [11] propose the Smallest Low-
est Common Ancestor (SLCA) semantics, and a
SLCA of a set keywords is a lowest node whose
subtree is the smallest tree containing all key-
words. A smallest answer subtree of a set of
keywords is an answer subtree such that none
of its subtrees is an answer subtree. Also, two
algorithms of Indexed Lookup Eager and Scan
Eager are proposed for searching the SLCA se-
mantic results. The Exclusive Lowest Common
Ancestor (ELCA) semantics is proposed by
Guo et al. [12], and an effective algorithm, In-
dexed Stack, for the keyword queries with
ELCA semantics is proposed accordingly in
[13]. Li et al. [14] introduce the notion of
Valuable Lowest Common Ancestor (VLCA) to
improve the accuracy and completeness of key-
word query. In addition, some researchers focus
their attentions on the query problem of return-
ing paths from each LCA (or its variants) node
to its descendant nodes as the keyword query
results which is named "path return query" [15],
[16].
Among these keyword query semantics, SLCA
semantics is the most widely accepted one. Let
us consider the keyword query over the fuzzy
XML document with the SLCA semantics. Fig-

a

f c d

z1

z4 z5

z3

z1 z4

d1

Dist
(conjunctive)

Dist
(disjunctive)

val

poss x1

val

poss x2

x3 x4

x5

x1 x3 x2

val

poss z3

val

poss z1

gh

0.8 0.9 0.7 0.8

d2

x4

z3

x3 x4

z4
Dist

(disjunctive)

z2

x6

val val

poss

0.9

z4 poss z2 z3

x5 0.7 x3 x6

Figure 1. A tree structure of fuzzy XML document.

ure 1 shows a tree structure of a fuzzy XML
document, node a represents the node which
directly contains a. Node zi is an attribute node
and xj is the value of the attribute (e.g., x4 is the
value of attribute z5). When users propose key-
word queries over fuzzy XML document with
the traditional SLCA semantics, they face sev-
eral problems.
(1) For example, when we propose the key-

word query {x1, x2} on this tree, the query
result nodes will be the node Dist (con-
junctive) and node c under the traditional
SLCA semantics. However, the result
node Dist is a fuzzy node and should not
become the result (the information in the
subtree which is rooted at the fuzzy node
is incomplete).

(2) For the users, they may not only be inter-
ested with the results matching all key-
words, but also the results matching par-
tial keywords, such as node h and node g.
Node h can be a result node matching key-
word x1, as node h has an attribute z1 and z1
has a value x1. Node g can be a result node
matching keyword x2, as node g has an at-
tribute z2 and z2 has a value x2.

(3) As the fuzzy XML document contains
fuzzy information which is represented by
the membership degrees associated with
elements and the possibility distributions
among the values of attributes, a SLCA
result should be given a possibility value
with the consideration of the fuzzy infor-
mation (membership degrees) on the path

The rest of the paper is organized as follows.
We first introduce the preliminary knowledge
on fuzzy sets, possibility distributions and the
fuzzy XML data model in Section 2. In Section
3, we introduce the concept of "object tree", an-
alyze the relationship between two connected
object trees, propose the semantics of ob-
ject-oriented keyword querying on fuzzy XML
and give the methods for the possibility com-
putation of matching result object nodes. The
algorithm ROstack for generating the matching
result object nodes and their possibilities is in-
troduced in Section 4. The experimental results
are reported in Section 5. Section 6 concludes
the paper and outlooks the future work.

2. Preliminaries

2.1. Fuzzy Sets and Possibility
Distributions

In real-world applications, the information is
often imperfect (e.g., ambiguous, uncertain and
imprecise). In order to reflect this characteris-
tic, researchers have introduced different kinds
of imperfect information [17] into the database
system. Imprecision, inconsistency and uncer-
tainty are three major kinds of imperfect infor-
mation. To model the imperfect information in
database, many approaches are proposed, and
they can be grouped into two large catego-
ries: the symbolic and quantitative models [7].
Fuzzy sets [18] have been widely used for the
quantification of imprecision and uncertainty.
Let Η be universe of discourse and F a fuzzy
set in Η. A membership function μF: Η → [0, 1]
is defined for F, where μF (ηi), for each ηi ∈ Η,
denotes the membership degree of ηi in the
fuzzy set F. Then, the fuzzy set F is described
as follows:

F = {μF(η1) / η1, μF(η2) / η2, …, μF(ηn) / ηn} (1)

When Η is not a discrete set, the fuzzy set F can
be represented by:

 () /
i

F i in H
F µ η η

∈
= ∫ (2)

In the above two formulas, μF (ηi) is used to rep-

from the root node of the document to the
keyword nodes which contain keywords in
the subtree rooted at the SLCA node. Ob-
viously, the traditional SLCA semantics
and algorithms cannot compute and obtain
the possibilities of result nodes.

It is shown from the descriptions above that
it is necessary to obtain the complete and ac-
curate results of keyword querying on fuzzy
XML, which are the results with their possibili-
ties matching all keywords and the results with
their possibilities matching partial keywords.
For this purpose, the object-oriented concept
is adopted to capture the smallest information
objects which contain all keywords in the ob-
jects and the information objects which contain
partial keywords in the objects, and return more
meaningful results at the object-level. Based
on this idea, we propose the semantics of ob-
ject-oriented keyword querying on fuzzy XML
documents. In this paper, firstly, we introduce
the concept of object tree into the fuzzy XML
document, and a fuzzy XML tree can be divided
into many object trees, which can be crisp ob-
ject trees and fuzzy object trees. We analyze
the types of matching result object trees which
contain all keywords or partial keywords. Then
the object-oriented keyword query semantics is
proposed. The possibility computation meth-
ods for different types of matching result ob-
ject nodes are given in the following. On these
bases, we propose an effective algorithm ROs-
tack to obtain the matching result object nodes
and their possibilities.
We summarize the contributions of this paper
as follows:

 ● We define the object-oriented keyword
query semantics on fuzzy XML documents
through introducing the concept of object
tree. We analyze the types of matching
result object trees and give the possibility
computation methods for different types of
matching result object nodes.

 ● We propose an algorithm ROstack to find
the matching result object nodes together
with their possibilities. It can also find the
matching result object nodes and their pos-
sibilities by scanning the relevant keyword
nodes only once.

 ● We conduct experiments to evaluate the
performance of our algorithm.

296 297Ting Li An Object-Oriented Approach of Keyword Querying over Fuzzy XML

resent the membership degree that ηi belongs to
fuzzy set F, and when the μF (ηi) is explained to
be a measure of the possibility that a variable X
has the value ηi, where X takes values in H, then
a fuzzy value can be described by a possibility
distribution ρX.

ρX = {ρX (η1) / η1, ρX (η2) / η2, …, ρX (ηn) / ηn} (3)

Here, ρX (ηi), ηi ∈ H denotes the possibility that
ηi is true. Let ρX and F be the possibility distri-
bution representation and the fuzzy set repre-
sentation for a fuzzy value, respectively.
According to the descriptions above, a fuzzy
value on H can be represented by a fuzzy set
or a possibility distribution in H. Also, the in-
formation fuzziness can be described by means
of similarity relations in domain elements, in
which the fuzziness comes from the similarity
relations between individual values in a uni-
verse of discourse [19]. There are three formal
types of representations for fuzzy data: the fuzzy
set representation, the possibility distribution
representation, and the similarity relation rep-
resentation. The usual data whose values are all
crisp values can be regarded as crisp data, and
the fuzzy data has the fuzzy value which can be
represented by a fuzzy set, a possibility distribu-
tion or a similarity relation. The fuzzy set and
possibility distribution theories have been used
to extend various database models, and also be
the basic theories in the fuzzy XML data model
which will be introduced in the following.

2.2. Fuzzy XML

In order to represent fuzzy data in XML, two
kinds of fuzziness are introduced in [7]: one is
the fuzziness in elements, in which member-
ship degrees associated with such elements are
used; the other is the fuzziness in attribute val-
ues of elements, where possibility distributions
are used to represent such values. There are
two kinds of interpretation of possibility dis-
tributions: disjunctive possibility distributions
and conjunctive possibility distributions. In the
fuzzy XML tree structure, a possibility attribute
is introduced, denoted as "Poss", which takes a
value between 0 and 1 and is applied together
with a fuzzy construct called "Val" to spec-

ify the possibility of a given element. Figure
2 shows a fragment of fuzzy XML document.
Considering line 2, <Val Poss = "0.9"> denotes
that the possibility of department’s name being
"Computer Science and Technology" is equal to
0.9. For a crisp element, its membership degree
expression: <Val Poss = "1.0"> and </Val> is
omitted. In order to express the possibility dis-
tributions of values of the attributes, a fuzzy
construct "Dist" is introduced into the model.
A Dist element has multiple Val elements as
children, and each Val element is associated
with a possibility for the value of attribute. The
Dist element indicates the possibility distribu-
tion of values, which is disjunctive possibility
distribution or conjunctive possibility distri-
bution. Lines 5-18 in Figure 2 describe a Dist
construct which makes the expression of two
possible types of information of William James.
One expresses (that) the possibility of the in-
formation that William James is an associate
professor, and the salary is 6000 is equal to 0.8,
the other expresses (that) the possibility of the
information that William James is a professor,
and the salary of 8000 is equal to 0.6. Although
the possibility distribution in lines 5-18 is for
leaf nodes in the ancestor-descendant chain, we
can also have the possibility distributions over
non-leaf nodes.
There are two kinds of structures to represent
an XML document, the graph structure and tree
structure. An XML document with ID/IDREF
can be modeled with the graph structure [20],
however, many designers may duplicate the in-
formation instead of using ID/IDREF links so
that an XML document can be simply repre-
sented as a tree structure. As an XML document
can be represented as an ordered and directed
tree structure, a fuzzy XML document can also
be represented as a tree structure, and the basic
structure of fuzzy XML model is the "data tree".
When a fuzzy XML document is represented by
an ordered and directed tree T, where T = (V,
E), and V are sets of nodes, E are sets of edges.
For each v ∈ V, it can be denoted by label (v).
For two nodes vi and vj, E (vi, vj) represents a
directed edge from node vi to vj, and the rela-
tionship between vi and vj is father-child rela-
tionship. There are two kinds of nodes in fuzzy
XML: crisp nodes VC and fuzzy nodes VF. The
former are the ordinary XML nodes, and the

fuzzy nodes (Dist or Val nodes) are the descrip-
tion of the fuzzy information over the subsets
of their children. E is the set of edges of fuzzy
XML, and it is composed of edges E(C-C), E(C-F),
E(F-C), E(F-F), which represent edges between
nodes in VC and nodes in VC, edges between
nodes in VC and nodes in VF, edges between
nodes in VF and nodes in VC and edges between
nodes in VF and nodes in VF, respectively.

1. <course CName = "Computer Composition Principles">
2. <Val Poss = "0.9">
3. <department DName = "Computer Science and Technology">
4. <teacher TID = "211">
5. <Dist type = "disjunctive">
6. <Val Poss = "0.8">
7. <tname>William James</tname>
8. <title>Associate Professor</title>
9. <salary>6000</salary>
10. < tel>024-83680001</tel>
11. </Val>
12. <Val Poss = "0.6">
13. <tname>William James</tname>
14. <title>Professor</title>
15. <salary>8000</salary>
16. <tel>024-83680001</tel>
17. </Val>
18. </Dist>
19. </teacher>
20. <student SID = "20123056">
21. <age>
22. <Dist type = "disjunctive">
23. <Val Poss = "0.8">27</Val>
24. <Val Poss = "1.0">30</Val>
25. <Val Poss = "0.9">28</Val>
26. </Dist>
27. </age>
28. <email>
29. <Dist type = "conjunctive">
30. <Val Poss = "0.65">Tom_Smith@yahoo.com</Val>
31. <Val Poss = "0.85">Tom_Smith@hotmail.com</Val>
32. <Val Poss = "0.75">TSmith@hotmail.com</Val>
33. </Dist>
34. </email>
35. </student>
36. </department >
37. </Val>
38. </course>

 Figure 2. A fragment of fuzzy XML document.

3. Semantics of Object-Oriented
Keyword Querying over Fuzzy XML

3.1. Object-Oriented Concept

Objects are applied to model real-world entities
or to abstract concepts [21]. Objects have two
characteristics:
(1) an object has attributes and values of the

attributes;
(2) an object has a correlation with other ob-

jects.
The objects having the same properties are gath-
ered into classes, and theoretically, a class can
be considered from two different viewpoints:
(1) an extensional class, where the class is de-

fined by the list of its object instances, and
(2) an intensional class, where the class is de-

fined by a set of attributes and their admis-
sible values.

Based on the object-oriented concept, the ele-
ment, subelement and attributes in XML data
can be naturally mapped into the objects. Con-
sidering the fuzzy XML data in Figure 2, the
data in lines 4-19 can be mapped into two ob-
jects: one is object named teacher, has four
attributes and their values, that are tname =
"William James", title = "Associate Profes-
sor", salary = "6000", tel = "024-83680001".
The other is the object also named teacher, has
four attributes and their values, that are tname
= "William James", title = "Professor", salary
= "8000", tel = "024-83680001". The element
teacher can be regarded as an object node, the
fuzzy nodes are the description of the fuzzy in-
formation of the children nodes which are be-
low them and can be neglected in the mapping
phase. Then the descendant elements tname,
title, salary and tel can be mapped into the at-
tributes. For a group of nodes with no fuzzy
information, the elements, subelements and at-
tributes can be mapped into the objects natu-
rally. The object here represents a real entity in
the reality and it has a special attribute or a set
of attributes for the characteristic. It is noticed
that, the object-oriented concept here is differ-
ent from the object-oriented concept in DOM
(Document object model) proposed in [22].
DOM is an object model for document and its
specification represents a significant advance-

296 297Ting Li An Object-Oriented Approach of Keyword Querying over Fuzzy XML

resent the membership degree that ηi belongs to
fuzzy set F, and when the μF (ηi) is explained to
be a measure of the possibility that a variable X
has the value ηi, where X takes values in H, then
a fuzzy value can be described by a possibility
distribution ρX.

ρX = {ρX (η1) / η1, ρX (η2) / η2, …, ρX (ηn) / ηn} (3)

Here, ρX (ηi), ηi ∈ H denotes the possibility that
ηi is true. Let ρX and F be the possibility distri-
bution representation and the fuzzy set repre-
sentation for a fuzzy value, respectively.
According to the descriptions above, a fuzzy
value on H can be represented by a fuzzy set
or a possibility distribution in H. Also, the in-
formation fuzziness can be described by means
of similarity relations in domain elements, in
which the fuzziness comes from the similarity
relations between individual values in a uni-
verse of discourse [19]. There are three formal
types of representations for fuzzy data: the fuzzy
set representation, the possibility distribution
representation, and the similarity relation rep-
resentation. The usual data whose values are all
crisp values can be regarded as crisp data, and
the fuzzy data has the fuzzy value which can be
represented by a fuzzy set, a possibility distribu-
tion or a similarity relation. The fuzzy set and
possibility distribution theories have been used
to extend various database models, and also be
the basic theories in the fuzzy XML data model
which will be introduced in the following.

2.2. Fuzzy XML

In order to represent fuzzy data in XML, two
kinds of fuzziness are introduced in [7]: one is
the fuzziness in elements, in which member-
ship degrees associated with such elements are
used; the other is the fuzziness in attribute val-
ues of elements, where possibility distributions
are used to represent such values. There are
two kinds of interpretation of possibility dis-
tributions: disjunctive possibility distributions
and conjunctive possibility distributions. In the
fuzzy XML tree structure, a possibility attribute
is introduced, denoted as "Poss", which takes a
value between 0 and 1 and is applied together
with a fuzzy construct called "Val" to spec-

ify the possibility of a given element. Figure
2 shows a fragment of fuzzy XML document.
Considering line 2, <Val Poss = "0.9"> denotes
that the possibility of department’s name being
"Computer Science and Technology" is equal to
0.9. For a crisp element, its membership degree
expression: <Val Poss = "1.0"> and </Val> is
omitted. In order to express the possibility dis-
tributions of values of the attributes, a fuzzy
construct "Dist" is introduced into the model.
A Dist element has multiple Val elements as
children, and each Val element is associated
with a possibility for the value of attribute. The
Dist element indicates the possibility distribu-
tion of values, which is disjunctive possibility
distribution or conjunctive possibility distri-
bution. Lines 5-18 in Figure 2 describe a Dist
construct which makes the expression of two
possible types of information of William James.
One expresses (that) the possibility of the in-
formation that William James is an associate
professor, and the salary is 6000 is equal to 0.8,
the other expresses (that) the possibility of the
information that William James is a professor,
and the salary of 8000 is equal to 0.6. Although
the possibility distribution in lines 5-18 is for
leaf nodes in the ancestor-descendant chain, we
can also have the possibility distributions over
non-leaf nodes.
There are two kinds of structures to represent
an XML document, the graph structure and tree
structure. An XML document with ID/IDREF
can be modeled with the graph structure [20],
however, many designers may duplicate the in-
formation instead of using ID/IDREF links so
that an XML document can be simply repre-
sented as a tree structure. As an XML document
can be represented as an ordered and directed
tree structure, a fuzzy XML document can also
be represented as a tree structure, and the basic
structure of fuzzy XML model is the "data tree".
When a fuzzy XML document is represented by
an ordered and directed tree T, where T = (V,
E), and V are sets of nodes, E are sets of edges.
For each v ∈ V, it can be denoted by label (v).
For two nodes vi and vj, E (vi, vj) represents a
directed edge from node vi to vj, and the rela-
tionship between vi and vj is father-child rela-
tionship. There are two kinds of nodes in fuzzy
XML: crisp nodes VC and fuzzy nodes VF. The
former are the ordinary XML nodes, and the

fuzzy nodes (Dist or Val nodes) are the descrip-
tion of the fuzzy information over the subsets
of their children. E is the set of edges of fuzzy
XML, and it is composed of edges E(C-C), E(C-F),
E(F-C), E(F-F), which represent edges between
nodes in VC and nodes in VC, edges between
nodes in VC and nodes in VF, edges between
nodes in VF and nodes in VC and edges between
nodes in VF and nodes in VF, respectively.

1. <course CName = "Computer Composition Principles">
2. <Val Poss = "0.9">
3. <department DName = "Computer Science and Technology">
4. <teacher TID = "211">
5. <Dist type = "disjunctive">
6. <Val Poss = "0.8">
7. <tname>William James</tname>
8. <title>Associate Professor</title>
9. <salary>6000</salary>
10. < tel>024-83680001</tel>
11. </Val>
12. <Val Poss = "0.6">
13. <tname>William James</tname>
14. <title>Professor</title>
15. <salary>8000</salary>
16. <tel>024-83680001</tel>
17. </Val>
18. </Dist>
19. </teacher>
20. <student SID = "20123056">
21. <age>
22. <Dist type = "disjunctive">
23. <Val Poss = "0.8">27</Val>
24. <Val Poss = "1.0">30</Val>
25. <Val Poss = "0.9">28</Val>
26. </Dist>
27. </age>
28. <email>
29. <Dist type = "conjunctive">
30. <Val Poss = "0.65">Tom_Smith@yahoo.com</Val>
31. <Val Poss = "0.85">Tom_Smith@hotmail.com</Val>
32. <Val Poss = "0.75">TSmith@hotmail.com</Val>
33. </Dist>
34. </email>
35. </student>
36. </department >
37. </Val>
38. </course>

 Figure 2. A fragment of fuzzy XML document.

3. Semantics of Object-Oriented
Keyword Querying over Fuzzy XML

3.1. Object-Oriented Concept

Objects are applied to model real-world entities
or to abstract concepts [21]. Objects have two
characteristics:
(1) an object has attributes and values of the

attributes;
(2) an object has a correlation with other ob-

jects.
The objects having the same properties are gath-
ered into classes, and theoretically, a class can
be considered from two different viewpoints:
(1) an extensional class, where the class is de-

fined by the list of its object instances, and
(2) an intensional class, where the class is de-

fined by a set of attributes and their admis-
sible values.

Based on the object-oriented concept, the ele-
ment, subelement and attributes in XML data
can be naturally mapped into the objects. Con-
sidering the fuzzy XML data in Figure 2, the
data in lines 4-19 can be mapped into two ob-
jects: one is object named teacher, has four
attributes and their values, that are tname =
"William James", title = "Associate Profes-
sor", salary = "6000", tel = "024-83680001".
The other is the object also named teacher, has
four attributes and their values, that are tname
= "William James", title = "Professor", salary
= "8000", tel = "024-83680001". The element
teacher can be regarded as an object node, the
fuzzy nodes are the description of the fuzzy in-
formation of the children nodes which are be-
low them and can be neglected in the mapping
phase. Then the descendant elements tname,
title, salary and tel can be mapped into the at-
tributes. For a group of nodes with no fuzzy
information, the elements, subelements and at-
tributes can be mapped into the objects natu-
rally. The object here represents a real entity in
the reality and it has a special attribute or a set
of attributes for the characteristic. It is noticed
that, the object-oriented concept here is differ-
ent from the object-oriented concept in DOM
(Document object model) proposed in [22].
DOM is an object model for document and its
specification represents a significant advance-

298 299Ting Li An Object-Oriented Approach of Keyword Querying over Fuzzy XML

ment in the handling of semi-structured docu-
ments. The DOM represents an XML document
using a tree structure, and each node is an ob-
ject representation of a particular element in the
document’s content. It describes the structure of
the documents as well as its behavior and be-
havior of its objects.
As a fuzzy XML tree consists of fuzzy nodes
and crisp nodes. Based on the object-oriented
concept and method, the main nodes in the
fuzzy XML documents can be classified into
the element node, attribute node, object node,
value node (similar to the text node in DOM,
which can be the textual content or values of
an element), connect node and fuzzy node. An
object can be a crisp object or a fuzzy object.
An object is regarded as a crisp object if the val-
ues of its attributes are crisp values. An object is
regarded as a fuzzy object if it has at least one
attribute whose value is a fuzzy set. To classify
the nodes of document in the fuzzy XML tree,
we refer to the nodes identification method in
XSeek [23] together with the consideration of
the characteristic of fuzzy XML data. The clas-
sification of different nodes can be described as
follows:
1. A node is an object node if it corresponds

to a *-node in the DTD.
2. A node denotes an attribute if it does not

correspond to a *-node, and it has only
one child which is a value or has children
which is a set of possible values.

3. A node is a connect node if it connects
nodes within the same category. A con-
nect node can have a child that is an object
node, an attribute node or a connect node.

4. A node is a fuzzy node if it is the value
node or Dist node.

5. A node is a value node if it contains the
textual content or values.

6. A node is an element node if it is not an
object node, an attribute node or a value
node, but represents the actual content of
the document.

3.2. Object Tree

Given a fuzzy XML document D with its tree
structure T, T can be regarded as a fuzzy object
OT(F). In the tree T, a group of nodes, starting at

an object node, followed by some non-object
nodes is regarded as an object. As the represen-
tation form of XML data is the tree structure,
for a subtree Ts ⊆ T with root node r(Ts), if the
children nodes of r(Ts) have the attribute nodes,
then Ts can be regarded as an object Os, and Os
⊆ OT(F). Next, we give the definition of "object
tree" as follows:
Definition 1 (object tree). Given an XML tree
Ti with its root node r(Ti), if the children nodes
of r(Ti) contain at least one attribute node, then
Ti is regarded as an "object tree", denoted as Oi.
Its root node r(Ti) is called the object node of
Oi.
We give some explanation about Definition 1,
for an XML tree Ti rooted at r(Ti), if there is an
attribute node z which is the child node of r(Ti)
(the relationship between the attribute node z
and r(Ti) is parent-child relationship), then Ti
can be regarded as an object tree Oi with its root
node r(Oi) (r(Oi) = r(Ti), and in the following,
we use r(Oi) to denote the root node of the ob-
ject tree Oi). If the values of attributes in Oi are
all crisp values, then Oi is a crisp object tree.
If the children nodes of r(Oi) have at least one
attribute node whose value is a fuzzy set, then
Oi is a fuzzy object tree. And when the object
tree Oi contains a fuzzy object tree, Oi is also re-
garded as a fuzzy object tree. For a fuzzy XML
document D, if its tree structure T is a fuzzy
object tree OT(F), then there may be multiple ob-
ject trees which are crisp object trees and fuzzy
object trees in tree T.
Considering the characteristic of the object to-
gether with the characteristics of fuzzy XML
data model, there is a special case for the ob-
ject tree. Seen in Figure 1, nodes d1 and d2 are
also object nodes although they do not have
any attribute nodes in their children nodes (the
relationship between node d1 and the attribute
node is not parent-child relationship). But node
d1 is the root node of two object trees. One is
the object tree with the possibility of 0.7, and
has attribute z3 in its tree structure, and the other
is the object tree with the possibility of 0.8, and
has attributes z1 and z3 in its tree structure.
Definition 2 (minimum object tree). Given an
object tree O with its root node r(O) in its tree
structure, if the attribute nodes only exist in the
children nodes of the root node r(O), then the
object tree O is regarded as a "minimum object
tree", denoted as Omin.

We give some explanation about Definition 2:
in an object tree O, if all the attribute nodes are
the children nodes of the root node r(O) (the re-
lationship between the attribute node and r(O)
is only the parent-child relationship), then O
is a minimum object tree. For a minimum ob-
ject tree Omin, when it has at least one attrib-
ute whose value is a fuzzy set, then Omin can be
regarded as a minimum fuzzy object tree. For
a set of n minimum object trees, we use 1

minO ,
2
minO , …, min

nO to denote them. And for a min-
imum object tree Omin, its root node r(Omin) is
called a minimum object node.

3.3. Relationship Between Object Trees

Figure 3 presents a simplified structure of a
fuzzy XML tree structure T, based on the ob-
ject. We only represent the root nodes of the ob-
ject trees in T. As shown in Figure 3, the nodes
of circle shape represent the root nodes of ob-
ject trees. If an object is a fuzzy object, we use
FOi to denote it. Especially, we use the node of
circle shape named FOR to represent the root
node of the whole fuzzy XML object tree T. If
an object is a crisp object, we use Oi to denote
it. Nodes of rectangular shape express the types
of the possibility distributions between its chil-
dren object nodes, which can be disjunctive or
conjunctive possibility distribution. The value
on the edge denotes the membership degree on
the path from the parent node to child node,
which are the two ends of the edge. The mem-
bership degree of edges unlabeled defaults to 1.
Through the analysis of the simplified structure
of a fuzzy XML tree in Figure 3, we can iden-
tify the relationships between two connected
object trees as follows.

disjunctive

FOR

 O1

FO2 FO3

 O2 O3 O4 FO6 O7

FO4 FO5
 O5 O6

0.7 0.9

0.60.9

conjunctive

FO1

Figure 3. The simplified structure of a fuzzy XML tree
based on the object.

(1) An O-O relationship: For two connected
object trees, the father object tree Oi is a
crisp object, and the child object tree Oj is
also a crisp object, and there exists a path
from nodes r(Oi) to r(Oj) in XML tree, de-
noted as () ()i jr O r Op → . For example, in Fig-
ure 3, the relationship between object trees
O1 and O4 is the O-O relationship.

(2) A FO-O relationship: For two connected
object trees, the father object tree FOi
is a fuzzy object, and the child object
tree Oj is a crisp object, and there ex-
ists a path from nodes r(FOi) to r(Oj)
in XML tree, denoted as () ()i jr FO r Op → .
For example, the relationship between ob-
ject trees FO6 and O6 is the FO-O relation-
ship.

(3) A FO-FO relationship: For two connected
object trees, the father object tree FOi is a
fuzzy object, and the child object tree FOj
is also a fuzzy object, and there exists a
path from nodes r(FOi) to r(FOj) in XML
tree, denoted as () ()i jr FO r FOp → . For exam-
ple, the relationship between object trees
FO1 and FO2 is the FO-FO relationship.

It is worth noting that, for the relationships
between two connected objects, there are no
O-FO relationships. Here an O-FO relationship
means that the father object tree is a crisp ob-
ject and the child object tree is a fuzzy object.
According to the object’s characteristics, if an
object O contains a fuzzy object, O is also a
fuzzy object.

3.4. Matching Result Object Trees and
Object-Oriented Keyword Query
Semantics

When users propose the keyword queries, they
are interested not only in the results matching
all keywords, but also in the results matching
partial keywords. Based on the object-oriented
concept, we should find the "smallest informa-
tion objects" which contain all keywords and
"information objects" which contain partial
keywords. According to the traditional SLCA
semantics of keyword queries on crisp XML
documents, a SLCA node of m keywords k1,
k2, …, km is a "lowest node" whose subtree is
the "smallest" tree containing all keywords.
Inspired by this query semantics, given a set

298 299Ting Li An Object-Oriented Approach of Keyword Querying over Fuzzy XML

ment in the handling of semi-structured docu-
ments. The DOM represents an XML document
using a tree structure, and each node is an ob-
ject representation of a particular element in the
document’s content. It describes the structure of
the documents as well as its behavior and be-
havior of its objects.
As a fuzzy XML tree consists of fuzzy nodes
and crisp nodes. Based on the object-oriented
concept and method, the main nodes in the
fuzzy XML documents can be classified into
the element node, attribute node, object node,
value node (similar to the text node in DOM,
which can be the textual content or values of
an element), connect node and fuzzy node. An
object can be a crisp object or a fuzzy object.
An object is regarded as a crisp object if the val-
ues of its attributes are crisp values. An object is
regarded as a fuzzy object if it has at least one
attribute whose value is a fuzzy set. To classify
the nodes of document in the fuzzy XML tree,
we refer to the nodes identification method in
XSeek [23] together with the consideration of
the characteristic of fuzzy XML data. The clas-
sification of different nodes can be described as
follows:
1. A node is an object node if it corresponds

to a *-node in the DTD.
2. A node denotes an attribute if it does not

correspond to a *-node, and it has only
one child which is a value or has children
which is a set of possible values.

3. A node is a connect node if it connects
nodes within the same category. A con-
nect node can have a child that is an object
node, an attribute node or a connect node.

4. A node is a fuzzy node if it is the value
node or Dist node.

5. A node is a value node if it contains the
textual content or values.

6. A node is an element node if it is not an
object node, an attribute node or a value
node, but represents the actual content of
the document.

3.2. Object Tree

Given a fuzzy XML document D with its tree
structure T, T can be regarded as a fuzzy object
OT(F). In the tree T, a group of nodes, starting at

an object node, followed by some non-object
nodes is regarded as an object. As the represen-
tation form of XML data is the tree structure,
for a subtree Ts ⊆ T with root node r(Ts), if the
children nodes of r(Ts) have the attribute nodes,
then Ts can be regarded as an object Os, and Os
⊆ OT(F). Next, we give the definition of "object
tree" as follows:
Definition 1 (object tree). Given an XML tree
Ti with its root node r(Ti), if the children nodes
of r(Ti) contain at least one attribute node, then
Ti is regarded as an "object tree", denoted as Oi.
Its root node r(Ti) is called the object node of
Oi.
We give some explanation about Definition 1,
for an XML tree Ti rooted at r(Ti), if there is an
attribute node z which is the child node of r(Ti)
(the relationship between the attribute node z
and r(Ti) is parent-child relationship), then Ti
can be regarded as an object tree Oi with its root
node r(Oi) (r(Oi) = r(Ti), and in the following,
we use r(Oi) to denote the root node of the ob-
ject tree Oi). If the values of attributes in Oi are
all crisp values, then Oi is a crisp object tree.
If the children nodes of r(Oi) have at least one
attribute node whose value is a fuzzy set, then
Oi is a fuzzy object tree. And when the object
tree Oi contains a fuzzy object tree, Oi is also re-
garded as a fuzzy object tree. For a fuzzy XML
document D, if its tree structure T is a fuzzy
object tree OT(F), then there may be multiple ob-
ject trees which are crisp object trees and fuzzy
object trees in tree T.
Considering the characteristic of the object to-
gether with the characteristics of fuzzy XML
data model, there is a special case for the ob-
ject tree. Seen in Figure 1, nodes d1 and d2 are
also object nodes although they do not have
any attribute nodes in their children nodes (the
relationship between node d1 and the attribute
node is not parent-child relationship). But node
d1 is the root node of two object trees. One is
the object tree with the possibility of 0.7, and
has attribute z3 in its tree structure, and the other
is the object tree with the possibility of 0.8, and
has attributes z1 and z3 in its tree structure.
Definition 2 (minimum object tree). Given an
object tree O with its root node r(O) in its tree
structure, if the attribute nodes only exist in the
children nodes of the root node r(O), then the
object tree O is regarded as a "minimum object
tree", denoted as Omin.

We give some explanation about Definition 2:
in an object tree O, if all the attribute nodes are
the children nodes of the root node r(O) (the re-
lationship between the attribute node and r(O)
is only the parent-child relationship), then O
is a minimum object tree. For a minimum ob-
ject tree Omin, when it has at least one attrib-
ute whose value is a fuzzy set, then Omin can be
regarded as a minimum fuzzy object tree. For
a set of n minimum object trees, we use 1

minO ,
2
minO , …, min

nO to denote them. And for a min-
imum object tree Omin, its root node r(Omin) is
called a minimum object node.

3.3. Relationship Between Object Trees

Figure 3 presents a simplified structure of a
fuzzy XML tree structure T, based on the ob-
ject. We only represent the root nodes of the ob-
ject trees in T. As shown in Figure 3, the nodes
of circle shape represent the root nodes of ob-
ject trees. If an object is a fuzzy object, we use
FOi to denote it. Especially, we use the node of
circle shape named FOR to represent the root
node of the whole fuzzy XML object tree T. If
an object is a crisp object, we use Oi to denote
it. Nodes of rectangular shape express the types
of the possibility distributions between its chil-
dren object nodes, which can be disjunctive or
conjunctive possibility distribution. The value
on the edge denotes the membership degree on
the path from the parent node to child node,
which are the two ends of the edge. The mem-
bership degree of edges unlabeled defaults to 1.
Through the analysis of the simplified structure
of a fuzzy XML tree in Figure 3, we can iden-
tify the relationships between two connected
object trees as follows.

disjunctive

FOR

 O1

FO2 FO3

 O2 O3 O4 FO6 O7

FO4 FO5
 O5 O6

0.7 0.9

0.60.9

conjunctive

FO1

Figure 3. The simplified structure of a fuzzy XML tree
based on the object.

(1) An O-O relationship: For two connected
object trees, the father object tree Oi is a
crisp object, and the child object tree Oj is
also a crisp object, and there exists a path
from nodes r(Oi) to r(Oj) in XML tree, de-
noted as () ()i jr O r Op → . For example, in Fig-
ure 3, the relationship between object trees
O1 and O4 is the O-O relationship.

(2) A FO-O relationship: For two connected
object trees, the father object tree FOi
is a fuzzy object, and the child object
tree Oj is a crisp object, and there ex-
ists a path from nodes r(FOi) to r(Oj)
in XML tree, denoted as () ()i jr FO r Op → .
For example, the relationship between ob-
ject trees FO6 and O6 is the FO-O relation-
ship.

(3) A FO-FO relationship: For two connected
object trees, the father object tree FOi is a
fuzzy object, and the child object tree FOj
is also a fuzzy object, and there exists a
path from nodes r(FOi) to r(FOj) in XML
tree, denoted as () ()i jr FO r FOp → . For exam-
ple, the relationship between object trees
FO1 and FO2 is the FO-FO relationship.

It is worth noting that, for the relationships
between two connected objects, there are no
O-FO relationships. Here an O-FO relationship
means that the father object tree is a crisp ob-
ject and the child object tree is a fuzzy object.
According to the object’s characteristics, if an
object O contains a fuzzy object, O is also a
fuzzy object.

3.4. Matching Result Object Trees and
Object-Oriented Keyword Query
Semantics

When users propose the keyword queries, they
are interested not only in the results matching
all keywords, but also in the results matching
partial keywords. Based on the object-oriented
concept, we should find the "smallest informa-
tion objects" which contain all keywords and
"information objects" which contain partial
keywords. According to the traditional SLCA
semantics of keyword queries on crisp XML
documents, a SLCA node of m keywords k1,
k2, …, km is a "lowest node" whose subtree is
the "smallest" tree containing all keywords.
Inspired by this query semantics, given a set

300 301Ting Li An Object-Oriented Approach of Keyword Querying over Fuzzy XML

of "minimum object nodes" that the minimum
object trees rooted at them contain partial key-
words, and a set of nodes whose label directly
contain partial keywords, we can find the "low-
est common ancestor object nodes" which are
the root nodes of the "smallest object trees"
containing all keywords. Based on the above
descriptions, we will show our query semantics
and the method of the object-oriented keyword
query, starting from the following definition:
Definition 3 (SLCA object tree). For a key-
word query k1, k2, …, km, given n minimum
object trees 1

minO , 2
minO ,…, min

nO which contain
partial keywords in the nodes of their tree struc-
tures and a set of nodes {U} (U ∉ Omin) which
contain partial keywords, the "SLCA object
trees" are:
(1) the "smallest object tree" which contains

the minimum object trees min{ }iO (i ∈ [1,
n]) and nodes {U}, that nodes in the com-
bination of min{ }iO and {U} contain all
keywords; and

(2) the "smallest object tree" which contains
the minimum object trees min{ }jO (j ∈
[1, n]), that nodes in the combination of

min{ }jO contain all keywords.
Here, a SLCA object tree is the "smallest object
tree" containing all keywords, and that means
that none of the object trees which are contained
in the SLCA object tree contain all keywords.
A SLCA object tree is denoted as SLCAO. For
a SLCA object tree which belongs to type (1),
we use SLCAOov to denote it; and for a SLCA
object tree which belongs to type (2), we use
SLCAOoo to denote it. The root node of the
SLCA object tree is the "smallest lowest com-
mon ancestor object node", that is the SLCA
object node, denoted as r(SLCAO).
Now, we analyze the different types of match-
ing result object trees when proposing a key-
word query on the XML tree based on the ob-
ject-oriented method. Given an XML tree T and
a set of m keywords {k1, k2, …, km}, the match-
ing result object trees RO on T can be separated
into the following several cases:
(1) The target object tree TRO

For a minimum object tree Omin, if the
nodes of its tree structure contain all key-
words, then Omin is regarded as a target ob-
ject tree TRO.

(2) The single target object tree STRO
For a minimum object tree Omin, if the
nodes of its tree structure contain partial
keywords of {k1, k2, …, km}, then Omin
is regarded as a single target object tree
STRO.

(3) SLCA object tree SLCAO
If a matching result object tree RO ⊆ SL-
CAO, then it belongs to one of the follow-
ing two cases:

A: SLCAOov

A matching result object tree is a SLCAOov
when it contains STRO which contain partial
keywords in the nodes of their tree structures
and nodes U whose labels directly contain par-
tial keywords (U ∉ STRO). Given a set of sin-
gle target object trees {STRO(1), STRO(2), …,
STRO(m-1)} and a set of nodes {U(1), U(2), …,
U(m-1)}, the set of SLCAOov can be obtained by
the following formula:

SLCAOov = {SLCAO(STRO(1), U(m-1)),
 SLCAO(STRO(2), U(m- 2)), …, (4)
 SLCAO(STRO(m-1), U(1))}

In the above formula, set of SLCAOov is the set
of SLCA object trees which contain STRO(q)
and nodes U(m-q) in their tree structures. Here,
STRO(q) represents two types of minimum ob-
ject trees, one type 〈1〉 is the minimum object
tree which contains q (1 ≤ q ≤ m – 1) keywords
in the nodes of its tree structure, the other type
〈2〉 is a set of minimum object trees and the
nodes in their combination contain q keywords.
And STRO(1) represents the minimum object
tree which contains one keyword. U(m-q) also
represents two types of nodes, one type 〈3〉 is
the node whose label directly contains m-q key-
words and the other type 〈4〉 is a set of nodes
and their combination contains m – q keywords.
U(1) represents the node whose label directly
contains one keyword. In one combination of
{STRO(q), U(m-q)}, STRO(q) can be one type of
〈1〉, 〈2〉, U(m-q) can be one type of 〈3〉, 〈4〉, and
nodes in the combination contain all keywords.
B: SLCAOoo

A matching result object tree is a SLCAOoo
when it only contains the single target object
trees STRO which contain partial keywords in
the nodes of their tree structures. Given a set
of single target object trees {STRO1, STRO2,

…, STROm-1}, when the nodes in the set of
{STRO1, STRO2, …, STROi} contain all key-
words, a SLCAOoo can be obtained by the fol-
lowing formula:

 SLCAOoo
 = SLCAO {STRO1,

 STRO2, …, STROi}
(5)

Here, STRO1, STRO2, …, STROi denote the sin-
gle target object trees which contain 1, 2, …, i
 (1 ≤ i ≤ m – 1) keywords in the nodes of their
tree structures. The above formula (5) is an ex-
ample to obtain SLCAOoo. Given a set of STRO,
assuming that the number of STRO which con-
tain keyword k1 is equal to e1, the number of
STRO which contain keyword k2 is equal to
e2, and similarly, the number of STRO which
contain keyword km is equal to em, there are

1 2
1 1 1

1 2... ...
me e e mC C C e e e× × × = × × × possible co-

mbinations of {STROi} for computing the SL-
CAOoo. The set of SLCAOoo is equivalent to the
set of SLCA object trees, in which each one is
the smallest object tree that contains one possi-
ble combination of {STROi}.
In order to simplify the description, in this pa-
per, RO can represent a set of matching result
object trees or a matching result object tree.
r(RO) can represent the root nodes of a set of
matching result object trees or the root node of
a matching result object tree. And these are also
the same for Omin, TRO, STRO, SLCAOov and
SLCAOoo. For a matching result object tree RO,
its root node r(RO) is called the "matching re-
sult object node" of RO. We use ROM to denote
the matching result object tree which contains
all keywords in the nodes of its tree structure.
And we use ROP to denote the matching result
object tree which contains partial keywords in
the nodes of its tree structure. We know that sets
of TRO, SLCAOov and SLCAOoo belong to the
set of ROM, and set of STRO is equal to the set
of ROP. We regard ROM as the minimum result
object tree which contains all keywords in its
tree structure, and regard ROP as the result ob-
ject tree which contains partial keywords in its
tree structure.
Given a crisp XML tree TC, the object-oriented
keyword query on TC returns a set of subtrees
which are the minimum result object trees ROM
containing all keywords and result object trees
ROP containing partial keywords. For a set of

keywords {k1, k2,…, km}, the query semantics
of an object-oriented keyword query k1, k2, …,
km on TC is to find:
(1) the root nodes r(ROM) of the minimum result
object trees ROM which contain all keywords in
the nodes of ROM, and
(2) the root nodes r(ROP) of the result object
trees ROP which contain partial keywords in the
nodes of ROP.
The set of result nodes r(ROM) and r(ROP) is
denoted as {r(ROM), r(ROP)}. Next, we show
the object-oriented keyword query semantics
on the fuzzy XML document.
Definition 4 (Object-oriented keyword
query semantics on fuzzy XML). Given a
fuzzy XML tree T and a set of keywords {k1, k2,
…, km}, the query semantics of an object-ori-
ented keyword query k1, k2, …, km on T is to
find a set of pairs of nodes and its possibility
{(r(ROM), λ), (r(ROP), σ)}. In each pair of
(r(ROM), λ), r(ROM) represents the root node
of the minimum result object tree ROM which
contains all keywords in the nodes of ROM, and
λ represents the possibility of r(ROM). And in
each pair of (r(ROP), σ), r(ROP) represents the
root node of the result object tree ROP which
contains partial keywords in the nodes of ROP,
and σ represents the possibility of r(ROP).

3.5. Possibility Computation of Matching
Result Object Node

Given a fuzzy XML document D with its tree
structure T and a set of keywords {k1, k2, …,
km}, r(RO) is a matching result object node of
the matching result object RO, and the whole
possibility of r(RO) can be computed by the
following formula:

 P(r(RO)) = Ppath(r(RO)) × Plocal(r(RO)) (6)

In the above formula, if the membership de-
grees on the path from the root node of the
document to node r(RO) are {φ1, φ2, …, φn},
Ppath(r(RO)) = φ1 × φ2 × … × φn, and Ppath(r(RO))
is the existence possibility of the matching re-
sult object node r(RO). Plocal(r(RO)) is the local
possibility of the matching result object node
r(RO), and the computation of Plocal(r(RO)) can
be separated into the following cases:

300 301Ting Li An Object-Oriented Approach of Keyword Querying over Fuzzy XML

of "minimum object nodes" that the minimum
object trees rooted at them contain partial key-
words, and a set of nodes whose label directly
contain partial keywords, we can find the "low-
est common ancestor object nodes" which are
the root nodes of the "smallest object trees"
containing all keywords. Based on the above
descriptions, we will show our query semantics
and the method of the object-oriented keyword
query, starting from the following definition:
Definition 3 (SLCA object tree). For a key-
word query k1, k2, …, km, given n minimum
object trees 1

minO , 2
minO ,…, min

nO which contain
partial keywords in the nodes of their tree struc-
tures and a set of nodes {U} (U ∉ Omin) which
contain partial keywords, the "SLCA object
trees" are:
(1) the "smallest object tree" which contains

the minimum object trees min{ }iO (i ∈ [1,
n]) and nodes {U}, that nodes in the com-
bination of min{ }iO and {U} contain all
keywords; and

(2) the "smallest object tree" which contains
the minimum object trees min{ }jO (j ∈
[1, n]), that nodes in the combination of

min{ }jO contain all keywords.
Here, a SLCA object tree is the "smallest object
tree" containing all keywords, and that means
that none of the object trees which are contained
in the SLCA object tree contain all keywords.
A SLCA object tree is denoted as SLCAO. For
a SLCA object tree which belongs to type (1),
we use SLCAOov to denote it; and for a SLCA
object tree which belongs to type (2), we use
SLCAOoo to denote it. The root node of the
SLCA object tree is the "smallest lowest com-
mon ancestor object node", that is the SLCA
object node, denoted as r(SLCAO).
Now, we analyze the different types of match-
ing result object trees when proposing a key-
word query on the XML tree based on the ob-
ject-oriented method. Given an XML tree T and
a set of m keywords {k1, k2, …, km}, the match-
ing result object trees RO on T can be separated
into the following several cases:
(1) The target object tree TRO

For a minimum object tree Omin, if the
nodes of its tree structure contain all key-
words, then Omin is regarded as a target ob-
ject tree TRO.

(2) The single target object tree STRO
For a minimum object tree Omin, if the
nodes of its tree structure contain partial
keywords of {k1, k2, …, km}, then Omin
is regarded as a single target object tree
STRO.

(3) SLCA object tree SLCAO
If a matching result object tree RO ⊆ SL-
CAO, then it belongs to one of the follow-
ing two cases:

A: SLCAOov

A matching result object tree is a SLCAOov
when it contains STRO which contain partial
keywords in the nodes of their tree structures
and nodes U whose labels directly contain par-
tial keywords (U ∉ STRO). Given a set of sin-
gle target object trees {STRO(1), STRO(2), …,
STRO(m-1)} and a set of nodes {U(1), U(2), …,
U(m-1)}, the set of SLCAOov can be obtained by
the following formula:

SLCAOov = {SLCAO(STRO(1), U(m-1)),
 SLCAO(STRO(2), U(m- 2)), …, (4)
 SLCAO(STRO(m-1), U(1))}

In the above formula, set of SLCAOov is the set
of SLCA object trees which contain STRO(q)
and nodes U(m-q) in their tree structures. Here,
STRO(q) represents two types of minimum ob-
ject trees, one type 〈1〉 is the minimum object
tree which contains q (1 ≤ q ≤ m – 1) keywords
in the nodes of its tree structure, the other type
〈2〉 is a set of minimum object trees and the
nodes in their combination contain q keywords.
And STRO(1) represents the minimum object
tree which contains one keyword. U(m-q) also
represents two types of nodes, one type 〈3〉 is
the node whose label directly contains m-q key-
words and the other type 〈4〉 is a set of nodes
and their combination contains m – q keywords.
U(1) represents the node whose label directly
contains one keyword. In one combination of
{STRO(q), U(m-q)}, STRO(q) can be one type of
〈1〉, 〈2〉, U(m-q) can be one type of 〈3〉, 〈4〉, and
nodes in the combination contain all keywords.
B: SLCAOoo

A matching result object tree is a SLCAOoo
when it only contains the single target object
trees STRO which contain partial keywords in
the nodes of their tree structures. Given a set
of single target object trees {STRO1, STRO2,

…, STROm-1}, when the nodes in the set of
{STRO1, STRO2, …, STROi} contain all key-
words, a SLCAOoo can be obtained by the fol-
lowing formula:

 SLCAOoo
 = SLCAO {STRO1,

 STRO2, …, STROi}
(5)

Here, STRO1, STRO2, …, STROi denote the sin-
gle target object trees which contain 1, 2, …, i
 (1 ≤ i ≤ m – 1) keywords in the nodes of their
tree structures. The above formula (5) is an ex-
ample to obtain SLCAOoo. Given a set of STRO,
assuming that the number of STRO which con-
tain keyword k1 is equal to e1, the number of
STRO which contain keyword k2 is equal to
e2, and similarly, the number of STRO which
contain keyword km is equal to em, there are

1 2
1 1 1

1 2... ...
me e e mC C C e e e× × × = × × × possible co-

mbinations of {STROi} for computing the SL-
CAOoo. The set of SLCAOoo is equivalent to the
set of SLCA object trees, in which each one is
the smallest object tree that contains one possi-
ble combination of {STROi}.
In order to simplify the description, in this pa-
per, RO can represent a set of matching result
object trees or a matching result object tree.
r(RO) can represent the root nodes of a set of
matching result object trees or the root node of
a matching result object tree. And these are also
the same for Omin, TRO, STRO, SLCAOov and
SLCAOoo. For a matching result object tree RO,
its root node r(RO) is called the "matching re-
sult object node" of RO. We use ROM to denote
the matching result object tree which contains
all keywords in the nodes of its tree structure.
And we use ROP to denote the matching result
object tree which contains partial keywords in
the nodes of its tree structure. We know that sets
of TRO, SLCAOov and SLCAOoo belong to the
set of ROM, and set of STRO is equal to the set
of ROP. We regard ROM as the minimum result
object tree which contains all keywords in its
tree structure, and regard ROP as the result ob-
ject tree which contains partial keywords in its
tree structure.
Given a crisp XML tree TC, the object-oriented
keyword query on TC returns a set of subtrees
which are the minimum result object trees ROM
containing all keywords and result object trees
ROP containing partial keywords. For a set of

keywords {k1, k2,…, km}, the query semantics
of an object-oriented keyword query k1, k2, …,
km on TC is to find:
(1) the root nodes r(ROM) of the minimum result
object trees ROM which contain all keywords in
the nodes of ROM, and
(2) the root nodes r(ROP) of the result object
trees ROP which contain partial keywords in the
nodes of ROP.
The set of result nodes r(ROM) and r(ROP) is
denoted as {r(ROM), r(ROP)}. Next, we show
the object-oriented keyword query semantics
on the fuzzy XML document.
Definition 4 (Object-oriented keyword
query semantics on fuzzy XML). Given a
fuzzy XML tree T and a set of keywords {k1, k2,
…, km}, the query semantics of an object-ori-
ented keyword query k1, k2, …, km on T is to
find a set of pairs of nodes and its possibility
{(r(ROM), λ), (r(ROP), σ)}. In each pair of
(r(ROM), λ), r(ROM) represents the root node
of the minimum result object tree ROM which
contains all keywords in the nodes of ROM, and
λ represents the possibility of r(ROM). And in
each pair of (r(ROP), σ), r(ROP) represents the
root node of the result object tree ROP which
contains partial keywords in the nodes of ROP,
and σ represents the possibility of r(ROP).

3.5. Possibility Computation of Matching
Result Object Node

Given a fuzzy XML document D with its tree
structure T and a set of keywords {k1, k2, …,
km}, r(RO) is a matching result object node of
the matching result object RO, and the whole
possibility of r(RO) can be computed by the
following formula:

 P(r(RO)) = Ppath(r(RO)) × Plocal(r(RO)) (6)

In the above formula, if the membership de-
grees on the path from the root node of the
document to node r(RO) are {φ1, φ2, …, φn},
Ppath(r(RO)) = φ1 × φ2 × … × φn, and Ppath(r(RO))
is the existence possibility of the matching re-
sult object node r(RO). Plocal(r(RO)) is the local
possibility of the matching result object node
r(RO), and the computation of Plocal(r(RO)) can
be separated into the following cases:

302 303Ting Li An Object-Oriented Approach of Keyword Querying over Fuzzy XML

(a) RO ∈ STRO (or TRO)
If there is a matching result object tree RO,
and the nodes containing keywords in its
tree structure are v1, v2, …, vl, the member-
ship degrees on the path from node r(RO)
to node vi (1 ≤ i ≤ l) are {u1, u2, …, ut}, then

 Plocal(r (RO)) = u1 × u2 ×…× ut (7)

(b) RO ∈ SLCAOov

If a matching result object tree RO is ob-
tained by the SLCAO {STRO1, STRO2, v1,
v2}, where {STRO1, STRO2} are two single
target object trees, and {v1, v2} are nodes
containing partial keywords in SLCAO,
the membership degrees on the path from
r(RO) to r(STRO1) and r(STRO2) are u1
and u2, and the membership degrees on the
path from r(RO) to v1 and v2 are φ1 and φ2,
then,

 Plocal(r (RO)) = Plocal(r (STRO1))
 × Plocal(r (STRO2)) (8)
 × φ1× φ2 × u1 × u2

(c) RO ∈ SLCAOoo

If a matching result object tree RO con-
tains the single target object trees {STRO1,
STRO2, STRO3}, and the membership de-
grees on the path from r(RO) to r(STRO1),
r(STRO2), r(STRO3) are u1, u2 and u3, re-
spectively, then,

 Plocal(r(RO)) = Plocal(r(STRO1))
 × Plocal(r(STRO2)) × Plocal(r(STRO3)) (9)
 × u1 × u2 × u3

4. Algorithm of Object-Oriented
Keyword Querying over Fuzzy XML

Based on the object-oriented keyword query
semantics on fuzzy XML documents, we pro-
pose a keyword query algorithm ROstack to
obtain the query results together with their pos-
sibilities. In the algorithm, we adopt the Dewey
code [24] which is widely used in the keyword
search algorithms of XML documents to en-
code the nodes of the fuzzy XML documents.
Dewey is an encoding mode which directly puts
the Dewey code of a node’s parent node as the
prefix of the Dewey code of the node. For ex-

ample, for a node vg in the tree, its Dewey code
is represented as D(vg). And for the child node
vh of node vg, the Dewey code of vh is repre-
sented by D(vh) = D(vg) ⋅ ρ, where ρ is the order
number of node vh in all the children nodes of
node vg. The Dewey code has the lexicograph-
ical orders. It can effectively support the cal-
culation of inclusion relationship among nodes
and support the calculation of position relation-
ship in XML documents. (The Dewey encode
mode can be seen in Figure 4).
For the computation of possibilities values, we
need to build the index to record the membership
degrees on the path from the root node of the
document to the keyword nodes (or the object
nodes contain keywords in the nodes of the ob-
ject trees) and index to record the membership
degrees on the path from the object node to the
keyword nodes (or object nodes) in the object
tree. According to the object-oriented query se-
mantics, the nodes processed are classified into
two major types in ROstack: the object node
and non-object node. The distinction between
crisp node and fuzzy node is not important in
the algorithm, because we return the result node
at the object-level, and the fuzzy information
(membership degrees values) can be obtained
when the root nodes of the fuzzy object trees
are returned as the query results, and the possi-
bilities of the result nodes are computed at the
same time. But the distinction between object
node and non-object node becomes important.
So, we also need indexes to record the object
nodes and the minimum object nodes.
In the computation phase of the algorithm
ROstack, to compute the SLCA object nodes,
it only needs to process the root nodes of sin-
gle target object trees and the keyword nodes
which are not in the minimum object trees. The
ROstack is an efficient and effective algorithm
to obtain the result nodes and their possibilities,
and it performs well when the tree structures of
XML documents are complex and deep. Next,
we start from introducing the indexes built in
our method.

4.1. Index Construction

In order to realize the object-oriented keyword
queries on the fuzzy XML document, we build
five indexes to serve the algorithm proposed
below:

(1) The keywords index: {Mi}
For a set of keywords {k1, k2, …, km}, {M1}
denotes the set of nodes containing key-
word k1, and similarly, {Mi} denotes the
set of nodes containing keyword ki. If the
node vh ∈ Omin, where vh contains key-
words and Omin is a minimum object tree,
we store the D(r(Omin)) instead of D(vh) in
the list {Mi}, D(r(Omin)) is the Dewey code
of node r(Omin), and r(Omin) is the root
node of Omin.

(2) The list of minimum object trees: LOmin
LOmin stores the root nodes r(Omin) of the
minimum object trees Omin and the ordi-
nary nodes in their tree structures. For a
minimum fuzzy object tree, we also store
only the ordinary nodes in its tree struc-
ture.

(3) The list of existence membership degrees
of nodes: LE{v, ωi, ε}(0 < ωi ≤ 1, 0 < ε ≤ 1)
LE records the membership degrees {ω1,
ω2, …, ωi} on the path from the root node
of the document to node v, and the exis-
tence possibility value ε, where ε = ω1 ×
ω2 × … × ωi. It is worth noticing that node
v can be an ordinary node containing key-
words, or an object node of an object tree
which contains keywords in the nodes of
its tree structure.

(4) The list of the local membership degrees
of object nodes: LL{r(O), σj, τ}(0 < σj ≤ 1,
0 < τ ≤ 1);
LL records the membership degrees {σ1, σ2,
…, σj} on the path from the object node
r(O) to nodes {v1, v2, …, vg} which contain

a

z1

Dist(disjunctive)

val val

poss poss

0.7 0.8

x2 x3

d

c e h g

z2 z3 z6 z4 z5

x1 x2 x3 x4 x5

A B

z7

x6

z1

x7

1

1.1 1.2 1.3 1.4 1.5 1.6

1.1.1 1.2.1 1.3.1 1.3.2 1.4.1 1.5.1 1.6.1

1.2.1.1 1.3.1.1 1.3.2.1 1.4.1.1 1.5.1.1

1.7

1.7.1

1.7.1.1

1.7.1.1.1 1.7.1.1.2

1.7.1.1.1.1
1.7.1.1.2.1

1.7.1.1.1.1.1 1.7.1.1.2.1.1

1.7.1.1.1.2
1.7.1.1.2.2

Figure 4. The tree structures of object trees encoded with Dewey.

keywords in O, and its local possibility
value τ, where node vg can be an ordinary
node or an object node.

(5) The list of object nodes: LO
After pre-processing the fuzzy XML doc-
ument with the object identification oper-
ation, all the Dewey codes of the object
nodes in the fuzzy XML document are
recorded into the list LO.

We give some interpretations of the list
MINOL .

Let us look at Figure 4, node a represents the
node which contains a, the node zi is the at-
tribute node. In this paragraph, for a simple
and intuitive interpretation, we use the form of
Od to represent the crisp object tree rooted at
node d (the Dewey code is 1 in B), and FOa to
represent the fuzzy object tree rooted at node a
(the Dewey code is 1.7 in A). Figure 4 (A) rep-
resents a minimum fuzzy object tree FOa, and
(B) represents a crisp object tree Od. According
to Definition 2, the object tree Od contains four
minimum object trees, which are Oc, Oe, Oh, and
Og, respectively. For the minimum fuzzy object
tree FOa, there are two possible values of attrib-
ute z1, which are x2 and x3. And the entry stored
in

MINOL is {D(a), (z1, x2, x3)}. For Oc, Oe, Oh
and Og, the entries stored in

MINOL are {D(c), (z2,
x1) }, {D(e), (z3, x2), (z6, x3)}, {D(h), (z4, x4)}
and {D(g), (z5, x5)}. D(a) represents the Dewey
code of node a (e.g., 1.7 in Figure 4 (A)).

4.2. Algorithm of Object-Oriented
Keyword Query

According to the semantics of object-oriented
keyword query on the fuzzy XML document,

302 303Ting Li An Object-Oriented Approach of Keyword Querying over Fuzzy XML

(a) RO ∈ STRO (or TRO)
If there is a matching result object tree RO,
and the nodes containing keywords in its
tree structure are v1, v2, …, vl, the member-
ship degrees on the path from node r(RO)
to node vi (1 ≤ i ≤ l) are {u1, u2, …, ut}, then

 Plocal(r (RO)) = u1 × u2 ×…× ut (7)

(b) RO ∈ SLCAOov

If a matching result object tree RO is ob-
tained by the SLCAO {STRO1, STRO2, v1,
v2}, where {STRO1, STRO2} are two single
target object trees, and {v1, v2} are nodes
containing partial keywords in SLCAO,
the membership degrees on the path from
r(RO) to r(STRO1) and r(STRO2) are u1
and u2, and the membership degrees on the
path from r(RO) to v1 and v2 are φ1 and φ2,
then,

 Plocal(r (RO)) = Plocal(r (STRO1))
 × Plocal(r (STRO2)) (8)
 × φ1× φ2 × u1 × u2

(c) RO ∈ SLCAOoo

If a matching result object tree RO con-
tains the single target object trees {STRO1,
STRO2, STRO3}, and the membership de-
grees on the path from r(RO) to r(STRO1),
r(STRO2), r(STRO3) are u1, u2 and u3, re-
spectively, then,

 Plocal(r(RO)) = Plocal(r(STRO1))
 × Plocal(r(STRO2)) × Plocal(r(STRO3)) (9)
 × u1 × u2 × u3

4. Algorithm of Object-Oriented
Keyword Querying over Fuzzy XML

Based on the object-oriented keyword query
semantics on fuzzy XML documents, we pro-
pose a keyword query algorithm ROstack to
obtain the query results together with their pos-
sibilities. In the algorithm, we adopt the Dewey
code [24] which is widely used in the keyword
search algorithms of XML documents to en-
code the nodes of the fuzzy XML documents.
Dewey is an encoding mode which directly puts
the Dewey code of a node’s parent node as the
prefix of the Dewey code of the node. For ex-

ample, for a node vg in the tree, its Dewey code
is represented as D(vg). And for the child node
vh of node vg, the Dewey code of vh is repre-
sented by D(vh) = D(vg) ⋅ ρ, where ρ is the order
number of node vh in all the children nodes of
node vg. The Dewey code has the lexicograph-
ical orders. It can effectively support the cal-
culation of inclusion relationship among nodes
and support the calculation of position relation-
ship in XML documents. (The Dewey encode
mode can be seen in Figure 4).
For the computation of possibilities values, we
need to build the index to record the membership
degrees on the path from the root node of the
document to the keyword nodes (or the object
nodes contain keywords in the nodes of the ob-
ject trees) and index to record the membership
degrees on the path from the object node to the
keyword nodes (or object nodes) in the object
tree. According to the object-oriented query se-
mantics, the nodes processed are classified into
two major types in ROstack: the object node
and non-object node. The distinction between
crisp node and fuzzy node is not important in
the algorithm, because we return the result node
at the object-level, and the fuzzy information
(membership degrees values) can be obtained
when the root nodes of the fuzzy object trees
are returned as the query results, and the possi-
bilities of the result nodes are computed at the
same time. But the distinction between object
node and non-object node becomes important.
So, we also need indexes to record the object
nodes and the minimum object nodes.
In the computation phase of the algorithm
ROstack, to compute the SLCA object nodes,
it only needs to process the root nodes of sin-
gle target object trees and the keyword nodes
which are not in the minimum object trees. The
ROstack is an efficient and effective algorithm
to obtain the result nodes and their possibilities,
and it performs well when the tree structures of
XML documents are complex and deep. Next,
we start from introducing the indexes built in
our method.

4.1. Index Construction

In order to realize the object-oriented keyword
queries on the fuzzy XML document, we build
five indexes to serve the algorithm proposed
below:

(1) The keywords index: {Mi}
For a set of keywords {k1, k2, …, km}, {M1}
denotes the set of nodes containing key-
word k1, and similarly, {Mi} denotes the
set of nodes containing keyword ki. If the
node vh ∈ Omin, where vh contains key-
words and Omin is a minimum object tree,
we store the D(r(Omin)) instead of D(vh) in
the list {Mi}, D(r(Omin)) is the Dewey code
of node r(Omin), and r(Omin) is the root
node of Omin.

(2) The list of minimum object trees: LOmin
LOmin stores the root nodes r(Omin) of the
minimum object trees Omin and the ordi-
nary nodes in their tree structures. For a
minimum fuzzy object tree, we also store
only the ordinary nodes in its tree struc-
ture.

(3) The list of existence membership degrees
of nodes: LE{v, ωi, ε}(0 < ωi ≤ 1, 0 < ε ≤ 1)
LE records the membership degrees {ω1,
ω2, …, ωi} on the path from the root node
of the document to node v, and the exis-
tence possibility value ε, where ε = ω1 ×
ω2 × … × ωi. It is worth noticing that node
v can be an ordinary node containing key-
words, or an object node of an object tree
which contains keywords in the nodes of
its tree structure.

(4) The list of the local membership degrees
of object nodes: LL{r(O), σj, τ}(0 < σj ≤ 1,
0 < τ ≤ 1);
LL records the membership degrees {σ1, σ2,
…, σj} on the path from the object node
r(O) to nodes {v1, v2, …, vg} which contain

a

z1

Dist(disjunctive)

val val

poss poss

0.7 0.8

x2 x3

d

c e h g

z2 z3 z6 z4 z5

x1 x2 x3 x4 x5

A B

z7

x6

z1

x7

1

1.1 1.2 1.3 1.4 1.5 1.6

1.1.1 1.2.1 1.3.1 1.3.2 1.4.1 1.5.1 1.6.1

1.2.1.1 1.3.1.1 1.3.2.1 1.4.1.1 1.5.1.1

1.7

1.7.1

1.7.1.1

1.7.1.1.1 1.7.1.1.2

1.7.1.1.1.1
1.7.1.1.2.1

1.7.1.1.1.1.1 1.7.1.1.2.1.1

1.7.1.1.1.2
1.7.1.1.2.2

Figure 4. The tree structures of object trees encoded with Dewey.

keywords in O, and its local possibility
value τ, where node vg can be an ordinary
node or an object node.

(5) The list of object nodes: LO
After pre-processing the fuzzy XML doc-
ument with the object identification oper-
ation, all the Dewey codes of the object
nodes in the fuzzy XML document are
recorded into the list LO.

We give some interpretations of the list
MINOL .

Let us look at Figure 4, node a represents the
node which contains a, the node zi is the at-
tribute node. In this paragraph, for a simple
and intuitive interpretation, we use the form of
Od to represent the crisp object tree rooted at
node d (the Dewey code is 1 in B), and FOa to
represent the fuzzy object tree rooted at node a
(the Dewey code is 1.7 in A). Figure 4 (A) rep-
resents a minimum fuzzy object tree FOa, and
(B) represents a crisp object tree Od. According
to Definition 2, the object tree Od contains four
minimum object trees, which are Oc, Oe, Oh, and
Og, respectively. For the minimum fuzzy object
tree FOa, there are two possible values of attrib-
ute z1, which are x2 and x3. And the entry stored
in

MINOL is {D(a), (z1, x2, x3)}. For Oc, Oe, Oh
and Og, the entries stored in

MINOL are {D(c), (z2,
x1) }, {D(e), (z3, x2), (z6, x3)}, {D(h), (z4, x4)}
and {D(g), (z5, x5)}. D(a) represents the Dewey
code of node a (e.g., 1.7 in Figure 4 (A)).

4.2. Algorithm of Object-Oriented
Keyword Query

According to the semantics of object-oriented
keyword query on the fuzzy XML document,

304 305Ting Li An Object-Oriented Approach of Keyword Querying over Fuzzy XML

when users input keywords k1, k2, …, km, we
need to obtain the object nodes r(ROM) of the
minimum result object trees ROM and their pos-
sibilities λ, and the object nodes r(ROP) of the
result object trees ROP and their possibilities σ.
In order to realize the query semantics, we pro-
pose the following ROstack algorithm.
The detailed procedure of ROstack algorithm
is shown in Algorithm 1. When users input a

Algorithm 1. ROstack.

Input: A set of keywords{k1, k2, …, km}, and a fuzzy XML document encoded with Dewey
Output: The matching result object nodes and their possibilities: {(r(RO1), ξ1), (r(RO2), ξ2),…, (r(ROn), ξn)}
1: Load and visit keyword index{Mi}(i = 1, 2, ..., m), the lists

MINOL , LO, create and update the list LE {v, ωi, ε};
2: Find the set of object nodes r(TROα), r(STROγ), and create the list LL {r(O), σj, τ}
 of nodes r(TROα) and r(STROγ),
3: Compute P(r(TROα)), P(r(STROγ));
4: Delete entries of r(TROα) from index{Mi};
5: Initialize a stack ST = empty,
6: v = get smallest node (),
7: Push node v into the stack ST, and set the Dewey(v) as the initial value of the stack ST;
8: while (not reach the end entry of keyword list{Mi}), do{
9: v' = get next smallest node (),
10: pre = lcp(ST, v'), //compute the longest common prefix pre between node v and node v' such that
 ST [i] = v[i], 1 ≤ i ≤ pre.length;
11: while (stack ST.size > pre.length) do
12: ST entry s = ST.pop();
13: if s is SLCA() then{
14: when (Dewey (s) ∈ LO), record s into list LE{v, ωi, ε};
15: when (Dewey (s) ∉ LO), find s' = parent(s) (or ancestor(s)) and s' ∈ LO, record s'
 into list LE{v, ωi, ε};
16: get type s, s.keyword[j]1 (j = 1, 2, …, m),
17: if s ∈ r(SLCAOov) then
18: get Plocal(r(STROγ)) from list LL{r(O), σj, τ}, membership degrees ωi

s,
 ωi

r(STRO), ωi
v from list LE{v, ωi, ε}, and record s into list LL{r(O), σj, τ};

19: compute P(r(SLCAOov));
20: if s ∈ r(SLCAOoo) then
21: get Plocal(r(STROγ)) from list LL{r(O), σj, τ}, membership degrees ωi

s,
 ωi

r(STRO) from list LE{v, ωi, ε}, and record s into list LL{r(O), σj, τ};
22: compute P(r(SLCAOoo));}
23: else for (1 ≤ l ≤ m)
24: if (s.keyword[l] = θ(kl)) then
25: ST.top.keyword[l] = θ(kl);
26: when (pre.length < d ≤ v'.length), ST.push(v'(d));
27: when ST is empty, initialize ST with the next smallest node until all nodes in list
 {Mi} are processed. }
28: return the matching result object nodes and their possibilities: ((r(RO1), ξ1), (r(RO2), ξ2),
 …, (r(ROn), ξn)).

set of keywords {k1, k2, …, km}, the algorithm
loads and visits the keyword list{Mi}, the
minimum object tree list

MINOL and the object
node list LO. According to the nodes vi which
contain keywords and minimum object nodes
r(Omin) which contain keywords in the nodes
of minimum object trees Omin, we create the
list LE {v, ωi, ε}. From list

MINOL we find object
nodes r(TROα) of the minimum object trees

which contain all keywords in the nodes of
TROα, and object nodes r(STROγ) of the min-
imum object trees which contain partial key-
words in the nodes of STROγ, and create the
list LL {r(TROα), σj, τ} and LL {r(STROγ), σj,
τ}. We get Plocal (r(TROα)), Ppath (r(TROα)) from
lists LL {r(TROα), σj, τ} and LE {r(TROα), ωi,
ε} and compute P(r(TROα)) = Ppath (r(TROα))
× Plocal (r(TROα)), and similarly, compute the
P(r(STROγ)). We delete the entries of r(TROα)
from the index{Mi}, as the set of r(TROα) are
returned as the minimum result object nodes.
We compute the SLCA object nodes among the
nodes r(STROγ) and nodes vi which contain par-
tial keywords. We initialize a stack ST, and get
node v with the smallest Dewey code in the in-
dex {Mi}, and initiate stack ST with the compo-
nents of the Dewey of node v. We get the next
node v' with the smallest Dewey in the index
{Mi}, and compute the longest common prefix
pre of node v and v'. If the length of the longest
common prefix pre is smaller than the size of
the ST (the size of ST is equal to the length of the
components of the Dewey (v)), the top entries
which are not the components of pre are popped
out. After this, the last component of the pre in
the stack ST becomes the top entry. In the stack
ST, we use keyword arrays {[κ1][κ2]…[κn]}
which are stored behind each entry of Dewey
component to denote the subtree rooted at the
entries in ST, whether containing ith keyword or
not. For example, there is an entry (1, [0.7][0.8]
[0][0.4]) stored at the top entry of ST, the first
"1" is one component of Dewey, and keyword
array [0.7][0.8][0][0.4] denotes nodes of the
subtree rooted at the entries of ST contains key-
words k1, k2 and k4. When processing the key-
word node v, we make keyword[l] = θ(kl) if v
contains keyword kl and the existence possibil-
ity value Ppath (v) will be given to keyword[l] at
the top entry of the stack. And when processing
the keyword node r(STROγ), if nodes in STROγ
contain keywords k1 and k2, then the existence
possibility value Ppath (r(STROγ)) will be given
to keyword[1] and keyword[2] at the same time.
If node v (or r(STROγ)) does not contain key-
word k3, then keyword[3] = 0. After process-
ing node v, keyword [l] = θ(kl) will be trans-
mitted to the top entry of remaining entries in
the stack ST (see in lines 23-25). After popping
out top entries of v, we push the components
of Dewey which are not the pre of node v' into

the stack and get next node in the list {Mi} to
process. During this process, when finding the
component of the popping entry is all denoted
by keyword[j] = θ(kj) (j = 1, 2, ..., m) (which
means all keyword[j] > 0), then the node s, de-
termined by the entries from the bottom entry to
the popping entry in the stack ST, is reported as
a SLCA node. We pop out the node s, and push
the next smallest node as a new initial value of
the empty stack, and process the rest keyword
nodes in the list {Mi}.
For a SLCA node s popped out, we should
judge whether s is an object node or an ordinary
node (see lines 13–15). If Dewey(s) ∈ LO, s is
an SLCA object node and it can be returned as a
matching result object node. If Dewey(s) ∉ LO,
s is a non-object node, we should find its parent
node s' = parent(s) along the path in the XML
tree. And parent(s) is returned as a matching
result object node if Dewey(parent(s)) ∈ LO.
If Dewey(parent(s)) ∉ LO, we should find the
ancestor node s' = ancestor(s) when ancestor(s)
∈ LO, and return it as the matching result object
node. We record s' = parent(s) (or ancestor(s))
into the list LE{s', ωi, ε}. When popping out
node s, we can get the array keyword[j]1 (where
keyword[j]1 > 0, 1 ≤ j ≤ m) of the top entry from
the stack ST, according to the array keyword
[j]1 of the top entry of s, we can get the key-
word nodes in the subtree s

subT rooted at node
s which contains all keywords. The keyword
nodes vi containing keyword k2 which have
been visited before generating node s with ex-
istence possibility value Ppath(vi) in keyword[2]1
will be the nodes in s

subT .The nodes vi can be
an ordinary node or an object node. There are
two types of the SLCA object nodes: r(SL-
CAOoo) and r(SLCAOov). r(SLCAOoo) are the
root nodes of SLCA object trees of the com-
binations of single target object trees STROγ.
r(SLCAOov) are the root nodes of SLCA object
trees of the combinations of single target ob-
ject trees STROγ with nodes vi which contain
partial keywords. For example, if keyword
[j]1 is {[0.7][0.8][0.6][0.8]}, for nodes v1 ∈ M1,
r(STRO2) ∈{M2, M4}, v3 ∈ M3 which have been
visited, if v1, r(STRO2) and v3 satisfy the con-
dition: Ppath(v1) = 0.7, Ppath(r(STRO2)) = 0.8,
Ppath(v3) = 0.6, LCA(v1, r(STRO2), v0) = s, then
nodes v1, r(STRO2), v3 are keyword nodes in

s
subT . After obtaining keyword nodes and visit-

ing the lists LL{r(O), σj, τ} and LE{v, ωi, ε}, we

304 305Ting Li An Object-Oriented Approach of Keyword Querying over Fuzzy XML

when users input keywords k1, k2, …, km, we
need to obtain the object nodes r(ROM) of the
minimum result object trees ROM and their pos-
sibilities λ, and the object nodes r(ROP) of the
result object trees ROP and their possibilities σ.
In order to realize the query semantics, we pro-
pose the following ROstack algorithm.
The detailed procedure of ROstack algorithm
is shown in Algorithm 1. When users input a

Algorithm 1. ROstack.

Input: A set of keywords{k1, k2, …, km}, and a fuzzy XML document encoded with Dewey
Output: The matching result object nodes and their possibilities: {(r(RO1), ξ1), (r(RO2), ξ2),…, (r(ROn), ξn)}
1: Load and visit keyword index{Mi}(i = 1, 2, ..., m), the lists

MINOL , LO, create and update the list LE {v, ωi, ε};
2: Find the set of object nodes r(TROα), r(STROγ), and create the list LL {r(O), σj, τ}
 of nodes r(TROα) and r(STROγ),
3: Compute P(r(TROα)), P(r(STROγ));
4: Delete entries of r(TROα) from index{Mi};
5: Initialize a stack ST = empty,
6: v = get smallest node (),
7: Push node v into the stack ST, and set the Dewey(v) as the initial value of the stack ST;
8: while (not reach the end entry of keyword list{Mi}), do{
9: v' = get next smallest node (),
10: pre = lcp(ST, v'), //compute the longest common prefix pre between node v and node v' such that
 ST [i] = v[i], 1 ≤ i ≤ pre.length;
11: while (stack ST.size > pre.length) do
12: ST entry s = ST.pop();
13: if s is SLCA() then{
14: when (Dewey (s) ∈ LO), record s into list LE{v, ωi, ε};
15: when (Dewey (s) ∉ LO), find s' = parent(s) (or ancestor(s)) and s' ∈ LO, record s'
 into list LE{v, ωi, ε};
16: get type s, s.keyword[j]1 (j = 1, 2, …, m),
17: if s ∈ r(SLCAOov) then
18: get Plocal(r(STROγ)) from list LL{r(O), σj, τ}, membership degrees ωi

s,
 ωi

r(STRO), ωi
v from list LE{v, ωi, ε}, and record s into list LL{r(O), σj, τ};

19: compute P(r(SLCAOov));
20: if s ∈ r(SLCAOoo) then
21: get Plocal(r(STROγ)) from list LL{r(O), σj, τ}, membership degrees ωi

s,
 ωi

r(STRO) from list LE{v, ωi, ε}, and record s into list LL{r(O), σj, τ};
22: compute P(r(SLCAOoo));}
23: else for (1 ≤ l ≤ m)
24: if (s.keyword[l] = θ(kl)) then
25: ST.top.keyword[l] = θ(kl);
26: when (pre.length < d ≤ v'.length), ST.push(v'(d));
27: when ST is empty, initialize ST with the next smallest node until all nodes in list
 {Mi} are processed. }
28: return the matching result object nodes and their possibilities: ((r(RO1), ξ1), (r(RO2), ξ2),
 …, (r(ROn), ξn)).

set of keywords {k1, k2, …, km}, the algorithm
loads and visits the keyword list{Mi}, the
minimum object tree list

MINOL and the object
node list LO. According to the nodes vi which
contain keywords and minimum object nodes
r(Omin) which contain keywords in the nodes
of minimum object trees Omin, we create the
list LE {v, ωi, ε}. From list

MINOL we find object
nodes r(TROα) of the minimum object trees

which contain all keywords in the nodes of
TROα, and object nodes r(STROγ) of the min-
imum object trees which contain partial key-
words in the nodes of STROγ, and create the
list LL {r(TROα), σj, τ} and LL {r(STROγ), σj,
τ}. We get Plocal (r(TROα)), Ppath (r(TROα)) from
lists LL {r(TROα), σj, τ} and LE {r(TROα), ωi,
ε} and compute P(r(TROα)) = Ppath (r(TROα))
× Plocal (r(TROα)), and similarly, compute the
P(r(STROγ)). We delete the entries of r(TROα)
from the index{Mi}, as the set of r(TROα) are
returned as the minimum result object nodes.
We compute the SLCA object nodes among the
nodes r(STROγ) and nodes vi which contain par-
tial keywords. We initialize a stack ST, and get
node v with the smallest Dewey code in the in-
dex {Mi}, and initiate stack ST with the compo-
nents of the Dewey of node v. We get the next
node v' with the smallest Dewey in the index
{Mi}, and compute the longest common prefix
pre of node v and v'. If the length of the longest
common prefix pre is smaller than the size of
the ST (the size of ST is equal to the length of the
components of the Dewey (v)), the top entries
which are not the components of pre are popped
out. After this, the last component of the pre in
the stack ST becomes the top entry. In the stack
ST, we use keyword arrays {[κ1][κ2]…[κn]}
which are stored behind each entry of Dewey
component to denote the subtree rooted at the
entries in ST, whether containing ith keyword or
not. For example, there is an entry (1, [0.7][0.8]
[0][0.4]) stored at the top entry of ST, the first
"1" is one component of Dewey, and keyword
array [0.7][0.8][0][0.4] denotes nodes of the
subtree rooted at the entries of ST contains key-
words k1, k2 and k4. When processing the key-
word node v, we make keyword[l] = θ(kl) if v
contains keyword kl and the existence possibil-
ity value Ppath (v) will be given to keyword[l] at
the top entry of the stack. And when processing
the keyword node r(STROγ), if nodes in STROγ
contain keywords k1 and k2, then the existence
possibility value Ppath (r(STROγ)) will be given
to keyword[1] and keyword[2] at the same time.
If node v (or r(STROγ)) does not contain key-
word k3, then keyword[3] = 0. After process-
ing node v, keyword [l] = θ(kl) will be trans-
mitted to the top entry of remaining entries in
the stack ST (see in lines 23-25). After popping
out top entries of v, we push the components
of Dewey which are not the pre of node v' into

the stack and get next node in the list {Mi} to
process. During this process, when finding the
component of the popping entry is all denoted
by keyword[j] = θ(kj) (j = 1, 2, ..., m) (which
means all keyword[j] > 0), then the node s, de-
termined by the entries from the bottom entry to
the popping entry in the stack ST, is reported as
a SLCA node. We pop out the node s, and push
the next smallest node as a new initial value of
the empty stack, and process the rest keyword
nodes in the list {Mi}.
For a SLCA node s popped out, we should
judge whether s is an object node or an ordinary
node (see lines 13–15). If Dewey(s) ∈ LO, s is
an SLCA object node and it can be returned as a
matching result object node. If Dewey(s) ∉ LO,
s is a non-object node, we should find its parent
node s' = parent(s) along the path in the XML
tree. And parent(s) is returned as a matching
result object node if Dewey(parent(s)) ∈ LO.
If Dewey(parent(s)) ∉ LO, we should find the
ancestor node s' = ancestor(s) when ancestor(s)
∈ LO, and return it as the matching result object
node. We record s' = parent(s) (or ancestor(s))
into the list LE{s', ωi, ε}. When popping out
node s, we can get the array keyword[j]1 (where
keyword[j]1 > 0, 1 ≤ j ≤ m) of the top entry from
the stack ST, according to the array keyword
[j]1 of the top entry of s, we can get the key-
word nodes in the subtree s

subT rooted at node
s which contains all keywords. The keyword
nodes vi containing keyword k2 which have
been visited before generating node s with ex-
istence possibility value Ppath(vi) in keyword[2]1
will be the nodes in s

subT .The nodes vi can be
an ordinary node or an object node. There are
two types of the SLCA object nodes: r(SL-
CAOoo) and r(SLCAOov). r(SLCAOoo) are the
root nodes of SLCA object trees of the com-
binations of single target object trees STROγ.
r(SLCAOov) are the root nodes of SLCA object
trees of the combinations of single target ob-
ject trees STROγ with nodes vi which contain
partial keywords. For example, if keyword
[j]1 is {[0.7][0.8][0.6][0.8]}, for nodes v1 ∈ M1,
r(STRO2) ∈{M2, M4}, v3 ∈ M3 which have been
visited, if v1, r(STRO2) and v3 satisfy the con-
dition: Ppath(v1) = 0.7, Ppath(r(STRO2)) = 0.8,
Ppath(v3) = 0.6, LCA(v1, r(STRO2), v0) = s, then
nodes v1, r(STRO2), v3 are keyword nodes in

s
subT . After obtaining keyword nodes and visit-

ing the lists LL{r(O), σj, τ} and LE{v, ωi, ε}, we

306 307Ting Li An Object-Oriented Approach of Keyword Querying over Fuzzy XML

can obtain the membership degrees on the paths
from node s to keyword nodes, then record s
into list LL{s, σj, τ}, and get Plocal(s) by the cal-
culation method shown in Subsection 3.5. For
example, for a SLCA object node s and its key-
word nodes STRO2, v1, v2, if the Plocal(STRO2)
= 0.8, the membership degrees on the paths
from the root node r to node s, STRO2, v1 and
v2 are {0.8, 0.9, 0.9}, {0.8, 0.9, 0.9, 0.9, 0.8},
{0.8, 0.9, 0.9, 0.7} and {0.8, 0.9, 0.9, 0.9, 0.9}
respectively. Then, the membership degrees
on the paths from node s to node STRO2, v1
and v2 are {0.9, 0.8},{0.7},{0.9, 0.9}, and
P(s) = Ppath(s) × Plocal(s) = 0.8 × 0.9 × 0.9 ×
0.8 × 0.8 × 0.9 × 0.7 × 0.9 × 0.9 = 0.21.
If keyword[j]1 is {[0.9][0.9][0.7][0.7][0.7]},
for nodes r(STRO2) ∈ {M1, M2}, r(STRO3)
∈ {M3, M4, M5} which have been visited, if
r(STRO2) and r(STRO3) satisfy the condition:
Ppath (r(STRO2)) = 0.9, Ppath (r(STRO3)) = 0.7,
LCA (r(STRO2), r(STRO3)) = s, then nodes
r(STRO2) and r(STRO3) are keyword nodes in

s
subT and the Plocal(s) can be calculated with the

method shown in Subsection 3.5. Finally, we
return all the matching result object nodes and
their possibilities (r(RO1), ξ1), (r(RO2), ξ2), …,
(r(ROn), ξn) as query results.

5. Experiments

5.1. Experimental Setting

The algorithm proposed in this paper is imple-
mented with Java on a laptop with 2.13 GHz
Intel core i3 with 3 GB memory on Windows
7 system. For testing our algorithm we use a
real dataset DBLP [25] and a synthetic dataset
XMark [26] . We choose the two data sets since
they represent two important characteristics of
the data: DBLP is a relatively shallow dataset of
a large size; XMark is a balanced dataset with
complex structure, varied depth and varied size.
For DBLP, we generate five datasets D1, D2,
D3, D4, D5 sized of 50 M, 70 M, 90 M, 110 M
and 130 M, respectively. For XMark, we also
generate five datasets X1, X2, X3, X4, X5 sized
of 20 M, 40 M, 60 M, 80 M and 100 M, re-
spectively. For each dataset, we use the random
fuzzy information generation method used in
[8] to transform the crisp XML documents into
fuzzy XML documents. The new generated

fuzzy XML documents are represented by FD1,
FD2, FD3, FD4, FD5 and FX1, FX2, FX3, FX4,
and FX5, respectively. We pre-process the fuzzy
XML documents with the object identification
operation and identify the object nodes con-
tained in the documents. And the Dewey codes
of the object nodes are recorded into the list LO.

5.2. Evaluation of Query Quality

Precision, recall and F-measure are the evalu-
ation standards for the quality of a query tech-
nique of accuracy and completeness which are
borrowed from the IR literature. Precision mea-
sures accuracy, indicating the fraction of results
in the approximate answer that are correct, and
recall measures completeness, indicating that
the fraction of all correct results actually cap-
tured in the approximate answer.

Table 1. Keyword query examples for datasets.

ID keyword query ID keyword query

DQ1
XML, model,

Algebra XQ1
Buyer,

open_auction

DQ2
Relational, model,

fuzzy, query XQ2 person40, phone

DQ3
Information,

retrieval XQ3
America, item,

address

DQ4 Fuzzy, XML XQ4
buyer, ship,
Ed, phone

DQ5
XML, twig,

query XQ5
United States,
close_auction

For keywords shown in Table 1, we build the
structure query statement for each keyword
query with the algorithm LTwig [8]. LTwig is a
holistic algorithm which can efficiently evalu-
ate twig queries over the fuzzy XML document,
and we get a set of query results Ri and their
possibilities λi are no less than the given thresh-
old U for each query from the LTwig algorithm.
We obtain the matching result object nodes
r(ROi) and their possibilities ξi from the algo-
rithm ROstack. Given a keyword query Q and
its corresponding transformed LTwig query LQ,
the results set of Q (the answers of the keyword
query Q), denoted as RP, are the approximate
results. And the results set of LQ (the answers
of the transformed LTwig query), denoted as
RA, are the accurate results. Precision and recall
of an algorithm are defined as follows. Preci-

sion of an algorithm is the ratio between |RA ∩
RP| and |RP|, and recall is the ratio between |RA
∩ RP| and |RA|. That is, pprecision = |RA ∩ RP| / |RP|,
precall = |RA ∩ RP| / |RA|. Let f denote the F-mea-

sure, then
2 precision recall

precision recall

p p
f

p p
× ×

=
+

, when f ≠ 0,

precall ≠ 0.
We run keyword queries DQ1–DQ5 over datasets
FD1 and FD3, and keyword queries XQ1–XQ5
over datasets FX2 and FX4. The results of preci-
sion and recall of algorithm ROstack on different
datasets are shown in Figure 5. The experimental
results show that for different keyword queries
on different fuzzy XML datasets, algorithm RO-
stack has high precision and recall. On the FD
datasets, the average precision is 0.963, and the
average recall is 0.96. On the FX datasets, the av-
erage precision is 0.927, and the average recall is
0.933. With our approach proposed, we consider

0
0.1

0.2
0.3

0.4
0.5
0.6

0.7
0.8

0.9
1

DQ1 DQ2 DQ3 DQ4 DQ5

llacer
&

noisicerp

precision recall

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

DQ1 DQ2 DQ3 DQ4 DQ5

llacer
&

noisicerp

precision recall

(a) precision and recall on FD1 (b) precision and recall on FD3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

XQ1 XQ2 XQ3 XQ4 XQ5

llacer
&

noisicerp

precision recall

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

XQ1 XQ2 XQ3 XQ4 XQ5

llacer
&

noisicerp

precision recall

(c) precision and recall on FX2 (d) precision and recall on FX4

Figure 5. The precision and recall of algorithm ROstack on datasets FD1, FD3, FX2 and FX4.

not only the AND semantics among keywords,
which can return the root nodes of minimum re-
sult object trees and their possibilities matching
all keywords, but also the OR semantics among
keywords, which can return the root nodes of the
result object trees and their possibilities match-
ing partial keywords. The answers obtained with
the object-oriented query semantics are more
meaningful at the object-level and more com-
plete.
Table 2 demonstrates the average F-measure on
different datasets. On the fuzzy XML datasets
FD, the F-measure of ROstack reaches 96%,
and on the fuzzy XML datasets FX, the F-mea-
sure of ROstack reaches 92%.

Table 2. F-measure.

F-measure FD FX
ROstack 96% 92%

306 307Ting Li An Object-Oriented Approach of Keyword Querying over Fuzzy XML

can obtain the membership degrees on the paths
from node s to keyword nodes, then record s
into list LL{s, σj, τ}, and get Plocal(s) by the cal-
culation method shown in Subsection 3.5. For
example, for a SLCA object node s and its key-
word nodes STRO2, v1, v2, if the Plocal(STRO2)
= 0.8, the membership degrees on the paths
from the root node r to node s, STRO2, v1 and
v2 are {0.8, 0.9, 0.9}, {0.8, 0.9, 0.9, 0.9, 0.8},
{0.8, 0.9, 0.9, 0.7} and {0.8, 0.9, 0.9, 0.9, 0.9}
respectively. Then, the membership degrees
on the paths from node s to node STRO2, v1
and v2 are {0.9, 0.8},{0.7},{0.9, 0.9}, and
P(s) = Ppath(s) × Plocal(s) = 0.8 × 0.9 × 0.9 ×
0.8 × 0.8 × 0.9 × 0.7 × 0.9 × 0.9 = 0.21.
If keyword[j]1 is {[0.9][0.9][0.7][0.7][0.7]},
for nodes r(STRO2) ∈ {M1, M2}, r(STRO3)
∈ {M3, M4, M5} which have been visited, if
r(STRO2) and r(STRO3) satisfy the condition:
Ppath (r(STRO2)) = 0.9, Ppath (r(STRO3)) = 0.7,
LCA (r(STRO2), r(STRO3)) = s, then nodes
r(STRO2) and r(STRO3) are keyword nodes in

s
subT and the Plocal(s) can be calculated with the

method shown in Subsection 3.5. Finally, we
return all the matching result object nodes and
their possibilities (r(RO1), ξ1), (r(RO2), ξ2), …,
(r(ROn), ξn) as query results.

5. Experiments

5.1. Experimental Setting

The algorithm proposed in this paper is imple-
mented with Java on a laptop with 2.13 GHz
Intel core i3 with 3 GB memory on Windows
7 system. For testing our algorithm we use a
real dataset DBLP [25] and a synthetic dataset
XMark [26] . We choose the two data sets since
they represent two important characteristics of
the data: DBLP is a relatively shallow dataset of
a large size; XMark is a balanced dataset with
complex structure, varied depth and varied size.
For DBLP, we generate five datasets D1, D2,
D3, D4, D5 sized of 50 M, 70 M, 90 M, 110 M
and 130 M, respectively. For XMark, we also
generate five datasets X1, X2, X3, X4, X5 sized
of 20 M, 40 M, 60 M, 80 M and 100 M, re-
spectively. For each dataset, we use the random
fuzzy information generation method used in
[8] to transform the crisp XML documents into
fuzzy XML documents. The new generated

fuzzy XML documents are represented by FD1,
FD2, FD3, FD4, FD5 and FX1, FX2, FX3, FX4,
and FX5, respectively. We pre-process the fuzzy
XML documents with the object identification
operation and identify the object nodes con-
tained in the documents. And the Dewey codes
of the object nodes are recorded into the list LO.

5.2. Evaluation of Query Quality

Precision, recall and F-measure are the evalu-
ation standards for the quality of a query tech-
nique of accuracy and completeness which are
borrowed from the IR literature. Precision mea-
sures accuracy, indicating the fraction of results
in the approximate answer that are correct, and
recall measures completeness, indicating that
the fraction of all correct results actually cap-
tured in the approximate answer.

Table 1. Keyword query examples for datasets.

ID keyword query ID keyword query

DQ1
XML, model,

Algebra XQ1
Buyer,

open_auction

DQ2
Relational, model,

fuzzy, query XQ2 person40, phone

DQ3
Information,

retrieval XQ3
America, item,

address

DQ4 Fuzzy, XML XQ4
buyer, ship,
Ed, phone

DQ5
XML, twig,

query XQ5
United States,
close_auction

For keywords shown in Table 1, we build the
structure query statement for each keyword
query with the algorithm LTwig [8]. LTwig is a
holistic algorithm which can efficiently evalu-
ate twig queries over the fuzzy XML document,
and we get a set of query results Ri and their
possibilities λi are no less than the given thresh-
old U for each query from the LTwig algorithm.
We obtain the matching result object nodes
r(ROi) and their possibilities ξi from the algo-
rithm ROstack. Given a keyword query Q and
its corresponding transformed LTwig query LQ,
the results set of Q (the answers of the keyword
query Q), denoted as RP, are the approximate
results. And the results set of LQ (the answers
of the transformed LTwig query), denoted as
RA, are the accurate results. Precision and recall
of an algorithm are defined as follows. Preci-

sion of an algorithm is the ratio between |RA ∩
RP| and |RP|, and recall is the ratio between |RA
∩ RP| and |RA|. That is, pprecision = |RA ∩ RP| / |RP|,
precall = |RA ∩ RP| / |RA|. Let f denote the F-mea-

sure, then
2 precision recall

precision recall

p p
f

p p
× ×

=
+

, when f ≠ 0,

precall ≠ 0.
We run keyword queries DQ1–DQ5 over datasets
FD1 and FD3, and keyword queries XQ1–XQ5
over datasets FX2 and FX4. The results of preci-
sion and recall of algorithm ROstack on different
datasets are shown in Figure 5. The experimental
results show that for different keyword queries
on different fuzzy XML datasets, algorithm RO-
stack has high precision and recall. On the FD
datasets, the average precision is 0.963, and the
average recall is 0.96. On the FX datasets, the av-
erage precision is 0.927, and the average recall is
0.933. With our approach proposed, we consider

0
0.1

0.2
0.3

0.4
0.5
0.6

0.7
0.8

0.9
1

DQ1 DQ2 DQ3 DQ4 DQ5

llacer
&

noisicerp

precision recall

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

DQ1 DQ2 DQ3 DQ4 DQ5

llacer
&

noisicerp

precision recall

(a) precision and recall on FD1 (b) precision and recall on FD3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

XQ1 XQ2 XQ3 XQ4 XQ5

llacer
&

noisicerp

precision recall

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

XQ1 XQ2 XQ3 XQ4 XQ5

llacer
&

noisicerp

precision recall

(c) precision and recall on FX2 (d) precision and recall on FX4

Figure 5. The precision and recall of algorithm ROstack on datasets FD1, FD3, FX2 and FX4.

not only the AND semantics among keywords,
which can return the root nodes of minimum re-
sult object trees and their possibilities matching
all keywords, but also the OR semantics among
keywords, which can return the root nodes of the
result object trees and their possibilities match-
ing partial keywords. The answers obtained with
the object-oriented query semantics are more
meaningful at the object-level and more com-
plete.
Table 2 demonstrates the average F-measure on
different datasets. On the fuzzy XML datasets
FD, the F-measure of ROstack reaches 96%,
and on the fuzzy XML datasets FX, the F-mea-
sure of ROstack reaches 92%.

Table 2. F-measure.

F-measure FD FX
ROstack 96% 92%

308 309Ting Li An Object-Oriented Approach of Keyword Querying over Fuzzy XML

6. Conclusion

In this paper, we propose a semantics of ob-
ject-oriented keyword querying over fuzzy
XML. By introducing the concept object tree,
we can get the matching result object trees
which are the minimum result object trees ROM
containing all keywords in their tree structures,
and result object trees ROP containing partial
keywords in their tree structures. The root nodes
of ROM and ROP, which are r(ROM) and r(ROP),
together with their possibilities are returned as
the computational results. Based on our key-
word query semantics, we can not only get the
query results matching all keywords at the ob-
ject level, but also the query results matching
partial keywords at the object level.
As the number of results returned is enormous
and disordered, it is difficult for users to filter
the useful information quickly and effectively
from the large number of results. In the future,
we will devote our effort to the issue of filter-
ing and ranking the query results as well as to
the issue of query optimization to obtain higher
quality query results.

Acknowledgments

The work is supported by the National Natural
Science Foundation of China (61370075).

References

[1] A. Nierman and H. V. Jagadish, "ProTDB: Prob-
abilistic data in XML", in Proc. 28th Int. Conf.
on Very Large Data Bases, Hong Kong, 2002,
pp. 646–657.

[2] E. Hung et al., "PXML: a probabilistic semistruc-
tured data model and algebra", in Proc. 19th Int.
Conf. on Data Engineering, Bangalore, 2003,
pp. 467–478.
http://dx.doi.org/10.1109/ICDE.2003.1260814

[3] B. Kimelfeld et al., "Query efficiency in proba-
bilistic XML models", in Proc. 2008 ACM SIG-
MOD Int. Conf. on Management of Data, Van-
couver, 2008, pp. 701–714.
http://dx.doi.org/10.1145/1376616.1376687

[4] C. Zhang et al., "Keywords Filtering over Prob-
abilistic XML Data", in Proc. 14th Asia-Pacific
Web Conf., Kunming, 2012, pp. 183–194.
http://dx.doi.org/10.1007/978-3-642-29253-8_16

[5] J. Li et al., "Quasi-SLCA Based Keyword Query
Processing Over Probabilistic XML Data", IEEE
Transactions on Knowledge and Data Engineer-
ing, vol. 26, pp. 957–969, Apr., 2014.
http://dx.doi.org/10.1109/TKDE.2013.67

[6] G. Panić et al., "Fuzzy XML and prioritized
fuzzy XQuery with implementation", Journal
of Intelligent & Fuzzy Systems, vol. 26, no. 1,
pp. 303–316, 2014.
http://dx.doi.org/10.3233/IFS-120739

[7] Z. M. Ma and L. Yan, "Fuzzy XML data mod-
eling with the UML and relational data models",
Data & Knowledge Engineering, vol. 63, no. 3,
pp. 972–996, 2007.
http://dx.doi.org/10.1016/j.datak.2007.06.003

[8] J. Liu et al., "Efficient processing of twig query
with compound predicates in fuzzy XML", Fuzzy
sets and systems, vol. 229, pp. 33–53, 2013.
http://dx.doi.org/10.1016/j.fss.2012.11.004

[9] J. Liu et al., "Dynamically Querying Possibilistic
XML Data", Information Sciences, vol. 261, pp.
70–88, 2014.
http://dx.doi.org/10.1016/j.ins.2013.11.011

[10] Z. M. Ma et al., "Matching twigs in fuzzy XML",
Information Sciences, vol. 181, no. 1, pp. 184–200,
2011.
http://dx.doi.org/10.1016/j.ins.2010.09.001

[11] Y. Xu and Y. Papakonstantinou, "Efficient Key-
word Search for Smallest LCAs in XML Data-
bases", in Proc. 2005 ACM SIGMOD Int. Conf.
on Management of Data, Baltimore, 2005,
pp. 527–538.
http://dx.doi.org/10.1145/1066157.1066217

[12] L. Guo et al., "XRANK: Ranked keyword search
over XML documents", in Proc. 2003 ACM SIG-
MOD Int. Conf. on Management of Data, San
Diego, 2003. pp. 16–27.
http://dx.doi.org/10.1145/872757.872762

[13] Y. Xu and Y. Papakonstantinou, "Efficient LCA
Based Keyword Search in XML data", in Proc.
11th Int. Conf. on Extending Database Technol-
ogy: Advances in database technology, Nantes,
2008, pp. 535–546.
http://dx.doi.org/10.1145/1353343.1353408

[14] G. Li et al., "Efficient Keyword Search for Valu-
able LCAs over XML Documents", in Proc. 16th
ACM Conf. on Conf. on Information and Knowl-
edge Management, Lisbon, 2007, pp. 31–40.
http://dx.doi.org/10.1145/1321440.1321447

[15] G. Bhalotia et al., "Keyword Searching and
Browsing in Databases Using BANKS", in Proc.
18th Int. Conf. on Data Engineering, San Jose,
2002, pp. 431–440.
http://dx.doi.org/10.1109/ICDE.2002.994756

[16] V. Hristidis et al., "Keyword Proximity Search in
XML Trees", IEEE Transactions on Knowledge
and Data Engineering, vol. 18, pp. 525–539,
Apr., 2006.
http://dx.doi.org/10.1109/TKDE.2006.1599390

[17] P. Smets, "Imperfect information: impreci-
sion-uncertainty", in Uncertainty Management in
Information Systems: from Needs to Solutions,
Dordrecht, The Netherlands: Kluwer Academic
Publishers, pp. 225–254, 1997.

[18] L. A. Zadeh, "Fuzzy sets as a basis for a theory
of possibility", Fuzzy Sets and Systems, vol. 1,
pp. 3–28, 1978.

[19] L. A. Zadeh, "Similarity relations and fuzzy or-
derings", Information Sciences, vol. 3, no. 2,
pp. 177–200, 1971.
http://dx.doi.org/10.1016/S0020-0255(71)80005-1

[20] V. Hristidis et al., "Keyword proximity search on
XML graphs", in Proc. 19th Int. Conf. on Data
Engineering, Bangalore, 2003, pp. 367–378.
http://dx.doi.org/10.1109/ICDE.2003.1260806

[21] Z. M. Ma et al., "Extending object-oriented data-
bases for fuzzy information modeling", Informa-
tion Systems, vol. 29, no. 5, pp. 421–435, 2004.
http://dx.doi.org/10.1016/S0306-4379(03)00038-3

[22] J. Marini, Document Object Model, New York:
McGraw-Hill, Inc., 2002.

[23] Z. Liu and Y. Chen, "Identifying meaningful re-
turn information for XML keyword search", in
Proc. 2007 ACM SIGMOD Int. Conf. on Manage-
ment of Data, Beijing, 2007, pp. 329–340.
http://dx.doi.org/10.1145/1247480.1247518

[24] Dewey Decimal Classification [Online]. Avail-
able: http://www.oclc.org/dewey

[25] DBLP Bibliography [Online]. Available:
http://dblp.uni-trier.de/xml/

[26] XMARK the XML-benchmark Project [Online].
Available:
http://www.monetdb.cwi.nl/xml/index.html

Received: November 2015
Revised: June 2016

Accepted: July 2016

Contact address:
Ting Li

School of Computer Science and Engineering
Northeastern University

Shenyang 110819, China
 e-mail: kitehyabc@163.com

Ting Li is currently a PhD candidate at the School of Computer Science
and Engineering, Northeastern University, China. Her research inter-
ests include XML data management, keyword query processing and
query optimization.

http://dx.doi.org/10.1109/ICDE.2003.1260814
http://dx.doi.org/10.1145/1376616.1376687
http://dx.doi.org/10.1007/978-3-642-29253-8_16
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://dx.doi.org/10.1109/TKDE.2013.67
http://dx.doi.org/10.3233/IFS-120739
http://dx.doi.org/10.1016/j.datak.2007.06.003
http://dx.doi.org/10.1016/j.fss.2012.11.004
http://dx.doi.org/10.1016/j.ins.2013.11.011
http://dx.doi.org/10.1016/j.ins.2010.09.001
http://dx.doi.org/10.1145/1066157.1066217
http://dx.doi.org/10.1145/872757.872762
http://dx.doi.org/10.1145/1353343.1353408
http://dx.doi.org/10.1145/1321440.1321447
http://dx.doi.org/10.1109/ICDE.2002.994756
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://dx.doi.org/10.1109/TKDE.2006.1599390
http://dx.doi.org/10.1016/S0020-0255(71)80005-1
http://dx.doi.org/10.1109/ICDE.2003.1260806
http://dx.doi.org/10.1016/S0306-4379(03)00038-3
http://dx.doi.org/10.1145/1247480.1247518
http://www.oclc.org/dewey
http://dblp.uni-trier.de/xml/
http://www.monetdb.cwi.nl/xml/index.html

308 309Ting Li An Object-Oriented Approach of Keyword Querying over Fuzzy XML

6. Conclusion

In this paper, we propose a semantics of ob-
ject-oriented keyword querying over fuzzy
XML. By introducing the concept object tree,
we can get the matching result object trees
which are the minimum result object trees ROM
containing all keywords in their tree structures,
and result object trees ROP containing partial
keywords in their tree structures. The root nodes
of ROM and ROP, which are r(ROM) and r(ROP),
together with their possibilities are returned as
the computational results. Based on our key-
word query semantics, we can not only get the
query results matching all keywords at the ob-
ject level, but also the query results matching
partial keywords at the object level.
As the number of results returned is enormous
and disordered, it is difficult for users to filter
the useful information quickly and effectively
from the large number of results. In the future,
we will devote our effort to the issue of filter-
ing and ranking the query results as well as to
the issue of query optimization to obtain higher
quality query results.

Acknowledgments

The work is supported by the National Natural
Science Foundation of China (61370075).

References

[1] A. Nierman and H. V. Jagadish, "ProTDB: Prob-
abilistic data in XML", in Proc. 28th Int. Conf.
on Very Large Data Bases, Hong Kong, 2002,
pp. 646–657.

[2] E. Hung et al., "PXML: a probabilistic semistruc-
tured data model and algebra", in Proc. 19th Int.
Conf. on Data Engineering, Bangalore, 2003,
pp. 467–478.
http://dx.doi.org/10.1109/ICDE.2003.1260814

[3] B. Kimelfeld et al., "Query efficiency in proba-
bilistic XML models", in Proc. 2008 ACM SIG-
MOD Int. Conf. on Management of Data, Van-
couver, 2008, pp. 701–714.
http://dx.doi.org/10.1145/1376616.1376687

[4] C. Zhang et al., "Keywords Filtering over Prob-
abilistic XML Data", in Proc. 14th Asia-Pacific
Web Conf., Kunming, 2012, pp. 183–194.
http://dx.doi.org/10.1007/978-3-642-29253-8_16

[5] J. Li et al., "Quasi-SLCA Based Keyword Query
Processing Over Probabilistic XML Data", IEEE
Transactions on Knowledge and Data Engineer-
ing, vol. 26, pp. 957–969, Apr., 2014.
http://dx.doi.org/10.1109/TKDE.2013.67

[6] G. Panić et al., "Fuzzy XML and prioritized
fuzzy XQuery with implementation", Journal
of Intelligent & Fuzzy Systems, vol. 26, no. 1,
pp. 303–316, 2014.
http://dx.doi.org/10.3233/IFS-120739

[7] Z. M. Ma and L. Yan, "Fuzzy XML data mod-
eling with the UML and relational data models",
Data & Knowledge Engineering, vol. 63, no. 3,
pp. 972–996, 2007.
http://dx.doi.org/10.1016/j.datak.2007.06.003

[8] J. Liu et al., "Efficient processing of twig query
with compound predicates in fuzzy XML", Fuzzy
sets and systems, vol. 229, pp. 33–53, 2013.
http://dx.doi.org/10.1016/j.fss.2012.11.004

[9] J. Liu et al., "Dynamically Querying Possibilistic
XML Data", Information Sciences, vol. 261, pp.
70–88, 2014.
http://dx.doi.org/10.1016/j.ins.2013.11.011

[10] Z. M. Ma et al., "Matching twigs in fuzzy XML",
Information Sciences, vol. 181, no. 1, pp. 184–200,
2011.
http://dx.doi.org/10.1016/j.ins.2010.09.001

[11] Y. Xu and Y. Papakonstantinou, "Efficient Key-
word Search for Smallest LCAs in XML Data-
bases", in Proc. 2005 ACM SIGMOD Int. Conf.
on Management of Data, Baltimore, 2005,
pp. 527–538.
http://dx.doi.org/10.1145/1066157.1066217

[12] L. Guo et al., "XRANK: Ranked keyword search
over XML documents", in Proc. 2003 ACM SIG-
MOD Int. Conf. on Management of Data, San
Diego, 2003. pp. 16–27.
http://dx.doi.org/10.1145/872757.872762

[13] Y. Xu and Y. Papakonstantinou, "Efficient LCA
Based Keyword Search in XML data", in Proc.
11th Int. Conf. on Extending Database Technol-
ogy: Advances in database technology, Nantes,
2008, pp. 535–546.
http://dx.doi.org/10.1145/1353343.1353408

[14] G. Li et al., "Efficient Keyword Search for Valu-
able LCAs over XML Documents", in Proc. 16th
ACM Conf. on Conf. on Information and Knowl-
edge Management, Lisbon, 2007, pp. 31–40.
http://dx.doi.org/10.1145/1321440.1321447

[15] G. Bhalotia et al., "Keyword Searching and
Browsing in Databases Using BANKS", in Proc.
18th Int. Conf. on Data Engineering, San Jose,
2002, pp. 431–440.
http://dx.doi.org/10.1109/ICDE.2002.994756

[16] V. Hristidis et al., "Keyword Proximity Search in
XML Trees", IEEE Transactions on Knowledge
and Data Engineering, vol. 18, pp. 525–539,
Apr., 2006.
http://dx.doi.org/10.1109/TKDE.2006.1599390

[17] P. Smets, "Imperfect information: impreci-
sion-uncertainty", in Uncertainty Management in
Information Systems: from Needs to Solutions,
Dordrecht, The Netherlands: Kluwer Academic
Publishers, pp. 225–254, 1997.

[18] L. A. Zadeh, "Fuzzy sets as a basis for a theory
of possibility", Fuzzy Sets and Systems, vol. 1,
pp. 3–28, 1978.

[19] L. A. Zadeh, "Similarity relations and fuzzy or-
derings", Information Sciences, vol. 3, no. 2,
pp. 177–200, 1971.
http://dx.doi.org/10.1016/S0020-0255(71)80005-1

[20] V. Hristidis et al., "Keyword proximity search on
XML graphs", in Proc. 19th Int. Conf. on Data
Engineering, Bangalore, 2003, pp. 367–378.
http://dx.doi.org/10.1109/ICDE.2003.1260806

[21] Z. M. Ma et al., "Extending object-oriented data-
bases for fuzzy information modeling", Informa-
tion Systems, vol. 29, no. 5, pp. 421–435, 2004.
http://dx.doi.org/10.1016/S0306-4379(03)00038-3

[22] J. Marini, Document Object Model, New York:
McGraw-Hill, Inc., 2002.

[23] Z. Liu and Y. Chen, "Identifying meaningful re-
turn information for XML keyword search", in
Proc. 2007 ACM SIGMOD Int. Conf. on Manage-
ment of Data, Beijing, 2007, pp. 329–340.
http://dx.doi.org/10.1145/1247480.1247518

[24] Dewey Decimal Classification [Online]. Avail-
able: http://www.oclc.org/dewey

[25] DBLP Bibliography [Online]. Available:
http://dblp.uni-trier.de/xml/

[26] XMARK the XML-benchmark Project [Online].
Available:
http://www.monetdb.cwi.nl/xml/index.html

Received: November 2015
Revised: June 2016

Accepted: July 2016

Contact address:
Ting Li

School of Computer Science and Engineering
Northeastern University

Shenyang 110819, China
 e-mail: kitehyabc@163.com

Ting Li is currently a PhD candidate at the School of Computer Science
and Engineering, Northeastern University, China. Her research inter-
ests include XML data management, keyword query processing and
query optimization.

http://dx.doi.org/10.1109/ICDE.2003.1260814
http://dx.doi.org/10.1145/1376616.1376687
http://dx.doi.org/10.1007/978-3-642-29253-8_16
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://dx.doi.org/10.1109/TKDE.2013.67
http://dx.doi.org/10.3233/IFS-120739
http://dx.doi.org/10.1016/j.datak.2007.06.003
http://dx.doi.org/10.1016/j.fss.2012.11.004
http://dx.doi.org/10.1016/j.ins.2013.11.011
http://dx.doi.org/10.1016/j.ins.2010.09.001
http://dx.doi.org/10.1145/1066157.1066217
http://dx.doi.org/10.1145/872757.872762
http://dx.doi.org/10.1145/1353343.1353408
http://dx.doi.org/10.1145/1321440.1321447
http://dx.doi.org/10.1109/ICDE.2002.994756
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://dx.doi.org/10.1109/TKDE.2006.1599390
http://dx.doi.org/10.1016/S0020-0255(71)80005-1
http://dx.doi.org/10.1109/ICDE.2003.1260806
http://dx.doi.org/10.1016/S0306-4379(03)00038-3
http://dx.doi.org/10.1145/1247480.1247518
http://www.oclc.org/dewey
http://dblp.uni-trier.de/xml/
http://www.monetdb.cwi.nl/xml/index.html

 HistoryItem_V1
 Shuffle

 Create a new document
 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 D:20161011145518

 1
 1
 1
 1 1
 622
 261
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1

 HistoryList_V1
 qi2base

