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As the fuzzy data management has become one of the 
main research topics and directions, the question of 
how to obtain the useful information by means of key-
word query from fuzzy XML documents is becoming 
a subject of an increasing needed investigation. Con-
sidering the keyword query methods on crisp XML 
documents, smallest lowest common ancestor (SLCA) 
semantics is one of the most widely accepted seman-
tics. When users propose the keyword query on fuzzy 
XML documents with the SLCA semantics, the query 
results are always incomplate, with low precision, and 
with no possibilities values returned. Most of keyword 
query semantics on XML documents only consider 
query results matching all keywords, yet users may 
also be interested in the query results matching par-
tial keywords. To overcome these limitations, in this 
paper, we investigate how to obtain more compre-
hensive and meaningful results of keyword querying 
on fuzzy XML documents. We propose a semantics 
of object-oriented keyword querying on fuzzy XML 
documents. First, we introduce the concept of "object 
tree", analyze different types of matching result ob-
ject trees and find the "minimum result object trees" 
which contain all keywords and "result object trees" 
which contain partial keywords. Then an object-ori-
ented keyword query algorithm ROstack is proposed 
to obtain the root nodes of these matching result object 
trees, together with their possibilities. At last, exper-
iments are conducted to verify the effectiveness and 
efficiency of our proposed algorithm.
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1. Introduction

Large quantities of fuzzy data appear in vari-
ous real-world application domains, and how 
to manage the fuzzy data becomes more and 

more important. Extensible Markup Language 
(XML) is rapidly emerging and has been the de 
facto standard for representing and exchang-
ing data on the Web. Also, how to manage the 
fuzzy data stored with XML becomes an impor-
tant research topic. Keyword query is one of the 
most effective paradigms for information dis-
covery, and it is a user-friendly query method. 
Users can obtain the corresponding query re-
sults only by proposing one keyword or sev-
eral keywords, without understanding or mas-
tering the complex structure query languages 
(such as XQuery) and the document’s schema. 
Therefore, the study of keyword querying on 
fuzzy XML documents becomes an important 
research issue. 
Recently, many researchers have devoted their 
efforts to the representations and query methods 
of uncertainty data in the forms of XML. For the 
probabilistic XML data, the data models [1], [2] 
and query methods [3], [4], [5] on probabilistic 
XML documents have been studied. And for the 
fuzzy XML data, the researchers have also pro-
posed some models [6], [7] for the representation 
of fuzzy information and query methods [8], [9], 
[10] on fuzzy XML documents. Ma and Yan [7] 
propose a fuzzy XML data model by introduc-
ing the possibility distributions to represent two 
types of fuzziness. Panić et al. [6] combine in-
definiteness in the values of XML and indefinite-
ness in the structure of XML into a single fuzzy 
XML extension. Liu et al. [8] propose a holistic 
twig matching algorithm LTwig to evaluate twig 
queries with AND, OR and NOT connectives in 
fuzzy XML. While for the research of keyword 
query methods on uncertainty XML documents, 
the existing achievements are mainly focused 
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on the keyword query methods on probabilistic 
XML documents [4], [5].
Many keyword query semantics and methods 
have been proposed for the crisp XML docu-
ments, and the existing keyword query methods 
are mainly based on the Lowest Common An-
cestor (LCAs) semantics and their variants 
(e.g., SLCA, ELCA and VLCA). Xu and Pa-
pakonstantinou [11] propose the Smallest Low-
est Common Ancestor (SLCA) semantics, and a 
SLCA of a set keywords is a lowest node whose 
subtree is the smallest tree containing all key-
words. A smallest answer subtree of a set of 
keywords is an answer subtree such that none 
of its subtrees is an answer subtree. Also, two 
algorithms of Indexed Lookup Eager and Scan 
Eager are proposed for searching the SLCA se-
mantic results. The Exclusive Lowest Common 
Ancestor (ELCA) semantics is proposed by 
Guo et al. [12], and an effective algorithm, In-
dexed Stack, for the keyword queries with 
ELCA semantics is proposed accordingly in 
[13]. Li et al. [14] introduce the notion of  
Valuable Lowest Common Ancestor (VLCA) to 
improve the accuracy and completeness of key-
word query. In addition, some researchers focus 
their attentions on the query problem of return-
ing paths from each LCA (or its variants) node 
to its descendant nodes as the keyword query 
results which is named "path return query" [15], 
[16]. 
Among these keyword query semantics, SLCA 
semantics is the most widely accepted one. Let 
us consider the keyword query over the fuzzy 
XML document with the SLCA semantics. Fig-
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Figure 1.  A tree structure of fuzzy XML document.

ure 1 shows a tree structure of a fuzzy XML 
document, node a represents the node which 
directly contains a. Node zi is an attribute node 
and xj is the value of the attribute (e.g., x4 is the 
value of attribute z5). When users propose key-
word queries over fuzzy XML document with 
the traditional SLCA semantics, they face sev-
eral problems. 
(1) For example, when we propose the key-

word query {x1, x2} on this tree, the query 
result nodes will be the node Dist (con-
junctive) and node c under the traditional 
SLCA semantics. However, the result 
node Dist is a fuzzy node and should not 
become the result (the information in the 
subtree which is rooted at the fuzzy node 
is incomplete). 

(2) For the users, they may not only be inter-
ested with the results matching all key-
words, but also the results matching par-
tial keywords, such as node h and node g. 
Node h can be a result node matching key-
word x1, as node h has an attribute z1 and z1 
has a value x1. Node g can be a result node 
matching keyword x2, as node g has an at-
tribute z2 and z2 has a value x2. 

(3) As the fuzzy XML document contains 
fuzzy information which is represented by 
the membership degrees associated with 
elements and the possibility distributions 
among the values of attributes, a SLCA 
result should be given a possibility value 
with the consideration of the fuzzy infor-
mation (membership degrees) on the path 

The rest of the paper is organized as follows. 
We first introduce the preliminary knowledge 
on fuzzy sets, possibility distributions and the 
fuzzy XML data model in Section 2. In Section 
3, we introduce the concept of "object tree", an-
alyze the relationship between two connected 
object trees, propose the semantics of ob-
ject-oriented keyword querying on fuzzy XML 
and give the methods for the possibility com-
putation of matching result object nodes. The 
algorithm ROstack for generating the matching 
result object nodes and their possibilities is in-
troduced in Section 4. The experimental results 
are reported in Section 5. Section 6 concludes 
the paper and outlooks the future work.

2. Preliminaries 

2.1. Fuzzy Sets and Possibility 
Distributions 

In real-world applications, the information is 
often imperfect (e.g., ambiguous, uncertain and 
imprecise). In order to reflect this characteris-
tic, researchers have introduced different kinds 
of imperfect information [17] into the database 
system. Imprecision, inconsistency and uncer-
tainty are three major kinds of imperfect infor-
mation. To model the imperfect information in 
database, many approaches are proposed, and 
they can be grouped into two large catego-
ries: the symbolic and quantitative models [7]. 
Fuzzy sets [18] have been widely used for the 
quantification of imprecision and uncertainty.
Let Η be universe of discourse and F a fuzzy 
set in Η. A membership function μF: Η → [0, 1] 
is defined for F, where μF (ηi), for each ηi ∈ Η, 
denotes the membership degree of ηi in the 
fuzzy set F. Then, the fuzzy set F is described 
as follows:

F = {μF(η1) / η1, μF(η2) / η2, …, μF(ηn) / ηn}    (1)

When Η is not a discrete set, the fuzzy set F can 
be represented by: 

             ( ) /
i

F i in H
F µ η η

∈
= ∫           (2)

In the above two formulas, μF (ηi) is used to rep-

from the root node of the document to the 
keyword nodes which contain keywords in 
the subtree rooted at the SLCA node. Ob-
viously, the traditional SLCA semantics 
and algorithms cannot compute and obtain 
the possibilities of result nodes.

It is shown from the descriptions above that 
it is necessary to obtain the complete and ac-
curate results of keyword querying on fuzzy 
XML, which are the results with their possibili-
ties matching all keywords and the results with 
their possibilities matching partial keywords. 
For this purpose, the object-oriented concept 
is adopted to capture the smallest information 
objects which contain all keywords in the ob-
jects and the information objects which contain 
partial keywords in the objects, and return more 
meaningful results at the object-level. Based 
on this idea, we propose the semantics of ob-
ject-oriented keyword querying on fuzzy XML 
documents. In this paper, firstly, we introduce 
the concept of object tree into the fuzzy XML 
document, and a fuzzy XML tree can be divided 
into many object trees, which can be crisp ob-
ject trees and fuzzy object trees. We analyze 
the types of matching result object trees which 
contain all keywords or partial keywords. Then 
the object-oriented keyword query semantics is 
proposed. The possibility computation meth-
ods for different types of matching result ob-
ject nodes are given in the following. On these 
bases, we propose an effective algorithm ROs-
tack to obtain the matching result object nodes 
and their possibilities.  
We summarize the contributions of this paper 
as follows:

 ● We define the object-oriented keyword 
query semantics on fuzzy XML documents 
through introducing the concept of object 
tree. We analyze the types of matching 
result object trees and give the possibility 
computation methods for different types of 
matching result object nodes.

 ● We propose an algorithm ROstack to find 
the matching result object nodes together 
with their possibilities. It can also find the 
matching result object nodes and their pos-
sibilities by scanning the relevant keyword 
nodes only once.

 ● We conduct experiments to evaluate the 
performance of our algorithm.
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resent the membership degree that ηi belongs to 
fuzzy set F, and when the μF (ηi) is explained to 
be a measure of the possibility that a variable X 
has the value ηi, where X takes values in H, then 
a fuzzy value can be described by a possibility 
distribution ρX.

ρX = {ρX (η1) / η1, ρX (η2) / η2, …, ρX (ηn) / ηn}   (3)

Here, ρX (ηi), ηi ∈ H denotes the possibility that 
ηi is true. Let ρX and F be the possibility distri-
bution representation and the fuzzy set repre-
sentation for a fuzzy value, respectively.
According to the descriptions above, a fuzzy 
value on H can be represented by a fuzzy set 
or a possibility distribution in H. Also, the in-
formation fuzziness can be described by means 
of similarity relations in domain elements, in 
which the fuzziness comes from the similarity 
relations between individual values in a uni-
verse of discourse [19]. There are three formal 
types of representations for fuzzy data: the fuzzy 
set representation, the possibility distribution 
representation, and the similarity relation rep-
resentation. The usual data whose values are all 
crisp values can be regarded as crisp data, and 
the fuzzy data has the fuzzy value which can be 
represented by a fuzzy set, a possibility distribu-
tion or a similarity relation.  The fuzzy set and 
possibility distribution theories have been used 
to extend various database models, and also be 
the basic theories in the fuzzy XML data model 
which will be introduced in the following. 

2.2. Fuzzy XML 

In order to represent fuzzy data in XML, two 
kinds of fuzziness are introduced in [7]: one is 
the fuzziness in elements, in which member-
ship degrees associated with such elements are 
used; the other is the fuzziness in attribute val-
ues of elements, where possibility distributions 
are used to represent such values. There are 
two kinds of interpretation of possibility dis-
tributions: disjunctive possibility distributions 
and conjunctive possibility distributions. In the 
fuzzy XML tree structure, a possibility attribute 
is introduced, denoted as "Poss", which takes a 
value between 0 and 1 and is applied together 
with a fuzzy construct called "Val" to spec-

ify the possibility of a given element. Figure 
2 shows a fragment of fuzzy XML document. 
Considering line 2, <Val Poss = "0.9"> denotes 
that the possibility of department’s name being 
"Computer Science and Technology" is equal to 
0.9. For a crisp element, its membership degree 
expression: <Val Poss = "1.0"> and </Val> is 
omitted. In order to express the possibility dis-
tributions of values of the attributes, a fuzzy 
construct "Dist" is introduced into the model. 
A Dist element has multiple Val elements as 
children, and each Val element is associated 
with a possibility for the value of attribute. The 
Dist element indicates the possibility distribu-
tion of values, which is disjunctive possibility 
distribution or conjunctive possibility distri-
bution. Lines 5-18 in Figure 2 describe a Dist 
construct which makes the expression of two 
possible types of information of William James. 
One expresses (that) the possibility of the in-
formation that William James is an associate 
professor, and the salary is 6000 is equal to 0.8, 
the other expresses (that) the possibility of the 
information that William James is a professor, 
and the salary of 8000 is equal to 0.6. Although 
the possibility distribution in lines 5-18 is for 
leaf nodes in the ancestor-descendant chain, we 
can also have the possibility distributions over 
non-leaf nodes.
There are two kinds of structures to represent 
an XML document, the graph structure and tree 
structure. An XML document with ID/IDREF 
can be modeled with the graph structure [20], 
however, many designers may duplicate the in-
formation instead of using ID/IDREF links so 
that an XML document can be simply repre-
sented as a tree structure. As an XML document 
can be represented as an ordered and directed 
tree structure, a fuzzy XML document can also 
be represented as a tree structure, and the basic 
structure of fuzzy XML model is the "data tree". 
When a fuzzy XML document is represented by 
an ordered and directed tree T, where T = (V, 
E), and V are sets of nodes, E are sets of edges. 
For each v ∈ V, it can be denoted by label (v). 
For two nodes vi and vj, E (vi, vj) represents a 
directed edge from node vi to vj, and the rela-
tionship between vi and vj is father-child rela-
tionship. There are two kinds of nodes in fuzzy 
XML: crisp nodes VC and fuzzy nodes VF. The 
former are the ordinary XML nodes, and the 

fuzzy nodes (Dist or Val nodes) are the descrip-
tion of the fuzzy information over the subsets 
of their children. E is the set of edges of fuzzy 
XML, and it is composed of edges E(C-C), E(C-F), 
E(F-C), E(F-F), which represent edges between 
nodes in VC and nodes in VC, edges between 
nodes in VC and nodes in VF, edges between 
nodes in VF and nodes in VC and edges between 
nodes in VF and nodes in VF, respectively.

1. <course CName = "Computer Composition Principles"> 
2.   <Val Poss = "0.9"> 
3.    <department DName = "Computer Science and Technology">
4.      <teacher TID = "211"> 
5.        <Dist type = "disjunctive"> 
6.          <Val Poss = "0.8"> 
7.             <tname>William James</tname> 
8.             <title>Associate Professor</title> 
9.             <salary>6000</salary> 
10.           < tel>024-83680001</tel> 
11.        </Val> 
12.        <Val Poss = "0.6"> 
13.          <tname>William James</tname> 
14.          <title>Professor</title> 
15.          <salary>8000</salary> 
16.          <tel>024-83680001</tel> 
17.        </Val> 
18.       </Dist> 
19.     </teacher> 
20.     <student SID = "20123056"> 
21.       <age> 
22.        <Dist type = "disjunctive"> 
23.           <Val Poss = "0.8">27</Val> 
24.           <Val Poss = "1.0">30</Val> 
25.           <Val Poss = "0.9">28</Val> 
26.        </Dist> 
27.      </age> 
28.      <email> 
29.         <Dist type = "conjunctive"> 
30.           <Val Poss = "0.65">Tom_Smith@yahoo.com</Val> 
31.           <Val Poss = "0.85">Tom_Smith@hotmail.com</Val>
32.           <Val Poss = "0.75">TSmith@hotmail.com</Val> 
33.         </Dist> 
34.      </email> 
35.     </student> 
36.   </department > 
37.  </Val> 
38. </course>

 Figure 2.  A fragment of fuzzy XML document.

3. Semantics of Object-Oriented 
Keyword Querying over Fuzzy XML

3.1. Object-Oriented Concept

Objects are applied to model real-world entities 
or to abstract concepts [21]. Objects have two 
characteristics: 
(1) an object has attributes and values of the 

attributes; 
(2) an object has a correlation with other ob-

jects. 
The objects having the same properties are gath-
ered into classes, and theoretically, a class can 
be considered from two different viewpoints: 
(1) an extensional class, where the class is de-

fined by the list of its object instances, and 
(2) an intensional class, where the class is de-

fined by a set of attributes and their admis-
sible values.

Based on the object-oriented concept, the ele-
ment, subelement and attributes in XML data 
can be naturally mapped into the objects. Con-
sidering the fuzzy XML data in Figure 2, the 
data in lines 4-19 can be mapped into two ob-
jects: one is object named teacher, has four 
attributes and their values, that are tname = 
"William James", title = "Associate Profes-
sor", salary = "6000", tel = "024-83680001". 
The other is the object also named teacher, has 
four attributes and their values, that are tname 
= "William James", title = "Professor", salary 
= "8000", tel = "024-83680001". The element 
teacher can be regarded as an object node, the 
fuzzy nodes are the description of the fuzzy in-
formation of the children nodes which are be-
low them and can be neglected in the mapping 
phase. Then the descendant elements tname, 
title, salary and tel can be mapped into the at-
tributes. For a group of nodes with no fuzzy 
information, the elements, subelements and at-
tributes can be mapped into the objects natu-
rally. The object here represents a real entity in 
the reality and it has a special attribute or a set 
of attributes for the characteristic. It is noticed 
that, the object-oriented concept here is differ-
ent from the object-oriented concept in DOM 
(Document object model) proposed in [22]. 
DOM is an object model for document and its 
specification represents a significant advance-
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and conjunctive possibility distributions. In the 
fuzzy XML tree structure, a possibility attribute 
is introduced, denoted as "Poss", which takes a 
value between 0 and 1 and is applied together 
with a fuzzy construct called "Val" to spec-

ify the possibility of a given element. Figure 
2 shows a fragment of fuzzy XML document. 
Considering line 2, <Val Poss = "0.9"> denotes 
that the possibility of department’s name being 
"Computer Science and Technology" is equal to 
0.9. For a crisp element, its membership degree 
expression: <Val Poss = "1.0"> and </Val> is 
omitted. In order to express the possibility dis-
tributions of values of the attributes, a fuzzy 
construct "Dist" is introduced into the model. 
A Dist element has multiple Val elements as 
children, and each Val element is associated 
with a possibility for the value of attribute. The 
Dist element indicates the possibility distribu-
tion of values, which is disjunctive possibility 
distribution or conjunctive possibility distri-
bution. Lines 5-18 in Figure 2 describe a Dist 
construct which makes the expression of two 
possible types of information of William James. 
One expresses (that) the possibility of the in-
formation that William James is an associate 
professor, and the salary is 6000 is equal to 0.8, 
the other expresses (that) the possibility of the 
information that William James is a professor, 
and the salary of 8000 is equal to 0.6. Although 
the possibility distribution in lines 5-18 is for 
leaf nodes in the ancestor-descendant chain, we 
can also have the possibility distributions over 
non-leaf nodes.
There are two kinds of structures to represent 
an XML document, the graph structure and tree 
structure. An XML document with ID/IDREF 
can be modeled with the graph structure [20], 
however, many designers may duplicate the in-
formation instead of using ID/IDREF links so 
that an XML document can be simply repre-
sented as a tree structure. As an XML document 
can be represented as an ordered and directed 
tree structure, a fuzzy XML document can also 
be represented as a tree structure, and the basic 
structure of fuzzy XML model is the "data tree". 
When a fuzzy XML document is represented by 
an ordered and directed tree T, where T = (V, 
E), and V are sets of nodes, E are sets of edges. 
For each v ∈ V, it can be denoted by label (v). 
For two nodes vi and vj, E (vi, vj) represents a 
directed edge from node vi to vj, and the rela-
tionship between vi and vj is father-child rela-
tionship. There are two kinds of nodes in fuzzy 
XML: crisp nodes VC and fuzzy nodes VF. The 
former are the ordinary XML nodes, and the 

fuzzy nodes (Dist or Val nodes) are the descrip-
tion of the fuzzy information over the subsets 
of their children. E is the set of edges of fuzzy 
XML, and it is composed of edges E(C-C), E(C-F), 
E(F-C), E(F-F), which represent edges between 
nodes in VC and nodes in VC, edges between 
nodes in VC and nodes in VF, edges between 
nodes in VF and nodes in VC and edges between 
nodes in VF and nodes in VF, respectively.

1. <course CName = "Computer Composition Principles"> 
2.   <Val Poss = "0.9"> 
3.    <department DName = "Computer Science and Technology">
4.      <teacher TID = "211"> 
5.        <Dist type = "disjunctive"> 
6.          <Val Poss = "0.8"> 
7.             <tname>William James</tname> 
8.             <title>Associate Professor</title> 
9.             <salary>6000</salary> 
10.           < tel>024-83680001</tel> 
11.        </Val> 
12.        <Val Poss = "0.6"> 
13.          <tname>William James</tname> 
14.          <title>Professor</title> 
15.          <salary>8000</salary> 
16.          <tel>024-83680001</tel> 
17.        </Val> 
18.       </Dist> 
19.     </teacher> 
20.     <student SID = "20123056"> 
21.       <age> 
22.        <Dist type = "disjunctive"> 
23.           <Val Poss = "0.8">27</Val> 
24.           <Val Poss = "1.0">30</Val> 
25.           <Val Poss = "0.9">28</Val> 
26.        </Dist> 
27.      </age> 
28.      <email> 
29.         <Dist type = "conjunctive"> 
30.           <Val Poss = "0.65">Tom_Smith@yahoo.com</Val> 
31.           <Val Poss = "0.85">Tom_Smith@hotmail.com</Val>
32.           <Val Poss = "0.75">TSmith@hotmail.com</Val> 
33.         </Dist> 
34.      </email> 
35.     </student> 
36.   </department > 
37.  </Val> 
38. </course>

 Figure 2.  A fragment of fuzzy XML document.

3. Semantics of Object-Oriented 
Keyword Querying over Fuzzy XML

3.1. Object-Oriented Concept

Objects are applied to model real-world entities 
or to abstract concepts [21]. Objects have two 
characteristics: 
(1) an object has attributes and values of the 

attributes; 
(2) an object has a correlation with other ob-

jects. 
The objects having the same properties are gath-
ered into classes, and theoretically, a class can 
be considered from two different viewpoints: 
(1) an extensional class, where the class is de-

fined by the list of its object instances, and 
(2) an intensional class, where the class is de-

fined by a set of attributes and their admis-
sible values.

Based on the object-oriented concept, the ele-
ment, subelement and attributes in XML data 
can be naturally mapped into the objects. Con-
sidering the fuzzy XML data in Figure 2, the 
data in lines 4-19 can be mapped into two ob-
jects: one is object named teacher, has four 
attributes and their values, that are tname = 
"William James", title = "Associate Profes-
sor", salary = "6000", tel = "024-83680001". 
The other is the object also named teacher, has 
four attributes and their values, that are tname 
= "William James", title = "Professor", salary 
= "8000", tel = "024-83680001". The element 
teacher can be regarded as an object node, the 
fuzzy nodes are the description of the fuzzy in-
formation of the children nodes which are be-
low them and can be neglected in the mapping 
phase. Then the descendant elements tname, 
title, salary and tel can be mapped into the at-
tributes. For a group of nodes with no fuzzy 
information, the elements, subelements and at-
tributes can be mapped into the objects natu-
rally. The object here represents a real entity in 
the reality and it has a special attribute or a set 
of attributes for the characteristic. It is noticed 
that, the object-oriented concept here is differ-
ent from the object-oriented concept in DOM 
(Document object model) proposed in [22]. 
DOM is an object model for document and its 
specification represents a significant advance-
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ment in the handling of semi-structured docu-
ments. The DOM represents an XML document 
using a tree structure, and each node is an ob-
ject representation of a particular element in the 
document’s content. It describes the structure of 
the documents as well as its behavior and be-
havior of its objects. 
As a fuzzy XML tree consists of fuzzy nodes 
and crisp nodes. Based on the object-oriented 
concept and method, the main nodes in the 
fuzzy XML documents can be classified into 
the element node, attribute node, object node, 
value node (similar to the text node in DOM, 
which can be the textual content or values of 
an element), connect node and fuzzy node. An 
object can be a crisp object or a fuzzy object. 
An object is regarded as a crisp object if the val-
ues of its attributes are crisp values. An object is 
regarded as a fuzzy object if it has at least one 
attribute whose value is a fuzzy set. To classify 
the nodes of document in the fuzzy XML tree, 
we refer to the nodes identification method in 
XSeek [23] together with the consideration of 
the characteristic of fuzzy XML data. The clas-
sification of different nodes can be described as 
follows:
1. A node is an object node if it corresponds 

to a *-node in the DTD.
2. A node denotes an attribute if it does not 

correspond to a *-node, and it has only 
one child which is a value or has children 
which is a set of possible values.

3. A node is a connect node if it connects 
nodes within the same category. A con-
nect node can have a child that is an object 
node, an attribute node or a connect node. 

4. A node is a fuzzy node if it is the value 
node or Dist node.

5. A node is a value node if it contains the 
textual content or values.

6. A node is an element node if it is not an 
object node, an attribute node or a value 
node, but represents the actual content of 
the document.

3.2. Object Tree

Given a fuzzy XML document D with its tree 
structure T, T can be regarded as a fuzzy object 
OT(F). In the tree T, a group of nodes, starting at 

an object node, followed by some non-object 
nodes is regarded as an object. As the represen-
tation form of XML data is the tree structure, 
for a subtree Ts ⊆ T with root node r(Ts), if the 
children nodes of r(Ts) have the attribute nodes, 
then Ts can be regarded as an object Os, and Os 
⊆ OT(F). Next, we give the definition of "object 
tree" as follows:
Definition 1 (object tree). Given an XML tree 
Ti with its root node r(Ti), if the children nodes 
of r(Ti) contain at least one attribute node, then 
Ti is regarded as an "object tree", denoted as Oi. 
Its root node r(Ti) is called the object node of 
Oi.
We give some explanation about Definition 1, 
for an XML tree Ti rooted at r(Ti), if there is an 
attribute node z which is the child node of r(Ti) 
(the relationship between the attribute node z 
and r(Ti) is parent-child relationship), then Ti 
can be regarded as an object tree Oi with its root 
node r(Oi) (r(Oi) = r(Ti), and in the following, 
we use r(Oi) to denote the root node of the ob-
ject tree Oi). If the values of attributes in Oi are 
all crisp values, then Oi is a crisp object tree. 
If the children nodes of r(Oi) have at least one 
attribute node whose value is a fuzzy set, then 
Oi is a fuzzy object tree. And when the object 
tree Oi contains a fuzzy object tree, Oi is also re-
garded as a fuzzy object tree. For a fuzzy XML 
document D, if its tree structure T is a fuzzy 
object tree OT(F), then there may be multiple ob-
ject trees which are crisp object trees and fuzzy 
object trees in tree T.
Considering the characteristic of the object to-
gether with the characteristics of fuzzy XML 
data model, there is a special case for the ob-
ject tree. Seen in Figure 1, nodes d1 and d2 are 
also object nodes although they do not have 
any attribute nodes in their children nodes (the 
relationship between node d1 and the attribute 
node is not parent-child relationship). But node 
d1 is the root node of two object trees. One is 
the object tree with the possibility of 0.7, and 
has attribute z3 in its tree structure, and the other 
is the object tree with the possibility of 0.8, and 
has attributes z1 and z3 in its tree structure. 
Definition 2 (minimum object tree). Given an 
object tree O with its root node r(O) in its tree 
structure, if the attribute nodes only exist in the 
children nodes of the root node r(O), then the 
object tree O is regarded as a "minimum object 
tree", denoted as Omin.

We give some explanation about Definition 2: 
in an object tree O, if all the attribute nodes are 
the children nodes of the root node r(O) (the re-
lationship between the attribute node and r(O) 
is only the parent-child relationship), then O 
is a minimum object tree. For a minimum ob-
ject tree Omin, when it has at least one attrib-
ute whose value is a fuzzy set, then Omin can be 
regarded as a minimum fuzzy object tree. For 
a set of n minimum object trees, we use 1

minO , 
2
minO , …, min

nO  to denote them. And for a min-
imum object tree Omin, its root node r(Omin) is 
called a minimum object node.

3.3. Relationship Between Object Trees

Figure 3 presents a simplified structure of a 
fuzzy XML tree structure T, based on the ob-
ject. We only represent the root nodes of the ob-
ject trees in T. As shown in Figure 3, the nodes 
of circle shape represent the root nodes of ob-
ject trees. If an object is a fuzzy object, we use 
FOi to denote it. Especially, we use the node of 
circle shape named FOR to represent the root 
node of the whole fuzzy XML object tree T. If 
an object is a crisp object, we use Oi to denote 
it. Nodes of rectangular shape express the types 
of the possibility distributions between its chil-
dren object nodes, which can be disjunctive or 
conjunctive possibility distribution. The value 
on the edge denotes the membership degree on 
the path from the parent node to child node, 
which are the two ends of the edge. The mem-
bership degree of edges unlabeled defaults to 1.
Through the analysis of the simplified structure 
of a fuzzy XML tree in Figure 3, we can iden-
tify the relationships between two connected 
object trees as follows.

disjunctive

FOR

 O1

FO2 FO3

 O2  O3  O4 FO6  O7

FO4 FO5
 O5  O6

0.7 0.9

0.60.9

conjunctive

FO1

Figure 3.  The simplified structure of a fuzzy XML tree 
based on the object.

(1) An O-O relationship: For two connected 
object trees, the father object tree Oi is a 
crisp object, and the child object tree Oj is 
also a crisp object, and there exists a path 
from nodes r(Oi) to r(Oj) in XML tree, de-
noted as ( ) ( )i jr O r Op → . For example, in Fig-
ure 3, the relationship between object trees 
O1 and O4 is the O-O relationship.

(2) A FO-O relationship: For two connected 
object trees, the father object tree FOi 
is a fuzzy object, and the child object 
tree Oj is a crisp object, and there ex-
ists a path from nodes r(FOi) to r(Oj) 
in XML tree, denoted as ( ) ( )i jr FO r Op → . 
For example, the relationship between ob-
ject trees FO6 and O6 is the FO-O relation-
ship.

(3) A FO-FO relationship: For two connected 
object trees, the father object tree FOi is a 
fuzzy object, and the child object tree FOj 
is also a fuzzy object, and there exists a 
path from nodes r(FOi) to r(FOj) in XML 
tree, denoted as ( ) ( )i jr FO r FOp → . For exam-
ple, the relationship between object trees 
FO1 and FO2 is the FO-FO relationship.

It is worth noting that, for the relationships 
between two connected objects, there are no 
O-FO relationships. Here an O-FO relationship 
means that the father object tree is a crisp ob-
ject and the child object tree is a fuzzy object. 
According to the object’s characteristics, if an 
object O contains a fuzzy object, O is also a 
fuzzy object. 

3.4. Matching Result Object Trees and 
Object-Oriented Keyword Query 
Semantics

When users propose the keyword queries, they 
are interested not only in the results matching 
all keywords, but also in the results matching 
partial keywords. Based on the object-oriented 
concept, we should find the "smallest informa-
tion objects" which contain all keywords and 
"information objects" which contain partial 
keywords. According to the traditional SLCA 
semantics of keyword queries on crisp XML 
documents, a SLCA node of m keywords k1, 
k2, …, km is a "lowest node" whose subtree is 
the "smallest" tree containing all keywords. 
Inspired by this query semantics, given a set 
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ment in the handling of semi-structured docu-
ments. The DOM represents an XML document 
using a tree structure, and each node is an ob-
ject representation of a particular element in the 
document’s content. It describes the structure of 
the documents as well as its behavior and be-
havior of its objects. 
As a fuzzy XML tree consists of fuzzy nodes 
and crisp nodes. Based on the object-oriented 
concept and method, the main nodes in the 
fuzzy XML documents can be classified into 
the element node, attribute node, object node, 
value node (similar to the text node in DOM, 
which can be the textual content or values of 
an element), connect node and fuzzy node. An 
object can be a crisp object or a fuzzy object. 
An object is regarded as a crisp object if the val-
ues of its attributes are crisp values. An object is 
regarded as a fuzzy object if it has at least one 
attribute whose value is a fuzzy set. To classify 
the nodes of document in the fuzzy XML tree, 
we refer to the nodes identification method in 
XSeek [23] together with the consideration of 
the characteristic of fuzzy XML data. The clas-
sification of different nodes can be described as 
follows:
1. A node is an object node if it corresponds 

to a *-node in the DTD.
2. A node denotes an attribute if it does not 

correspond to a *-node, and it has only 
one child which is a value or has children 
which is a set of possible values.

3. A node is a connect node if it connects 
nodes within the same category. A con-
nect node can have a child that is an object 
node, an attribute node or a connect node. 

4. A node is a fuzzy node if it is the value 
node or Dist node.

5. A node is a value node if it contains the 
textual content or values.

6. A node is an element node if it is not an 
object node, an attribute node or a value 
node, but represents the actual content of 
the document.

3.2. Object Tree

Given a fuzzy XML document D with its tree 
structure T, T can be regarded as a fuzzy object 
OT(F). In the tree T, a group of nodes, starting at 

an object node, followed by some non-object 
nodes is regarded as an object. As the represen-
tation form of XML data is the tree structure, 
for a subtree Ts ⊆ T with root node r(Ts), if the 
children nodes of r(Ts) have the attribute nodes, 
then Ts can be regarded as an object Os, and Os 
⊆ OT(F). Next, we give the definition of "object 
tree" as follows:
Definition 1 (object tree). Given an XML tree 
Ti with its root node r(Ti), if the children nodes 
of r(Ti) contain at least one attribute node, then 
Ti is regarded as an "object tree", denoted as Oi. 
Its root node r(Ti) is called the object node of 
Oi.
We give some explanation about Definition 1, 
for an XML tree Ti rooted at r(Ti), if there is an 
attribute node z which is the child node of r(Ti) 
(the relationship between the attribute node z 
and r(Ti) is parent-child relationship), then Ti 
can be regarded as an object tree Oi with its root 
node r(Oi) (r(Oi) = r(Ti), and in the following, 
we use r(Oi) to denote the root node of the ob-
ject tree Oi). If the values of attributes in Oi are 
all crisp values, then Oi is a crisp object tree. 
If the children nodes of r(Oi) have at least one 
attribute node whose value is a fuzzy set, then 
Oi is a fuzzy object tree. And when the object 
tree Oi contains a fuzzy object tree, Oi is also re-
garded as a fuzzy object tree. For a fuzzy XML 
document D, if its tree structure T is a fuzzy 
object tree OT(F), then there may be multiple ob-
ject trees which are crisp object trees and fuzzy 
object trees in tree T.
Considering the characteristic of the object to-
gether with the characteristics of fuzzy XML 
data model, there is a special case for the ob-
ject tree. Seen in Figure 1, nodes d1 and d2 are 
also object nodes although they do not have 
any attribute nodes in their children nodes (the 
relationship between node d1 and the attribute 
node is not parent-child relationship). But node 
d1 is the root node of two object trees. One is 
the object tree with the possibility of 0.7, and 
has attribute z3 in its tree structure, and the other 
is the object tree with the possibility of 0.8, and 
has attributes z1 and z3 in its tree structure. 
Definition 2 (minimum object tree). Given an 
object tree O with its root node r(O) in its tree 
structure, if the attribute nodes only exist in the 
children nodes of the root node r(O), then the 
object tree O is regarded as a "minimum object 
tree", denoted as Omin.

We give some explanation about Definition 2: 
in an object tree O, if all the attribute nodes are 
the children nodes of the root node r(O) (the re-
lationship between the attribute node and r(O) 
is only the parent-child relationship), then O 
is a minimum object tree. For a minimum ob-
ject tree Omin, when it has at least one attrib-
ute whose value is a fuzzy set, then Omin can be 
regarded as a minimum fuzzy object tree. For 
a set of n minimum object trees, we use 1

minO , 
2
minO , …, min

nO  to denote them. And for a min-
imum object tree Omin, its root node r(Omin) is 
called a minimum object node.

3.3. Relationship Between Object Trees

Figure 3 presents a simplified structure of a 
fuzzy XML tree structure T, based on the ob-
ject. We only represent the root nodes of the ob-
ject trees in T. As shown in Figure 3, the nodes 
of circle shape represent the root nodes of ob-
ject trees. If an object is a fuzzy object, we use 
FOi to denote it. Especially, we use the node of 
circle shape named FOR to represent the root 
node of the whole fuzzy XML object tree T. If 
an object is a crisp object, we use Oi to denote 
it. Nodes of rectangular shape express the types 
of the possibility distributions between its chil-
dren object nodes, which can be disjunctive or 
conjunctive possibility distribution. The value 
on the edge denotes the membership degree on 
the path from the parent node to child node, 
which are the two ends of the edge. The mem-
bership degree of edges unlabeled defaults to 1.
Through the analysis of the simplified structure 
of a fuzzy XML tree in Figure 3, we can iden-
tify the relationships between two connected 
object trees as follows.

disjunctive

FOR

 O1

FO2 FO3

 O2  O3  O4 FO6  O7

FO4 FO5
 O5  O6
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0.60.9

conjunctive
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Figure 3.  The simplified structure of a fuzzy XML tree 
based on the object.

(1) An O-O relationship: For two connected 
object trees, the father object tree Oi is a 
crisp object, and the child object tree Oj is 
also a crisp object, and there exists a path 
from nodes r(Oi) to r(Oj) in XML tree, de-
noted as ( ) ( )i jr O r Op → . For example, in Fig-
ure 3, the relationship between object trees 
O1 and O4 is the O-O relationship.

(2) A FO-O relationship: For two connected 
object trees, the father object tree FOi 
is a fuzzy object, and the child object 
tree Oj is a crisp object, and there ex-
ists a path from nodes r(FOi) to r(Oj) 
in XML tree, denoted as ( ) ( )i jr FO r Op → . 
For example, the relationship between ob-
ject trees FO6 and O6 is the FO-O relation-
ship.

(3) A FO-FO relationship: For two connected 
object trees, the father object tree FOi is a 
fuzzy object, and the child object tree FOj 
is also a fuzzy object, and there exists a 
path from nodes r(FOi) to r(FOj) in XML 
tree, denoted as ( ) ( )i jr FO r FOp → . For exam-
ple, the relationship between object trees 
FO1 and FO2 is the FO-FO relationship.

It is worth noting that, for the relationships 
between two connected objects, there are no 
O-FO relationships. Here an O-FO relationship 
means that the father object tree is a crisp ob-
ject and the child object tree is a fuzzy object. 
According to the object’s characteristics, if an 
object O contains a fuzzy object, O is also a 
fuzzy object. 

3.4. Matching Result Object Trees and 
Object-Oriented Keyword Query 
Semantics

When users propose the keyword queries, they 
are interested not only in the results matching 
all keywords, but also in the results matching 
partial keywords. Based on the object-oriented 
concept, we should find the "smallest informa-
tion objects" which contain all keywords and 
"information objects" which contain partial 
keywords. According to the traditional SLCA 
semantics of keyword queries on crisp XML 
documents, a SLCA node of m keywords k1, 
k2, …, km is a "lowest node" whose subtree is 
the "smallest" tree containing all keywords. 
Inspired by this query semantics, given a set 
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of "minimum object nodes" that the minimum 
object trees rooted at them contain partial key-
words, and a set of nodes whose label directly 
contain partial keywords, we can find the "low-
est common ancestor object nodes" which are 
the root nodes of the "smallest object trees" 
containing all keywords. Based on the above 
descriptions, we will show our query semantics 
and the method of the object-oriented keyword 
query, starting from the following definition:
Definition 3 (SLCA object tree). For a key-
word query k1, k2, …, km,  given n minimum 
object trees 1

minO , 2
minO ,…, min

nO  which contain 
partial keywords in the nodes of their tree struc-
tures and a set of nodes {U} (U ∉ Omin) which 
contain partial keywords, the "SLCA object 
trees" are:
(1) the "smallest object tree" which contains 

the minimum object trees min{ }iO  (i ∈ [1, 
n]) and nodes {U}, that nodes in the com-
bination of min{ }iO  and {U} contain all 
keywords; and 

(2) the "smallest object tree" which contains 
the minimum object trees min{ }jO  ( j ∈ 
[1, n]), that nodes in the combination of 

min{ }jO  contain all keywords.
Here, a SLCA object tree is the "smallest object 
tree" containing all keywords, and that means 
that none of the object trees which are contained 
in the SLCA object tree contain all keywords. 
A SLCA object tree is denoted as SLCAO. For 
a SLCA object tree which belongs to type (1), 
we use SLCAOov to denote it; and for a SLCA 
object tree which belongs to type (2), we use  
SLCAOoo to denote it. The root node of the 
SLCA object tree is the "smallest lowest com-
mon ancestor object node", that is the SLCA 
object node, denoted as r(SLCAO). 
Now, we analyze the different types of match-
ing result object trees when proposing a key-
word query on the XML tree based on the ob-
ject-oriented method. Given an XML tree T and 
a set of m keywords {k1, k2, …, km}, the match-
ing result object trees RO on T can be separated 
into the following several cases:
(1) The target object tree TRO

For a minimum object tree Omin, if the 
nodes of its tree structure contain all key-
words, then Omin is regarded as a target ob-
ject tree TRO.

(2) The single target object tree STRO
For a minimum object tree Omin, if the 
nodes of its tree structure contain partial 
keywords of {k1, k2, …, km}, then Omin 
is regarded as a single target object tree 
STRO.

(3) SLCA object tree SLCAO
If a matching result object tree RO ⊆ SL-
CAO, then it belongs to one of the follow-
ing two cases:

A: SLCAOov

A matching result object tree is a SLCAOov 
when it contains STRO which contain partial 
keywords in the nodes of their tree structures 
and nodes U whose labels directly contain par-
tial keywords (U ∉ STRO). Given a set of sin-
gle target object trees {STRO(1), STRO(2), …, 
STRO(m-1)} and a set of nodes {U(1), U(2), …, 
U(m-1)}, the set of SLCAOov can be obtained by 
the following formula:

SLCAOov = {SLCAO(STRO(1), U(m-1)),
                     SLCAO(STRO(2), U(m- 2)), …,   (4)
                     SLCAO(STRO(m-1), U(1))}

In the above formula, set of SLCAOov is the set 
of SLCA object trees which contain STRO(q) 
and nodes U(m-q) in their tree structures. Here, 
STRO(q) represents two types of minimum ob-
ject trees, one type 〈1〉 is the minimum object 
tree which contains q (1 ≤ q ≤ m – 1) keywords 
in the nodes of its tree structure, the other type 
〈2〉 is a set of minimum object trees and the 
nodes in their combination contain q keywords. 
And STRO(1) represents the minimum object 
tree which contains one keyword. U(m-q) also 
represents two types of nodes, one type 〈3〉 is 
the node whose label directly contains m-q key-
words and the other type 〈4〉 is a set of nodes 
and their combination contains m – q keywords. 
U(1) represents the node whose label directly 
contains one keyword. In one combination of 
{STRO(q), U(m-q)}, STRO(q) can be one type of 
〈1〉, 〈2〉, U(m-q) can be one type of 〈3〉, 〈4〉, and 
nodes in the combination contain all keywords.
B: SLCAOoo

A matching result object tree is a SLCAOoo 
when it only contains the single target object 
trees STRO which contain partial keywords in 
the nodes of their tree structures. Given a set 
of single target object trees {STRO1, STRO2, 

…, STROm-1}, when the nodes in the set of 
{STRO1, STRO2, …, STROi} contain all key-
words, a SLCAOoo can be obtained by the fol-
lowing formula:

      SLCAOoo
 = SLCAO {STRO1,  

            STRO2, …, STROi}    
(5)

Here, STRO1, STRO2, …, STROi denote the sin-
gle target object trees which contain 1, 2, …, i 
 (1 ≤ i ≤ m – 1) keywords in the nodes of their 
tree structures. The above formula (5) is an ex-
ample to obtain SLCAOoo. Given a set of STRO, 
assuming that the number of STRO which con-
tain keyword k1 is equal to e1, the number of 
STRO which contain keyword k2 is equal to 
e2, and similarly, the number of STRO which 
contain keyword km is equal to em, there are  

1 2
1 1 1

1 2... ...
me e e mC C C e e e× × × = × × ×  possible co- 

mbinations of {STROi} for computing the SL-
CAOoo. The set of SLCAOoo is equivalent to the 
set of SLCA object trees, in which each one is 
the smallest object tree that contains one possi-
ble combination of {STROi}. 
In order to simplify the description, in this pa-
per, RO can represent a set of matching result 
object trees or a matching result object tree. 
r(RO) can represent the root nodes of a set of 
matching result object trees or the root node of 
a matching result object tree. And these are also 
the same for Omin, TRO, STRO, SLCAOov and 
SLCAOoo. For a matching result object tree RO, 
its root node r(RO) is called the "matching re-
sult object node" of RO. We use ROM to denote 
the matching result object tree which contains 
all keywords in the nodes of its tree structure. 
And we use ROP to denote the matching result 
object tree which contains partial keywords in 
the nodes of its tree structure. We know that sets 
of TRO, SLCAOov and SLCAOoo belong to the 
set of ROM, and set of STRO is equal to the set 
of ROP. We regard ROM as the minimum result 
object tree which contains all keywords in its 
tree structure, and regard ROP as the result ob-
ject tree which contains partial keywords in its 
tree structure. 
Given a crisp XML tree TC, the object-oriented 
keyword query on TC returns a set of subtrees 
which are the minimum result object trees ROM 
containing all keywords and result object trees 
ROP containing partial keywords. For a set of 

keywords {k1, k2,…, km}, the query semantics 
of an object-oriented keyword query k1, k2, …, 
km on TC is to find: 
(1) the root nodes r(ROM) of the minimum result 
object trees ROM which contain all keywords in 
the nodes of ROM, and 
(2) the root nodes r(ROP) of the result object 
trees ROP which contain partial keywords in the 
nodes of ROP.
The set of result nodes r(ROM) and r(ROP) is 
denoted as {r(ROM), r(ROP)}. Next, we show 
the object-oriented keyword query semantics 
on the fuzzy XML document. 
Definition 4 (Object-oriented keyword 
query semantics on fuzzy XML). Given a 
fuzzy XML tree T and a set of keywords {k1, k2, 
…, km}, the query semantics of an object-ori-
ented keyword query k1, k2, …, km on T is to 
find a set of pairs of nodes and its possibility 
{(r(ROM), λ), (r(ROP), σ)}. In each pair of 
(r(ROM), λ), r(ROM) represents the root node 
of the minimum result object tree ROM which 
contains all keywords in the nodes of ROM, and 
λ represents the possibility of r(ROM). And in 
each pair of (r(ROP), σ), r(ROP) represents the 
root node of the result object tree ROP which 
contains partial keywords in the nodes of ROP, 
and σ represents the possibility of r(ROP).

3.5. Possibility Computation of Matching 
Result Object Node

Given a fuzzy XML document D with its tree 
structure T and a set of keywords {k1, k2, …, 
km}, r(RO) is a matching result object node of 
the matching result object RO, and the whole 
possibility of r(RO) can be computed by the 
following formula:

     P(r(RO)) = Ppath(r(RO)) × Plocal(r(RO))       (6)

In the above formula, if the membership de-
grees on the path from the root node of the 
document to node r(RO) are {φ1, φ2, …, φn},  
Ppath(r(RO)) = φ1 × φ2 × … × φn, and Ppath(r(RO)) 
is the existence possibility of the matching re-
sult object node r(RO). Plocal(r(RO)) is the local 
possibility of the matching result object node 
r(RO), and the computation of Plocal(r(RO)) can 
be separated into the following cases:
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of "minimum object nodes" that the minimum 
object trees rooted at them contain partial key-
words, and a set of nodes whose label directly 
contain partial keywords, we can find the "low-
est common ancestor object nodes" which are 
the root nodes of the "smallest object trees" 
containing all keywords. Based on the above 
descriptions, we will show our query semantics 
and the method of the object-oriented keyword 
query, starting from the following definition:
Definition 3 (SLCA object tree). For a key-
word query k1, k2, …, km,  given n minimum 
object trees 1

minO , 2
minO ,…, min

nO  which contain 
partial keywords in the nodes of their tree struc-
tures and a set of nodes {U} (U ∉ Omin) which 
contain partial keywords, the "SLCA object 
trees" are:
(1) the "smallest object tree" which contains 

the minimum object trees min{ }iO  (i ∈ [1, 
n]) and nodes {U}, that nodes in the com-
bination of min{ }iO  and {U} contain all 
keywords; and 

(2) the "smallest object tree" which contains 
the minimum object trees min{ }jO  ( j ∈ 
[1, n]), that nodes in the combination of 

min{ }jO  contain all keywords.
Here, a SLCA object tree is the "smallest object 
tree" containing all keywords, and that means 
that none of the object trees which are contained 
in the SLCA object tree contain all keywords. 
A SLCA object tree is denoted as SLCAO. For 
a SLCA object tree which belongs to type (1), 
we use SLCAOov to denote it; and for a SLCA 
object tree which belongs to type (2), we use  
SLCAOoo to denote it. The root node of the 
SLCA object tree is the "smallest lowest com-
mon ancestor object node", that is the SLCA 
object node, denoted as r(SLCAO). 
Now, we analyze the different types of match-
ing result object trees when proposing a key-
word query on the XML tree based on the ob-
ject-oriented method. Given an XML tree T and 
a set of m keywords {k1, k2, …, km}, the match-
ing result object trees RO on T can be separated 
into the following several cases:
(1) The target object tree TRO

For a minimum object tree Omin, if the 
nodes of its tree structure contain all key-
words, then Omin is regarded as a target ob-
ject tree TRO.

(2) The single target object tree STRO
For a minimum object tree Omin, if the 
nodes of its tree structure contain partial 
keywords of {k1, k2, …, km}, then Omin 
is regarded as a single target object tree 
STRO.

(3) SLCA object tree SLCAO
If a matching result object tree RO ⊆ SL-
CAO, then it belongs to one of the follow-
ing two cases:

A: SLCAOov

A matching result object tree is a SLCAOov 
when it contains STRO which contain partial 
keywords in the nodes of their tree structures 
and nodes U whose labels directly contain par-
tial keywords (U ∉ STRO). Given a set of sin-
gle target object trees {STRO(1), STRO(2), …, 
STRO(m-1)} and a set of nodes {U(1), U(2), …, 
U(m-1)}, the set of SLCAOov can be obtained by 
the following formula:

SLCAOov = {SLCAO(STRO(1), U(m-1)),
                     SLCAO(STRO(2), U(m- 2)), …,   (4)
                     SLCAO(STRO(m-1), U(1))}

In the above formula, set of SLCAOov is the set 
of SLCA object trees which contain STRO(q) 
and nodes U(m-q) in their tree structures. Here, 
STRO(q) represents two types of minimum ob-
ject trees, one type 〈1〉 is the minimum object 
tree which contains q (1 ≤ q ≤ m – 1) keywords 
in the nodes of its tree structure, the other type 
〈2〉 is a set of minimum object trees and the 
nodes in their combination contain q keywords. 
And STRO(1) represents the minimum object 
tree which contains one keyword. U(m-q) also 
represents two types of nodes, one type 〈3〉 is 
the node whose label directly contains m-q key-
words and the other type 〈4〉 is a set of nodes 
and their combination contains m – q keywords. 
U(1) represents the node whose label directly 
contains one keyword. In one combination of 
{STRO(q), U(m-q)}, STRO(q) can be one type of 
〈1〉, 〈2〉, U(m-q) can be one type of 〈3〉, 〈4〉, and 
nodes in the combination contain all keywords.
B: SLCAOoo

A matching result object tree is a SLCAOoo 
when it only contains the single target object 
trees STRO which contain partial keywords in 
the nodes of their tree structures. Given a set 
of single target object trees {STRO1, STRO2, 

…, STROm-1}, when the nodes in the set of 
{STRO1, STRO2, …, STROi} contain all key-
words, a SLCAOoo can be obtained by the fol-
lowing formula:

      SLCAOoo
 = SLCAO {STRO1,  

            STRO2, …, STROi}    
(5)

Here, STRO1, STRO2, …, STROi denote the sin-
gle target object trees which contain 1, 2, …, i 
 (1 ≤ i ≤ m – 1) keywords in the nodes of their 
tree structures. The above formula (5) is an ex-
ample to obtain SLCAOoo. Given a set of STRO, 
assuming that the number of STRO which con-
tain keyword k1 is equal to e1, the number of 
STRO which contain keyword k2 is equal to 
e2, and similarly, the number of STRO which 
contain keyword km is equal to em, there are  

1 2
1 1 1

1 2... ...
me e e mC C C e e e× × × = × × ×  possible co- 

mbinations of {STROi} for computing the SL-
CAOoo. The set of SLCAOoo is equivalent to the 
set of SLCA object trees, in which each one is 
the smallest object tree that contains one possi-
ble combination of {STROi}. 
In order to simplify the description, in this pa-
per, RO can represent a set of matching result 
object trees or a matching result object tree. 
r(RO) can represent the root nodes of a set of 
matching result object trees or the root node of 
a matching result object tree. And these are also 
the same for Omin, TRO, STRO, SLCAOov and 
SLCAOoo. For a matching result object tree RO, 
its root node r(RO) is called the "matching re-
sult object node" of RO. We use ROM to denote 
the matching result object tree which contains 
all keywords in the nodes of its tree structure. 
And we use ROP to denote the matching result 
object tree which contains partial keywords in 
the nodes of its tree structure. We know that sets 
of TRO, SLCAOov and SLCAOoo belong to the 
set of ROM, and set of STRO is equal to the set 
of ROP. We regard ROM as the minimum result 
object tree which contains all keywords in its 
tree structure, and regard ROP as the result ob-
ject tree which contains partial keywords in its 
tree structure. 
Given a crisp XML tree TC, the object-oriented 
keyword query on TC returns a set of subtrees 
which are the minimum result object trees ROM 
containing all keywords and result object trees 
ROP containing partial keywords. For a set of 

keywords {k1, k2,…, km}, the query semantics 
of an object-oriented keyword query k1, k2, …, 
km on TC is to find: 
(1) the root nodes r(ROM) of the minimum result 
object trees ROM which contain all keywords in 
the nodes of ROM, and 
(2) the root nodes r(ROP) of the result object 
trees ROP which contain partial keywords in the 
nodes of ROP.
The set of result nodes r(ROM) and r(ROP) is 
denoted as {r(ROM), r(ROP)}. Next, we show 
the object-oriented keyword query semantics 
on the fuzzy XML document. 
Definition 4 (Object-oriented keyword 
query semantics on fuzzy XML). Given a 
fuzzy XML tree T and a set of keywords {k1, k2, 
…, km}, the query semantics of an object-ori-
ented keyword query k1, k2, …, km on T is to 
find a set of pairs of nodes and its possibility 
{(r(ROM), λ), (r(ROP), σ)}. In each pair of 
(r(ROM), λ), r(ROM) represents the root node 
of the minimum result object tree ROM which 
contains all keywords in the nodes of ROM, and 
λ represents the possibility of r(ROM). And in 
each pair of (r(ROP), σ), r(ROP) represents the 
root node of the result object tree ROP which 
contains partial keywords in the nodes of ROP, 
and σ represents the possibility of r(ROP).

3.5. Possibility Computation of Matching 
Result Object Node

Given a fuzzy XML document D with its tree 
structure T and a set of keywords {k1, k2, …, 
km}, r(RO) is a matching result object node of 
the matching result object RO, and the whole 
possibility of r(RO) can be computed by the 
following formula:

     P(r(RO)) = Ppath(r(RO)) × Plocal(r(RO))       (6)

In the above formula, if the membership de-
grees on the path from the root node of the 
document to node r(RO) are {φ1, φ2, …, φn},  
Ppath(r(RO)) = φ1 × φ2 × … × φn, and Ppath(r(RO)) 
is the existence possibility of the matching re-
sult object node r(RO). Plocal(r(RO)) is the local 
possibility of the matching result object node 
r(RO), and the computation of Plocal(r(RO)) can 
be separated into the following cases:
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(a)   RO ∈ STRO (or TRO)
If there is a matching result object tree RO, 
and the nodes containing keywords in its 
tree structure are v1, v2, …, vl, the member-
ship degrees on the path from node r(RO) 
to node vi (1 ≤ i ≤ l) are {u1, u2, …, ut}, then 

                   Plocal(r (RO) ) = u1 × u2 ×…× ut          (7)

(b)   RO ∈ SLCAOov

If a matching result object tree RO is ob-
tained by the SLCAO {STRO1, STRO2, v1, 
v2}, where {STRO1, STRO2} are two single 
target object trees, and {v1, v2} are nodes 
containing partial keywords in SLCAO, 
the membership degrees on the path from 
r(RO) to r(STRO1) and r(STRO2) are u1 
and u2, and the membership degrees on the 
path from r(RO) to v1 and v2 are φ1 and φ2, 
then,

            Plocal(r (RO)) = Plocal(r (STRO1)) 
                                  × Plocal(r (STRO2))                    (8)
                                  × φ1× φ2 × u1 × u2                

(c)   RO ∈ SLCAOoo

If a matching result object tree RO con-
tains the single target object trees {STRO1, 
STRO2, STRO3}, and the membership de-
grees on the path from r(RO) to r(STRO1), 
r(STRO2), r(STRO3) are u1, u2 and u3, re-
spectively, then,

        Plocal(r(RO)) = Plocal(r(STRO1)) 
          × Plocal(r(STRO2)) × Plocal(r(STRO3))      (9)
          × u1 × u2 × u3

4. Algorithm of Object-Oriented 
Keyword Querying over Fuzzy XML

Based on the object-oriented keyword query 
semantics on fuzzy XML documents, we pro-
pose a keyword query algorithm ROstack to 
obtain the query results together with their pos-
sibilities. In the algorithm, we adopt the Dewey 
code [24] which is widely used in the keyword 
search algorithms of XML documents to en-
code the nodes of the fuzzy XML documents. 
Dewey is an encoding mode which directly puts 
the Dewey code of a node’s parent node as the 
prefix of the Dewey code of the node. For ex-

ample, for a node vg in the tree, its Dewey code 
is represented as D(vg). And for the child node 
vh of node vg, the Dewey code of vh is repre-
sented by D(vh) = D(vg) ⋅ ρ, where ρ is the order 
number of node vh in all the children nodes of 
node vg. The Dewey code has the lexicograph-
ical orders. It can effectively support the cal-
culation of inclusion relationship among nodes 
and support the calculation of position relation-
ship in XML documents.  (The Dewey encode 
mode can be seen in Figure 4). 
For the computation of possibilities values, we 
need to build the index to record the membership 
degrees on the path from the root node of the 
document to the keyword nodes (or the object 
nodes contain keywords in the nodes of the ob-
ject trees) and index to record the membership 
degrees on the path from the object node to the 
keyword nodes (or object nodes) in the object 
tree. According to the object-oriented query se-
mantics, the nodes processed are classified into 
two major types in ROstack: the object node 
and non-object node. The distinction between 
crisp node and fuzzy node is not important in 
the algorithm, because we return the result node 
at the object-level, and the fuzzy information 
(membership degrees values) can be obtained 
when the root nodes of the fuzzy object trees 
are returned as the query results, and the possi-
bilities of the result nodes are computed at the 
same time. But the distinction between object 
node and non-object node becomes important. 
So, we also need indexes to record the object 
nodes and the minimum object nodes. 
In the computation phase of the algorithm 
ROstack, to compute the SLCA object nodes, 
it only needs to process the root nodes of sin-
gle target object trees and the keyword nodes 
which are not in the minimum object trees. The  
ROstack is an efficient and effective algorithm 
to obtain the result nodes and their possibilities, 
and it performs well when the tree structures of 
XML documents are complex and deep. Next, 
we start from introducing the indexes built in 
our method.

4.1. Index Construction

In order to realize the object-oriented keyword 
queries on the fuzzy XML document, we build 
five indexes to serve the algorithm proposed 
below:

(1) The keywords index: {Mi}
For a set of keywords {k1, k2, …, km}, {M1} 
denotes the set of nodes containing key-
word k1, and similarly, {Mi} denotes the 
set of nodes containing keyword ki. If the 
node vh ∈ Omin, where vh contains key-
words and Omin is a minimum object tree, 
we store the D(r(Omin)) instead of D(vh) in 
the list {Mi}, D(r(Omin)) is the Dewey code 
of node r(Omin), and r(Omin) is the root 
node of Omin.

(2) The list of minimum object trees: LOmin 
LOmin stores the root nodes r(Omin) of the 
minimum object trees Omin and the ordi-
nary nodes in their tree structures. For a 
minimum fuzzy object tree, we also store 
only the ordinary nodes in its tree struc-
ture.

(3) The list of existence membership degrees 
of nodes: LE{v, ωi, ε}(0 < ωi ≤ 1, 0 < ε ≤ 1)
LE records the membership degrees {ω1, 
ω2, …, ωi} on the path from the root node 
of the document to node v, and the exis-
tence possibility value ε, where ε = ω1 × 
ω2 × … × ωi. It is worth noticing that node 
v can be an ordinary node containing key-
words, or an object node of an object tree 
which contains keywords in the nodes of 
its tree structure.

(4) The list of the local membership degrees 
of object nodes: LL{r(O), σj, τ}(0 < σj ≤ 1, 
0 < τ ≤ 1);
LL records the membership degrees {σ1, σ2, 
…, σj} on the path from the object node 
r(O) to nodes {v1, v2, …, vg} which contain 
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Figure 4.  The tree structures of object trees encoded with Dewey.

keywords in O, and its local possibility 
value τ, where node vg can be an ordinary 
node or an object node.

(5) The list of object nodes: LO
After pre-processing the fuzzy XML doc-
ument with the object identification oper-
ation, all the Dewey codes of the object 
nodes in the fuzzy XML document are 
recorded into the list LO.

We give some interpretations of the list 
MINOL . 

Let us look at Figure 4, node a represents the 
node which contains a, the node zi  is the at-
tribute node. In this paragraph, for a simple 
and intuitive interpretation, we use the form of 
Od to represent the crisp object tree rooted at 
node d (the Dewey code is 1 in B), and FOa to 
represent the fuzzy object tree rooted at node a 
(the Dewey code is 1.7 in A). Figure 4 (A) rep-
resents a minimum fuzzy object tree FOa, and 
(B) represents a crisp object tree Od. According 
to Definition 2, the object tree Od contains four 
minimum object trees, which are Oc, Oe, Oh, and 
Og, respectively. For the minimum fuzzy object 
tree FOa, there are two possible values of attrib-
ute z1, which are x2 and x3. And the entry stored 
in 

MINOL  is {D(a), (z1, x2, x3)}. For Oc, Oe, Oh 
and Og, the entries stored in 

MINOL  are {D(c), (z2, 
x1) }, {D(e), (z3, x2), (z6, x3)}, {D(h), (z4, x4)}
and {D(g), (z5, x5)}. D(a) represents the Dewey 
code of node a (e.g., 1.7 in Figure 4 (A)).

4.2. Algorithm of Object-Oriented 
Keyword Query

According to the semantics of object-oriented 
keyword query on the fuzzy XML document, 
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(a)   RO ∈ STRO (or TRO)
If there is a matching result object tree RO, 
and the nodes containing keywords in its 
tree structure are v1, v2, …, vl, the member-
ship degrees on the path from node r(RO) 
to node vi (1 ≤ i ≤ l) are {u1, u2, …, ut}, then 

                   Plocal(r (RO) ) = u1 × u2 ×…× ut          (7)

(b)   RO ∈ SLCAOov

If a matching result object tree RO is ob-
tained by the SLCAO {STRO1, STRO2, v1, 
v2}, where {STRO1, STRO2} are two single 
target object trees, and {v1, v2} are nodes 
containing partial keywords in SLCAO, 
the membership degrees on the path from 
r(RO) to r(STRO1) and r(STRO2) are u1 
and u2, and the membership degrees on the 
path from r(RO) to v1 and v2 are φ1 and φ2, 
then,

            Plocal(r (RO)) = Plocal(r (STRO1)) 
                                  × Plocal(r (STRO2))                    (8)
                                  × φ1× φ2 × u1 × u2                

(c)   RO ∈ SLCAOoo

If a matching result object tree RO con-
tains the single target object trees {STRO1, 
STRO2, STRO3}, and the membership de-
grees on the path from r(RO) to r(STRO1), 
r(STRO2), r(STRO3) are u1, u2 and u3, re-
spectively, then,

        Plocal(r(RO)) = Plocal(r(STRO1)) 
          × Plocal(r(STRO2)) × Plocal(r(STRO3))      (9)
          × u1 × u2 × u3

4. Algorithm of Object-Oriented 
Keyword Querying over Fuzzy XML

Based on the object-oriented keyword query 
semantics on fuzzy XML documents, we pro-
pose a keyword query algorithm ROstack to 
obtain the query results together with their pos-
sibilities. In the algorithm, we adopt the Dewey 
code [24] which is widely used in the keyword 
search algorithms of XML documents to en-
code the nodes of the fuzzy XML documents. 
Dewey is an encoding mode which directly puts 
the Dewey code of a node’s parent node as the 
prefix of the Dewey code of the node. For ex-

ample, for a node vg in the tree, its Dewey code 
is represented as D(vg). And for the child node 
vh of node vg, the Dewey code of vh is repre-
sented by D(vh) = D(vg) ⋅ ρ, where ρ is the order 
number of node vh in all the children nodes of 
node vg. The Dewey code has the lexicograph-
ical orders. It can effectively support the cal-
culation of inclusion relationship among nodes 
and support the calculation of position relation-
ship in XML documents.  (The Dewey encode 
mode can be seen in Figure 4). 
For the computation of possibilities values, we 
need to build the index to record the membership 
degrees on the path from the root node of the 
document to the keyword nodes (or the object 
nodes contain keywords in the nodes of the ob-
ject trees) and index to record the membership 
degrees on the path from the object node to the 
keyword nodes (or object nodes) in the object 
tree. According to the object-oriented query se-
mantics, the nodes processed are classified into 
two major types in ROstack: the object node 
and non-object node. The distinction between 
crisp node and fuzzy node is not important in 
the algorithm, because we return the result node 
at the object-level, and the fuzzy information 
(membership degrees values) can be obtained 
when the root nodes of the fuzzy object trees 
are returned as the query results, and the possi-
bilities of the result nodes are computed at the 
same time. But the distinction between object 
node and non-object node becomes important. 
So, we also need indexes to record the object 
nodes and the minimum object nodes. 
In the computation phase of the algorithm 
ROstack, to compute the SLCA object nodes, 
it only needs to process the root nodes of sin-
gle target object trees and the keyword nodes 
which are not in the minimum object trees. The  
ROstack is an efficient and effective algorithm 
to obtain the result nodes and their possibilities, 
and it performs well when the tree structures of 
XML documents are complex and deep. Next, 
we start from introducing the indexes built in 
our method.

4.1. Index Construction

In order to realize the object-oriented keyword 
queries on the fuzzy XML document, we build 
five indexes to serve the algorithm proposed 
below:

(1) The keywords index: {Mi}
For a set of keywords {k1, k2, …, km}, {M1} 
denotes the set of nodes containing key-
word k1, and similarly, {Mi} denotes the 
set of nodes containing keyword ki. If the 
node vh ∈ Omin, where vh contains key-
words and Omin is a minimum object tree, 
we store the D(r(Omin)) instead of D(vh) in 
the list {Mi}, D(r(Omin)) is the Dewey code 
of node r(Omin), and r(Omin) is the root 
node of Omin.

(2) The list of minimum object trees: LOmin 
LOmin stores the root nodes r(Omin) of the 
minimum object trees Omin and the ordi-
nary nodes in their tree structures. For a 
minimum fuzzy object tree, we also store 
only the ordinary nodes in its tree struc-
ture.

(3) The list of existence membership degrees 
of nodes: LE{v, ωi, ε}(0 < ωi ≤ 1, 0 < ε ≤ 1)
LE records the membership degrees {ω1, 
ω2, …, ωi} on the path from the root node 
of the document to node v, and the exis-
tence possibility value ε, where ε = ω1 × 
ω2 × … × ωi. It is worth noticing that node 
v can be an ordinary node containing key-
words, or an object node of an object tree 
which contains keywords in the nodes of 
its tree structure.

(4) The list of the local membership degrees 
of object nodes: LL{r(O), σj, τ}(0 < σj ≤ 1, 
0 < τ ≤ 1);
LL records the membership degrees {σ1, σ2, 
…, σj} on the path from the object node 
r(O) to nodes {v1, v2, …, vg} which contain 
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Figure 4.  The tree structures of object trees encoded with Dewey.

keywords in O, and its local possibility 
value τ, where node vg can be an ordinary 
node or an object node.

(5) The list of object nodes: LO
After pre-processing the fuzzy XML doc-
ument with the object identification oper-
ation, all the Dewey codes of the object 
nodes in the fuzzy XML document are 
recorded into the list LO.

We give some interpretations of the list 
MINOL . 

Let us look at Figure 4, node a represents the 
node which contains a, the node zi  is the at-
tribute node. In this paragraph, for a simple 
and intuitive interpretation, we use the form of 
Od to represent the crisp object tree rooted at 
node d (the Dewey code is 1 in B), and FOa to 
represent the fuzzy object tree rooted at node a 
(the Dewey code is 1.7 in A). Figure 4 (A) rep-
resents a minimum fuzzy object tree FOa, and 
(B) represents a crisp object tree Od. According 
to Definition 2, the object tree Od contains four 
minimum object trees, which are Oc, Oe, Oh, and 
Og, respectively. For the minimum fuzzy object 
tree FOa, there are two possible values of attrib-
ute z1, which are x2 and x3. And the entry stored 
in 

MINOL  is {D(a), (z1, x2, x3)}. For Oc, Oe, Oh 
and Og, the entries stored in 

MINOL  are {D(c), (z2, 
x1) }, {D(e), (z3, x2), (z6, x3)}, {D(h), (z4, x4)}
and {D(g), (z5, x5)}. D(a) represents the Dewey 
code of node a (e.g., 1.7 in Figure 4 (A)).

4.2. Algorithm of Object-Oriented 
Keyword Query

According to the semantics of object-oriented 
keyword query on the fuzzy XML document, 
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when users input keywords k1, k2, …, km, we 
need to obtain the object nodes r(ROM) of the 
minimum result object trees ROM and their pos-
sibilities λ, and the object nodes r(ROP) of the 
result object trees ROP and their possibilities σ. 
In order to realize the query semantics, we pro-
pose the following ROstack algorithm.
The detailed procedure of ROstack algorithm 
is shown in Algorithm 1. When users input a 

Algorithm 1.  ROstack.

Input:  A set of keywords{k1, k2, …, km}, and a fuzzy XML document encoded with Dewey 
Output: The matching result object nodes and their possibilities: {(r(RO1), ξ1), (r(RO2), ξ2),…, (r(ROn), ξn)}
1:  Load and visit keyword index{Mi}(i = 1, 2, ..., m), the lists 

MINOL , LO, create and update the list LE {v, ωi, ε};
2:  Find the set of object nodes r(TROα), r(STROγ), and create the list LL {r(O), σj, τ} 
     of nodes r(TROα) and r(STROγ),
3:  Compute P(r(TROα)), P(r(STROγ));
4:  Delete entries of r(TROα) from index{Mi};
5:  Initialize a stack ST = empty,
6:  v = get smallest node (),
7:  Push node v into the stack ST, and set the Dewey(v) as the initial value of the stack ST;
8:  while (not reach the end entry of keyword list{Mi}), do{
9:      v' = get next smallest node (),
10:     pre = lcp(ST, v' ), //compute the longest common prefix pre between node v and node v' such that   
          ST [i] = v[i], 1 ≤ i ≤ pre.length;
11:     while (stack ST.size > pre.length) do
12:        ST entry s = ST.pop();
13:      if s is SLCA() then{
14:             when (Dewey (s) ∈ LO), record s into list LE{v, ωi, ε};
15:             when (Dewey (s) ∉ LO), find s' = parent(s) (or ancestor(s)) and s' ∈ LO, record s' 
                  into list LE{v, ωi, ε};
16:             get type s, s.keyword[ j]1 ( j = 1, 2, …, m), 
17:             if s ∈ r(SLCAOov) then 
18:                 get Plocal(r(STROγ)) from list LL{r(O), σj, τ}, membership degrees ωi

s, 
                      ωi

r(STRO), ωi
v from list LE{v, ωi, ε}, and record s into list LL{r(O), σj, τ}; 

19:                 compute P(r(SLCAOov));
20:             if s ∈ r(SLCAOoo) then  
21:                 get Plocal(r(STROγ)) from list LL{r(O), σj, τ}, membership degrees ωi

s, 
                      ωi

r(STRO) from list LE{v, ωi, ε}, and record s into list LL{r(O), σj, τ}; 
22:                 compute P(r(SLCAOoo));}
23:      else for (1 ≤ l ≤ m)
24:             if (s.keyword[l ] = θ(kl)) then
25:                 ST.top.keyword[l ] = θ(kl); 
26:      when (pre.length < d ≤ v'.length), ST.push(v'(d));
27:      when ST is empty, initialize ST with the next smallest node until all nodes in list 
           {Mi} are processed. }
28: return the matching result object nodes and their possibilities: ((r(RO1), ξ1), (r(RO2), ξ2),
      …, (r(ROn), ξn)).

set of keywords {k1, k2, …, km}, the algorithm 
loads and visits the keyword list{Mi}, the 
minimum object tree list 

MINOL  and the object 
node list LO. According to the nodes vi which 
contain keywords and minimum object nodes 
r(Omin) which contain keywords in the nodes 
of minimum object trees Omin, we create the 
list LE {v, ωi, ε}. From list 

MINOL  we find object 
nodes r(TROα) of the minimum object trees 

which contain all keywords in the nodes of 
TROα, and object nodes r(STROγ) of the min-
imum object trees which contain partial key-
words in the nodes of STROγ, and create the 
list LL {r(TROα), σj, τ} and LL {r(STROγ), σj, 
τ}. We get Plocal (r(TROα)), Ppath (r(TROα)) from 
lists LL {r(TROα), σj, τ} and LE {r(TROα), ωi, 
ε} and compute P(r(TROα)) = Ppath (r(TROα)) 
× Plocal (r(TROα)), and similarly, compute the 
P(r(STROγ)). We delete the entries of r(TROα) 
from the index{Mi}, as the set of r(TROα) are 
returned as the minimum result object nodes. 
We compute the SLCA object nodes among the 
nodes r(STROγ) and nodes vi which contain par-
tial keywords. We initialize a stack ST, and get 
node v with the smallest Dewey code in the in-
dex {Mi}, and initiate stack ST with the compo-
nents of the Dewey of node v. We get the next 
node v' with the smallest Dewey in the index 
{Mi}, and compute the longest common prefix 
pre of node v and v'. If the length of the longest 
common prefix pre is smaller than the size of 
the ST (the size of ST is equal to the length of the 
components of the Dewey (v)), the top entries 
which are not the components of pre are popped 
out. After this, the last component of the pre in 
the stack ST becomes the top entry. In the stack 
ST, we use keyword arrays {[κ1][κ2]…[κn]} 
which are stored behind each entry of Dewey 
component to denote the subtree rooted at the 
entries in ST, whether containing ith keyword or 
not. For example, there is an entry (1, [0.7][0.8]
[0][0.4]) stored at the top entry of ST, the first 
"1" is one component of Dewey, and keyword 
array [0.7][0.8][0][0.4] denotes nodes of the 
subtree rooted at the entries of ST contains key-
words k1, k2 and k4. When processing the key-
word node v, we make keyword[l] = θ(kl) if v 
contains keyword kl and the existence possibil-
ity value Ppath (v) will be given to keyword[l] at 
the top entry of the stack. And when processing 
the keyword node r(STROγ), if nodes in STROγ 
contain keywords k1 and k2, then the existence 
possibility value Ppath (r(STROγ)) will be given 
to keyword[1] and keyword[2] at the same time. 
If node v (or r(STROγ)) does not contain key-
word k3, then keyword[3] = 0. After process-
ing node v, keyword [l] = θ(kl) will be trans-
mitted to the top entry of remaining entries in 
the stack ST (see in lines 23-25). After popping 
out top entries of v, we push the components 
of Dewey which are not the pre of node v' into 

the stack and get next node in the list {Mi} to 
process. During this process, when finding the 
component of the popping entry is all denoted 
by keyword[ j] = θ(kj) ( j = 1, 2, ..., m) (which 
means all keyword[ j] > 0), then the node s, de-
termined by the entries from the bottom entry to 
the popping entry in the stack ST, is reported as 
a SLCA node. We pop out the node s, and push 
the next smallest node as a new initial value of 
the empty stack, and process the rest keyword 
nodes in the list {Mi}.
For a SLCA node s popped out, we should 
judge whether s is an object node or an ordinary 
node (see lines 13–15). If Dewey(s) ∈ LO, s is 
an SLCA object node and it can be returned as a 
matching result object node. If Dewey(s) ∉ LO, 
s is a non-object node, we should find its parent 
node s' = parent(s) along the path in the XML 
tree. And parent(s) is returned as a matching 
result object node if Dewey(parent(s)) ∈ LO. 
If Dewey(parent(s)) ∉ LO, we should find the 
ancestor node s' = ancestor(s) when ancestor(s) 
∈ LO, and return it as the matching result object 
node. We record s' = parent(s) (or ancestor(s)) 
into the list LE{s', ωi, ε}. When popping out 
node s, we can get the array keyword[ j]1 (where 
keyword[ j]1 > 0, 1 ≤ j ≤ m) of the top entry from 
the stack ST, according to the array keyword  
[ j]1 of the top entry of s, we can get the key-
word nodes in the subtree s

subT  rooted at node 
s which contains all keywords. The keyword 
nodes vi containing keyword k2 which have 
been visited before generating node s with ex-
istence possibility value Ppath(vi) in keyword[2]1 
will be the nodes in s

subT .The nodes vi can be 
an ordinary node or an object node. There are 
two types of the SLCA object nodes: r(SL-
CAOoo) and r(SLCAOov). r(SLCAOoo) are the 
root nodes of SLCA object trees of the com-
binations of single target object trees STROγ. 
r(SLCAOov) are the root nodes of SLCA object 
trees of the combinations of single target ob-
ject trees STROγ with nodes vi which contain 
partial keywords.  For example, if keyword 
[ j]1 is {[0.7][0.8][0.6][0.8]}, for nodes v1 ∈ M1, 
r(STRO2) ∈{M2, M4}, v3 ∈ M3 which have been 
visited, if v1, r(STRO2) and v3 satisfy the con-
dition: Ppath(v1) = 0.7, Ppath(r(STRO2)) = 0.8, 
Ppath(v3) = 0.6, LCA(v1, r(STRO2), v0) = s, then 
nodes v1, r(STRO2), v3 are keyword nodes in 

s
subT . After obtaining keyword nodes and visit-

ing the lists LL{r(O), σj, τ} and LE{v, ωi, ε}, we 
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when users input keywords k1, k2, …, km, we 
need to obtain the object nodes r(ROM) of the 
minimum result object trees ROM and their pos-
sibilities λ, and the object nodes r(ROP) of the 
result object trees ROP and their possibilities σ. 
In order to realize the query semantics, we pro-
pose the following ROstack algorithm.
The detailed procedure of ROstack algorithm 
is shown in Algorithm 1. When users input a 

Algorithm 1.  ROstack.

Input:  A set of keywords{k1, k2, …, km}, and a fuzzy XML document encoded with Dewey 
Output: The matching result object nodes and their possibilities: {(r(RO1), ξ1), (r(RO2), ξ2),…, (r(ROn), ξn)}
1:  Load and visit keyword index{Mi}(i = 1, 2, ..., m), the lists 

MINOL , LO, create and update the list LE {v, ωi, ε};
2:  Find the set of object nodes r(TROα), r(STROγ), and create the list LL {r(O), σj, τ} 
     of nodes r(TROα) and r(STROγ),
3:  Compute P(r(TROα)), P(r(STROγ));
4:  Delete entries of r(TROα) from index{Mi};
5:  Initialize a stack ST = empty,
6:  v = get smallest node (),
7:  Push node v into the stack ST, and set the Dewey(v) as the initial value of the stack ST;
8:  while (not reach the end entry of keyword list{Mi}), do{
9:      v' = get next smallest node (),
10:     pre = lcp(ST, v' ), //compute the longest common prefix pre between node v and node v' such that   
          ST [i] = v[i], 1 ≤ i ≤ pre.length;
11:     while (stack ST.size > pre.length) do
12:        ST entry s = ST.pop();
13:      if s is SLCA() then{
14:             when (Dewey (s) ∈ LO), record s into list LE{v, ωi, ε};
15:             when (Dewey (s) ∉ LO), find s' = parent(s) (or ancestor(s)) and s' ∈ LO, record s' 
                  into list LE{v, ωi, ε};
16:             get type s, s.keyword[ j]1 ( j = 1, 2, …, m), 
17:             if s ∈ r(SLCAOov) then 
18:                 get Plocal(r(STROγ)) from list LL{r(O), σj, τ}, membership degrees ωi

s, 
                      ωi

r(STRO), ωi
v from list LE{v, ωi, ε}, and record s into list LL{r(O), σj, τ}; 

19:                 compute P(r(SLCAOov));
20:             if s ∈ r(SLCAOoo) then  
21:                 get Plocal(r(STROγ)) from list LL{r(O), σj, τ}, membership degrees ωi

s, 
                      ωi

r(STRO) from list LE{v, ωi, ε}, and record s into list LL{r(O), σj, τ}; 
22:                 compute P(r(SLCAOoo));}
23:      else for (1 ≤ l ≤ m)
24:             if (s.keyword[l ] = θ(kl)) then
25:                 ST.top.keyword[l ] = θ(kl); 
26:      when (pre.length < d ≤ v'.length), ST.push(v'(d));
27:      when ST is empty, initialize ST with the next smallest node until all nodes in list 
           {Mi} are processed. }
28: return the matching result object nodes and their possibilities: ((r(RO1), ξ1), (r(RO2), ξ2),
      …, (r(ROn), ξn)).

set of keywords {k1, k2, …, km}, the algorithm 
loads and visits the keyword list{Mi}, the 
minimum object tree list 

MINOL  and the object 
node list LO. According to the nodes vi which 
contain keywords and minimum object nodes 
r(Omin) which contain keywords in the nodes 
of minimum object trees Omin, we create the 
list LE {v, ωi, ε}. From list 

MINOL  we find object 
nodes r(TROα) of the minimum object trees 

which contain all keywords in the nodes of 
TROα, and object nodes r(STROγ) of the min-
imum object trees which contain partial key-
words in the nodes of STROγ, and create the 
list LL {r(TROα), σj, τ} and LL {r(STROγ), σj, 
τ}. We get Plocal (r(TROα)), Ppath (r(TROα)) from 
lists LL {r(TROα), σj, τ} and LE {r(TROα), ωi, 
ε} and compute P(r(TROα)) = Ppath (r(TROα)) 
× Plocal (r(TROα)), and similarly, compute the 
P(r(STROγ)). We delete the entries of r(TROα) 
from the index{Mi}, as the set of r(TROα) are 
returned as the minimum result object nodes. 
We compute the SLCA object nodes among the 
nodes r(STROγ) and nodes vi which contain par-
tial keywords. We initialize a stack ST, and get 
node v with the smallest Dewey code in the in-
dex {Mi}, and initiate stack ST with the compo-
nents of the Dewey of node v. We get the next 
node v' with the smallest Dewey in the index 
{Mi}, and compute the longest common prefix 
pre of node v and v'. If the length of the longest 
common prefix pre is smaller than the size of 
the ST (the size of ST is equal to the length of the 
components of the Dewey (v)), the top entries 
which are not the components of pre are popped 
out. After this, the last component of the pre in 
the stack ST becomes the top entry. In the stack 
ST, we use keyword arrays {[κ1][κ2]…[κn]} 
which are stored behind each entry of Dewey 
component to denote the subtree rooted at the 
entries in ST, whether containing ith keyword or 
not. For example, there is an entry (1, [0.7][0.8]
[0][0.4]) stored at the top entry of ST, the first 
"1" is one component of Dewey, and keyword 
array [0.7][0.8][0][0.4] denotes nodes of the 
subtree rooted at the entries of ST contains key-
words k1, k2 and k4. When processing the key-
word node v, we make keyword[l] = θ(kl) if v 
contains keyword kl and the existence possibil-
ity value Ppath (v) will be given to keyword[l] at 
the top entry of the stack. And when processing 
the keyword node r(STROγ), if nodes in STROγ 
contain keywords k1 and k2, then the existence 
possibility value Ppath (r(STROγ)) will be given 
to keyword[1] and keyword[2] at the same time. 
If node v (or r(STROγ)) does not contain key-
word k3, then keyword[3] = 0. After process-
ing node v, keyword [l] = θ(kl) will be trans-
mitted to the top entry of remaining entries in 
the stack ST (see in lines 23-25). After popping 
out top entries of v, we push the components 
of Dewey which are not the pre of node v' into 

the stack and get next node in the list {Mi} to 
process. During this process, when finding the 
component of the popping entry is all denoted 
by keyword[ j] = θ(kj) ( j = 1, 2, ..., m) (which 
means all keyword[ j] > 0), then the node s, de-
termined by the entries from the bottom entry to 
the popping entry in the stack ST, is reported as 
a SLCA node. We pop out the node s, and push 
the next smallest node as a new initial value of 
the empty stack, and process the rest keyword 
nodes in the list {Mi}.
For a SLCA node s popped out, we should 
judge whether s is an object node or an ordinary 
node (see lines 13–15). If Dewey(s) ∈ LO, s is 
an SLCA object node and it can be returned as a 
matching result object node. If Dewey(s) ∉ LO, 
s is a non-object node, we should find its parent 
node s' = parent(s) along the path in the XML 
tree. And parent(s) is returned as a matching 
result object node if Dewey(parent(s)) ∈ LO. 
If Dewey(parent(s)) ∉ LO, we should find the 
ancestor node s' = ancestor(s) when ancestor(s) 
∈ LO, and return it as the matching result object 
node. We record s' = parent(s) (or ancestor(s)) 
into the list LE{s', ωi, ε}. When popping out 
node s, we can get the array keyword[ j]1 (where 
keyword[ j]1 > 0, 1 ≤ j ≤ m) of the top entry from 
the stack ST, according to the array keyword  
[ j]1 of the top entry of s, we can get the key-
word nodes in the subtree s

subT  rooted at node 
s which contains all keywords. The keyword 
nodes vi containing keyword k2 which have 
been visited before generating node s with ex-
istence possibility value Ppath(vi) in keyword[2]1 
will be the nodes in s

subT .The nodes vi can be 
an ordinary node or an object node. There are 
two types of the SLCA object nodes: r(SL-
CAOoo) and r(SLCAOov). r(SLCAOoo) are the 
root nodes of SLCA object trees of the com-
binations of single target object trees STROγ. 
r(SLCAOov) are the root nodes of SLCA object 
trees of the combinations of single target ob-
ject trees STROγ with nodes vi which contain 
partial keywords.  For example, if keyword 
[ j]1 is {[0.7][0.8][0.6][0.8]}, for nodes v1 ∈ M1, 
r(STRO2) ∈{M2, M4}, v3 ∈ M3 which have been 
visited, if v1, r(STRO2) and v3 satisfy the con-
dition: Ppath(v1) = 0.7, Ppath(r(STRO2)) = 0.8, 
Ppath(v3) = 0.6, LCA(v1, r(STRO2), v0) = s, then 
nodes v1, r(STRO2), v3 are keyword nodes in 

s
subT . After obtaining keyword nodes and visit-

ing the lists LL{r(O), σj, τ} and LE{v, ωi, ε}, we 
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can obtain the membership degrees on the paths 
from node s to keyword nodes, then record s 
into list LL{s, σj, τ}, and get Plocal(s) by the cal-
culation method shown in Subsection 3.5. For 
example, for a SLCA object node s and its key-
word nodes STRO2, v1, v2, if the Plocal(STRO2) 
= 0.8, the membership degrees on the paths 
from the root node r to node s, STRO2, v1 and 
v2 are {0.8, 0.9, 0.9}, {0.8, 0.9, 0.9, 0.9, 0.8},  
{0.8, 0.9, 0.9, 0.7} and {0.8, 0.9, 0.9, 0.9, 0.9}
respectively. Then, the membership degrees 
on the paths from node s to node STRO2, v1 
and v2 are {0.9, 0.8},{0.7},{0.9, 0.9}, and  
P(s) = Ppath(s) × Plocal(s) = 0.8 × 0.9 × 0.9 × 
0.8 × 0.8 × 0.9 × 0.7 × 0.9 × 0.9 = 0.21.  
If keyword[ j]1 is {[0.9][0.9][0.7][0.7][0.7]},  
for nodes r(STRO2) ∈ {M1, M2}, r(STRO3) 
∈ {M3, M4, M5} which have been visited, if 
r(STRO2) and r(STRO3) satisfy the condition: 
Ppath (r(STRO2)) = 0.9, Ppath (r(STRO3)) = 0.7, 
LCA (r(STRO2), r(STRO3)) = s, then nodes 
r(STRO2) and r(STRO3) are keyword nodes in 

s
subT  and the Plocal(s) can be calculated with the 

method shown in Subsection 3.5. Finally, we 
return all the matching result object nodes and 
their possibilities (r(RO1), ξ1), (r(RO2), ξ2), …, 
(r(ROn), ξn) as query results.

5. Experiments

5.1. Experimental Setting

The algorithm proposed in this paper is imple-
mented with Java on a laptop with 2.13 GHz 
Intel core i3 with 3 GB memory on Windows 
7 system. For testing our algorithm we use a 
real dataset DBLP [25] and a synthetic dataset 
XMark [26] . We choose the two data sets since 
they represent two important characteristics of 
the data: DBLP is a relatively shallow dataset of 
a large size; XMark is a balanced dataset with 
complex structure, varied depth and varied size.
For DBLP, we generate five datasets D1, D2, 
D3, D4, D5 sized of 50 M, 70 M, 90 M, 110 M 
and 130 M, respectively. For XMark, we also 
generate five datasets X1, X2, X3, X4, X5 sized 
of 20 M, 40 M, 60 M, 80 M and 100 M, re-
spectively. For each dataset, we use the random 
fuzzy information generation method used in 
[8] to transform the crisp XML documents into 
fuzzy XML documents. The new generated 

fuzzy XML documents are represented by FD1, 
FD2, FD3, FD4, FD5 and FX1, FX2, FX3, FX4, 
and FX5, respectively. We pre-process the fuzzy 
XML documents with the object identification 
operation and identify the object nodes con-
tained in the documents. And the Dewey codes 
of the object nodes are recorded into the list LO.

5.2. Evaluation of Query Quality

Precision, recall and F-measure are the evalu-
ation standards for the quality of a query tech-
nique of accuracy and completeness which are 
borrowed from the IR literature. Precision mea-
sures accuracy, indicating the fraction of results 
in the approximate answer that are correct, and 
recall measures completeness, indicating that 
the fraction of all correct results actually cap-
tured in the approximate answer.

Table 1.  Keyword query examples for datasets.

ID keyword query ID keyword query

DQ1
XML, model, 

Algebra XQ1
Buyer,  

open_auction

DQ2
Relational, model, 

fuzzy, query XQ2 person40, phone

DQ3
Information, 

retrieval XQ3
America, item, 

address

DQ4 Fuzzy, XML XQ4
buyer, ship,  
Ed, phone

DQ5
XML, twig,  

query XQ5
United States, 
close_auction

For keywords shown in Table 1, we build the 
structure query statement for each keyword 
query with the algorithm LTwig [8]. LTwig is a 
holistic algorithm which can efficiently evalu-
ate twig queries over the fuzzy XML document, 
and we get a set of query results Ri and their 
possibilities λi are no less than the given thresh-
old U for each query from the LTwig algorithm. 
We obtain the matching result object nodes 
r(ROi) and their possibilities ξi from the algo-
rithm ROstack. Given a keyword query Q and 
its corresponding transformed LTwig query LQ, 
the results set of Q (the answers of the keyword 
query Q), denoted as RP, are the approximate 
results. And the results set of LQ (the answers 
of the transformed LTwig query), denoted as 
RA, are the accurate results. Precision and recall 
of an algorithm are defined as follows. Preci-

sion of an algorithm is the ratio between |RA ∩ 
RP| and |RP|, and recall is the ratio between |RA 
∩ RP| and |RA|. That is, pprecision = |RA ∩ RP| / |RP|, 
precall = |RA ∩ RP| / |RA|. Let  f denote the F-mea-

sure, then 
2 precision recall

precision recall

p p
f

p p
× ×

=
+

, when f ≠ 0,  

precall ≠ 0.
We run keyword queries DQ1–DQ5 over datasets 
FD1 and FD3, and keyword queries XQ1–XQ5 
over datasets FX2 and FX4. The results of preci-
sion and recall of algorithm ROstack on different 
datasets are shown in Figure 5. The experimental 
results show that for different keyword queries 
on different fuzzy XML datasets, algorithm RO-
stack has high precision and recall. On the FD 
datasets, the average precision is 0.963, and the 
average recall is 0.96. On the FX datasets, the av-
erage precision is 0.927, and the average recall is 
0.933. With our approach proposed, we consider 
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Figure 5.  The precision and recall of algorithm ROstack on datasets FD1, FD3, FX2 and FX4.

not only the AND semantics among keywords, 
which can return the root nodes of minimum re-
sult object trees and their possibilities matching 
all keywords, but also the OR semantics among 
keywords, which can return the root nodes of the 
result object trees and their possibilities match-
ing partial keywords. The answers obtained with 
the object-oriented query semantics are more 
meaningful at the object-level and more com-
plete.
Table 2 demonstrates the average F-measure on 
different datasets. On the fuzzy XML datasets 
FD, the F-measure of ROstack reaches 96%, 
and on the fuzzy XML datasets FX, the F-mea-
sure of ROstack reaches 92%.

Table 2.  F-measure.

F-measure FD FX
ROstack 96% 92%
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can obtain the membership degrees on the paths 
from node s to keyword nodes, then record s 
into list LL{s, σj, τ}, and get Plocal(s) by the cal-
culation method shown in Subsection 3.5. For 
example, for a SLCA object node s and its key-
word nodes STRO2, v1, v2, if the Plocal(STRO2) 
= 0.8, the membership degrees on the paths 
from the root node r to node s, STRO2, v1 and 
v2 are {0.8, 0.9, 0.9}, {0.8, 0.9, 0.9, 0.9, 0.8},  
{0.8, 0.9, 0.9, 0.7} and {0.8, 0.9, 0.9, 0.9, 0.9}
respectively. Then, the membership degrees 
on the paths from node s to node STRO2, v1 
and v2 are {0.9, 0.8},{0.7},{0.9, 0.9}, and  
P(s) = Ppath(s) × Plocal(s) = 0.8 × 0.9 × 0.9 × 
0.8 × 0.8 × 0.9 × 0.7 × 0.9 × 0.9 = 0.21.  
If keyword[ j]1 is {[0.9][0.9][0.7][0.7][0.7]},  
for nodes r(STRO2) ∈ {M1, M2}, r(STRO3) 
∈ {M3, M4, M5} which have been visited, if 
r(STRO2) and r(STRO3) satisfy the condition: 
Ppath (r(STRO2)) = 0.9, Ppath (r(STRO3)) = 0.7, 
LCA (r(STRO2), r(STRO3)) = s, then nodes 
r(STRO2) and r(STRO3) are keyword nodes in 

s
subT  and the Plocal(s) can be calculated with the 

method shown in Subsection 3.5. Finally, we 
return all the matching result object nodes and 
their possibilities (r(RO1), ξ1), (r(RO2), ξ2), …, 
(r(ROn), ξn) as query results.

5. Experiments

5.1. Experimental Setting

The algorithm proposed in this paper is imple-
mented with Java on a laptop with 2.13 GHz 
Intel core i3 with 3 GB memory on Windows 
7 system. For testing our algorithm we use a 
real dataset DBLP [25] and a synthetic dataset 
XMark [26] . We choose the two data sets since 
they represent two important characteristics of 
the data: DBLP is a relatively shallow dataset of 
a large size; XMark is a balanced dataset with 
complex structure, varied depth and varied size.
For DBLP, we generate five datasets D1, D2, 
D3, D4, D5 sized of 50 M, 70 M, 90 M, 110 M 
and 130 M, respectively. For XMark, we also 
generate five datasets X1, X2, X3, X4, X5 sized 
of 20 M, 40 M, 60 M, 80 M and 100 M, re-
spectively. For each dataset, we use the random 
fuzzy information generation method used in 
[8] to transform the crisp XML documents into 
fuzzy XML documents. The new generated 

fuzzy XML documents are represented by FD1, 
FD2, FD3, FD4, FD5 and FX1, FX2, FX3, FX4, 
and FX5, respectively. We pre-process the fuzzy 
XML documents with the object identification 
operation and identify the object nodes con-
tained in the documents. And the Dewey codes 
of the object nodes are recorded into the list LO.

5.2. Evaluation of Query Quality

Precision, recall and F-measure are the evalu-
ation standards for the quality of a query tech-
nique of accuracy and completeness which are 
borrowed from the IR literature. Precision mea-
sures accuracy, indicating the fraction of results 
in the approximate answer that are correct, and 
recall measures completeness, indicating that 
the fraction of all correct results actually cap-
tured in the approximate answer.

Table 1.  Keyword query examples for datasets.

ID keyword query ID keyword query

DQ1
XML, model, 

Algebra XQ1
Buyer,  

open_auction

DQ2
Relational, model, 

fuzzy, query XQ2 person40, phone

DQ3
Information, 

retrieval XQ3
America, item, 

address

DQ4 Fuzzy, XML XQ4
buyer, ship,  
Ed, phone

DQ5
XML, twig,  

query XQ5
United States, 
close_auction

For keywords shown in Table 1, we build the 
structure query statement for each keyword 
query with the algorithm LTwig [8]. LTwig is a 
holistic algorithm which can efficiently evalu-
ate twig queries over the fuzzy XML document, 
and we get a set of query results Ri and their 
possibilities λi are no less than the given thresh-
old U for each query from the LTwig algorithm. 
We obtain the matching result object nodes 
r(ROi) and their possibilities ξi from the algo-
rithm ROstack. Given a keyword query Q and 
its corresponding transformed LTwig query LQ, 
the results set of Q (the answers of the keyword 
query Q), denoted as RP, are the approximate 
results. And the results set of LQ (the answers 
of the transformed LTwig query), denoted as 
RA, are the accurate results. Precision and recall 
of an algorithm are defined as follows. Preci-

sion of an algorithm is the ratio between |RA ∩ 
RP| and |RP|, and recall is the ratio between |RA 
∩ RP| and |RA|. That is, pprecision = |RA ∩ RP| / |RP|, 
precall = |RA ∩ RP| / |RA|. Let  f denote the F-mea-

sure, then 
2 precision recall

precision recall

p p
f

p p
× ×

=
+

, when f ≠ 0,  

precall ≠ 0.
We run keyword queries DQ1–DQ5 over datasets 
FD1 and FD3, and keyword queries XQ1–XQ5 
over datasets FX2 and FX4. The results of preci-
sion and recall of algorithm ROstack on different 
datasets are shown in Figure 5. The experimental 
results show that for different keyword queries 
on different fuzzy XML datasets, algorithm RO-
stack has high precision and recall. On the FD 
datasets, the average precision is 0.963, and the 
average recall is 0.96. On the FX datasets, the av-
erage precision is 0.927, and the average recall is 
0.933. With our approach proposed, we consider 
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Figure 5.  The precision and recall of algorithm ROstack on datasets FD1, FD3, FX2 and FX4.

not only the AND semantics among keywords, 
which can return the root nodes of minimum re-
sult object trees and their possibilities matching 
all keywords, but also the OR semantics among 
keywords, which can return the root nodes of the 
result object trees and their possibilities match-
ing partial keywords. The answers obtained with 
the object-oriented query semantics are more 
meaningful at the object-level and more com-
plete.
Table 2 demonstrates the average F-measure on 
different datasets. On the fuzzy XML datasets 
FD, the F-measure of ROstack reaches 96%, 
and on the fuzzy XML datasets FX, the F-mea-
sure of ROstack reaches 92%.

Table 2.  F-measure.

F-measure FD FX
ROstack 96% 92%
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6. Conclusion

In this paper, we propose a semantics of ob-
ject-oriented keyword querying over fuzzy 
XML. By introducing the concept object tree, 
we can get the matching result object trees 
which are the minimum result object trees ROM 
containing all keywords in their tree structures, 
and result object trees ROP containing partial 
keywords in their tree structures. The root nodes 
of ROM and ROP, which are r(ROM) and r(ROP), 
together with their possibilities are returned as 
the computational results. Based on our key-
word query semantics, we can not only get the 
query results matching all keywords at the ob-
ject level, but also the query results matching 
partial keywords at the object level. 
As the number of results returned is enormous 
and disordered, it is difficult for users to filter 
the useful information quickly and effectively 
from the large number of results. In the future, 
we will devote our effort to the issue of filter-
ing and ranking the query results as well as to 
the issue of query optimization to obtain higher 
quality query results.
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6. Conclusion

In this paper, we propose a semantics of ob-
ject-oriented keyword querying over fuzzy 
XML. By introducing the concept object tree, 
we can get the matching result object trees 
which are the minimum result object trees ROM 
containing all keywords in their tree structures, 
and result object trees ROP containing partial 
keywords in their tree structures. The root nodes 
of ROM and ROP, which are r(ROM) and r(ROP), 
together with their possibilities are returned as 
the computational results. Based on our key-
word query semantics, we can not only get the 
query results matching all keywords at the ob-
ject level, but also the query results matching 
partial keywords at the object level. 
As the number of results returned is enormous 
and disordered, it is difficult for users to filter 
the useful information quickly and effectively 
from the large number of results. In the future, 
we will devote our effort to the issue of filter-
ing and ranking the query results as well as to 
the issue of query optimization to obtain higher 
quality query results.
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