
253CIT. Journal of Computing and Information Technology, Vol. 24, No. 3, September 2016, 253–269
doi: 10.20532/cit.2016.1002787

Dependency Modeling of a SOA Based
System Through Colored Petri Nets

Pawan Kumar and Ratneshwer Gupta
Department of Computer Science (MMV), Banaras Hindu University, India

Dependency relationships play an important role in
testing, maintenance and configuration management of
software systems. The informal dependency represen-
tations fail to observe behavioral connections among
subsystems and cause ambiguity in representing dif-
ferent types of dependency relationships. Therefore,
dependency in a software system requires a formal and
unambiguous representation so that its correct effects
can be visualized. In this paper, we present a Colored
Petri Net based dependency analysis of a Service Ori-
ented Architecture (SOA) based system that represents
specification of dependency relationships and models
the dependencies in a SOA based system at conceptual
level. Different types of dependency relations are rep-
resented in a formal manner by using Service Algebra.
A module SOA based system ‘Online Bookshop’ has
been developed and used for the purpose of modeling
and example demonstration. Such modeling can help
in identification of inconsistency among services, and
web services can be verified for safety and reliability.

ACM CCS (2012) Classification: Information systems
→ World Wide Web → Web services
Software and its engineering → Software organiza-
tion and properties → Software system structures →
Software system models → Petri nets
Software and its engineering → Software organiza-
tion and properties → Contextual software domains
→ Software infrastructure → Middleware

Keywords: Service Oriented Architecture, web ser-
vices, Petri Net, Colored Petri Net, Service Algebra,
dependency analysis

1. Introduction

Software organizations are aware of the fact
that without sufficient understanding of the sys-
tems they develop, maintenance and evolution
become expensive and unpredictable. Service
Oriented Architecture (SOA) is an approach to

develop software with the assistance of reus-
able software services. This development para-
digm may help to reduce the development time
and costs. Understanding dependencies in SOA
based systems is essential to performing two
functions. The first one is impact analysis, which
means understanding which other services are
affected when a service becomes unavailable.
The second one is service level root cause anal-
ysis, which means understanding the cause of a
service by looking at the other services it relies
on [1].The knowledge of services dependencies
is important for a number of management activ-
ities. Fault management needs this information
to track problems in a distributed service net-
work. Configuration management needs this in-
formation to know which services are currently
in use and appropriately adapt to changes in the
environment. Accounting management needs
to know dependencies to appropriately charge
for service access. Policy-based management
needs to know dependencies and must be able
to change them to enforce the policies [2]. All
these management activities must have ways to
learn the current dependencies, discover their
properties, and possibly perform rebinding of
services. Adequate dependency analysis guar-
antees the composability of software services
before deploying them and makes complexity
manageable. Dependency analysis information
is useful for dividing the development of a com-
plex software system into manageable units.
The terms dependency and dependency infor-
mation are misunderstood by professionals.
Software people have taken this concept in ad-
hoc manner and unfortunately dependency in-
formation is not always available. It is common
for people to experience an installation error or
runtime error due to a missing dependency, but

254 255P. Kumar and R. Gupta Dependency Modelling of a SOA Based System Through Colored Petri Nets

have no-where to find what dependencies are
missing. A user may expect dependency infor-
mation recorded in the documentation distrib-
uted along with the software. However, neither
the availability nor accuracy of such documen-
tation is guaranteed [3]. Thinking about depen-
dency relationships is about being sensitive
to the desirable and undesirable effects of de-
pendencies in various situations. The tasks of
unlinking, moving, re-linking in an organiza-
tional context are usually expensive and time
consuming. They are also fraught with risk,
since a neglected dependency could result in
an undesirable disturbance to another system
when the move occurs. This is why projects are
so expensive, and why organizations prefer to
work around dependencies rather than address
them head-on. In this process, they often cre-
ate fresh dependencies that can pose an even
bigger problem in future. When using Service
Oriented Architecture for application develop-
ment, dependency analysis becomes even more
complex. As a result, building a dependency hi-
erarchy between all the components in a SOA
becomes extremely difficult, but nevertheless
all the more important to ensure that the overall
system stays functional while changes are in-
troduced at different levels [4].
In this paper, we present a Colored Petri Net
based dependency analysis of a Service Ori-
ented Architecture (SOA) based system that
represents specification of dependency relation-
ships and models the dependencies in a SOA
based system at conceptual level. Different
types of dependency relations are represented
in a formal manner by using Service Algebra.
A module SOA based system Online Bookshop
has been developed and used for the purpose
of modeling and example demonstration. Such
modeling can help in identification of inconsis-
tency among services, and web services can be
verified for safety and reliability. The proposed
work does not address the definition and inter-
nal details of web services. Rather, the main
aim of this work is to describe the observable
dependencies among web services as a form of
logical and temporal relationships.
The rest of the paper is organized as follows.
In Section 2, some research efforts, related to
the topic, are summarized briefly. In Section 3,
a brief introduction of Petri net and service al-
gebra are given. In Section 4, the description of

module SOA based system Online Bookshop is
given, which has been used for modeling and
example demonstration. Section 5 describes
dependency relationships among web services
using Petri nets and service algebra operators.
In Section 6, dependency modeling of a SOA
based system, through colored Petri net is ex-
plained in detail. A comparative study between
our approach and other similar approaches are
given in Section 7. Finally, we conclude the pa-
per in Section 8.

2. Related Work

The importance of Colored Petri net as a mod-
eling and analysis tool has been recognized by
several researchers. Here we limit the discus-
sion only to SOA based systems and especially
works related to dependency analysis of SOA
based systems.
Valero et al. [5], in their paper, have focused on
the development of a methodology for the de-
sign and validation of composite web services
using WS-CDL as the language for describing
web services interactions and Petri nets as a
formalism that allows to simulate and validate
the described systems. They specifically intend,
then, to capture timed and prioritized collabo-
rations in composite web services. Zhang et al.
[6] have introduced a Web Services Net (WS-
Net), which is an executable architectural de-
scription language incorporating the semantics
of Colored Petri Nets with the style and under-
standability of the Object-Oriented concept and
Web services concept. Gehlot et al. [3] report
on their experience with using Colored Petri
Nets (CPNs) for model driven development and
quality assessment of a defense-targeted service
oriented software architecture. They identified
the features of CPN that have resulted in ease of
adoption as a modeling tool in present setting.
Preliminary results are provided which support
the use of CPNs as a basis for model driven
software development, and verification and val-
idation (V&V) for quality assurance of highly
concurrent and mission-critical SOAs. Deng et
al. [7] presented an approach for transforming
the composition language WSCI into Colored
Petri nets (CPNs) so as to verify the model with
existing CPNs-specialized tools. The Colored
Petri nets model of a typical use case Plan and
Book Trip is constructed, analyzed, verified and

line banking. To sell books, this program takes
an orders from customers, confirms the order,
and cancels the order, as suggested by the cus-
tomer. There are two perspectives in this case,
one from customers’ point of view and another
from sellers’ point of view. In the context of
customer, the main goal is to buy the appro-
priate books at least price on right time. In the
context of seller, the main goal is to sell more
and more books and provide service timely to
build goodwill.
Suppose we consider the customers point of
view. For purchasing books, there are two sit-
uations, either purchasing offline or online.
To purchase books offline we have to go to a
book shop. Search catalogue to find appropri-
ate books. After finding appropriate books, we
need to make payment. Payment can be made
by either using cash or debit/credit card. To
purchase books online, first a customer visits
websites to find appropriate site for purchasing
books. When he decides about the book pur-
chase, then he registers himself to the partic-
ular website. After registering himself, he logs
in to the website. Again he searches for desired
books. Desired books are placed in shopping
cart and order for the desired books is placed.
Appropriate delivery address is provided so that
books delivery could be done successfully at
right place and to the person. Payment is done
using either cash on delivery or debit card or
online banking.
Model of Purchasing Books has been shown in
Figure 1 which shows a model of decomposi-
tion of the goal Purchasing Book. This goal is
decomposed up to manageable sub-goals and
a web service is developed for each sub-goal.
If a web service does not exist corresponding
to a sub-goal, we decompose this sub-goal to
further smaller sub-goals so that corresponding
to these sub-goals, web services exist. Web ser-
vices are connected by three types of relation-
ships i.e. sequence, concurrent and exclusion
which are denoted by circled arrows, pluses
and crosses respectively. In Figure 1, Search
Website, Decide a Website, Search Books and
Shopping Cart sub-goals are sequentially at-
tached. Order the Book and Provide Delivery
Address are performed concurrently. Payment
by Cash and Payment by Debit Card are done
exclusively.

simulated as a prototype of WSCI model with
the CPNs tools. In his dissertation Wells [8] fo-
cuses on the use of colored Petri nets for simu-
lation based performance analysis of industrial
sized systems. He has presented an overview
of improved facilities for performance anal-
ysis using colored Petri nets and a framework
for implementing monitoring facilities that ob-
serve, inspect, and control simulations of Col-
ored Petri nets (CPNs). Bhubaneswar et al. [9]
in their paper, deal with the usage of CPNs to
verify the semantic web service composition
plan represented by Ontology Web Languages
for Web Services (OWL-S). The verification
is carried out by employing reachability anal-
ysis of an algebraic CP-net and simulation us-
ing CPN tools. Kolb et al. [10] have described
orchestration of heterogeneous services in
which BPEL and Workflows (WF) are used.
They have made effort to convert WFs to Open
Workflow nets (oWFNs) so that compiler for
executing this net can be mentioned. But their
approach is not sufficient to handle dependency
issue effectively. Abbassi et al. [11] have used
a formal model Event-B for web service com-
position this but approach is not sufficient for
dependency analysis.
It can be observed that several works on appli-
cations of Colored Petri nets are available in
service oriented architecture and other domains.
But a specific work of dependency modeling
of a SOA based system through Colored Petri
nets is rarely available. This work extends the
above contributions further by representing de-
pendency relationships, in a SOA based system,
through Colored Petri nets which will prove a
valued component for validating services at de-
sign time.

3. A SOA Based Online
Bookshop System for
Example Demonstration

A module system Online Bookshop (using the
concept of SOA) has been developed in or-
der to demonstrate dependency relationships
among services [12]. The goal of this module
system Online Bookshop is to take orders from
customers and delivers books on time. Payment
may be done by cash on delivery/debit card/on-

254 255P. Kumar and R. Gupta Dependency Modelling of a SOA Based System Through Colored Petri Nets

have no-where to find what dependencies are
missing. A user may expect dependency infor-
mation recorded in the documentation distrib-
uted along with the software. However, neither
the availability nor accuracy of such documen-
tation is guaranteed [3]. Thinking about depen-
dency relationships is about being sensitive
to the desirable and undesirable effects of de-
pendencies in various situations. The tasks of
unlinking, moving, re-linking in an organiza-
tional context are usually expensive and time
consuming. They are also fraught with risk,
since a neglected dependency could result in
an undesirable disturbance to another system
when the move occurs. This is why projects are
so expensive, and why organizations prefer to
work around dependencies rather than address
them head-on. In this process, they often cre-
ate fresh dependencies that can pose an even
bigger problem in future. When using Service
Oriented Architecture for application develop-
ment, dependency analysis becomes even more
complex. As a result, building a dependency hi-
erarchy between all the components in a SOA
becomes extremely difficult, but nevertheless
all the more important to ensure that the overall
system stays functional while changes are in-
troduced at different levels [4].
In this paper, we present a Colored Petri Net
based dependency analysis of a Service Ori-
ented Architecture (SOA) based system that
represents specification of dependency relation-
ships and models the dependencies in a SOA
based system at conceptual level. Different
types of dependency relations are represented
in a formal manner by using Service Algebra.
A module SOA based system Online Bookshop
has been developed and used for the purpose
of modeling and example demonstration. Such
modeling can help in identification of inconsis-
tency among services, and web services can be
verified for safety and reliability. The proposed
work does not address the definition and inter-
nal details of web services. Rather, the main
aim of this work is to describe the observable
dependencies among web services as a form of
logical and temporal relationships.
The rest of the paper is organized as follows.
In Section 2, some research efforts, related to
the topic, are summarized briefly. In Section 3,
a brief introduction of Petri net and service al-
gebra are given. In Section 4, the description of

module SOA based system Online Bookshop is
given, which has been used for modeling and
example demonstration. Section 5 describes
dependency relationships among web services
using Petri nets and service algebra operators.
In Section 6, dependency modeling of a SOA
based system, through colored Petri net is ex-
plained in detail. A comparative study between
our approach and other similar approaches are
given in Section 7. Finally, we conclude the pa-
per in Section 8.

2. Related Work

The importance of Colored Petri net as a mod-
eling and analysis tool has been recognized by
several researchers. Here we limit the discus-
sion only to SOA based systems and especially
works related to dependency analysis of SOA
based systems.
Valero et al. [5], in their paper, have focused on
the development of a methodology for the de-
sign and validation of composite web services
using WS-CDL as the language for describing
web services interactions and Petri nets as a
formalism that allows to simulate and validate
the described systems. They specifically intend,
then, to capture timed and prioritized collabo-
rations in composite web services. Zhang et al.
[6] have introduced a Web Services Net (WS-
Net), which is an executable architectural de-
scription language incorporating the semantics
of Colored Petri Nets with the style and under-
standability of the Object-Oriented concept and
Web services concept. Gehlot et al. [3] report
on their experience with using Colored Petri
Nets (CPNs) for model driven development and
quality assessment of a defense-targeted service
oriented software architecture. They identified
the features of CPN that have resulted in ease of
adoption as a modeling tool in present setting.
Preliminary results are provided which support
the use of CPNs as a basis for model driven
software development, and verification and val-
idation (V&V) for quality assurance of highly
concurrent and mission-critical SOAs. Deng et
al. [7] presented an approach for transforming
the composition language WSCI into Colored
Petri nets (CPNs) so as to verify the model with
existing CPNs-specialized tools. The Colored
Petri nets model of a typical use case Plan and
Book Trip is constructed, analyzed, verified and

line banking. To sell books, this program takes
an orders from customers, confirms the order,
and cancels the order, as suggested by the cus-
tomer. There are two perspectives in this case,
one from customers’ point of view and another
from sellers’ point of view. In the context of
customer, the main goal is to buy the appro-
priate books at least price on right time. In the
context of seller, the main goal is to sell more
and more books and provide service timely to
build goodwill.
Suppose we consider the customers point of
view. For purchasing books, there are two sit-
uations, either purchasing offline or online.
To purchase books offline we have to go to a
book shop. Search catalogue to find appropri-
ate books. After finding appropriate books, we
need to make payment. Payment can be made
by either using cash or debit/credit card. To
purchase books online, first a customer visits
websites to find appropriate site for purchasing
books. When he decides about the book pur-
chase, then he registers himself to the partic-
ular website. After registering himself, he logs
in to the website. Again he searches for desired
books. Desired books are placed in shopping
cart and order for the desired books is placed.
Appropriate delivery address is provided so that
books delivery could be done successfully at
right place and to the person. Payment is done
using either cash on delivery or debit card or
online banking.
Model of Purchasing Books has been shown in
Figure 1 which shows a model of decomposi-
tion of the goal Purchasing Book. This goal is
decomposed up to manageable sub-goals and
a web service is developed for each sub-goal.
If a web service does not exist corresponding
to a sub-goal, we decompose this sub-goal to
further smaller sub-goals so that corresponding
to these sub-goals, web services exist. Web ser-
vices are connected by three types of relation-
ships i.e. sequence, concurrent and exclusion
which are denoted by circled arrows, pluses
and crosses respectively. In Figure 1, Search
Website, Decide a Website, Search Books and
Shopping Cart sub-goals are sequentially at-
tached. Order the Book and Provide Delivery
Address are performed concurrently. Payment
by Cash and Payment by Debit Card are done
exclusively.

simulated as a prototype of WSCI model with
the CPNs tools. In his dissertation Wells [8] fo-
cuses on the use of colored Petri nets for simu-
lation based performance analysis of industrial
sized systems. He has presented an overview
of improved facilities for performance anal-
ysis using colored Petri nets and a framework
for implementing monitoring facilities that ob-
serve, inspect, and control simulations of Col-
ored Petri nets (CPNs). Bhubaneswar et al. [9]
in their paper, deal with the usage of CPNs to
verify the semantic web service composition
plan represented by Ontology Web Languages
for Web Services (OWL-S). The verification
is carried out by employing reachability anal-
ysis of an algebraic CP-net and simulation us-
ing CPN tools. Kolb et al. [10] have described
orchestration of heterogeneous services in
which BPEL and Workflows (WF) are used.
They have made effort to convert WFs to Open
Workflow nets (oWFNs) so that compiler for
executing this net can be mentioned. But their
approach is not sufficient to handle dependency
issue effectively. Abbassi et al. [11] have used
a formal model Event-B for web service com-
position this but approach is not sufficient for
dependency analysis.
It can be observed that several works on appli-
cations of Colored Petri nets are available in
service oriented architecture and other domains.
But a specific work of dependency modeling
of a SOA based system through Colored Petri
nets is rarely available. This work extends the
above contributions further by representing de-
pendency relationships, in a SOA based system,
through Colored Petri nets which will prove a
valued component for validating services at de-
sign time.

3. A SOA Based Online
Bookshop System for
Example Demonstration

A module system Online Bookshop (using the
concept of SOA) has been developed in or-
der to demonstrate dependency relationships
among services [12]. The goal of this module
system Online Bookshop is to take orders from
customers and delivers books on time. Payment
may be done by cash on delivery/debit card/on-

256 257P. Kumar and R. Gupta Dependency Modelling of a SOA Based System Through Colored Petri Nets

Suppose we take a general book purchase by a
client. There are two choices to purchase a book
by customer. Either he can go to a book shop
and search book catalogue or go online and
search books i.e. either he can purchase books
online or offline. A goal tree has been drawn for
the goal Purchasing Books in Figure 2. Figure
2 gives a lot of information how to achieve goal
of Purchasing Books. To purchase a book is not
an automate activity. For achieving this goal, a

number of activities have to be performed as
is given is Figure 2. In this goal tree there are
four levels. Without showing interaction among
same level elements, it is not possible to know
the relationship among these components. The
relationships among same level elements have
been depicted by block arrow in Figure 2. There
may be three types of relationship: sequence,
concurrency and mutual exclusion. Sequence
relationships have been depicted by circled ar-
row, concurrency by circled plus and mutual
exclusion by circled cross.

4. Colored Petri Nets (CPNs)

CPN is an established concept for formal mod-
eling of concurrent and distributed system. It is
based on functional language standard ML. CPN
has capacity of both Petri nets and program-
ming language. Jensen and Kristiansen [13]
have defined CPNs formally as follows:
Definition. A CPN is a nine tuple (P, T, A, Σ, V,
C, G, E, I), where:

 ● P is the finite set of places.
 ● T is the finite set of transitions such that

P ∩ T = ϕ.

 ● A ⊆ P × T ∪ T × P is a set of directed arcs.
 ● Σ is a finite set of non-empty color sets.
 ● V is a finite set of typed variables such that

Type[v] ∈ Σ for all variables v ∈ V.
 ● C: P → Σ is a color set function that as-

signs a color set to each place.
 ● G: T → EXPR is a guard function that as-

signs a guard to each transition t ∈ T such
that Type [G(t)] ∈ Bool.

 ● E: A → EXPR is an arc expression func-
tion that assigns an arc expression to each
arc a ∈ E such that Type [E (a)] = C(p)MS,
where p is the place connected to the arc a.

 ● I: P → EXPR is an initialization function
that assigns an initialization expression to
each place p such that Type [I(p)] = C(p)MS

By above definition of Colored Petri nets, it is
clear that every tuple is formally defined and it
becomes unambiguous.

5. Dependency Types
Representation Through Petri
Nets and Service Algebra

The client-server relationship between multiple
pairs of services has to be under constraints of
various assumptions that they have regarding
each other's structure, functionality and dynamic
behavior. Merely stating that a service is depen-
dent on another service is not sufficient. Types
of dependency relations along with their critical
factors are also important to be explored. This
section focuses on formalization of dependency
types by means of Petri nets i.e. how different
types of dependency relationships, in a SOA
based system, can be modeled through Colored
Petri nets. We have considered four types of
service dependency: control dependency, data
dependency, sequence dependency and compo-
sition dependency. SOA based system is concur-
rent, distributed and dynamic by nature. Petri net
is suitable modeling approach for this purpose.
Petri net model has capacity to handle both static
and dynamic dependency and it supports formal
and graphical approaches.
In the following subsections, an attempt has been
made to model different types of dependency.

5.1. Control Dependency Modeling

A control dependency between two services Si
and Sj specifies the conditions under which ser-
vice Sj is allowed to enter a state stj based on
the state sti of service Si.
Suppose there are two services in Online Book-
shop, namely Order Service and Payment Ser-
vice. We have considered services as black
boxes. Order Service and Payment Service are
control dependent. Suppose a customer gives
the order for a book. In addition, he gives the
information of postal address. Order Service
sends the control to Payment Service. Payment
Service takes payment from customer. After
completing payment, Payment Service again
sends control to the Order Service. Thus Order
Service and Payment Service are control depen-
dent on each other because Order Service sends
control to Payment Service for payment and
Payment Service after its execution sends con-
trol to Order Service for completion of order.
We have formalized this dependency using
Petri net. In Petri net of Order Service, initial
state has a token. So when a customer decides
to purchase a book, he invokes Order Service
and gives the mailing address and state t1 fires.
After firing transition t1, token goes to the
place payment buffer (Pb) and payment service
becomes eligible for execution. In this case
transition tr1of Payment Service is enabled to
fire. When Payment Service completes its ex-
ecution, final state fn of Payment Service gets
a token and transition tk of Order Service be-
comes enable to fire. When final state f of Or-
der Service gets token, it means Order Service
has been executed successfully.

Figure 3. Formal representation
of control dependency.

Using the concept of transition firing, it is clear
from the diagram that without initiating of Or-
der Service, Payment Service cannot be initi-
ated for execution.Figure 2. Goal tree for the goal Purchasing Book.

Figure 1. Model of the goal Purchasing
Book Online [12].

256 257P. Kumar and R. Gupta Dependency Modelling of a SOA Based System Through Colored Petri Nets

Suppose we take a general book purchase by a
client. There are two choices to purchase a book
by customer. Either he can go to a book shop
and search book catalogue or go online and
search books i.e. either he can purchase books
online or offline. A goal tree has been drawn for
the goal Purchasing Books in Figure 2. Figure
2 gives a lot of information how to achieve goal
of Purchasing Books. To purchase a book is not
an automate activity. For achieving this goal, a

number of activities have to be performed as
is given is Figure 2. In this goal tree there are
four levels. Without showing interaction among
same level elements, it is not possible to know
the relationship among these components. The
relationships among same level elements have
been depicted by block arrow in Figure 2. There
may be three types of relationship: sequence,
concurrency and mutual exclusion. Sequence
relationships have been depicted by circled ar-
row, concurrency by circled plus and mutual
exclusion by circled cross.

4. Colored Petri Nets (CPNs)

CPN is an established concept for formal mod-
eling of concurrent and distributed system. It is
based on functional language standard ML. CPN
has capacity of both Petri nets and program-
ming language. Jensen and Kristiansen [13]
have defined CPNs formally as follows:
Definition. A CPN is a nine tuple (P, T, A, Σ, V,
C, G, E, I), where:

 ● P is the finite set of places.
 ● T is the finite set of transitions such that

P ∩ T = ϕ.

 ● A ⊆ P × T ∪ T × P is a set of directed arcs.
 ● Σ is a finite set of non-empty color sets.
 ● V is a finite set of typed variables such that

Type[v] ∈ Σ for all variables v ∈ V.
 ● C: P → Σ is a color set function that as-

signs a color set to each place.
 ● G: T → EXPR is a guard function that as-

signs a guard to each transition t ∈ T such
that Type [G(t)] ∈ Bool.

 ● E: A → EXPR is an arc expression func-
tion that assigns an arc expression to each
arc a ∈ E such that Type [E (a)] = C(p)MS,
where p is the place connected to the arc a.

 ● I: P → EXPR is an initialization function
that assigns an initialization expression to
each place p such that Type [I(p)] = C(p)MS

By above definition of Colored Petri nets, it is
clear that every tuple is formally defined and it
becomes unambiguous.

5. Dependency Types
Representation Through Petri
Nets and Service Algebra

The client-server relationship between multiple
pairs of services has to be under constraints of
various assumptions that they have regarding
each other's structure, functionality and dynamic
behavior. Merely stating that a service is depen-
dent on another service is not sufficient. Types
of dependency relations along with their critical
factors are also important to be explored. This
section focuses on formalization of dependency
types by means of Petri nets i.e. how different
types of dependency relationships, in a SOA
based system, can be modeled through Colored
Petri nets. We have considered four types of
service dependency: control dependency, data
dependency, sequence dependency and compo-
sition dependency. SOA based system is concur-
rent, distributed and dynamic by nature. Petri net
is suitable modeling approach for this purpose.
Petri net model has capacity to handle both static
and dynamic dependency and it supports formal
and graphical approaches.
In the following subsections, an attempt has been
made to model different types of dependency.

5.1. Control Dependency Modeling

A control dependency between two services Si
and Sj specifies the conditions under which ser-
vice Sj is allowed to enter a state stj based on
the state sti of service Si.
Suppose there are two services in Online Book-
shop, namely Order Service and Payment Ser-
vice. We have considered services as black
boxes. Order Service and Payment Service are
control dependent. Suppose a customer gives
the order for a book. In addition, he gives the
information of postal address. Order Service
sends the control to Payment Service. Payment
Service takes payment from customer. After
completing payment, Payment Service again
sends control to the Order Service. Thus Order
Service and Payment Service are control depen-
dent on each other because Order Service sends
control to Payment Service for payment and
Payment Service after its execution sends con-
trol to Order Service for completion of order.
We have formalized this dependency using
Petri net. In Petri net of Order Service, initial
state has a token. So when a customer decides
to purchase a book, he invokes Order Service
and gives the mailing address and state t1 fires.
After firing transition t1, token goes to the
place payment buffer (Pb) and payment service
becomes eligible for execution. In this case
transition tr1of Payment Service is enabled to
fire. When Payment Service completes its ex-
ecution, final state fn of Payment Service gets
a token and transition tk of Order Service be-
comes enable to fire. When final state f of Or-
der Service gets token, it means Order Service
has been executed successfully.

Figure 3. Formal representation
of control dependency.

Using the concept of transition firing, it is clear
from the diagram that without initiating of Or-
der Service, Payment Service cannot be initi-
ated for execution.Figure 2. Goal tree for the goal Purchasing Book.

Figure 1. Model of the goal Purchasing
Book Online [12].

258 259P. Kumar and R. Gupta Dependency Modelling of a SOA Based System Through Colored Petri Nets

Formal representation of control dependencies
is given here using service algebra. In Figure 3,
S1 represents Order Service and S2 represents
Payment Service. Two services are connected
to each other by payment buffer service (Pb).
Payment buffer (Pb) is a temporary buffer that
help to establish communication between Or-
der Service and Payment Service.
In service algebra, it can be represented as fol-
lows:

1()

()

1 2

1 2
t via Pb

tk via fn

S S

S S

→

→

The symbol ‘→’ is used for flow operator.
We have used the following symbols as indi-
cated operators:

 : Control Dependency Operator

 : Data Dependency Operator

 : Composite Dependency Operator

 : Sequence Dependency Operator

con
⇒

⇒
data

⇒
seq

com
⇒

So, control dependency can be represented for-
mally as follows.

� � *
1. 1 2. 1 2. 1.

con con

S t via Pb S tr S fn S tk� � �

An algorithm for formalization of control de-
pendency is mentioned here. Similar type of
algorithms can be written for data dependency,
sequence dependency and composite depen-
dency.

Algorithm: Construction of Petri net for control
flow dependency

 ● Model each service using Petri net concepts.
 ● For each control flow dependency between

service Si and Sj add a buffer place bf by
which control can flow from service Si to ser-
vice Sj. This buffer place has input transition
in Si and output transition in Sj.

 ● If control returns from service Sj to service
Si, then there is a flow from a place in Sj to a
transition in Si.

5.2. Data Dependency Modeling

Data dependency among services can be mod-
eled using Petri net effectively. Suppose there
are two services S1 and S2.

Execution of S1 needs some data which can
provide service S2? In this case service S1 is
data dependent on service S2. Service S1 calls
service S2 and service S2 provides information
needed by service S1.

Suppose we take an example of Shopping Kart
Service and Order Service. First a customer
searches books and he places books in shop-
ping kart. Order is given in shopping kart and
information about books is given to Order Ser-
vice. So here Order Service is data dependent
on Shopping Kart Service. It can be represented
using Petri net as in the following diagram.
From this diagram, it is clear that without pro-
viding information from Shopping Kart Service
to Order Service, Order Service cannot execute.

Figure 4. Formal representation of data dependency.

In web service algebra terms, it can be repre-
sented as follows:

1. 1 2. 1 2.S t ⇒ S tr S fn→ 1.S f
data

It means, first enabling transition is t1 of S1. Af-
ter a number of firing in S1, token reaches the
place f of service net of S1. Now tr1 of service S2
becomes eligible for firing. The resources which
need to execute service S2 are available. Service
S2 is waiting for data from service S1 which be-
comes available at this time. After a number of
transition firing in service S2, token reaches the
place fn of service net of service S2. It means
that service S2 has been executed successfully.

5.3. Sequence Dependency Modeling

Sequence dependency among services means
execution of services takes place one by one i.e.
output of first service is input of second service.
Suppose there are three services S1, S2 and S3.
If execution of service S1 is inevitable for initi-
ating the execution of S2 and execution of S2 is
essential for initiating the execution of S3, then
S3 is sequentially dependent on S2 and S2 is
sequentially dependent on S1. This concept can
be modeled using service net effectively.
In our example Online Book Shopping, first
we login, so Login Service is called. Then we
search books which we have to purchase, so
Search Service is called. After searching books,
we give order for purchase, so Order Service is
called. In this situation Order Service is sequen-
tially dependent on Search Service and Search
Service is sequentially dependent on Login Ser-
vice.
Petri net model of sequential dependency can be
described as in the following diagram (Figure
5):

Figure 5. Formal representation
of sequence dependency.

In this diagram, there are three services S1, S2
and S3. In this net, the only enabled transition
for firing is t1. After completing the execution
of service S1, the token goes to place f1. Medi-
ator transition Mt1 plays a role for initiating the
execution of service S2. When transition Mt1
fires, then place s2 gets a token and service S2
becomes eligible for initializing execution. Af-
ter a number of transitions, the token goes to
place f2, and mediator transition Mt2 becomes
enabled for firing. When Mt2 fires, then initial
place s3 of service S3 gets a token and service
S3 becomes enabled for initiating the execu-
tion. From this diagram, it is clear that S3 is se-
quentially dependent on service S2, and service
S2 is sequentially dependent on service S1.
Sequence dependency can be described using
service algebra terms as in the equation below.

1. 1S s ��* 1.S f1
seq

� �1 2. 2via Mt S s * 2. 2S f�

�
seq

� �2 3. 3via Mt S s * 3. 3S f�

5.4. Composite Dependency Modeling

When a service S is constructed using the ser-
vices S1, S2, S3 ... Sm, service S is composed of
services S1, S2, S3...Sm.
Service S is dependent on services S1, S2, S3 ...
Sm. Any defect in any automatic service affects
the overall service S. In this way whole SOA
based system can be also called a composite
service. A SOA based system can be used as a
service in a larger project.
This can be represented by the Petri net as fol-
lows (Figure 6). There are three services S1, S2

Figure 6. Formal representation of composite dependency.

258 259P. Kumar and R. Gupta Dependency Modelling of a SOA Based System Through Colored Petri Nets

Formal representation of control dependencies
is given here using service algebra. In Figure 3,
S1 represents Order Service and S2 represents
Payment Service. Two services are connected
to each other by payment buffer service (Pb).
Payment buffer (Pb) is a temporary buffer that
help to establish communication between Or-
der Service and Payment Service.
In service algebra, it can be represented as fol-
lows:

1()

()

1 2

1 2
t via Pb

tk via fn

S S

S S

→

→

The symbol ‘→’ is used for flow operator.
We have used the following symbols as indi-
cated operators:

 : Control Dependency Operator

 : Data Dependency Operator

 : Composite Dependency Operator

 : Sequence Dependency Operator

con
⇒

⇒
data

⇒
seq

com
⇒

So, control dependency can be represented for-
mally as follows.

� � *
1. 1 2. 1 2. 1.

con con

S t via Pb S tr S fn S tk� � �

An algorithm for formalization of control de-
pendency is mentioned here. Similar type of
algorithms can be written for data dependency,
sequence dependency and composite depen-
dency.

Algorithm: Construction of Petri net for control
flow dependency

 ● Model each service using Petri net concepts.
 ● For each control flow dependency between

service Si and Sj add a buffer place bf by
which control can flow from service Si to ser-
vice Sj. This buffer place has input transition
in Si and output transition in Sj.

 ● If control returns from service Sj to service
Si, then there is a flow from a place in Sj to a
transition in Si.

5.2. Data Dependency Modeling

Data dependency among services can be mod-
eled using Petri net effectively. Suppose there
are two services S1 and S2.

Execution of S1 needs some data which can
provide service S2? In this case service S1 is
data dependent on service S2. Service S1 calls
service S2 and service S2 provides information
needed by service S1.

Suppose we take an example of Shopping Kart
Service and Order Service. First a customer
searches books and he places books in shop-
ping kart. Order is given in shopping kart and
information about books is given to Order Ser-
vice. So here Order Service is data dependent
on Shopping Kart Service. It can be represented
using Petri net as in the following diagram.
From this diagram, it is clear that without pro-
viding information from Shopping Kart Service
to Order Service, Order Service cannot execute.

Figure 4. Formal representation of data dependency.

In web service algebra terms, it can be repre-
sented as follows:

1. 1 2. 1 2.S t ⇒ S tr S fn→ 1.S f
data

It means, first enabling transition is t1 of S1. Af-
ter a number of firing in S1, token reaches the
place f of service net of S1. Now tr1 of service S2
becomes eligible for firing. The resources which
need to execute service S2 are available. Service
S2 is waiting for data from service S1 which be-
comes available at this time. After a number of
transition firing in service S2, token reaches the
place fn of service net of service S2. It means
that service S2 has been executed successfully.

5.3. Sequence Dependency Modeling

Sequence dependency among services means
execution of services takes place one by one i.e.
output of first service is input of second service.
Suppose there are three services S1, S2 and S3.
If execution of service S1 is inevitable for initi-
ating the execution of S2 and execution of S2 is
essential for initiating the execution of S3, then
S3 is sequentially dependent on S2 and S2 is
sequentially dependent on S1. This concept can
be modeled using service net effectively.
In our example Online Book Shopping, first
we login, so Login Service is called. Then we
search books which we have to purchase, so
Search Service is called. After searching books,
we give order for purchase, so Order Service is
called. In this situation Order Service is sequen-
tially dependent on Search Service and Search
Service is sequentially dependent on Login Ser-
vice.
Petri net model of sequential dependency can be
described as in the following diagram (Figure
5):

Figure 5. Formal representation
of sequence dependency.

In this diagram, there are three services S1, S2
and S3. In this net, the only enabled transition
for firing is t1. After completing the execution
of service S1, the token goes to place f1. Medi-
ator transition Mt1 plays a role for initiating the
execution of service S2. When transition Mt1
fires, then place s2 gets a token and service S2
becomes eligible for initializing execution. Af-
ter a number of transitions, the token goes to
place f2, and mediator transition Mt2 becomes
enabled for firing. When Mt2 fires, then initial
place s3 of service S3 gets a token and service
S3 becomes enabled for initiating the execu-
tion. From this diagram, it is clear that S3 is se-
quentially dependent on service S2, and service
S2 is sequentially dependent on service S1.
Sequence dependency can be described using
service algebra terms as in the equation below.

1. 1S s ��* 1.S f1
seq

� �1 2. 2via Mt S s * 2. 2S f�

�
seq

� �2 3. 3via Mt S s * 3. 3S f�

5.4. Composite Dependency Modeling

When a service S is constructed using the ser-
vices S1, S2, S3 ... Sm, service S is composed of
services S1, S2, S3...Sm.
Service S is dependent on services S1, S2, S3 ...
Sm. Any defect in any automatic service affects
the overall service S. In this way whole SOA
based system can be also called a composite
service. A SOA based system can be used as a
service in a larger project.
This can be represented by the Petri net as fol-
lows (Figure 6). There are three services S1, S2

Figure 6. Formal representation of composite dependency.

260 261P. Kumar and R. Gupta Dependency Modelling of a SOA Based System Through Colored Petri Nets

and S3. Each service S1, S2 and S3 have their
own functionality. Service S is composed from
services S1, S2 and S3. For demonstration pur-
pose, two special places s and f are added in the
figure which is used for starting place and final
place respectively. Two special transitions ct1
and ct2 are added to establish the relationship.
Initially, token is only in place s and enabled
transition is only ct1. When transition ct1 fires,
it transfer control to S1, S2 and S3 at the same
time. Finally all control comes through transi-
tion ct2 and then control transfers to final place
f. Service S2 is also dependent on service S1 for
the message which is provided by the message
place m. Service S will be executed success-
fully if and only if f gets a token. It is possible
only if services S1, S2 and S3 have been exe-
cuted successfully.
Using service algebra terms it can be shown as
in the equation below.

� � � �

� � � �

. 1 1. 1, 2. 2, 3. 3

1. , 3. 3 2 .

com

S s viact S s S s S s

S f S f S f viact S f

�

�
com

1 2. 2,�*

6. Modeling of Dependency
Relationships Through Colored
Petri Nets (CPN)

In this section, different types of dependency
in a SOA based system has been modeled us-
ing Colored Petri nets. Conventional Petri net
based modeling has few limitations. In Petri
net modeling, places have only black tokens
i.e. resources cannot be differentiated. Petri Net
models have no manipulating power on data.
In Petri net model, it is not possible to detect
which types of data are stored in places. Ab-
straction and modular concept is not available
in Petri net model. Modeling a SOA based sys-
tem using Petri net may fail to extract some
aspects of dependency relationships. There is
no concept of time in classical Petri net. So it
does not cover temporal aspect of dependency
in SOA based system.
We attempt to model the dependency relation-
ships in a SOA based system with the help of
Colored Petri Nets (CPNs). CPN provides a full
spectrum of input/output facilities and user de-

fined functions so that one can parameterize all
relevant input data and read it from data files.
This also made it possible for a third party to
run simulation and gather data with different
input values. CPN offers the following four
possible analysis approaches: interactive and
automatic simulation, performance analysis,
state space and invariant analysis and temporal
logic based analysis of state space [13]. CPN
extends the Petri nets to model both the static
and dynamic properties of a system. The graph-
ical part of the CPNs depicts the static archi-
tectural structure of a system. Combined with
other powerful elements such as colored tokens
and simulation rules, CPN is very powerful in
modeling dynamic behaviors of a system [14].
The main purpose of coloring places is to help
people understand the usages of a component
at the architectural level. Therefore the only
imperative information here is what kind of in-
formation needs to be provided to invoke the
service of the component.
In CPN model, tokens in a place can be distin-
guished. Every place has its own colored set i.e.
data type. By this, it becomes transparent which
types of token can reside in a place. CPNs have
all the features of classical Petri net in addition
to programming features. Due to programming
features of CPNs, data flow, and control flow
can be manipulated according to requirements.
Dependency can be handled effectively using
CPN modeling. CPNs has concept of time so it
also captures temporal aspects of dependency
in SOA based system. Abstraction is the back-
bone for a SOA based system. Abstraction is
achieved in CPN modeling using the concept
of hierarchy in CPN. So a complex system can
be modeled using hierarchy in a more effective
way. Dependency relationships of a complex
SOA based system can be understood easily
by using CPNs. Thus CPNs modeling provide
more generalized view of SOA based system
than conventional Petri net modeling.
To represent dependency relationships using
CPNs, basically we represent primitive activi-
ties of web services and their interactions with
other web services. These dependency relations
are captured by token firing rules and imme-
diate transitions. We have considered control,
data, sequence, composite and hierarchical de-
pendency relationships for the purpose.

6.1. CPN Modeling of
Control Dependency

Besides the system variables, there are dependen-
cies between the controls of the components and
sometimes, the controls, especially the choices of
the paths, rely on both the formal control infor-
mation and the current system status [15]. A ser-
vice S2 is control dependent on service S1 if and
only if S2’s execution is conditionally guarded
by S1. For demonstration of control dependence,
we have taken two services Order Service and
Payment Service. In the diagram, double line
arrows show the control flow between services.
Order Service sends control for taking payment
to Payment Service. Payment Service takes
payment from customer in two ways, either by
‘cash on delivery’ or by ‘debit card’. After tak-
ing payment Payment Service sends control to
Order Service. From the CPN diagram of Con-
trol Dependency, place Total Books has tokens
for all books which have been searched by cus-
tomers. From these books, the customer selects
books for purchase. This facility is given by the
transition Book Selected. When transition Book
Selected fires, then Order Service sends control
to the Payment Service for making payment and
transition Payment Option becomes enabled for
firing. From the diagram it is clear that after pay-
ment confirmation, Payment Service sends con-
trol to Order Service for Order Confirmation.

ColsetBNAME = string;
colset BPRICE = real;
colsetOrderCompleted = string;
colsetPaymentType = with CashOnDelivery |
 DebitCard;
colset BNAMEPRICE = product BNAME *
 BPRICE;
colset PTBP = product PaymentType * BPRICE;
colset STRING = string;
var x: BNAME;
var y,z: BPRICE;
val a = Books Delivered;
var p: PaymentType;
var b: STRING;
fun COD(p,y) = if p = CashOnDelivery then 1`y
 else empty;
fun DC(p,y) = if p = DebitCard then 1`(p,y) else
 empty;

Figure 7 (a). Declarations of CPN modeling of control
dependency.

6.1.1. State Space Analysis for
CPN Modeling of Control Dependency

A central point in more formal methods is to con-
duct formal analysis and verification based on a
constructed model, i.e. to determine whether or
not a system under development or analysis sat-
isfies certain formally stated properties. State
space analysis is one of the most prominent
approaches for conducting formal analysis and
verification. The basic idea of state space is to

Figure 7 (b). CPN model of control dependency.

260 261P. Kumar and R. Gupta Dependency Modelling of a SOA Based System Through Colored Petri Nets

and S3. Each service S1, S2 and S3 have their
own functionality. Service S is composed from
services S1, S2 and S3. For demonstration pur-
pose, two special places s and f are added in the
figure which is used for starting place and final
place respectively. Two special transitions ct1
and ct2 are added to establish the relationship.
Initially, token is only in place s and enabled
transition is only ct1. When transition ct1 fires,
it transfer control to S1, S2 and S3 at the same
time. Finally all control comes through transi-
tion ct2 and then control transfers to final place
f. Service S2 is also dependent on service S1 for
the message which is provided by the message
place m. Service S will be executed success-
fully if and only if f gets a token. It is possible
only if services S1, S2 and S3 have been exe-
cuted successfully.
Using service algebra terms it can be shown as
in the equation below.

� � � �

� � � �

. 1 1. 1, 2. 2, 3. 3

1. , 3. 3 2 .

com

S s viact S s S s S s

S f S f S f viact S f

�

�
com

1 2. 2,�*

6. Modeling of Dependency
Relationships Through Colored
Petri Nets (CPN)

In this section, different types of dependency
in a SOA based system has been modeled us-
ing Colored Petri nets. Conventional Petri net
based modeling has few limitations. In Petri
net modeling, places have only black tokens
i.e. resources cannot be differentiated. Petri Net
models have no manipulating power on data.
In Petri net model, it is not possible to detect
which types of data are stored in places. Ab-
straction and modular concept is not available
in Petri net model. Modeling a SOA based sys-
tem using Petri net may fail to extract some
aspects of dependency relationships. There is
no concept of time in classical Petri net. So it
does not cover temporal aspect of dependency
in SOA based system.
We attempt to model the dependency relation-
ships in a SOA based system with the help of
Colored Petri Nets (CPNs). CPN provides a full
spectrum of input/output facilities and user de-

fined functions so that one can parameterize all
relevant input data and read it from data files.
This also made it possible for a third party to
run simulation and gather data with different
input values. CPN offers the following four
possible analysis approaches: interactive and
automatic simulation, performance analysis,
state space and invariant analysis and temporal
logic based analysis of state space [13]. CPN
extends the Petri nets to model both the static
and dynamic properties of a system. The graph-
ical part of the CPNs depicts the static archi-
tectural structure of a system. Combined with
other powerful elements such as colored tokens
and simulation rules, CPN is very powerful in
modeling dynamic behaviors of a system [14].
The main purpose of coloring places is to help
people understand the usages of a component
at the architectural level. Therefore the only
imperative information here is what kind of in-
formation needs to be provided to invoke the
service of the component.
In CPN model, tokens in a place can be distin-
guished. Every place has its own colored set i.e.
data type. By this, it becomes transparent which
types of token can reside in a place. CPNs have
all the features of classical Petri net in addition
to programming features. Due to programming
features of CPNs, data flow, and control flow
can be manipulated according to requirements.
Dependency can be handled effectively using
CPN modeling. CPNs has concept of time so it
also captures temporal aspects of dependency
in SOA based system. Abstraction is the back-
bone for a SOA based system. Abstraction is
achieved in CPN modeling using the concept
of hierarchy in CPN. So a complex system can
be modeled using hierarchy in a more effective
way. Dependency relationships of a complex
SOA based system can be understood easily
by using CPNs. Thus CPNs modeling provide
more generalized view of SOA based system
than conventional Petri net modeling.
To represent dependency relationships using
CPNs, basically we represent primitive activi-
ties of web services and their interactions with
other web services. These dependency relations
are captured by token firing rules and imme-
diate transitions. We have considered control,
data, sequence, composite and hierarchical de-
pendency relationships for the purpose.

6.1. CPN Modeling of
Control Dependency

Besides the system variables, there are dependen-
cies between the controls of the components and
sometimes, the controls, especially the choices of
the paths, rely on both the formal control infor-
mation and the current system status [15]. A ser-
vice S2 is control dependent on service S1 if and
only if S2’s execution is conditionally guarded
by S1. For demonstration of control dependence,
we have taken two services Order Service and
Payment Service. In the diagram, double line
arrows show the control flow between services.
Order Service sends control for taking payment
to Payment Service. Payment Service takes
payment from customer in two ways, either by
‘cash on delivery’ or by ‘debit card’. After tak-
ing payment Payment Service sends control to
Order Service. From the CPN diagram of Con-
trol Dependency, place Total Books has tokens
for all books which have been searched by cus-
tomers. From these books, the customer selects
books for purchase. This facility is given by the
transition Book Selected. When transition Book
Selected fires, then Order Service sends control
to the Payment Service for making payment and
transition Payment Option becomes enabled for
firing. From the diagram it is clear that after pay-
ment confirmation, Payment Service sends con-
trol to Order Service for Order Confirmation.

ColsetBNAME = string;
colset BPRICE = real;
colsetOrderCompleted = string;
colsetPaymentType = with CashOnDelivery |
 DebitCard;
colset BNAMEPRICE = product BNAME *
 BPRICE;
colset PTBP = product PaymentType * BPRICE;
colset STRING = string;
var x: BNAME;
var y,z: BPRICE;
val a = Books Delivered;
var p: PaymentType;
var b: STRING;
fun COD(p,y) = if p = CashOnDelivery then 1`y
 else empty;
fun DC(p,y) = if p = DebitCard then 1`(p,y) else
 empty;

Figure 7 (a). Declarations of CPN modeling of control
dependency.

6.1.1. State Space Analysis for
CPN Modeling of Control Dependency

A central point in more formal methods is to con-
duct formal analysis and verification based on a
constructed model, i.e. to determine whether or
not a system under development or analysis sat-
isfies certain formally stated properties. State
space analysis is one of the most prominent
approaches for conducting formal analysis and
verification. The basic idea of state space is to

Figure 7 (b). CPN model of control dependency.

262 263P. Kumar and R. Gupta Dependency Modelling of a SOA Based System Through Colored Petri Nets

calculate all reachable states and state changes
of the system and represent these as directed
graphs. State space can be constructed auto-
matically with the help of a CPN tool. From a
constructed state space it is possible to answer a
large set of analysis and verification quantities
concerning the behavior of the system such as
absence of deadlocks, the possibility of always
being able to reach a given state, and the guar-
anteed delivery of a given service.
The applicability of state space methods is
closely tied to the existence of suitable com-
puter tool support and manual calculation, while
the inspection of the state space for more than
trivial systems is time consuming, error prone
and impossible for practical purposes. One of
the main advantages of state space methods
is that they can provide counter examples i.e.
debugging information as to why an expected
property does not hold [16].
State space analysis gives important proper-
ties for verification and validation of a system
design. Some important properties as bound-
edness, liveness and fairness can be deduced
using state space analysis. We have used state
space tool of CPN tool software for state space
analysis. State space tool can generate reports
automatically. On the basis of this report we can
observe the control dependency among the ser-
vices. The state space report on Control Depen-
dency has been shown on Table 1.
Here, we analyze the CPN model of the control
dependency. We aim at illustrating the support
for state space analysis provided by the tool and
the steps provided in conducting the analysis,
rather than at giving an exhaustive analysis of
the control dependency model.
The first step towards state space analysis of a
CP-Net is generation of the state space. This step
is fully automatic. The generation statistics for
the data dependency model are shown in Table 1.
In the CPN modeling of control dependencies
there are nine places. The report shows that in
all places, upper and lower bound of tokens
(maximum and minimum number of tokens) in
any reachability marking are mentioned. Home
property explains that control starts from a ser-
vice and after passing through some intermedi-
ate services, again it reaches to originating po-
sition. Home properties of state space analysis
show that there is no home marking in the CPN
modeling of Control Dependency i.e. from ini-
tial marking to any reachable marking no cycle

Table 1. State space analysis report for
Control Dependency Modeling.

Statistics

State Space

Nodes 2771
Arcs 9835
Secs 3

Status Full

Scc Graph (Strongly Connected Components of State
Space)

Nodes 2771
Arcs 9835
Secs 0

BoundednessProperties

Best Integer Bounds

Places Upper Bound Lower Bound
Books 6 0
Complete Order 3 0
Payment Type 2 2
PriceDebit 6 0
Price_of_Book 6 0
TotalPrice 6 0
Total_Books 6 0
Total_PricebyDB 6 0
Confirm_Payment 3 0

Home Properties
Home Markings
 None

Liveness Properties

Dead Markings
 35 [2771, 2770,2769,2768,2767...]

 Dead Transition Instances
 None
 Live Transition Instances
 None

Fairness Properties

No infinite occurrence sequences

is formed. Liveness property plays a major role
in the analysis of any system. Liveness property
may indicate about the presence of deadlock
in the system. Reports show that reachability
graph of CPN model has 35 dead markings i.e.
after reaching that marking there is no enabled
transition to fire. There is no live transition in
CPN modeling of Control Dependency i.e. that
transition is always enabled to fire. By the live-
ness property of CPN modeling, control depen-
dencies among services can be extracted.

6.2. CPN Modeling of Data Dependency

The general purpose of the software system is
data manipulation, which means to compute the
new system status according to existing data,
which we call dependency of data. Once the
existing system states (called variables) contain
faults, the faults could spread to other variables
or other components. How the faults spread de-
pends on how the new variables are manipu-
lated from the existing ones. So it is necessary
to define the data dependency to specify the
way of fault spreading [15].
Service S2 is data dependent on service S1 if
and only if service S2 needs some data form
service S1 for full execution of service S2. In
CPN modeling of Data Dependency, we have
modeled two services ShoppingCart and Order
using CPN tools as in Figure 3. The bold arrow
shows the transfer of data from ShopingCart
service to Order service. ShoppingCart ser-
vice has two places and one transition: Select

Books, and Order service has four places and
two transitions: Order Confirm and Make Pay-
ment. Transition Order works as the mediator
for data flow from service ShoppingCart to ser-
vice Order. In Figure 8, the only enabled tran-
sition to fire is Select Books. By firing this tran-
sition one by one book is selected and removed
from place Total Books in Search and put into
the place Books for Order as list. Transition Or-
der is enabled to fire if and only if place Books
for Order has non empty list of books. Tran-
sition Order Confirm is enabled to fire if and
only if some data from ShoppingCart service
is available to the place Ordered Books. When
transition Order Confirm fires then variables r
and p take data of books list and delivery type
respectively from input place and put data as a
pair of r and p to the place BooksDeliveryType.
After firing transition Make Payment, order is
completed.

colset STRING = string;
colset BS = list STRING;
 (*Books Selected for Order)
colset BDT = product BS * STRING;
 (*Books and Delivery type)
val TotalBooks = 3`"Let Us C" + + 2`"Software
 Engineering" + + 5` "Automata Theory";
val DT = 1`"Cash On Delivery" ++1` "Debit
 Card";
var p: STRING;
var q,r: BS;

Figure 8 (a). Declarations of CPN modeling
of data dependency.

Figure 8 (b). CPN model of data dependency.

262 263P. Kumar and R. Gupta Dependency Modelling of a SOA Based System Through Colored Petri Nets

calculate all reachable states and state changes
of the system and represent these as directed
graphs. State space can be constructed auto-
matically with the help of a CPN tool. From a
constructed state space it is possible to answer a
large set of analysis and verification quantities
concerning the behavior of the system such as
absence of deadlocks, the possibility of always
being able to reach a given state, and the guar-
anteed delivery of a given service.
The applicability of state space methods is
closely tied to the existence of suitable com-
puter tool support and manual calculation, while
the inspection of the state space for more than
trivial systems is time consuming, error prone
and impossible for practical purposes. One of
the main advantages of state space methods
is that they can provide counter examples i.e.
debugging information as to why an expected
property does not hold [16].
State space analysis gives important proper-
ties for verification and validation of a system
design. Some important properties as bound-
edness, liveness and fairness can be deduced
using state space analysis. We have used state
space tool of CPN tool software for state space
analysis. State space tool can generate reports
automatically. On the basis of this report we can
observe the control dependency among the ser-
vices. The state space report on Control Depen-
dency has been shown on Table 1.
Here, we analyze the CPN model of the control
dependency. We aim at illustrating the support
for state space analysis provided by the tool and
the steps provided in conducting the analysis,
rather than at giving an exhaustive analysis of
the control dependency model.
The first step towards state space analysis of a
CP-Net is generation of the state space. This step
is fully automatic. The generation statistics for
the data dependency model are shown in Table 1.
In the CPN modeling of control dependencies
there are nine places. The report shows that in
all places, upper and lower bound of tokens
(maximum and minimum number of tokens) in
any reachability marking are mentioned. Home
property explains that control starts from a ser-
vice and after passing through some intermedi-
ate services, again it reaches to originating po-
sition. Home properties of state space analysis
show that there is no home marking in the CPN
modeling of Control Dependency i.e. from ini-
tial marking to any reachable marking no cycle

Table 1. State space analysis report for
Control Dependency Modeling.

Statistics

State Space

Nodes 2771
Arcs 9835
Secs 3

Status Full

Scc Graph (Strongly Connected Components of State
Space)

Nodes 2771
Arcs 9835
Secs 0

BoundednessProperties

Best Integer Bounds

Places Upper Bound Lower Bound
Books 6 0
Complete Order 3 0
Payment Type 2 2
PriceDebit 6 0
Price_of_Book 6 0
TotalPrice 6 0
Total_Books 6 0
Total_PricebyDB 6 0
Confirm_Payment 3 0

Home Properties
Home Markings
 None

Liveness Properties

Dead Markings
 35 [2771, 2770,2769,2768,2767...]

 Dead Transition Instances
 None
 Live Transition Instances
 None

Fairness Properties

No infinite occurrence sequences

is formed. Liveness property plays a major role
in the analysis of any system. Liveness property
may indicate about the presence of deadlock
in the system. Reports show that reachability
graph of CPN model has 35 dead markings i.e.
after reaching that marking there is no enabled
transition to fire. There is no live transition in
CPN modeling of Control Dependency i.e. that
transition is always enabled to fire. By the live-
ness property of CPN modeling, control depen-
dencies among services can be extracted.

6.2. CPN Modeling of Data Dependency

The general purpose of the software system is
data manipulation, which means to compute the
new system status according to existing data,
which we call dependency of data. Once the
existing system states (called variables) contain
faults, the faults could spread to other variables
or other components. How the faults spread de-
pends on how the new variables are manipu-
lated from the existing ones. So it is necessary
to define the data dependency to specify the
way of fault spreading [15].
Service S2 is data dependent on service S1 if
and only if service S2 needs some data form
service S1 for full execution of service S2. In
CPN modeling of Data Dependency, we have
modeled two services ShoppingCart and Order
using CPN tools as in Figure 3. The bold arrow
shows the transfer of data from ShopingCart
service to Order service. ShoppingCart ser-
vice has two places and one transition: Select

Books, and Order service has four places and
two transitions: Order Confirm and Make Pay-
ment. Transition Order works as the mediator
for data flow from service ShoppingCart to ser-
vice Order. In Figure 8, the only enabled tran-
sition to fire is Select Books. By firing this tran-
sition one by one book is selected and removed
from place Total Books in Search and put into
the place Books for Order as list. Transition Or-
der is enabled to fire if and only if place Books
for Order has non empty list of books. Tran-
sition Order Confirm is enabled to fire if and
only if some data from ShoppingCart service
is available to the place Ordered Books. When
transition Order Confirm fires then variables r
and p take data of books list and delivery type
respectively from input place and put data as a
pair of r and p to the place BooksDeliveryType.
After firing transition Make Payment, order is
completed.

colset STRING = string;
colset BS = list STRING;
 (*Books Selected for Order)
colset BDT = product BS * STRING;
 (*Books and Delivery type)
val TotalBooks = 3`"Let Us C" + + 2`"Software
 Engineering" + + 5` "Automata Theory";
val DT = 1`"Cash On Delivery" ++1` "Debit
 Card";
var p: STRING;
var q,r: BS;

Figure 8 (a). Declarations of CPN modeling
of data dependency.

Figure 8 (b). CPN model of data dependency.

264 265P. Kumar and R. Gupta Dependency Modelling of a SOA Based System Through Colored Petri Nets

6.3. CPN Modeling of Composite
Dependency

In this section, we analyze the CPN model of
the composite dependency. We aim at illustrat-
ing the support for state space analysis provided
by the tool and the steps provided in conducting
the analysis, rather than at giving an exhaustive
analysis of the composite dependency model.
Composition of services play a vital role in a
SOA based system. Composition may be static
or dynamic. Static composition is performed
before compilation of a service. Dynamic com-
position occurs at run time according to require-
ment of the requester of the service. Compos-
ite service is dependent on all atomic services
of which this service has been composed. We
have explained composite dependency using
an example of Search service. Search service
is composed of three services SearchByAu-

thor, SearchByName and SearchByISBN ser-
vices. Composition may be of different types
as concurrency, mutual exclusion, etc. We have
used the composition of mutual exclusion. In
Search service, searching of books is done us-
ing book name, isbn and author. In Figure 9,
CPN model of composite dependency has one
place SearchOption. There are three functions
attached to the out arcs from the transition Se-
lectSearchOption in which one will give the
output value x and the other will give output
empty which depends on the value of x. Place
ListOfBooks provides the book to the transitions
SearchByAuthor, SearchByISBN and SearchBy-
Name. In this model composite dependency is
that only one transition from SearchByAuthor,
SearchbyName and SearchByISBN will be fired
at a time. Finally token SearchCompletion goes
to the place G after completion of Search ser-
vice.

6.4. CPN Modeling of Sequence
Dependency

Sequence dependency means that two or more
services should execute sequentially i.e. these
services cannot execute concurrently. For
demonstration of sequence dependency, we
have modeled three services, namely Login ser-
vice, Search service and Payment service using
CPN tools as depicted in Figure 10. In this di-
agram sequence dependency is shown in bold
line arrow. It is clear that Login service execu-
tion is essential for execution of Search service
and execution of Search service is inevitable
for execution of Payment service. Thus, Search
service is sequentially dependent on Login ser-
vice and Payment service is sequentially depen-
dent on Search service.

6.5. CPN Modeling of
Hierarchical Dependency

In this section, we analyze the CPN model of
the hierarchical dependency model. We aim at
illustrating the support for state space analysis
provided by the tool and the steps provided in
conducting the analysis, rather than at giving an
exhaustive analysis of the hierarchical depen-
dency model.
There is a powerful concept of hierarchy in
CPN. Hierarchical dependency among the ser-
vices means dependency between two services
which are connected by socket. In Figure 11
there are three figures which represent overall
picture of hierarchy. In Figure 11(c) there are
two substitution transitions Order and Payment
which abstracts the details of Order service and
Payment service. In this diagram input and out-
put places from substitution transitions are said

Figure 9 (a). CPN model of composite dependency.

colset STRING = string;
colsetSearchOpt = with SearchByAuthor|SearchByISBN|SearchByName;
colset BST= product STRING*STRING; (* BST means Books and their search type *)
var a,b,c: BST;
val SO = 1`SearchByName ++ 1` SearchByAuthor ++ 1`SearchByISBN;
val Books = 4`"Godan"++ 4`"Let Us C" ++ 8`" War and Peace";
var x: SearchOpt;
var y,z: STRING;
fun SBYA(x) = if x = SearchByAuthor then 1`" SearchByAuthor" else empty; (* Search by Author Service*)
fun SBYI(x) = if x =SearchByISBN then 1`"SearchByISBN"else empty; (*Search By ISBN service *)
fun SBYN(x) = if x =SearchByName then 1`"SearchByName"else empty; (* Search By Name Service *)

Figure 9 (b). Declarations for CPN modeling of composite dependency

Figure 10 (a). CPN model of sequence dependency.

colset STRING = string;
colset BOOL = bool;
var valid:BOOL;
var p,q,r :STRING;
val ID = 1`"Ram"++ 1`"Rahim" ++1`"Karim";
val PWD = 1` "AB@123"++ 1`"R#@"++1`"PQ12";
fun login(valid)= if valid then 1` "Confirm" else 1`"";
val books =1` "let us c"++2` "Five Point Someone"++1`"Software Engineering";
val PT = 1` "Cash on Delivery"++ 1`"Debit Card"; (* PT is used for Payment Type *)
colset BPT = product STRING*STRING; (* BPT is used for Books and Payment Type Both *)

Figure 10 (b). Declarations for CPN modeling of sequence dependency

264 265P. Kumar and R. Gupta Dependency Modelling of a SOA Based System Through Colored Petri Nets

6.3. CPN Modeling of Composite
Dependency

In this section, we analyze the CPN model of
the composite dependency. We aim at illustrat-
ing the support for state space analysis provided
by the tool and the steps provided in conducting
the analysis, rather than at giving an exhaustive
analysis of the composite dependency model.
Composition of services play a vital role in a
SOA based system. Composition may be static
or dynamic. Static composition is performed
before compilation of a service. Dynamic com-
position occurs at run time according to require-
ment of the requester of the service. Compos-
ite service is dependent on all atomic services
of which this service has been composed. We
have explained composite dependency using
an example of Search service. Search service
is composed of three services SearchByAu-

thor, SearchByName and SearchByISBN ser-
vices. Composition may be of different types
as concurrency, mutual exclusion, etc. We have
used the composition of mutual exclusion. In
Search service, searching of books is done us-
ing book name, isbn and author. In Figure 9,
CPN model of composite dependency has one
place SearchOption. There are three functions
attached to the out arcs from the transition Se-
lectSearchOption in which one will give the
output value x and the other will give output
empty which depends on the value of x. Place
ListOfBooks provides the book to the transitions
SearchByAuthor, SearchByISBN and SearchBy-
Name. In this model composite dependency is
that only one transition from SearchByAuthor,
SearchbyName and SearchByISBN will be fired
at a time. Finally token SearchCompletion goes
to the place G after completion of Search ser-
vice.

6.4. CPN Modeling of Sequence
Dependency

Sequence dependency means that two or more
services should execute sequentially i.e. these
services cannot execute concurrently. For
demonstration of sequence dependency, we
have modeled three services, namely Login ser-
vice, Search service and Payment service using
CPN tools as depicted in Figure 10. In this di-
agram sequence dependency is shown in bold
line arrow. It is clear that Login service execu-
tion is essential for execution of Search service
and execution of Search service is inevitable
for execution of Payment service. Thus, Search
service is sequentially dependent on Login ser-
vice and Payment service is sequentially depen-
dent on Search service.

6.5. CPN Modeling of
Hierarchical Dependency

In this section, we analyze the CPN model of
the hierarchical dependency model. We aim at
illustrating the support for state space analysis
provided by the tool and the steps provided in
conducting the analysis, rather than at giving an
exhaustive analysis of the hierarchical depen-
dency model.
There is a powerful concept of hierarchy in
CPN. Hierarchical dependency among the ser-
vices means dependency between two services
which are connected by socket. In Figure 11
there are three figures which represent overall
picture of hierarchy. In Figure 11(c) there are
two substitution transitions Order and Payment
which abstracts the details of Order service and
Payment service. In this diagram input and out-
put places from substitution transitions are said

Figure 9 (a). CPN model of composite dependency.

colset STRING = string;
colsetSearchOpt = with SearchByAuthor|SearchByISBN|SearchByName;
colset BST= product STRING*STRING; (* BST means Books and their search type *)
var a,b,c: BST;
val SO = 1`SearchByName ++ 1` SearchByAuthor ++ 1`SearchByISBN;
val Books = 4`"Godan"++ 4`"Let Us C" ++ 8`" War and Peace";
var x: SearchOpt;
var y,z: STRING;
fun SBYA(x) = if x = SearchByAuthor then 1`" SearchByAuthor" else empty; (* Search by Author Service*)
fun SBYI(x) = if x =SearchByISBN then 1`"SearchByISBN"else empty; (*Search By ISBN service *)
fun SBYN(x) = if x =SearchByName then 1`"SearchByName"else empty; (* Search By Name Service *)

Figure 9 (b). Declarations for CPN modeling of composite dependency

Figure 10 (a). CPN model of sequence dependency.

colset STRING = string;
colset BOOL = bool;
var valid:BOOL;
var p,q,r :STRING;
val ID = 1`"Ram"++ 1`"Rahim" ++1`"Karim";
val PWD = 1` "AB@123"++ 1`"R#@"++1`"PQ12";
fun login(valid)= if valid then 1` "Confirm" else 1`"";
val books =1` "let us c"++2` "Five Point Someone"++1`"Software Engineering";
val PT = 1` "Cash on Delivery"++ 1`"Debit Card"; (* PT is used for Payment Type *)
colset BPT = product STRING*STRING; (* BPT is used for Books and Payment Type Both *)

Figure 10 (b). Declarations for CPN modeling of sequence dependency

266 267P. Kumar and R. Gupta Dependency Modelling of a SOA Based System Through Colored Petri Nets

to be input, output or input/output sockets. Here
transition Order sends the control to transition
Payment through the socket Price of Book
and gets control from the transition ‘payment’
through the socket Confirm Payment. Details
of substitution transitions order and payment
are depicted in Figure 11(a) and 11(b). Input /
output socket of substitution transition is said
to be input port, output port or input/output port
in the expansion of substitution transition. As
in Figure 11(a), places Total Books and Con-
firm Payment are input ports and places Price
of Book and Complete Order are output ports,
which is clear from the diagram. Port places are
represented by concentric ellipse.

7. Comparative Study

The use of formal language to demonstrate
dependencies between web services helps in
validation of systems. Our work is based on
service algebra and colored Petri net based
representations of dependencies between web
services. We compare our work with other rep-
resentations techniques in web services. For
comparison purpose, we have taken research
work by Zhang et al. [6], Sangal et al. [17] and
three approaches for web service choreography
(composition) as Web Service Choreography
Interface (WSCI) [18], Web Services-Choreog-
raphy Description Language (WS-CDL) [19]
and Ontology Web Languages for Web Services
(OWL-S) [20]. Zhang et al. [6] have discussed
WS-Net for specification of services. Sangal
et al. [17] have given Lattix Inc’s Dependency
Manager (LDM) which is based on Depen-
dency Structure Matrix (DSM) [17].
Some observed differences are mentioned be-
low:

 ● The one major difference we observe is
that the above mentioned representations
are focused on the composition of web
services but our work is focused on de-
pendency identification and representation
among web services.

 ● The dependency relationships discussed
in above contributions have given equal
treatment. In our contribution, we clearly
differentiate between data dependency,
control dependency, temporal dependency
and sequential dependency relationships.

 ● Our work needs less code to express de-
pendencies between web services.

 ● WS-Net, an extension of Petri net has been
used for web service specification at ar-
chitecture level. For this purpose, WS-Net
has been divided in three layers: Interface
Net, Interconnection Net and Interopera-
tion Net. In our work, we combine all into
single entity that performs all three func-
tionalities.

 ● WS-net describes interface net as the most
abstract form of services in which only in-
put port and output port are visible i.e. it is
just like black box for a service. Interaction
net is described for interaction between
services and interoperation net shows the
internal details and dynamic behavior of a
service. In our research, colored Petri net
has been used for simple service and for
abstraction purpose hierarchical concept
of CPNs has been used. To abstract the
properties of a service, substitution transi-
tion method has been used.

 ● We have identified different types of de-
pendencies observable in SOA based sys-
tems and formalized each type of depen-
dency with service net.

 ● LDM takes software code as input and pro-
duces architecture specification of the sys-
tem. But in our research work, dependency
analysis has been done at analysis and de-
sign levels and efforts have been made to
construct dependency model using CPN.
This model can be used by various stake
holders during system development and
implementation.

 ● All representations have basic mechanism
to describe message exchange among web
services. One commonality in our work
and above mentioned works is that all rep-
resentations depict the structural and be-
havioral analyses among web services.

8. Conclusion

In this paper we present a Petri net and service
algebra based formal approach for modeling
and analyzing dependence patterns among web
services. Unlike informal modeling, a formal
model furnishes a basis for formal validation of

(a) (b)

(c)

Figure 11. CPN model of hierarchical dependency.
 (a) Order service.
 (b) Payment service.
 (c) Hierarchical dependency model.

colset BNAME = string;
colset BPRICE = real;
colsetOrderCompleted = string;
colsetPaymentType = with CashOnDelivery | DebitCard;
colset BNAMEPRICE = product BNAME * BPRICE;
colset PTBP = product PaymentType * BPRICE;
colset STRING = string;
var x: BNAME;
var y,z: BPRICE;
val a = “Books Delivered”;
var p: PaymentType;
var b: STRING;
fun COD(p,y) = if p = CashOnDelivery then 1`y else empty;
fun DC(p,y) = if p = DebitCard then 1`(p,y) else empty;

Figure 11 (d). Declaration of CPN modeling of hierarchical dependency.

266 267P. Kumar and R. Gupta Dependency Modelling of a SOA Based System Through Colored Petri Nets

to be input, output or input/output sockets. Here
transition Order sends the control to transition
Payment through the socket Price of Book
and gets control from the transition ‘payment’
through the socket Confirm Payment. Details
of substitution transitions order and payment
are depicted in Figure 11(a) and 11(b). Input /
output socket of substitution transition is said
to be input port, output port or input/output port
in the expansion of substitution transition. As
in Figure 11(a), places Total Books and Con-
firm Payment are input ports and places Price
of Book and Complete Order are output ports,
which is clear from the diagram. Port places are
represented by concentric ellipse.

7. Comparative Study

The use of formal language to demonstrate
dependencies between web services helps in
validation of systems. Our work is based on
service algebra and colored Petri net based
representations of dependencies between web
services. We compare our work with other rep-
resentations techniques in web services. For
comparison purpose, we have taken research
work by Zhang et al. [6], Sangal et al. [17] and
three approaches for web service choreography
(composition) as Web Service Choreography
Interface (WSCI) [18], Web Services-Choreog-
raphy Description Language (WS-CDL) [19]
and Ontology Web Languages for Web Services
(OWL-S) [20]. Zhang et al. [6] have discussed
WS-Net for specification of services. Sangal
et al. [17] have given Lattix Inc’s Dependency
Manager (LDM) which is based on Depen-
dency Structure Matrix (DSM) [17].
Some observed differences are mentioned be-
low:

 ● The one major difference we observe is
that the above mentioned representations
are focused on the composition of web
services but our work is focused on de-
pendency identification and representation
among web services.

 ● The dependency relationships discussed
in above contributions have given equal
treatment. In our contribution, we clearly
differentiate between data dependency,
control dependency, temporal dependency
and sequential dependency relationships.

 ● Our work needs less code to express de-
pendencies between web services.

 ● WS-Net, an extension of Petri net has been
used for web service specification at ar-
chitecture level. For this purpose, WS-Net
has been divided in three layers: Interface
Net, Interconnection Net and Interopera-
tion Net. In our work, we combine all into
single entity that performs all three func-
tionalities.

 ● WS-net describes interface net as the most
abstract form of services in which only in-
put port and output port are visible i.e. it is
just like black box for a service. Interaction
net is described for interaction between
services and interoperation net shows the
internal details and dynamic behavior of a
service. In our research, colored Petri net
has been used for simple service and for
abstraction purpose hierarchical concept
of CPNs has been used. To abstract the
properties of a service, substitution transi-
tion method has been used.

 ● We have identified different types of de-
pendencies observable in SOA based sys-
tems and formalized each type of depen-
dency with service net.

 ● LDM takes software code as input and pro-
duces architecture specification of the sys-
tem. But in our research work, dependency
analysis has been done at analysis and de-
sign levels and efforts have been made to
construct dependency model using CPN.
This model can be used by various stake
holders during system development and
implementation.

 ● All representations have basic mechanism
to describe message exchange among web
services. One commonality in our work
and above mentioned works is that all rep-
resentations depict the structural and be-
havioral analyses among web services.

8. Conclusion

In this paper we present a Petri net and service
algebra based formal approach for modeling
and analyzing dependence patterns among web
services. Unlike informal modeling, a formal
model furnishes a basis for formal validation of

(a) (b)

(c)

Figure 11. CPN model of hierarchical dependency.
 (a) Order service.
 (b) Payment service.
 (c) Hierarchical dependency model.

colset BNAME = string;
colset BPRICE = real;
colsetOrderCompleted = string;
colsetPaymentType = with CashOnDelivery | DebitCard;
colset BNAMEPRICE = product BNAME * BPRICE;
colset PTBP = product PaymentType * BPRICE;
colset STRING = string;
var x: BNAME;
var y,z: BPRICE;
val a = “Books Delivered”;
var p: PaymentType;
var b: STRING;
fun COD(p,y) = if p = CashOnDelivery then 1`y else empty;
fun DC(p,y) = if p = DebitCard then 1`(p,y) else empty;

Figure 11 (d). Declaration of CPN modeling of hierarchical dependency.

268 269P. Kumar and R. Gupta Dependency Modelling of a SOA Based System Through Colored Petri Nets

web services that enables one to develop reli-
able systems. The proposed approach is strong
enough to analyze simple and complex web
services and their relationships at design level.
As a result, the dependency modeling enhances
the understandability of web service oriented
applications.

References

[1] S. Basu et. al., "Toward web service dependency
discovery for SOA management", in IEEE Inter-
national Conference on Services Computing, pp.
422–429, 2008.
http://dx.doi.org/10.1109/scc.2008.45

[2] J. Zhou et al., "Dependency-aware Service Ori-
ented Architecture and Service Composition " in
Proceeding of IEEE International Conference on
Web Services, Salt Lake City, UT 2007 pp. 1146–
1149, 2007.
http://dx.doi.org/10.1109/ICWS.2007.71

[3] V. Gehlot et al., "Model driven development of a
service oriented architecture (SOA) using colored
Petri nets", in Workshop on Quality in Modeling,
pp. 63–76, 2006.

[4] A. Seth, "Challenges of Performing Software
Configuration Management in a Service Oriented
Architecture", White Paper, 2008.

[5] V. Valero et al., "A Petri net approach for the
design and analysis of Web Services Choreogra-
phies", The Journal of Logic and Algebraic Pro-
gramming, vol. 78, pp. 359–380, 2009.
http://dx.doi.org/10.1016/j.jlap.2008.09.002

[6] J. Zhang et al., "WS-Net: A Petri-net Based
Specification Model for Web Services", in IEEE
International Conference on Web Services, pp.
420–427, 2004.
http://dx.doi.org/10.1109/icws.2004.1314766

[7] X. Deng et al., "Modeling and Verifying Web
Service Composition Using Colored Petri Nets
Based on WSCI", in IEEE International Confer-
ence on Industrial Engineering and Engineering
Management, Singapur, 2007, pp. 1863–1867,
2007.

[8] L. Wells, "Performance Analysis Using Coloured
Petri Nets", PhD Dissertation, CPN Centre, Dept.
of Computer Science, University of Aarhus, 2002.

[9] A. Bhuvaneswari et al., "Assessment of Service
Composition Plan Using Colored Petri Nets",
International Journal of Engineering and Com-
puter Science, vol. 1, pp. 3736–3742, 2014.

[10] S. Kolb et al., "Bridging the heterogeneity of
orchestrations - A Petri net-based integration of
BPEL and Windows Workflow 2012", in IEEE
International Conference on Service-Oriented

Computing and Applications (SOCA), pp. 1–8,
2012.

[11] I. Abbassi et al., "An Event-B Driven Approach
For Ensuring Reliable and Flexible Service Com-
position", International Journal of Services Com-
puting, vol. 2, pp. 45–57, 2014.

[12] Ratneshwer and P. Kumar, "Dependency analy-
sis of a SOA-based system through Petri nets and
service algebra", Int. J. Software Engineering,
Technology and Applications, Inderscience, vol.
1, pp. 172–189, 2015.

[13] K. Jensen and L. M. Kristensen, "Coloured Petri
Nets: Modelling and Validation of Concurrent
Systems", Springer-Verlag Berlin Heidelberg:
Springer, 2009.
http://dx.doi.org/10.1007/b95112

[14] K. Jensen, "Coloured Petri Nets: a high level
language for system design and analysis", in Ad-
vances in Petri Nets, New York, NY, USA, pp.
342–416, 1990.

[15] Y. Li, "Diagnosis of Large Software Systems
Based on Colored Petri Nets", PhD Dissertation,
University of Paris, 2010.

[16] L. M. Kristensen, "State Space Methods for Co-
loured Petri Nets", Ph.D Dissertation, University
of Aarhus, Denmark, 2000.

[17] N. Sangal et al., "Using dependency models to
manage complex software architecture", in 20th
annual ACM SIGPLAN conference on object ori-
ented programming systems languages and appli-
cations, pp. 167–176, 2005.
http://dx.doi.org/10.1145/1103845.1094824

[18] A. Arkin et al., "Web Service Choreography In-
terface (WSCI) 1.0", Technical Report, W3C,
2002.

[19] N. Kavantzas et al., "Web Services Choreography
Description Language Version 1.0", Technical
Report, W3C, 2005.

[20] G. Antoniou and F. van Harmelan, "A Semantic
Web Primer", MIT Press second edition, 2008.

Received: September 2015
Revised: November 2015

Accepted: November 2015

Contact addresses:
Pawan Kumar

Department of Computer Science (MMV)
Banaras Hindu University, India

Varanasi-221005
e-mail: pawan.bhuphd@gmail.com

Ratneshwer Gupta
Department of Computer Science (MMV)

Banaras Hindu University, India
Varanasi-221005

e-mail: ratnesh@bhu.ac.in

Mr. Pawan Kumar is working as a Senior Research Fellow in the De-
partment of Computer Science (MMV), Banaras Hindu University, In-
dia. His research area is dependency analysis of SOA based systems.
He is pursuing his doctoral work under supervision of Dr. Ratneshwer.

Dr. Ratneshwer received his Ph.D. in Component Based Software Engi-
neering from Indian Institute of Technology, Banaras Hindu University,
Varanasi (IIT-BHU), India. His research area is CBSE and SOA. He is
serving as an Assistant Professor in the Department of Computer Sci-
ence (MMV), Banaras Hindu University, India. He has been actively
involved in taeching and research for the last 8 years. His research
monograph has been published by LAP Germany and one book chap-
ter by IGI Global Publication. He has 16 research papers published in
International journals and 16 research papers in international/national
conference proceedings.

http://dx.doi.org/10.1109/scc.2008.45
http://dx.doi.org/10.1109/ICWS.2007.71
http://dx.doi.org/10.1016/j.jlap.2008.09.002
http://dx.doi.org/10.1109/icws.2004.1314766
http://dx.doi.org/10.1007/b95112
http://dx.doi.org/10.1145/1103845.1094824

268 269P. Kumar and R. Gupta Dependency Modelling of a SOA Based System Through Colored Petri Nets

web services that enables one to develop reli-
able systems. The proposed approach is strong
enough to analyze simple and complex web
services and their relationships at design level.
As a result, the dependency modeling enhances
the understandability of web service oriented
applications.

References

[1] S. Basu et. al., "Toward web service dependency
discovery for SOA management", in IEEE Inter-
national Conference on Services Computing, pp.
422–429, 2008.
http://dx.doi.org/10.1109/scc.2008.45

[2] J. Zhou et al., "Dependency-aware Service Ori-
ented Architecture and Service Composition " in
Proceeding of IEEE International Conference on
Web Services, Salt Lake City, UT 2007 pp. 1146–
1149, 2007.
http://dx.doi.org/10.1109/ICWS.2007.71

[3] V. Gehlot et al., "Model driven development of a
service oriented architecture (SOA) using colored
Petri nets", in Workshop on Quality in Modeling,
pp. 63–76, 2006.

[4] A. Seth, "Challenges of Performing Software
Configuration Management in a Service Oriented
Architecture", White Paper, 2008.

[5] V. Valero et al., "A Petri net approach for the
design and analysis of Web Services Choreogra-
phies", The Journal of Logic and Algebraic Pro-
gramming, vol. 78, pp. 359–380, 2009.
http://dx.doi.org/10.1016/j.jlap.2008.09.002

[6] J. Zhang et al., "WS-Net: A Petri-net Based
Specification Model for Web Services", in IEEE
International Conference on Web Services, pp.
420–427, 2004.
http://dx.doi.org/10.1109/icws.2004.1314766

[7] X. Deng et al., "Modeling and Verifying Web
Service Composition Using Colored Petri Nets
Based on WSCI", in IEEE International Confer-
ence on Industrial Engineering and Engineering
Management, Singapur, 2007, pp. 1863–1867,
2007.

[8] L. Wells, "Performance Analysis Using Coloured
Petri Nets", PhD Dissertation, CPN Centre, Dept.
of Computer Science, University of Aarhus, 2002.

[9] A. Bhuvaneswari et al., "Assessment of Service
Composition Plan Using Colored Petri Nets",
International Journal of Engineering and Com-
puter Science, vol. 1, pp. 3736–3742, 2014.

[10] S. Kolb et al., "Bridging the heterogeneity of
orchestrations - A Petri net-based integration of
BPEL and Windows Workflow 2012", in IEEE
International Conference on Service-Oriented

Computing and Applications (SOCA), pp. 1–8,
2012.

[11] I. Abbassi et al., "An Event-B Driven Approach
For Ensuring Reliable and Flexible Service Com-
position", International Journal of Services Com-
puting, vol. 2, pp. 45–57, 2014.

[12] Ratneshwer and P. Kumar, "Dependency analy-
sis of a SOA-based system through Petri nets and
service algebra", Int. J. Software Engineering,
Technology and Applications, Inderscience, vol.
1, pp. 172–189, 2015.

[13] K. Jensen and L. M. Kristensen, "Coloured Petri
Nets: Modelling and Validation of Concurrent
Systems", Springer-Verlag Berlin Heidelberg:
Springer, 2009.
http://dx.doi.org/10.1007/b95112

[14] K. Jensen, "Coloured Petri Nets: a high level
language for system design and analysis", in Ad-
vances in Petri Nets, New York, NY, USA, pp.
342–416, 1990.

[15] Y. Li, "Diagnosis of Large Software Systems
Based on Colored Petri Nets", PhD Dissertation,
University of Paris, 2010.

[16] L. M. Kristensen, "State Space Methods for Co-
loured Petri Nets", Ph.D Dissertation, University
of Aarhus, Denmark, 2000.

[17] N. Sangal et al., "Using dependency models to
manage complex software architecture", in 20th
annual ACM SIGPLAN conference on object ori-
ented programming systems languages and appli-
cations, pp. 167–176, 2005.
http://dx.doi.org/10.1145/1103845.1094824

[18] A. Arkin et al., "Web Service Choreography In-
terface (WSCI) 1.0", Technical Report, W3C,
2002.

[19] N. Kavantzas et al., "Web Services Choreography
Description Language Version 1.0", Technical
Report, W3C, 2005.

[20] G. Antoniou and F. van Harmelan, "A Semantic
Web Primer", MIT Press second edition, 2008.

Received: September 2015
Revised: November 2015

Accepted: November 2015

Contact addresses:
Pawan Kumar

Department of Computer Science (MMV)
Banaras Hindu University, India

Varanasi-221005
e-mail: pawan.bhuphd@gmail.com

Ratneshwer Gupta
Department of Computer Science (MMV)

Banaras Hindu University, India
Varanasi-221005

e-mail: ratnesh@bhu.ac.in

Mr. Pawan Kumar is working as a Senior Research Fellow in the De-
partment of Computer Science (MMV), Banaras Hindu University, In-
dia. His research area is dependency analysis of SOA based systems.
He is pursuing his doctoral work under supervision of Dr. Ratneshwer.

Dr. Ratneshwer received his Ph.D. in Component Based Software Engi-
neering from Indian Institute of Technology, Banaras Hindu University,
Varanasi (IIT-BHU), India. His research area is CBSE and SOA. He is
serving as an Assistant Professor in the Department of Computer Sci-
ence (MMV), Banaras Hindu University, India. He has been actively
involved in taeching and research for the last 8 years. His research
monograph has been published by LAP Germany and one book chap-
ter by IGI Global Publication. He has 16 research papers published in
International journals and 16 research papers in international/national
conference proceedings.

http://dx.doi.org/10.1109/scc.2008.45
http://dx.doi.org/10.1109/ICWS.2007.71
http://dx.doi.org/10.1016/j.jlap.2008.09.002
http://dx.doi.org/10.1109/icws.2004.1314766
http://dx.doi.org/10.1007/b95112
http://dx.doi.org/10.1145/1103845.1094824

 HistoryItem_V1
 Shuffle

 Create a new document
 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 D:20161011145235

 1
 1
 1
 1 1
 622
 261
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1

 HistoryList_V1
 qi2base

