
Journal of Computing and Information Technology - CIT 23, 2015, 4, 317–328
doi:10.2498/cit.1002639

317

Building Secure and Fast
Cryptographic Hash Functions Using
Programmable Cellular Automata

Alaa Eddine Belfedhal and Kamel Mohamed Faraoun
Computer Sciences Department, Djillali Liabes University of Sidi Bel Abbes, Algeria

Cryptographic hash functions have recently brought an
exceptional research interest. With the increasing num-
ber of attacks against the widely used functions as
MD5, SHA-1 and RIPEMD, the need to consider new
hash functions design and conception strategies becomes
crucial. In this paper, we propose a fast and efficient hash
function using programmable cellular automata that are
very suitable for cryptographic applications due to their
chaotic and complex behavior derived from simple rules
interaction. The proposed function is evaluated using
several statistical tests, while obtained results demon-
strate very admissible cryptographic properties such as
confusion/diffusion capability and high sensitivity to
input changes. Furthermore, the hashing scheme can be
easily implemented through software or hardware, so it
provides very competitive running performances.

Keywords: cryptographic hash function, programmable
cellular automata, cellular automata rule, pseudo-
randomness, avalanche effect

1. Introduction

Cryptographic hash functions are considered
as key components of almost all cryptographic
protocols, and of many security applications.
Their common usage scenarios range from the
reduction of the amount of data to be signed, to
timestamping or checking a file’s integrity and
enabling user’s authentication across a network.
Hash functions compute a digest of a givenmes-
sage which is a short and fixed-length bitstring.
For a givenmessagewith an arbitrary length, the
message digest, or hash value, is considered as
its fingerprint (i.e., a unique and compact repre-
sentation of amessage). Unlike all other crypto-
graphic algorithms, hash functions do not need
a key to compute the message’s hash, except
in some specific implementations named keyed

hash functions that are used for specific sig-
nature scenarios. The use of hash functions in
cryptography is manifold: hash functions are an
essential part of digital signature schemes and
message authentication codes (MACs). Hash
functions are also widely used for other cryp-
tographic applications, e.g., for storing of pass-
word hashes or key derivation [1].

From a structural point of view, cryptographic
hash functions may be categorized into three
main classes, based on the nature of the op-
erations performed in their internal compres-
sion functions: the first class functions use a
block cipher as compression functions [2] and
[3], while the second class includes hash func-
tions based on difficult mathematical problems,
such as discrete logarithm problem [4], factor-
ization problem [5] and the problem of finding
cycles in expander graphs [6].

Another recently emerging class covers dedi-
cated hash functions designed especially to achi-
eve optimal speed and reliability [7]. Among
such dedicated functions, some new schemes
are based on the use of chaotic maps that exhibit
chaotic and complex behaviors with high sensi-
tivity to initial conditions’ variations. Examples
of such maps include the logistic map proposed
to build a hashing schema in [8], the tent map
used in [9] and the Kolmogorov systems used in
[10]. In addition, cellular automata constitute
another class of dynamical systems that have
been extensively used to design dedicated hash
functions. Cellular automata (CA) are very ap-
propriate to design hash functions with a low
hardware and software complexity because of

318 Building Secure and Fast Cryptographic Hash Functions Using Programmable Cellular Automata

their logical operation attributes [7], their inher-
ent parallelism and extreme sensitivity to initial
conditions alterations. Hence, CA-based hash
functions are able to achieve very high perfor-
mance speeds [10]. The main approaches using
CA to construct hash functions are discussed in
detail in related works section.

In the present work, we propose a novel cryp-
tographic hash function using programmable
CA conjointly with the Davies-Mayer construc-
tion [11] used to define compression function,
when the Merkle-Damgard variant construc-
tion is adopted as a domain extension algo-
rithm. The proposed scheme is shown exper-
imentally to be robust against the main hashing
attacks, and evaluated with respect to the strict
avalanche criterion and the pseudorandomness
of the hashing output considered for large scale
streams. Obtained results are compared to sev-
eral existing hash functions. The rest of the
paper is organized as follows: Section 2 intro-
duces relevant background about cryptographic
hash functions, CA preliminaries with related
works. Section 3 details the proposed hash
function construction, while Section 4 presents
the performed experiments with corresponding
obtained results. Finally, conclusions are drawn
in Section 5.

2. Cryptographic Hash Functions and
Cellular Automata

In the following, we introduce the basic nec-
essary definitions related to cryptographic hash
functions and to cellular automata preliminar-
ies. We briefly describe the main works with
relevance to the construction of CA-based hash
functions.

2.1. Cryptographic Hash Functions

Formally speaking, a hash function H is a de-
terministic and efficient algorithm that maps an
arbitrary length binary message M to some fixed
length (typically 128, 160, 256 or 512 bits) fin-
gerprint h [1].

H : {0, 1}∗ → {0, 1}n

M → h = H(M) (1)

In order to be considered cryptographic, a hash
function should resist the threemain attacks: the

pre-image attack, the second pre-image attack
and the collision attack. The pre-image attack
consists for a given hash value h to find the cor-
responding message M such that H(M) = h.
The second pre-image attack succeeds if for
a given message M and a given hash value
h = H(M) we can find a message M �= M′
such that H(M′) = h. Finally, the collision at-
tack aims to find two arbitrary distinct messages
M and M′ such that H(M) = H(M′).

Using a brute-force attack, pre-images and 2nd

pre-images attacks succeed deterministically af-
ter 2n call to the function H, when a collision
is very leaky to succeed using only 2n/2 call to
H according to the birthday paradox theorem.
It is usually the goal in the design of a crypto-
graphic hash functions that no attacks perform
better than the brute-force attack.

In general, it is not always possible to get a for-
mal proof of resistance to such attacks. But,
in contrast, some statistical properties are eas-
ily verifiable to show that a given hash func-
tion has a good cryptographic level of security.
A hash function that behaves like a pseudo-
random function and satisfies the avalanche ef-
fect is generally considered to be secure and
can be used safely for cryptographic purposes.
The avalanche effect reflects the sensitivity of
the hash function to elementary changes in the
hashed message: a little change in the input
message (flipping one single bit) produces a
significant change of the output (the final hash).
Such statistical properties are easy to check, and
then enable a fast and acceptable evaluation tool
to validate the hash functions design.

Cryptographic hash functions have generally
two main independent components: the mode
of operation (a domain extender algorithm) and
the compression function. Most popular hash
functions are based on iterating a compression
function that processes a fixed number of bits.
The message to be hashed is split into blocks of
a certain length where the last block is possibly
padded with extra bits.

Let h : {0, 1}nx{0, 1}L → {0, 1}n denote a
compression function, where n and L are pos-
itive integers, and let M = m0|m1| . . . |mk be
the message to be hashed, where |mi| = L for
0 ≤ i ≤ k. The hash value is then defined to be
hk, where hi = h(hi−1, mi) defines the chaining
variables.

Building Secure and Fast Cryptographic Hash Functions Using Programmable Cellular Automata 319

A hash function can be either keyed or non-
keyed, depending on the corresponding intended
use. For non-keyed functions addressed in the
present work, a fixed initialization vector IV is
used to define the value h0. If the message M to
be hashed cannot be split into blocks of equal
length n, (if the last block consists of less than n
bits), then a collision-free padding rule should
be used [12].
It has been shown that attack on a given hash
function implies similar attack on the corre-
sponding, used compression function. So in
order to show the hash function’s resistance to
the collision, it suffices to show that the property
is verified for the compression function. When
iterating a compression function that provides
collision resistance property, we can achieve
a global collision resistance, and guarantee a
perfect avalanche effect satisfaction by the con-
structed hash function.

2.2. Cellular Automata Preliminaries

Cellular automata are dynamical systems in
which space and time are discrete. They consist
of collections of cells organized in a grid, when
each cell has a corresponding current state. The
states of the cells evolve over time, depending
on their current states and the states of the neigh-
boring cells, according to a local and identical
interaction rule in the case of uniform CAs, or
different interaction rules in the case of non-
uniform CAs [13].
CA were originally used by von Neumann [14]
while he was studying self-reproducing sys-
tems and then popularized by Wolfram’s sub-
stantial work in this area [15]. Wolfram ob-
served that, based on simple rules, very com-
plex behaviors can be obtained. He pioneered

the investigation of CA as mathematical models
for self-organizing statistical systems and sug-
gested the use of elementary CAs, which are
simple 1-dimensional linearly connected array
of n cells, usually referred to as 3-neighborhood
CAs. Each cell in the array takes a discrete state
s equal to 0 or 1. If a configuration of the CA at
a time step t is defined by the binary vector Ct,
and the ith cell’s state is denoted by (Ct)i, then
the transition function f is used to determine the
next state of each cell from a neighborhood’s
corresponding configuration. Cell’s states are
updated in parallel with respect to each other,
using the transition function in each time step.
The next state of a cell at time t + 1 is only in-
fluenced by its own state and the states of its left
and right neighbors at time t. The configuration
Ct+1 at time t + 1 can be computed by:

(Ct+1)i = f ((Ct)i−1, (Ct)i, (Ct)i+1),
∀i = 0 . . .n − 1 (2)

where (Ct)i−1, (Ct)i and (Ct)i+1 are the states
of the left neighbor, self and right neighbor of
the ith cell at time t. A cellular automaton with
2 states and a neighborhood’s radius equal to 1
(3 cells) has 23 = 8 possible neighborhood’s
configurations. If the set of all possible con-
figurations is expressed using a truth table, the
decimal equivalent of its sequence output is re-
ferred to as a “Rule” [15], and by the way the
transition rules length is equal to 8 and a total
of 28 = 256 CA local rules can be used. Table
1 illustrates an example of two elementary rules
defined by the corresponding truth tables.

If the same rule applies to all cells in a CA, the
CA is named uniform or regular CA, whereas
if different rules apply to different cells, it is

Neighborhood’s Value of the central cell at time t+1
configuration at time t (Rule 30) (Rule 2) (Rule 154) (Rule 207) (Rule 255) (Rule 133)

111 0 0 1 1 1 1

110 0 0 0 1 1 0

101 0 0 0 0 1 0

100 1 0 1 0 1 0

011 1 0 1 1 1 0

010 1 1 1 1 1 0

000 0 0 0 1 1 1

Table 1. Truth table of some arbitrary selected elementary CA transition rules.

320 Building Secure and Fast Cryptographic Hash Functions Using Programmable Cellular Automata

named a hybrid (or non-uniform) CA. A pro-
grammableCA (PCA) is a hybridCAcontrolled
by a number of signals such that different rules
can be generated.

Cellular automata have several properties that
favor their use as basis for the design of hash
functions. Their chaotic, complex and unpre-
dictable behavior of some transition rules en-
ables their effective use to design safe and reli-
able hash functions. The simplicity of their im-
plementations and their parallel nature makes
them suitable as a basis for fast compression
functions.

2.3. Cellular Automata for Hash Functions:
Related Works

Cellular automata have been widely used re-
cently to construct cryptographic primitives.
They have been used for the construction of
symmetric cryptosystems, public key cryptosys-
tems, secret sharing schemas and hash func-
tions. The first cryptographic application of CA
initiated by Wolfram [16] describes a stream-
based cipher using the elementary CA rule 30.
The CA was used as a pseudorandom num-
bers generator to produce statistically good se-
quences used to cipher plain data by the Vernam
ciphering model. CAs were also used for block-
ciphers constructions using reversible and irre-
versible rules [17], and also to build public-key
cryptosystems by exploiting two-dimensional
CAs reversibility problem [18].

In [19], Damgard was the first to propose a
hash function based on CAs, he used Wolfram’s
pseudorandom bit generation’s scheme to de-
sign a compression function, but his proposal
was cryptanalysed by Daemen et al. in [20]
who, in turn, proposed a framework of colli-
sion free hash functions based on CA, named
CellHash. The same authors proposed later an
improved version named SubHash in [21]. Both
CellHash and SubHash are hardware-oriented
so making extremely high speed possible, but
unfortunately, the two schemas were cryptana-
lysed later in [22].

Another CA-based hash function has been pro-
posed by Mihaljevic, et al. in [23], where they
describe a family of fast dedicated one-way hash
functions using linear CA over GF(q). The
proposal is an extension of the bit’s oriented
hashing proposed earlier in [24], enhanced by

employing the approved model of iterative hash
function with compression and output’s func-
tions: the compression function is one of the
Davies-Meyer types employing CA, when the
output function was a key generator based on
CA over GF(q). In [25] Dasgupta et al. pro-
posed a CA based scheme for message authen-
tication by investigating a particular class of
non-group CA that can be employed to gener-
ate an efficient message authentication function.
Two-dimensional CA was also proposed as the
base for construction of hash functions in [26].

More recently, Jun-Cheol proposed a one-way
hash function using linear and nonlinear CAs
[7]. Norziana et al. proposed an alternative
hash function based on CA rules 30, 134 and
Omega-Flip Network in [10], then proposed an-
other hash function in [13] named STITCH-256
using balanced CA elementary rules like rules:
29, 39 and 27, and diffusion functions to imple-
ment the compression function.

3. The Proposed Hashing Scheme

In the following, we present the proposed new
CA-based cryptographic hash function. The
function follows iterative hash model inspired
by the Damgard’s one presented in [19], and
uses two internal functions namely: a compres-
sion function C and a transformation function
T . The former employs programmable CA with
4 rules (30, 90, 105 and 150), while the latter
T uses a hybrid cellular automaton with transi-
tion rules 30 and 105. Both message blocks and
hash value are 256 bit binary strings.

3.1. The Mode of Operation

In the proposed hashing scheme, we use a vari-
ant of the Merkle-Damgard construction. The
proposed algorithm requires a padding function
(in such a way that the length of the message
becomes a multiple of 256 bit) for which the last
64 bits encode the length of the message M to
be hashed. The padded message is then divided
into blocks Mi (i = 1 . . . k) with |Mi| = 256
bits. The algorithm requires also a fixed initial-
ization vector: IV∈ {0, 1}256

The compression function C is then iterated for
k times. C takes as inputs a block message Mi

Building Secure and Fast Cryptographic Hash Functions Using Programmable Cellular Automata 321

and a chaining variable hi−1, to produce a 256
bit string as output. This output string is XORed
with the output of a transformation function T
applied to the block message Mi to form the
next chaining variable hi. Figure 1 illustrates a
pictorial representation of the proposed hashing
scheme.

3.2. The Compression and Transformation
Functions

To construct the compression function, we use
an elementary programmable CA (PCA) with
4 rules, namely the rules: 30, 90, 105, 150
(As many works have studied the properties of
different CA rules, we use only the rules that
have been proven to have good pseudorandom
properties).
We firstly define a function F that takes as in-
put a block message Mi and a chaining variable
hi−1, to produce an output string f on 256 bits
as follows:

F : {0, 1}256 × {0, 1}256 → {0, 1}256

(hi−1, Mi) → F(hi−1, Mi) = f i (3)
The function F is defined like the following: a
PCA of 256 bit length is initially loaded with

the message block Mi. Additional 256 bits from
chaining variable are doubled to form a 512 bit
string S (i.e. S = hi−1|hi−1). The bits from S
are used with the number of the current iteration
to control the rule configuration of the individ-
ual CA cells. Each 2 bits of S control one cell
rule (the bits j and j + 1 control the rule of the
cell number j/2) conjointly with the remainder
of the iteration number modulo 4. The con-
trol logic of the proposed PCA is described in
Table 2.

The CA is then iterated for n times. The value
of the parameter n defining the number of itera-
tions may be fixed according to the desired ratio
of speed/reliability performances. The output
of F is defined by the final PCA state.

The compression function C is then defined us-
ing the function F as follows:

C : {0, 1}256 × {0, 1}256 → {0, 1}256

(f i, hi−1) → C(f i, hi−1) = ci = f i ⊕ hi−1
(4)

The transformationT takes as input a blockmes-
sage of 265 bit length and produces an output

Figure 1. Pictorial representation of the proposed schema.

2 bits from Mi
i mod 4

0 1 2 3

00 Rule 30 Rule 90 Rule 105 Rule 150

01 Rule 90 Rule 30 Rule 150 Rule 105

10 Rule 105 Rule 150 Rule 30 Rule 90

11 Rule 150 Rule 105 Rule 90 Rule 30

Table 2. Definition of the control logic for the proposed PCA.

322 Building Secure and Fast Cryptographic Hash Functions Using Programmable Cellular Automata

string t of 256 bit that is XORed with the com-
pression function output.

The transformation function is defined as fol-
lows: A hybrid CA with rules 30 and 105 (rules
are applied in alternation i.e. 30, 105, 30. . . .)
is initially loaded with the message block Mi.
The CA is iterated 50 times to obtain an in-
termediate configuration, then iterated another
256 times to form a 256 by 256 bit square. The
diagonal of this square is then taken as output
of T . Figure 2 illustrates pictorial specification
of the transformation T operations mechanism.

Figure 2. Pictorial description of the transformation
function T.

The transformation function T is used to obtain
the next chaining variable hi by:

hi = ci ⊕ T(Mi)
= f i ⊕ hi−1 ⊕ T(Mi)
= F (hi−1, Mi) ⊕ hi−1 ⊕ T(Mi) (5)

Using the described scheme, the proposed hash
function can take any message M of arbitrary
length as input, decompose it into consecu-
tive blocks Mi, and produce the correspond-
ing hash value H(M). The proposed function
is benchmarked with respect to several perfor-
mance tests with several experiments illustrated
in the following section.

4. Performances Evaluations and Obtained
Results

As explained above, it is not always possi-
ble to formally prove the resistance of a given

hash function to common attacks, but since a
Merkle-Damgard construction is used as a do-
main extension mechanism, the proof can be
reduced to the resistance of the proposed com-
pression function. In addition, several statisti-
cal properties can be checked in order to show
that the function provides good cryptographic
level of security. Pseudorandom behavior and
avalanche effect are generally considered as
good security’s indicators of a hash function. In
this section, we perform several statistical ex-
periments on the proposed hashing scheme. We
also show that best computational performances
can be achieved by the proposed scheme with
respect to existing models.

4.1. Security Analysis

The best assistance available about security of a
particular hash function is the complexity of the
most efficient applicable known attack, which
gives an upper bound on its security. An at-
tack of complexity 2n requires approximately
2n operations, each being an appropriate unit of
work. According to [35], it is possible to relate
the security of H() to the security of h and g
according to the following theorem:

Theorem1 [35]: LetH be an iterated hash func-
tion with Merkle-Damgard construction, then
preimage and collision attacks on H (where an
attacker can choose IV freely) have roughly the
same complexity as the corresponding attacks
on h and g.

The function g is an optional transformation
used in a final step to map the n-bit chaining
variable to an n′-bit result g(Hm); g is often the
identity mapping g(Hm) = Hm. In the present
work the function g is trivially considered as the
identity function, while the compression func-
tion is handled by the function F composed by
the two transformations C and T . Accordingly,
the security of the proposed hash function is re-
lied on the resistance of the compression func-
tion h. The function h is applied on each sub-
block Mi and transforms it using the two func-
tions C and T according to equation (4). The
transformation steps consist of the following:

– A non-linear mapping of Mi using the trans-
formation T with a non-uniform PCA;

Building Secure and Fast Cryptographic Hash Functions Using Programmable Cellular Automata 323

– A non-linear compression of Mi using the
function C with a PCA evolution mecha-
nism that maps the input vector into another
vector of the n-dimensional binary space.

– A bit-by-bit addition between the outputs of
C and T to compute the final value of F.

As a result, the following facts imply the secu-
rity of the proposed compression function:

1. Cellular automata have chaotic characteris-
tic thatmaps any nonzero state into a nonzero
state which belongs to the sequence of all
possible different 2n−1 nonzero n-dimensio-
nal vectors in such manner that the expected
Hamming distance between the current state
and the next one is n/2.

2. A high non linearity is performed on each
sub-block Mi due to the dynamic character-
istic of the nonlinear PCA with rules 30, 90,
105 and 150.

3. The computational infeasibility of recon-
structing pervious configurations of a given
nonlinear PCA.

The facts 1-3 imply that the proposed compres-
sion function is a cryptographically secure one-
way function. Hence, according to Theorem 1,
and since the iterating mechanism is performed
according to a Merkle-Damgard construction,
the proposed hash function is cryptographically
secure.

4.2. The Avalanche and Strict Avalanche
Criteria

Avalanche effect is a desirable property for
cryptographic hash functions that tries to re-
flect the idea of high-nonlinearity [27]: a little
change in the input (flipping one single bit)
produces a significant change of the output (ap-
proximately half of the bits are flipped). For-
mally, if a function F has the avalanche effect,
then the Hamming distance between its output
on a random input binary string x and the output
obtained when randomly changing one bit of x
should be, on average, half of the output size
[28]. This effect tries to abstract the intuitive
idea of high nonlinearity: very small difference
in the input must produce high changes in the
output, hence an avalanche of changes.

Mathematically, F : {0, 1}m → {0, 1}n has the
avalanche effect if it holds the following:

∀x, y ∈ {0, 1}m : Hamming(x, y) = 1

=⇒ average(Hamming(F(x), F(y)))=
n
2(6)

When Hamming (x, y) denotes the Hamming
distance between the two n-bits blocks x and
y. Figure 3 shows the results of the avalanche
effect test performed on the proposed hash func-
tion, using a set of 10 000 pairs of arbitrary mes-
sages Mi and M′

i such that Hamming (Mi, M′
i) =

1. Obtained results show that the hamming dis-
tances between the hash values (i.e. Hamming
(H(Mi), H(M′

i))) are concentrated around the
value 128, which indicates that the hash func-
tion has a good avalanche effect.

Figure 3. Obtained distribution of Hamming distances between hashes of random messages and hashes of their
one-bit-flipped alterations.

324 Building Secure and Fast Cryptographic Hash Functions Using Programmable Cellular Automata

Another, more accurate and demanding non-
linearity measurement is the so called strict
avalanche criterion [29]which, in particular, im-
plies the avalanche effect. The strict avalanche
criterion (SAC) is a more demanding property
that was originally presented by as a general-
ization of the avalanche effect to measure the
quantity of confusion and diffusion in substitu-
tion boxes (s-boxes). Formally, a function F
is said to satisfy the SAC if, whenever a single
input bit is flipped, each of the output bits must
change with a probability of one half. This im-
plies that the distribution of hamming distances
between outputs that have similar inputs (differ-
ing in one bit) should follow a binomial distri-
bution. Mathematically, the SAC is described
by [28]:

∀x, y ∈ {0, 1}m : Hamming(x, y) = 1

⇒ Hamming(F(x), F(y)) ≈ B

(
1
2
, n

)
(7)

where B(1/2, n) denotes binomial distribution
with parameters 1/2 and n. This definition also
tries to abstract the more general concept of in-
dependence of the output from the input. An
ideal hash function F will resemble a perfect
random function where inputs and outputs are
statistically unrelated [30].
In order to evaluate the proposed hash function
with respect to the SAC, the following experi-
ment has been conducted: the 256 elements of
an integer’s vector V (each one corresponding
to a bit position of the hash function’s output)
are initialized firstly to 0. A set of 1000 ran-
dom messages with arbitrary length are then
generated, and their corresponding hash values
H(M) are computed. For each one of these mes-
sages, only one bit is randomly flipped getting a
new message M’, that is also hashed to obtain a
new hash value H(M′). The Hamming distance
Hamming (H(M), H(M′)) is calculated, and the
result is used to determine the element of V to be
incremented (i.e. V[Hamming (H(M), H(M′))]
++). This operation is repeated 1000 times for
each message.

Finally, the values of the vector V elements are
divided by the total number of performed ex-
periments (equal to 1000 ∗ 1000 = 106) in or-
der to perform a normalization of the computed
distribution. The obtained values represent the
distribution of Hamming distances that is com-
pared to the binomial distribution as plotted in
Figure 4.

Figure 4. Experimental Hamming distances distribution
vs. theoretical binomial distribution.

The distance between the observed distribution
of the Hamming distances and their theoretical
distribution under perfect Strict Avalanche Cri-
terion hypothesis B (1/2, n), has also been mea-
sured by means of a chi-square 2 goodness-of-
fit test [30]. The chi-square measurement is
a statistical test that allows verifying the ade-
quacy of a data set to a probability distribution
by using the following formula [27]:

2 =
256∑
i=0

(Observed frequencyi − Expected frequency)2

Expected frequency

(8)

Using the distribution values obtained in the ex-
periment described above, the value of the 2

measurement has been computed and found to
be equal to 0,005465. Using the probability
 = 0.01 as our critical threshold, the hypothe-
sis of equivalence between the two distributions
is accepted if the 2 value is less than the quan-
tile 255,0.01 = 310.45. It is clear that the ob-
tained 2 is negligible with respect to the quan-
tile value, and consequently, the null hypothesis
is accepted and the Hamming distribution of the
proposed hash function is then following a bi-
nomial distribution B

(
1
2 , 256

)
. Results of the

SAC test show that the hash function provides
good avalanche effect criterion, which is one of
the most important features of secure crypto-
graphic hash functions.

Building Secure and Fast Cryptographic Hash Functions Using Programmable Cellular Automata 325

4.3. Randomness Statistical Tests

Cryptographic primitives and especially hash
functions should act like pseudorandom func-
tions to avoid statistical attacks; therefore the
output of a secure hash function must be sta-
tistically indistinguishable from the output of
a random function. We performed several sta-
tistical randomness tests on the output of the
proposed hash function in order to show that it
provides best randomness properties.

In the performed experiment, the hash function
has been used as a pseudonumber generator to
create a data stream of 10Mb. The stream is

generated using a counter mode scheme applied
using the hash function on an initial random
integer seed S and then calculating the values
H(S), H(S + 1), . . . , H(S + 327680) each one
on 256bit. The resulting outputs are finally con-
catenated to form a data stream.

The produced stream is analyzed statistically
using both Diehard [31] and ENT [32] statisti-
cal tests batteries, and then obtained results are
averaged and reported in Tables 3 and 4.

It is clear from presented results that the binary
stream generated by the hash function has suc-
cessfully passed all DIEHARD and ENT tests.
We can conclude that the function has a good

Test Name P-value Interpretation

Birthday Spacing 0.451552 Pass

Overlapping 5-permutation 0.654729 Pass

Rank test for 31x31 binary matrices 0.64841 Pass

Rank test for 32x32 binary matrices 0.894523 Pass

Rank test for 6x8 binary matrices 0.562742 Pass

BITSTREAM TEST 0.329124 Pass

OPSO Test 0.42485 Pass

OQSO Test 0.642714 Pass

DNA Test 0.42839 Pass

Count the 1s in a Stream of Bytes 0.69275 Pass

Count the 1s in Specific Bytes 0.39258 Pass

Parking Lot Test 0.512293 Pass

Minimum Distance Test 0.64942 Pass

Random Spheres Test 0.35862 Pass

The Squeeze Test 0.43175 Pass

Overlapping Sums Test 0.58441 Pass

Runs Up and Down Test 0.74349 Pass

The Craps Test 0. 83457 Pass

Table 3. Results of the DIEHARD tests battery applied on designed hash function’s output.

Test Name Value Norm

Entropy 7.997982 8.0

Optimum compression 0.000003 0.0

Arithmetic mean value of data bytes 127.5586 127.5 = random

Monte Carlo value for 3.140865524
Serial correlation coefficient 0.000347 totally uncorrelated = 0.0

Table 4. Results of the ENT tests battery applied on the designed hash function’s output.

326 Building Secure and Fast Cryptographic Hash Functions Using Programmable Cellular Automata

pseudorandom behavior and can as a result be
considered statistically indistinguishable from
random function, which is a principal charac-
teristic of a secure hashing scheme.

4.4. Comparison With Existing CA-based
Hash Functions

In order to illustrate the advantages of the pro-
posed hash functionwith respect to existingCA-
based ones, a comparative study has been per-
formed with respect to several criteria includ-
ing sensitivity to elementary alterations, strict
avalanche criterion, and randomness. The pro-
posed function has been compared to CellHash
[20], SubHash [21], STITCH-256 [13] and the
function proposed initially by Damgard in [19].
Performances and speed comparison are pro-
vided in the next section.

Table 5 illustrates several comparison result
using the chi-square measurement to evaluate
the strict avalanche criterion, the averaged p-
value of the DIEHARD test, the averaged en-
tropy from the ENT test and the average run-
time performances. The functions were imple-
mented in software while performance’s exper-
iments were performed using an Intel Core i5
(2.5 GHz) microprocessor platform. It is clear
from the obtained results that the proposed func-
tion achieves very competitive runtime perfor-
mances with equivalent randomness and sensi-
tivity results. Figure 5 illustrates a comparison
of the experimental Hamming distributions be-
tween the proposed function and the mentioned
CA-based ones.

Figure 5. Experimental Hamming’s distribution
compared with respect to some known CA-based hash

functions.

4.5. Performance Analysis of the Designed
Function

Cellular automata uses simple binary opera-
tions. Therefore CA-based primitives can achi-
eve very high speed in both hardware and soft-
ware implementations. In the present work,
the proposed hash function has been imple-
mented using Microsoft Visual C++, while
performance’s experiments were performed us-
ing an Intel Core i5 (2.5 GHz) microproces-
sor platform. Table 6 shows a comparison be-
tween the hash function and the widely used
ones implemented by the Crypto++ library us-
ing Microsoft Visual C++ [33]. It is clear that
the designed function achieves very competitive
speeds with respect to other standards, and we
assume that it can achieve much better rates if
hardware implementation is used.

Hash function
Averaged
DIEHARD
p-value

Averaged
ENT
Entropy

Averaged
Chi-square
Value

Speed (Mb/s)

CellHash [20] 0.54368722 7.989825 0,07782 90

SubHash [21] 0.55567534 7.991735 0,006581 105

STITCH-256 [13] 0.53996212 7.998321 0,005387 113

Damgard [19] 0.48216211 7.998212 0,13556 125

Proposed function 0.55307924 7.997982 0,005465 138

Table 5. Security performances compared with respect to some known CA-based hash functions.

Building Secure and Fast Cryptographic Hash Functions Using Programmable Cellular Automata 327

Hash function Speed (MB/s)

MD5 406

SHA-1 158

SHA-256 143

SHA-512 82

RIPEMD-128 240

RIPEMD-256 195

RIPEMD-320 104

Whirlpool 80

Proposed function (256 bit) 138

Table 6. Speed performances compared with respect to
some known hash functions.

5. Conclusions

In this paper, we propose a cryptographic hash
function based on cellular automata. The pro-
posed function uses two internals, namely: a
compression function based on programmable
cellular automata controlled by the chaining
variable bits, and a transformation function con-
struct from a hybrid cellular automaton with
rules 30 and 105. The proposed scheme has
been experimentally analyzed with respect to
several statistical tests, and the obtained re-
sults show that the proposed function provides
good cryptographic properties such as pseudo-
random behavior and sensitivity to the input
changes. In addition, the function is simple,
fast, and can be easily implemented through
software or hardware. Performance evaluations
show that extremely optimal performances are
achieved by the function with respect to existing
standards, and we presume that better perfor-
mances can be obtained if hardware implemen-
tation is adopted due to the inherent parallelism
of cellular automata.

References

[1] M. NAOR, M. YUNG, Universal one-way hash func-
tions and their cryptographic applications. In Pro-
ceedings of the twenty-first AnnualACM Symposium
on the Theory of Computing, (1989, February) pp.
33–43. ACM.

[2] B. PRENEEL, R. GOVAERTS, J. VANDEWALLE, Hash
Functions Based on Block Ciphers: A Synthetic
Approach. In Crypto ’93, 773 of LNCS, (1993) pp.
368–378. Springer-Verlag.

[3] J. BLACK, P. ROGAWAY, T. SHRIMPTON, Black-Box
Analysis of the Block-Cipher-Based Hash-Function
Constructions from PGV. In Crypto’02, 2442 of
LNCS, (2002) pp. 320–335. Springer-Verlag.

[4] J. BUCHMANN, S. PAULUS, A One Way Function
Based on Ideal Arithmetic in Number Fields. In
Crypto ’97, 1294 of LNCS, (1997) pp. 385–394.
Springer-Verlag.

[5] S. CONTINI, A. LENSTRA, R. STEINFELD, VSH, an
Effcient and Provable Collision – Resistant Hash
Function. In Eurocrypt ’06, 4004 of LNCS, (2006)
pp. 165–182. Springer-Verlag.

[6] D. CHARLES, K. LAUTER, E. GOREN, Cryptographic
Hash Functions from Expander Graphs. Journal of
Cryptology, 22(1), (2007) 93–113.

[7] J-C. JEON, Analysis of Hash Functions and Cellular
Automata Based Schemes. International Journal of
Security and Its Applications, 7(3), (May, 2013).

[8] M. MAQABLEH, A. SAMSUDIN, M. ALIA, New Hash
Function Based on Chaos Theory (CHA-1). Inter-
national Journal of Computer Science and Network
Security, 8(2), (2008) 20–27.

[9] X. YI, Hash Function Based on Chaotic Tent Maps.
IEEE Transactions on Express Briefs, 52(6), (2005)
354–357.

[10] J. NORZIANA, M. RAMLAN, R. Z. MUHAMMAD, I.
U. NUR, A. Z. ZURIATI, A New Cryptographic Hash
Function Based on Cellular Automata Rules 30, 134
and Omega-Flip Network. International Proceed-
ings of Computer Science & Information Tech., 27,
(2012) 163.

[11] A. MENEZES, P. OORSCHOT, S. VANSTONE, Hand-
book of Applied Cryptography, chapter Hash Func-
tions and Data Integrity. CRC Press, 1996, pp.
321–384.

[12] NIST., Federal Information Processing Standard
(FIPS) Publication 180-2, Secure Hash Standard
(SHS), U.S. Doc/NIST, 2002. Available from
http://csrc.nist.gov/publications/fips/
fips180-2/fips180-2.pdf

[13] N. JAMIL, R. MAHMOOD, M. R. Z’ABA, N. I. UDZIR,
Z. A. ZUKARNAEN, A New Cryptographic Hash
Function Based on Cellular Automata Rules 30.
134 and Omega-Flip Network International Con-
ference on Information and Computer Networks
(ICICN 2012) IPCSIT, 27 (2012). IACSIT Press,
Singapore.

[14] J. V. NEUMANN, The World of Physics: A Small
Library of the Literature of Physics from Antiquity
to the Present, chapter The General and Logical
Theory of Automata. Simon and Schuster, New
York, 1987, 606–607.

[15] S. WOLFRAM, A New Kind of Science. Wolfram
Media, 2002.

[16] S. WOLFRAM, Cryptography with Cellular Au-
tomata in Advances in Cryptology. Crypto’85 Pro-
ceedings. LNCS 218, (1985) pp. 429–432. Springer.

328 Building Secure and Fast Cryptographic Hash Functions Using Programmable Cellular Automata

[17] Z. CHAI, Z. CAO, Y. ZHOU, Encryption Based on
Reversible Second-Order Cellular Automata. ISPA
Workshops, LNCS 3759, (2005) pp. 350–358.

[18] A. CLARRIDGE, K. SALOMAA, A Cryptosystem
Based on the Composition of Reversible Cellu-
lar Automata. LATA 2009, LNCS 5457, (2009) pp.
314–325.

[19] I. DAMGARD, A Design Principle for Hash Func-
tions. In Crypto ’89, volume 435 of LNCS, (1989)
pp. 416–427. Springer-Verlag.

[20] J. DAEMEN, R. GOVAERTS, J. VANDEWALLE, A
Framework for the Design of One-Way Hash Func-
tions Including Cryptanalysis of Damgard’s One-
Way Function Based on a Cellular Automaton. In
Asiacrypt ’91, volume 739 of LNCS, (1991) pp.
82–96. Springer-Verlag.

[21] J. DAEMEN, R. GOVAERTS, J. VANDEWALLE, A hard-
ware design model for cryptographic algorithms,
Computer Security – ESORICS 92. Proc. Second
European Symposium on Research in Computer
Security, LNCS 648, (1992) pp. 419–434. Springer-
Verlag.

[22] D.CHANG, PreimageAttacks onCellHash,SubHash
and Strengthened Versions of CellHash and Sub-
Hash. Cryptology ePrint Archive, Report 2006/412.,
(2006). (eprint.iacr.org/2006/412)

[23] M. MIHALJEVIC, Y. ZHENG, H. IMAI, A Fast Cryp-
tographic Hash Function Based on Linear Cellular
Automata over GF(q). Special Section on Cryp-
tography and Information Security. IEICE TRANS.
FUNDAMENTALS, E82(1), January 1999.

[24] M. MIHALJEVIC, Y. ZHENG, H. IMAI, A Cellular
Automaton Based Fast One-Way Hash Function
Suitable for Hardware Implementation. Proceed-
ings of PKC’98, LNCS 1431, (1998) pp. 217–233.

[25] P. DASGUPTA, S. CHATTOPADHYAY, I. SENGUPTA,
Theory and Application of Non-group Cellular
Automata for Message Authentication. Journal of
Systems Architecture, 47(55), (2001) pp. 383–404.

[26] S. HIROSE, S. YOSHIDA, A one-way hash function
based on a two-dimensional cellular automaton.
The 20th Symposium on Information Theory and
Its Applications (SITA97). Proc. 1, (Dec. 1997) pp.
213–216. Matsuyama, Japan.

[27] A. F. WEBSTER, S. E. TAVARES On the design of
s-boxes, Lecture notes in computer sciences. 218 on
Advances in cryptology – CRYPTO 85, (1985) pp.
523–534. Springer-Verlag, New York, USA.

[28] J. C. H. CASTROA, J. M. SIERRAB, A. SEZNECA, A.
IZQUIERDOA, A. RIBAGORDAA, The strict avalanche
criterion randomness test. Mathematics and Com-
puters in Simulation, 68, (2005) pp. 1–7.

[29] R. FORRE, The strict avalanche criterion: spec-
tral properties of booleans functions and an ex-
tended definition. Advances in cryptology, in:
Crypto’88, Lecture Notes in Computer Science,
403, (S. GOLDWASSER, Ed.), (1990) pp. 450–468.
Springer-Verlag.

[30] A. DOGANAKSOY, B. EGE, O. KOÇAK, F. SULAK,
Cryptographic Randomness Testing of Block Ci-
phers and Hash Functions. IACR Cryptology ePrint
Archive 2010, 564 (2010).

[31] G. MARSAGLIA, Diehard Battery of Tests of Ran-
domness, 1995.
http://www.stat.fsu.edu/pub/diehard/

[32] J. WALKER, ENT A Pseudorandom Number Se-
quence Test Program, 2008.
http://www.fourmilab.ch/random/

[33] W. DAI, Crypto++, 2013.
http://www.cryptopp.com/

[34] R. MERKLE, One way hash functions and DES. Ad-
vances in cryptology – CRYPTO 89, Lecture Notes
in Computer Science, 435, (1990) pp. 428–446.

[35] L. KNUDSEN, B. PRENEEL, Fast and secure hashing
based on codes. Advances in cryptology – CRYPTO
97, Lecture Notes in Computer Science, 1294,
(1997) pp. 485–498.

Received: February, 2015
Revised: July, 2015

Accepted: August, 2015

Contact addresses:

Alaa Eddine Belfedhal
Computer Sciences Department

Djillali Liabes University of Sidi Bel Abbes
Algeria

e-mail: belfedhal.alaa@gmail.com

Kamel Mohamed Faraoun
Computer Sciences Department

Djillali Liabes University of Sidi Bel Abbes
Algeria

e-mail: kamel mh@yahoo.fr

ALAA EDDINE BELFEDHAL is currently a PhD student at the Com-
puter Science Department of Djillali Liabes University, Algeria, and an
assistant teacher at Mascara University, Algeria. He received his Engi-
neering and Master’s degrees in computer science from Djillali Liabes
University in 2008 and 2011 respectively. His research interests include
cryptographic primitives and information security.

KAMEL MOHAMED FARAOUN received his Master’s Degree in computer
science from the Djilali Liabes University of Sidi-Bel-Abbes, Algeria in
2002, his Ph.D Degree in computer science, in 2006, and his HDR De-
gree in computer science and intelligent systems, in 2009. His current
research areas include computer security systems, cryptography, genetic
algorithms, cellular automata, and information theory. Dr. Faraoun is
currently a teacher at the Computer Sciences Department of Djilali
Liabes University, he teaches information theory and cryptography.

