Journal of Computing and Information Technology - CIT 22, 2014, 4, 237-250

doi:10.2498/cit.1002459

237

Construction of RDF(S)
from UML Class Diagrams

Qiang Tong!, Fu Zhang?* and Jingwei Cheng?

! Software College, Northeastern University, Shenyang, China
2 College of Information Science and Engineering, Northeastern University, Shenyang, China

RDF (Resource Description Framework) and RDF
Schema (collectively called RDF(S)) are the norma-
tive language to describe the Web resource information.
How to construct RDF(S) from the existing data sources
is becoming an important research issue. In particular,
UML (Unified Modeling Language) is being widely
applied to data modeling in many application domains,
and how to construct RDF(S) from the existing UML
models becomes an important issue to be solved in the
context of Semantic Web. By comparing and analyzing
the characteristics of UML and RDF(S), this paper pro-
poses an approach for constructing RDF(S) from UML
and implements a prototype construction tool. First, we
give the formal definitions of UML and RDF(S). After
that, a construction approach from UML to RDF(S) is
proposed, a construction example is provided, and the
analyses and discussions about the approach are done.
Further, based on the proposed approach, a prototype
construction tool is implemented, and the experiment
shows that the approach and the tool are feasible.

Keywords: RDF (resource description framework), RDF
Schema, UML (Unified Modeling Language), construc-
tion

1. Introduction

Semantic Web is an extension of the current
Web, in which data is given a well-defined
meaning by representing it in RDF (Resource
Description Framework), RDF vocabulary de-
scription language RDF Schema, and OWL
(Web Ontology Language) (Berners-Lee et al.,
2001; Horrocks et al., 2003; RDF-W3C, 2014).
RDF and RDF Schema (collectively called
RDF(S)) are the W3C recommendation nor-
mative language to describe the Web resource
information and their semantics (RDF-W3C,

2014). This semantic enrichment allows data
to be shared, exchanged or integrated from dif-
ferent sources and enables applications to use
data in different contexts. Currently, formal
adoption of RDF(S) by W3C stimulates their
utilization in many areas and by many organi-
zations. In spite of an increasing acceptance
of RDF(S), this is still a new technology, and
most information resources are not available in
RDF(S)-format. Therefore, how to construct
RDF(S) from the existing information resources
became an important research issue.

To this end, many approaches have been de-
veloped to construct RDF(S) from some data
sources. Approaches for constructing RDF(S)
from relational databases were proposed in (Se-
queda et al., 2012; Mallede et al., 2013; Ko-
rotkiy & Top, 2004; Krishna, 2006; Michel et
al., 2013). How to transform XML documents
into RDF-format data was investigated in (Thuy
etal., 2007; Klein, 2002; Kumar & Babu, 2013).
Moreover, a proposal for building RDF from
semi-structured legal documents was presented
in (Amato et al., 2008). The rules of construct-
ing RDF from spreadsheets were proposed in
(Han et al., 2008).

It can be found that these existing approaches fo-
cus on establishing the direct mappings from the
data sources to RDF(S), e.g., translating tables
and columns of relational databases into classes
and properties of RDF(S), respectively. As we
all know, a relational schema often includes de-
tails that have nothing to do with the domain
expressed: e.g., optimization sometimes require
adaptations or lead to technical tricks like de-

*Corresponding author Fu Zhang is with the College of Information Science and Engineering, Northeastern University,
Shenyang, 110819, China, PhD, Associate Professor, email: zhangfu@ise.neu.edu.cn.

238

Construction of RDF(S) from UML Class Diagrams

normalized forms, many-to-many relations are
expressed by a table with several foreign keys,
etc. Thus, the relational schema is often a bad
representation of the domain. Conversely, we
can expect an UML (Unified Modeling Lan-
guage developed by UML Object Management
Group) model to express nothing else but actual
concepts of the domain being modelled. There-
fore, mapping of UML-to-RDF(S) may be a
good way to derive an RDF(S) model that is as
close as possible to the domain. In particular, to
overcome the limitations of classical database
models (e.g., relational models and ER models
(Brown, 2001; Yeung & Brent Hall, 2007)), the
Unified Modeling Language (UML), which is
developed in response to the complex data mod-
eling requirements and integration with object-
oriented programming systems, has been the de
facto standard and is extensively used in the de-
sign phase of data modeling in many areas of
software and knowledge engineering. Conse-
quently, many CASE tools are available on the
market, and such tools provide a user-friendly
environment for editing, storing, and access-
ing multiple UML models (Engels et al., 2000;
Aguilar-Saven, 2004; UML Object Manage-
ment Group). Therefore, to be able to use this
data in a semantic context, it has to be mapped
into RDF(S).

Currently, some proposals establish correspon-
dences between UML and the Semantic Web
(Cranefield, 2001; Baclawski et al., 2001; Guiz-
zardi et al., 2004; Cranefield et al., 2001).
But, to our best knowledge, little research has
been done in constructing RDF(S) from UML.
Only a brief discussion of the relationships be-
tween RDF Schema and UML was done in
(Chang, 1998), but the approach for construct-
ing RDF(S) from UML is missed. Moreover,
Kim et al. (2005) investigated translations from
RDF Schema to UML, but our work is to inves-
tigate how to translate UML into RDF(S). The
purpose of our work is different from the work
in (Kim et al., 2005).

Based on the observations above, how to con-
struct RDF(S) from UML becomes an impor-
tant issue to be solved in the context of the
Semantic Web. In this paper, we propose a
complete approach and develop an automated
tool for constructing RDF(S) from UML. First,
by comparing and analyzing the characteristics
of UML and RDF(S), we propose formal defi-
nitions of UML and RDF(S), respectively. On

this basis, an approach for constructing RDF(S)
from UML is proposed, a full construction ex-
ample is provided, and the analyses and discus-
sions about the approach are done. Further,
based on the proposed approach, a prototype
construction tool is implemented, and the ex-
periment shows that the approach is realistic.

The remainder of this paper is organized as
follows. Section 2 gives formal definitions
of UML and RDF(S). Section 3 proposes an
approach for constructing RDF(S) from UML,
provides a construction example, and makes the
analyses and discussions about the approach.
Section 4 describes an implementation. Section
5 shows conclusions and future works.

2. Formalizations of UML and RDF(S)

In order to well establish correspondences be-
tween UML and RDF(S), it is necessary to give
formal definitions of UML and RDF(S). In par-
ticular, the formal definition of UML should
include major notions of UML, which will then
be transformed into corresponding elements of
RDF(S). In this section, we propose formal def-
initions of UML and RDF(S), respectively.

2.1. Formalization of UML

Unified Modeling Language (UML) is a lan-
guage initially proposed as a unification of sev-
eral different visual notations and modeling
techniques used for systems design, which has
become a de-facto industry standard for mod-
eling applications in data and software engi-
neering communities (UML Object Manage-
ment Group). From the data modeling point
of view, the UML class diagram, which is used
to describe the static structure of the informa-
tion of an application domain, will be mainly
considered in our work.

In general, the main notions in an UML class
diagram include class, attribute, association,
generalization, aggregation, and dependency as
follows:

e C(lass and Attribute: Objects having the
same attributes are gathered into classes that
are organized into hierarchies. A class is
defined by a set of attributes and their ad-
missible values.

Construction of RDF(S) from UML Class Diagrams

239

e Association: An association represents the
relationship between n classes. The partic-
ipation of a class in an association is called
a role and has a unique name. Moreover, an
association may have a related association
class that describes attributes of the associ-
ation. Names of associations or association
classes are unique in an UML class diagram.

o Generalization: A generalization is a taxo-
nomic relationship between a more general
classifier named superclass and a more spe-
cific classifier named subclass. The sub-
class inherits all attributes and methods of
the superclass, overrides some attributes and
methods of the superclass, and defines some
new attributes and methods.

e Aggregation: A particular kind of binary as-
sociations are aggregation. In an UML class
diagram, an aggregation represents the part-
whole relationship between a class named
aggregate and a group of classes named con-
stituent parts. The constituent parts can exist
independently. In addition, an aggregation
has no associated class.

e Dependency: A dependency is arelationship
between a source class and a target class,
which denotes that existence of the target
class is dependent of the source class. In
particular, dependency between the source
class and the target class is only related to

the classes themselves and does not require
a set of instances for its meaning.

Figure 1 shows notations of the notions men-
tioned in an UML class diagram as mentioned
above.

On the basis of the notions mentioned above, in
the following we propose a formal definition of
UML class diagrams.

Firstly, for two finite sets X and Y, we call a
function from a subset of X to Y an X-labeled
tuple over Y. The labeled tuple T that maps
xi € Xtoy; € Y, fori € {1,...,n},is denoted
TX,Y)=1[x1:¥1,-s%Xn % Yn-

Definition 1 (UML class diagrams). An UML
class diagram is a tuple Fyyr = (L, attc,
attsc, ass, agg, gene, dep), where:

e L =CUAUSUS.URUD is afinite alphabet
partitioned into a set C of class identifiers,
a set A of attribute identifiers, a set S of as-
sociation identifiers, a set S, of association
class identifiers, a set R of role identifiers,
and a set D of datatype identifiers;

e attc: C — T(A, D) is a function that maps
each class identifier c € CtoanA-labeled tu-
ple over D, i.e., attc(c) = [...,ar : di, . .],
where a; € A, d;, € D;

e attsc: S. — T(A, D) is a function that maps
each association class identifier s, € S, to

SuperClass
Class name .£|)
[]
Altribute, _name: type SubClass, SubClass;
Class and Attributes Generalization
Class)_name Class; name
role Assodiation_name role; Class;_name Class;_name
part
o——
Association Aggregation
Association_Class
TRHITIE
Attribute,_nume: type
Class;_name Class;_name Source Class Target Class
role. role; <
Association Class Dependency

Figure 1. Notations of the notions in UML class diagrams.

240

Construction of RDF(S) from UML Class Diagrams

an A-labeled tuple over D, i.e., attsc(s.) =
[....a}:d,,...], wherea) € A, d) € D;

e ass is a function that maps each association
identifier s € S and association class iden-
tifier s, € S, to an R-labeled tuple over C,
i.e,ass(s)=1[...,rx:ck,...]andass(s.) =
[....r ¢ -], where rg, FL€R, ¢, ¢} €C;

e agg Ccx(cy, ¢,...,cy) is arelation that
models the aggregation between an aggre-
gate class ¢ € C and a group of constituent
classesc; € C,i=1,...,n;

e gene C ¢ X ¢ is a relation that models the
generalization between a subclass ¢y and a
superclass ¢, where ¢, ¢ € C;

e dep C ¢| x ¢ is a relation that models the
dependency between a target class ¢} and a
source class ¢5, where ¢, ¢} € C.

2.2. Formalization of RDF(S)

Resource Description Framework (RDF) (RDF-
W3C, 2014) is a framework for expressing Web
resource information. RDF is intended for sit-
uations in which information needs to be pro-
cessed by applications, rather than being only
displayed to people. RDF provides a common
framework for expressing this information so it
can be exchanged between applications. The
basic idea of RDF is:

e Anything is called “resource”, which can
be a class, a property or an individual. A re-
source can be identified by a URI
(Uniform Resource Identifier). For exam-
ple, http://purl.org/dc/elements/1.1/
creator is a URI of a resource, where
http://purl.org/dc/elements/1.1/ is a
namespace, and creator is the name of a
term;

e Aresource may have some “properties”, and
these properties may have “values”, which
may be literal values (e.g., string or integer)
or other resources;

e The relationships among resources, proper-
ties and values can be described by “state-
ments”, which always have the following
triple structure: <subject predicate object>.
Specifically, the part identifying the thing
the statement is about is called the “sub-
ject”. The part identifying the property or

characteristic of the subject that the state-
ment specifies is called the “predicate’, and
the part identifying the value of that property
is called the “object”. So, taking the English
statement: http://www.example.org/
index.html has a creator whose value is
John Smith the RDF terms for the various
parts of the statement are:

— the subjectisthe URI http: //www.exam-
ple.org/index.html

— the predicate 1s the word “creator”
— the object is the phrase “John Smith”.

RDF provides a way to make statements about
resources, but it cannot define semantic charac-
teristics of data. For example, RDF cannot state
that the URI http://www.example.org/fri-
end0f can be used as a property and that the sub-
jects and objects of http://www.example.org/
friendOf triples must be resources of class
http://www.example.org/Person. Instead,
such constraints may be described as an RDF
vocabulary, using extensions to RDF such as
the RDF Vocabulary Description Language —
RDF Schema.

RDF Schema uses the notion of “class ” to spec-
ify categories that can be used to classify re-
sources. The relation between an instance and
its class is stated through the “fype” property.
With RDF Schema one can create hierarchies
of classes and “sub-classes” and of proper-
ties and “sub-properties”. Type restrictions on
the subjects and objects of particular triples can
be defined through “domain” and “range” re-
strictions. An example of a domain restriction
was given above: subjects of “friendOf” triples
should be of class “Person”. Also, we can de-
fine the class “GraduateStudent” as a subclass
of the class “Student”, and Mary is an instance
of the class “GraduateStudent”, as illustrated
in the following RDF Schema:

<rdfs:Class rdf:ID = "Student"/>
<rdfs:Class rdf:ID = "GraduateStudent">
<rdfs:subClassOf rdf:resource = "#Student"/>
</rdfs:Class>
<rdf:Description rdf:ID = "Mary">
<rdf:type rdf:resource = "#GraduateStudent"/>
</rdf:Description>

RDF and RDF Schema are collectively called
RDF(S). Detailed introductions about

Construction of RDF(S) from UML Class Diagrams

241

RDF(S) can be found in (RDF-W3C, 2014).
By summarizing the elements of RDF(S), in
the following we give a brief formal definition
of RDF(S).

Definition 2 (RDF(S)). A set of RDF(S) ele-
ments R can be represented as R = Rg, Rr),
where:

e R¢=CUPUDULIis a set of identifiers
partitioned into a set C of class identifiers,
a set P of property identifiers, a set D of
datatype identifiers, and a set Z of individ-
ual 1dentifiers;

e Rr7is aset of triple statements defined over
the set of identifiers K.

On the basis of the formalizations of UML and
RDEF(S) above, in the following sections we in-
vestigate how to construct RDF(S) from UML
class diagrams.

3. Construction of RDF(S) from UML

Based on the formalizations of UML and RDF(S)
in Section 2, in this section, by comparing
and analyzing the characteristics of UML and
RDF(S), we first propose a formal approach
for constructing RDF(S) from UML class dia-
grams (see Section 3.1). Then, we further pro-
vide a construction example, and make anal-
yses and discussions about the approach (see
Section 3.2).

3.1. Approach for Constructing RDF(S)
from UML

By comparing and analyzing the characteristics
of UML and RDF(S), Table 1 first briefly sum-
marizes the correspondences between UML and
RDF(S) for providing readers with an initial un-
derstanding of the construction process.

Furthermore, in the following we propose de-
tailed rules of constructing RDF(S) from UML.
Given an UML class diagram Fyy = (L, attc,
attsc, ass, agg, gene, dep) in Definition 1, the
corresponding RDF(S) R = (Rs, Rr) can be
constructed as the following rules:

Rule 1 (Mapping of identifiers): For each iden-

tifier | € L in the set of identifiers L = C U
AUSUS:.URUD in the UML class diagram

Fymi, create a corresponding RDF(S) resource
identifier URI @(1).

Comments: If two identifiers in the UML class
diagram Fyy;, have the same name, that can be
tackled in the transformation process by renam-
ing the identifiers.

Rule 2 (Mapping of classes): For each class
¢ € Cin the UML class diagram Fy,;, create
a RDF(S) class:

<rdfs:Class rdf:ID = “¢(c)”/>.

Rule 3 (Mapping of associations or association
classes): For each association s € S or associ-
ation class s, € S, in the UML class diagram
Fuymi, create a RDF(S) class:

<rdfs:Class rdf:ID = “¢(s)” />
or
<rdfs:Class rdf:ID = “¢(s.)”/>.

Rule 4 (Mapping of attributes of classes): For
each function of attributes of classes att¢c(c) =
[...,ax : dg,...] in the UML class diagram
Fuypmr, the attribute a; is mapped into a RDF(S)
property ¢(ay), the datatype dy is mapped into a
RDF(S) datatype ¢(dy), and created an RDF(S)
triple statement to restrict the domain of the
RDF(S) property ¢(ax) to ¢(c), and the range
of the RDF(S) property ¢(ay) to ¢(dy), are cre-
ated as shown in the following RDF(S) triple
statement:

<rdf:Property rdf:ID = “¢(ax)”>
<rdfs:domain rdf:resource = “¢(c)” />
<rdfs:range rdf:resource = “@(dy)”/>
</rdf:Property>

| UML | RDF(S) |

Class rdfs:Class
Attribute rdf:Property
Association rdfs:Class
Association Class rdfs:Class
Role in Association (Class) | rdf:Property
Generalization rdfs:subClassOf

: rdf:Property
Aggregation rdfs:domain rdfs:range
Dependency rdf:Property

rdfs:domain rdfs:range

Table 1. Correspondences of the main elements between
UML and RDF(S).

242

Construction of RDF(S) from UML Class Diagrams

For example, given an UML class with attributes
att(Student) = [sName : string, sAge : integer],
as to rules 2 and 4, the following RDF(S) class,
properties, and triple statements will be created:

<rdfs:Class rdf:ID = “Student” />
<rdf:Property rdf:ID = “sName”>
<rdfs:domain rdf:resource = “#Student” />
<rdfs:range rdf:resource = “&xsd:string” />
</rdf:Property>
<rdf:Property rdf:ID = “sAge”>
<rdfs:domain rdf:resource = “#Student” />
<rdfs:range rdf:resource = “&xsd:integer” />
</rdf:Property>

Moreover, each function of attributes of associ-
ation classes attgc(sc) = [...,a; : dy,...] can
be similarly translated into RDF(S), following
the process in Rule 4.

Rule 5 (Mapping of functions of associations):
For each function of associations ass(s) =
[...,rk : Ck,-..|, the role ry is mapped into a
RDF(S) property ¢(r¢), and created an RDF(S)
triple statement to restrict the domain of the
RDEF(S) property ¢(r) to ¢(s), and the range
of the RDF(S) property ¢(r¢) to ¢(ci), are cre-
ated as shown in the following RDF(S) triple
statement:

<rdf:Property rdf:ID = “@(r¢)”>
<rdfs:domain rdf:resource = “¢(s)” />
<rdfs:range rdf:resource = “@(cy)”/>
</rdf:Property>

For example, given an UML association
ass(Supervise) = [sup : Professor,sup_by :
Student|, as to rules 3 and 5, the following
RDF(S) classes, properties, and triple state-
ments will be created:

<rdfs:Class rdf:ID = “Supervise” />
<rdfs:Class rdf:ID = “Professor” />
<rdfs:Class rdf:ID = “Student” />
<rdf:Property rdf:ID = “sup”>
<rdfs:domain rdf:resource = “#Supervise” />
<rdfs:range rdf:resource = “#Professor” />
</rdf:Property>
<rdf:Property rdf:ID = “sup_ by”>
<rdfs:domain rdf:resource = “#Supervise” />
<rdfs:range rdf:resource = “#Student” />
</rdf:Property>

Moreover, each function of association classes
ass(s¢) = [...,r. © ¢}, ...] can be similarly
translated into RDF(S), following the process
in Rule 5.

Rule 6 (Mapping of aggregation): For each
aggregation agg C ¢ X (c1,¢a,...,cy) in the
UML class diagram Fyyp, create n special
RDF(S) properties part_1,..., partn, which
are used to represent the relationships between
the aggregation class ¢ and several constituent
classes c¢;, i = 1,...,n, and create several
RDEF(S) triple statements to restrict the domain
of the RDF(S) property part_i to ¢(c), and
its range to ¢(c;), as shown in the following
RDF(S) triple statements:

<rdf:Property rdf:ID = “part_i’>
<rdfs:domain rdf:resource = “@(c)” />
<rdfs:range rdf:resource = “¢(c;)” />
</rdf:Property>

Note that, RDF(S) cannot represent directly the
part-whole relationship of the aggregation rela-
tionship, thus it is translated into RDF(S) prop-
erties and constraints, as shown above.

For example, given an UML aggregation agg C

College X (Institute x Office), as torules 2 and 6,

the following RDF(S) classes, properties, and

triple statements will be created:

<rdfs:Class rdf:ID = “College” />

<rdfs:Class rdf:ID = “Institute” />

<rdfs:Class rdf:ID = “Office” />

<rdf:Property rdf:ID = “part_ ">
<rdfs:domain rdf:resource = “#College” />
<rdfs:range rdf:resource = “#Institute” />

</rdf:Property>

<rdf:Property rdf:ID = “part_2">
<rdfs:domain rdf:resource = “#College” />
<rdfs:range rdf:resource = “#Office” />

</rdf:Property>

Rule 7 (Mapping of generalization): For each
generalization gene C ¢ X ¢ in the UML class
diagram Fyyyp, create the RDF(S) triple state-
ments:

<rdfs:Class rdf:ID = “¢(c)”>
<rdfs:subClassOf rdf:resource = “@(c3)”/>
</rdfs:Class>

For example, given an UML generalization
gene C Undergraduate Student x Student, as

Construction of RDF(S) from UML Class Diagrams

243

to rules 2 and 7, the following RDF(S) classes
and triple statements will be created:

<rdfs:Class rdf:ID = “Student” />
<rdfs:Class rdf:1D = “Undergraduate _Student”>

<rdfs:subClassOf rdf:resource
=“#Student” />

</rdfs:Class>

Rule 8 (Mapping of dependency): For each
dependency dep C ¢ x ¢} in the UML class di-
agram Fyyyy, create one special RDF(S) prop-
erty ¢ _dep_c’,, which is used to represent the de-
pendency relationship between the target class
c’l and the source class c’z, and create several
RDF(S) triple statements to restrict the domain
of the RDF(S) property ¢ _dep_c5 to ¢(c), and
its range to @(c}), as shown in the following
RDF(S) triple statements:

/ 2

<rdf:Property rdf:ID = “¢|_dep_ c,”>
<rdfs:domain rdf:resource = “¢(c})”/>
<rdfs:range rdf:resource = “@(c5)”/>
</rdf:Property>

Note that, the dependency in an UML class dia-
gram denotes that the existence of a target class
is dependent of a source class. RDF(S) cannot
represent directly the part-whole relationship
of the aggregation relationship, and thus when
constructing RDF(S) from UML, several addi-
tional RDF(S) properties and constraints need
to be added, as shown above.

Rule 9 (Mapping of datatypes): Each datatype
d € D in the UML class diagram F); can be
mapped into a RDF(S) datatype ¢(d). Table 2
gives the mapping rules from a part of UML
datatypes to RDF(S) datatypes, and the other
datatypes can be similarly handled.

UML datatypes ‘ RDF(S) datatypes
string xsd:string

smallint xsd:short

integer xsd:integer
decimal xsd:decimal

float xsd:float

time xsd:Time

date xsd:Date

Table 2. Mapping UML datatypes to RDF(S) datatypes.

It should be noted that RDF(S) uses the XML
Schema datatypes (XML Schema, 2004).

In order to illustrate the construction rules from
UML to RDF(S) above, the following section
will further provide a construction example.

3.2. A Construction Example

In the following, we provide a complete con-
struction example to well explain the construc-
tion rules from UML to RDF(S) proposed in
Section 3.1. Figure 2 shows an UML class
diagram, which includes some UML classes,
attributes, and relationships. Here, Faculty
and adminStaff are the subclasses of Employee;
there is an association use between adminStaff
and Computer, and use is an association class;
Computer is the aggregation of Monitor, Box,
and Keyboard; the target class Employee_ De-
pendent is dependent of the source class Em-
ployee; there is an association supervise be-
tween Faculty and Student; there is an asso-
ciation choose between Student and Course.

According to the construction rules proposed
in Section 3.1, Figure 3 shows the constructed
RDF(S), where the URIs of the RDF(S) re-
sources are omitted.

Note that Figure 2 gave a common UML class
diagram, which basically includes the main el-
ements of an UML class diagram. Further, Fig-
ure 3 shows that the UML class diagram can
be transformed into RDF(S), and it can be seen
from Figure 3 that the constructed RDF(S) can
represent classes, attributes, and relationships
(such as association, generalization, aggrega-
tion, and dependency) in an UML class dia-
gram. All of these show that the approach for
constructing RDF(S) from UML is feasible.

Moreover, it should be noted that since limi-
tation of the expression of RDF(S), some se-
mantic information of UML cannot be directly
represented as RDF(S) in the construction pro-
cess, including:

e An optional constraint disjointness can be
enforced on a subclass/superclass relation-
ship. The disjointness means that all the sub-
classes are disjoint. As we know, RDF(S)
cannot represent such disjoint constraint.
Therefore, in the process of constructing
RDF(S) from UML, the constraint disjoint-
ness cannot be represented by RDF(S) di-
rectly, and it may be represented by adding

244

Construction of RDF(S) from UML Class Diagrams

Employee

Employee_Dependent

-EID: string
-name: string

T

Faculty adminStaff uby uot | Computer <>_
-specialty: string -department: string -CID: string
-title: string -duty: string -brand: string
sup use part_3 -
2 -starttime: data
g -location: string
3
w
sup_by
Student se o Course
choose
-SID: string -CID: string
-name: string -credit: integer

Figure 2. An UML class diagram modeling part of a university.

special properties in RDF(S) or by the fur-
ther extension language of RDF(S) (e.g., the
ontology language OWL (Horrocks et al.,
2003)).

For example, given a generalization rela-
tionship with disjoint constraint gene C (Re-
quired_course X Optional_course) X Course
in an UML class diagram, where Course is
the superclass, and two subclasses Required
course and Optional _ course are disjoint. In
the process of constructing RDF(S) from
the generalization, in order to represent the
disjoint constraint in the generalization, an
additional special property named “P_ dis-
Jjointness” need to be added in the RDF(S)
used to represent the disjointness of classes
as shown in the following RDF(S) triples:

<rdfs:Class rdf:ID = “Course” />
<rdfs:Class rdf:ID = “Required_ course”>

<rdfs:subClassOf rdf:resource
= “#Course” [>

</rdfs:Class>
<rdfs:Class rdf:ID = “Optional - course”>

<rdfs:subClassOf rdf:resource
= “#Course” [>
</rdfs:Class>
<rdf:Property rdf:ID = “P_ disjointness”>
<rdfs:domain rdf:resource
= “#Required_ course” />

<rdfs:range rdf:resource

= “#Optional _ course” />
</rdf:Property>

e An optional cardinality constraint [m, n| can
be enforced on an association relationship
and is used to specify that each instance
of the class can participate at least m times
and at most n times to the association re-
lationship. Since RDF(S) cannot represent
the cardinality constraint, in the process of
constructing RDF(S) from UML, the car-
dinality constraint cannot be represented by
RDF(S) directly. Such cardinality constraint
can only be represented by a further RDF(S)
extension.

Based on the observations above, the approach
proposed in the previous sections can construct
RDF(S) from UML class diagrams. Further-
more, in order to implement the automated con-
struction, in the following section we will de-
velop a prototype construction tool.

4. Prototype Construction Tool

In this section, as a proof-of-concept for the pro-
posed construction approach in Section 3, we
developed a prototype tool called UML2RDF'S,
which can construct RDF(S) from UML class
diagrams. In the following, we briefly introduce
the design and implementation of the prototype
tool UML2RDFS.

Construction of RDF(S) from UML Class Diagrams

245

Z =@ /The sct of individual instances

Ry is a set of triples, including:
{

<rdfs:Class rdf:1D = "Employee"/>
<rdf:Property rdf:ID = "EID">
<rdfs:domain rdf:resource = "#Employce”/>
<rdfs:range rdf:resource = "&xsd:string"/>
</rdf:Property>
<rdf:Property rdf:ID = "e_name">
<rdfs:domain rdfiresource = "#Employee"/>
<rdfs:range rdf:resource = "&xsd:integer"/>
</rdf:Property>
<rdfs:Class rdf:ID = "Faculty">
<rdfs:subClassOf rdf:rescource = "#Employee"/>
</rdfs:Class>
<rdf:Property rdf:1D = "specialty">
<rdfs:domain rdf:resource = "#Faculty"/>
<rdfs:range rdf:resource = "&xsd:string"/>
</rdf: Property>
<rdf:Property rdf:1D = "title">
<rdfs:domain rdfiresource = "#Faculty"/>
<rdfs:range rdf:resource = "&xsd:integer"/>
</rdf:Property>
<rdfs:Class rdf:ID = "Employee Dependent"/>
<rdf:Property rdf:ID = "ed_dep_c">
<rdfs:domain rdf:resource =
"#Employce_Dependent”/>
<rdfs:range rdf:resource = "#Employee"/>
</rdf: Property>
<rdf:Property rdf:ID = "uby"=>
<rdfs:domain rdfircsource = "#use"/>
<rdfs:range rdfresource = "#adminStaff™/>
</rdf: Property>
<rdf:Property rdf:ID = "uof">
<rdfs:domain rdfiresource = "fuse"/>
<rdfs:range rdf:resource = "#Computer"/>
</rdf: Property>
<rdfs:Class rdf:ID = "Computer"/>
<rdf:Property rdf:ID = "CID">
<rdfs:domain rdf:resource = "#Computer"/>
<rdfs:range rdf:resource = "&xsd:string"/>
</rdf:Property=
<rdf:Property rdf:ID = "brand">
<rdfs:domain rdfiresource = "#Computer"/>
<rdfs:range rdf:resource = "&xsd:string"/>
</rdf: Property>
<rdfs:Class rdf:1D = "Monitor"/>
<rdfs:Class rdf:ID = "Box"/>
<rdfs:Class rdf:ID = "Keyboard"/>
<rdf:Property rdf:.ID = "part_1">
<rdfs:domain rdf:resource = "#Computer"/>
<rdfs:range rdf:resource = "#Monitor"/>
</rdf:Property>
<rdfs:Class rdf:ID = "adminStaff">
<rdfs:subClassOf rdfirescource = "#Employee™/>
</rdfs:Class>

The RDF(S) R=(R,, R,.)constructed from the UML class diagram F;yy, in Fig. 2, where
Ry =CUPUDLIT is a set of identifies, including:

C = {Employee, Employee_Dependent, Faculty, adminStaff, use, Computer, Monitor, Box, Keyboard,
supervise, choose, Course} /[The set of resource classes

P = {EID, e_name, ed_dep_e, specialty, title, department, duty, uby, uof, starttime, location, CID, brand,
part_1, part 2, part_3, sup, sup_by, SID, s name, sc, ¢s, CID, credit} //The set of resource propertics

D = {xsd:string, xsd:Date, xsd:integer} //The sct of datatypes

<rdf:Property rdf:ID = "department”>
<rdfs:domain rdf:resource = "#adminStaff"/>
<rdfs:range rdf:resource = "&xsd:string"/>
</rdf:Property>
<rdf:Property rd:ID = "duty">
<rdfs:domain rdf:resource = "#adminStaff"/>
<rdfs:range rdf:resource = "&xsd:string"/>
</rdf:Property>
<rdfs:Class rdf:ID = "use"/>
<rdf:Property rdf:ID = "starttime">
<rdfs:domain rdf:resource = "#use"/>
<rdfs:range rdfiresource = "&xsd:Date"/>
</rdf:Property>
<rdf:Property rdf:ID = "location">
<rdfs:domain rdl:resource = "#use"/>
<rdfs:range rdf:resource = "&xsd:string"/>
</rdf:Property=
<rdf:Property rdfiID = "part_2">
<rdfs:domain rdf:resource = "#Computer"/>
<rdfs:range rdliresource = "#Box"/>
</rdf:Property>
<rdf:Property rdf:ID = "part_3">
<rdfs:domain rdf:resource = "#Computer"/>
<rdfs:range rdfiresource = "#Keyboard"/>
</rdf:Property>
<rdfs:Class rdf:ID = "Student"/>
<rdf:Property rdf:ID = "SID">
<rdfs:domain rdf:resource = "#Student"/>
<rdfs:range rdfiresource = "&xsd:string"/>
</rdf:Property>
<rdf:Property rdf:ID = "s_name">
<rdfs:domain rdf:resource = "#Student"/>
<rdfs:range rdfiresource = "&xsd:string"/>
</rdf:Property>
<rdfs:Class rdf:1D = "Course"/>
<rdf:Property rdf:ID = "CID">
<rdfs:domain rdf:resource = "#Course"/>
<rdfs:range rdfiresource = "&xsd:string"/>
</rdf:Property>
<rdf:Property rdf:ID = "credit™>
<rdfs:domain rdf:resource = "#Course"/>
<rdfs:range rdf:resource = "&xsd:integer"/>
</rdf:Property=
<rdfs:Class rdf:1D = "choose"/>
<rdf:Property rdf:ID = "s¢">
<rdfs:domain rdf:resource = "#choose"/>
<rdfs:range rdfiresource = "#Student"/>
</rdf:Property>
<rdf:Property rdf:ID = "cs">
<rdfs:domain rdf:resource = "#choose™/>
<rdfs:range rdf:resource = "#Course"/>
</rdf:Property>

Figure 3. The RDF(S) constructed from the UML class diagram in Figure 2.

The core of UML2RDFS is that it can first tation of UML2RDFS is based on Java 2 JDK
read in an XML-coded UML class diagram file 1.5 platform, and the Graphical User Interface
(a conceptual data model file produced from (GUI) is exploited by using the java.awt and
CASE tool PowerDesigner), and then trans- javax.swing packages. The overall architecture
form it automatically into RDF(S). Implemen- of UML2RDFS is briefly shown in Figure 4.

246

Construction of RDF(S) from UML Class Diagrams

XML-coded

UML file —l
Parse Module

UML symbols 3
and constraints

J[Mpo
mding

P

(In-memory Java

classes)

Construction RDF(S)
Module T

Figure 4. UML2RDFS software architecture.

Itis shown in Figure 4 that UML2RDF'S includes
several main modules, i.e., parse module, con-
struction module, and output module:

e The parse module parses an input file (an
XML-coded UML class diagram file pro-
duced from case tool PowerDesigner) and
stores the parsed information. Features of
the UML class diagram in the XML-coded
file (such as classes, attributes, roles, asso-
ciations, and several relationships as men-

tioned in Section 2.1) can be extracted and
represented as the formalization of the UML
class diagram as proposed in Section 2.1;

The construction module transforms the
parsed results into the corresponding RDF(S)
according to the following algorithm
UML2RDFS_ Const in Figure 5, which is
given based on the approach proposed in
Section 3. Here, the algorithm briefly de-
scribes the construction process from UML
to RDF(S), and does not contain the detailed
construction steps that have been given in
the approach proposed in Section 3.1. In
brief, the algorithm performs two kinds of
construction operations, i.e., the construc-
tion from UML symbols to RDF(S) iden-
tifies and the construction from UML con-
straints to RDF(S) triples;

The output module finally produces the re-
sulting RDF(S) which is saved as a text file
and displayed on the tool screen. Also, the
input XML-coded UML class diagram file
and the parsing results are displayed on the
tool screen.

Algorithm UML2RDFS_ Const //the algorithm briefly describes the construction process from an UML
class diagram to RDF(S), and omits the preprocessing operations (i.e.,
UML parsing and element extraction as mentioned above).

Input: An UML class diagram Fyyy = (L, attc, attsc, ass, agg, gene, dep).
Output: RDF(S) R = (Rs, Rr) that is defined by the transformation function ¢ mentioned in Section 3.1.
1. Transformation from UML symbols L to RDF(S) resource identifiers. Rs = ¢(L):

For each UML class symbol ¢ € C € L, create a RDF(S) class identifier ¢(c);

For each UML attribute symbol a € A € L, create a RDF(S) property identifier ¢(a);

For each UML association symbol s € S € L, create a RDF(S) class identifier ¢(s);

For each UML association class symbol s, € S. € L, create a RDF(S) class identifier ¢(s.);

For each UML role symbol r € R € L, create a RDF(S) property identifier ¢(r);

For each UML datatype symbol d € D € L, create a RDF(S) datatype identifier ¢(d).

2. Transformation from UML constraints to RDF(S) triples Ry = ¢ (attc, attsc, ass, agg, gene, dep):
For each UML class function atf¢ or association class function attgc, create the corresponding
RDEF(S) triples according to rule 4 in Section 3.1;

For each UML association function ass, create the corresponding RDF(S) triples according to
rule 5 in Section 3.1;

For each UML aggregation function agg, create the corresponding RDF(S) triples according to
rule 6 in Section 3.1;

For each UML generalization function gene, create the corresponding RDF(S) triples according to

rule 7 in Section 3.1;

For each UML dependency function dep, create the corresponding RDF(S) triples according to
rule 8 in Section 3.1.

Figure 5. The construction algorithm UML2RDFS_ Const from UML to RDF(S).

Construction of RDF(S) from UML Class Diagrams

247

We carried out construction experiments using
the implemented tool UML2RDFS, with a PC
(CPU P4/3.0GHz, RAM 3.0GB and Windows
XP system). We choose more than thirty UML
class diagrams including all features of UML
mentioned in Section 2.1. Many more complex
UML diagrams which consist of these features
can be converted into RDF(S) by jointly using
our approach and tool. The UML class dia-
grams used in our tests are mainly from the
following parts: Some come from the existing
UML diagrams from the website (http://www
.uml-diagrams.org/index-examples.html),

e.g., Library domain model, Online shopping
domain, etc.; Some are created manually by us,
with the CASE tool PowerDesigner, e.g., one
of the UML diagrams mentioned in Section 3.2.
Their sizes range from 40 to 3000 (here the scale
of an UML class diagram denotes the numbers
of classes, attributes, roles, associations, and re-
lations in the UML diagram). The test results
show that our approach and tool actually work,
and the time complexity of the conversion is
linear with the scales of UML diagrams, which
is consistent with the theoretical analysis. Here
we briefly analyze the time complexity of the al-
gorithm UML2RDFS_ Const in Figure 5. Since
the conversion of UML symbols to RDF(S) re-
source identifiers (i.e., Step 1 of the algorithm)
can be simultaneously made as sub-operations
in creating RDF(S) triples (i.e., Step 2 of the
algorithm), we can ignore the amount of work
done in the first step and consider only the cre-
ation of triples in the second step. Also, we con-
sider the conversion operations and ignore the
preprocessing operations (i.e., the parsing and
extracting of the XML-coded file of an UML di-
agram), that is, we exclude the amount of work
done by an XML parser (e.g., the DOM API
for Java in our implementation) that parses the
UML diagram (i.e., an XMI-coded file) and ex-
tracts and prepares the element data in computer
memory for the usage in the conversion proce-
dure of the algorithm. In this case, the time
complexity of the algorithm mainly depends on
the structure of an UML diagram. Suppose the
scale of an UML diagram is N = N¢ + Ny +
Ns+Ngr+Np+Nacc+Nisa+Npep, where N,
Na, Ns, Ng, Np, Nagg, Nisa, and Npgp denotes
the cardinality of the sets of classes, attributes,
associations, roles, datatype domains, aggrega-
tion relations, ISA relations, and dependency
relations, respectively. Then, the creating times

of the corresponding RDF(S) triples of the cases
attc and attgc are N¢ + Ng + N4 + Np at most,
the case ass are Ng + N¢ + Ng at most, the case
agg are NagG + 2(N¢ — 1), the case gene are
Nc + Nisa — 1 at most, and the case dep are
Npep + N¢ + 1. Therefore, in the worst case,
the total running times 7' = 6N¢ + 2Ng + Ny +
Np+Ng + NG+ Nisa +Npep —2 < 6N —2,
that is, the time complexity of the algorithm is
O(N) at most. Figure 6 shows the execution
time routines in the UML2RDFS tool running
several UML class diagrams, where preprocess-
ing denotes the operations of parsing and stor-
ing UML class diagrams, i.e., parsing the UML
class diagrams and preparing the element data
in computer memory for the usage in the con-
struction procedure.

250

200

150
R __4_____._,_.—‘——-“'_—
0

—
S50 - ?—Id.ﬁ

48 101 138 225 312 373 446 L) 831 758
UMLelass disgramsize N

Execution time (ms) T

I —&—Construction —e— Preproessng —f—Preprocessing & Construction I

Figure 6. The execution time of the tool UML2RDFS
routine on several UML class diagrams.

In the following, we provide an example of
UML2RDFS. Figure 7 shows the screen snap-
shot of UML2RDFS tool running one of the
case studies, which displays the construction
from an UML class diagram (including the in-
formation of the UML class diagram in Fig-
ure 2 as mentioned in Section 3.2) to RDF(S).
In Figure 7, the XML-coded UML class dia-
gram file, the parsed results (i.e., the tree repre-
sentation of the formalization of the UML class
diagram), and the constructed RDF(S) are dis-
played in the left, middle and right areas, re-
spectively, as annotated in the displayed parts
of the graphical user interface. Moreover, it
should be noted that our current version of the
tool does not provide the function of checking
the error itself. Currently, after an UML dia-
gram is converted into RDF(S) by our approach
and tool, we can test the validity of the con-
version by constructing some SPARQL queries
on the converted RDF(S) data (SPARQL is the
standard query language for RDF (RDF-W3C,

248

Construction of RDF(S) from UML Class Diagrams

|£] UML2RDFS

<a:ModificationDate>1306743305 ificationDate> 1]

File Help ’ o lonv i
Input an XML-coded Parse the input file and Lot L i
Input UML class diagram extract the UML classes, Construct L)
UML: file Chrre attributes, associations, RDF(S):
e i 5 <ITar:Froperty. heiaed
ionDate>1306741¥2¢Zla:ModificationDate> - roles, and other relations =1 | <raf:Property rdfID = "brand"> s
Admini Modifi i e | | <rdfs:domain rdfresource = "#Computeri>
<a:DataType>string</a:DataType> ekl L = | =rdfs:rang =" ing"/>
<a:Atribute.Visibili ibute.Visibility A - - DL erar-property>
<lozAttribute> CORIE ORI - | <rdfs:Class rdf:1D = "Monitor/>
</c:Attributes> 158 —| |<rdfs:Class rdfID = "Box"f>
</o:Class> _| [<rdfs:Class rdfID = "Keyboard"/>
<o:Class d="034"> = |<rdt:Property rdf:D = “part_1">
<a:0bjectiD>55CF1E51.5401.4CA1.8757.FOF 0CTD34EA3</a: ObjectiD> T] | o i e ter'l>
<a:Name>Keyboard=/a:Name> BTN <rdfs:range rdf:resource = "#Monitor"/>
<a:Code>Keyboard</a:Code> starttime: string — |</rdf:Property>
<a:CreationDate>1306740497 </a:CreationDates> location: string <rdf:Property rdf:1D = "part_2">
<a:Creator>Administrator</a:Creator> > |<r in rdf: = "#Computer"/>

|| |<rdfs:rang = "#Box"I>

</rdf:Property>

2| |<rdf-Property rdfID = “part_3">
<rdfs:domain rdf:resource = “#Computer”f>
~| |krdfs:range rdf:resource = "#Keyboard"/>

‘Modifier Roles:
<a:Usef ¥ ;! uby
<lo:Class> uof
<o:Class Id="035">
<a:0bjectiD>A0830821-4A04-44E4.9164.971BFF1A34D6</a:ObjectlD> 4

|| |</rdf:Property>

<a:Name>Computer</a:Name>

<rdfs:Class rdf:1D = "admin Staff">

<a:Code>Computer</a:Code> aggregation
<a:CreationDate>1306740496</a:CreationDate> generalization

<a:Creator>Administrator</a:Creator> dependency

= | <rdfs:subClassOf rdf:rescource = "#Employee™/>
</rdfs:Class>

il

Date>130674 lodificationDate> i

<rdf:Property rdf:1D = "department">

el

Relationship classes:

<rdfs:rang; - ing"/>

</rdf:Property>
<rdf:Property rdf:ID = "duty">

T dmi ff/>

D

<a:U | Computer
<a:Visibility>-</a:Visibility> |~ |Monitor
<c:Attributes> [Box
<o:Attribute Id="049">]

<rdfs:range rd = “gxsd:string/>

<a:0ObjectiD>83A2B8247.2A01-4096-8BB9-47AF34833805</a:0bjectiD> Constraints:

</rdf:Property>

<a:Name>ClID</a:Name>
<a:Code>CID</a:Code>
a:C i 1306742566</a:CreationDat

|

=] |<rdfs:Class rdFID = "use"r>
<rdf:Property rdf:ID = "starttime">
- | |<rdfs:domain rdf:resource = "#use"l>

[«

c =]
K1] Y KT

1ol | 4] T T»|

Figure 7. Screen snapshot of UML2RDEFS.

2014)). If the query results include all of the
information in the UML diagram, then the con-
version is correct and valid. For example, we
can construct a query “SELECT ?x WHERE {
2x rdfs:subClassOf Employee.}” for querying
subclasses of a given class Employee as shown
in Figure 3. The query returns two classes Fac-
ulty and adminStaff, which are consistent with
the information in the UML diagram in Fig-
ure 2. In our near future work, we will enhance
our tool to provide the function of checking the
error itself. In addition, in the experiments,
we also find how sensitive the algorithm is to
possible errors in the input, e.g., an associa-
tion relationship with cardinality constraint or
an UML diagram containing dynamic behavior,
which cannot be converted into RDF(S) as also
mentioned in Section 3.2.

5. Conclusions and Future Works

In this paper, by comparing and analyzing the
characteristics of UML and RDF(S), we pro-
posed an approach and implemented a proto-
type tool for constructing RDF(S) from UML.
We first gave formal definitions of UML and
RDF(S). Then, we proposed a construction ap-
proach from UML to RDF(S), and gave de-
tailed construction rules. Also, a construction
example was provided, and the analyses and

discussions about the approach were done. Fur-
ther, based on the proposed approach, we im-
plemented a prototype construction tool, and
the experiment shows that the approach and the
tool are feasible. The work in the paper may
act as a gap-bridge between the existing UML
applications and the Semantic Web.

As far as our future work, we will concern the
following aspects: (i) After mapping UML to
RDF(S), some reasoning tasks of UML may
be done by means of the reasoning mechanism
of RDF(S). For example, checking whether an
UML class Cj is a subclass of another UML
class C, can be reduced to checking whether the
RDF(S) class ¢(Cy) (resp. the UML class Cy) is
a subclass of the RDF(S) class ¢(C») (resp. the
UML class C3). Further, the latter can be auto-
matically handled by means of the existing in-
ference systems (e.g., Jena and RACER (Vidya
& Punitha, 2012; Horrocks et al., 2003)). In our
near future work, we will further discuss how
the constructed RDF(S) may be useful for rea-
soning on UML based on the reasoning mecha-
nism of RDF(S). (ii) We may also further dis-
cuss how our work can be applied in a special
domain. As shown in our work, an UML model
expresses concepts of a domain being modelled,
and some actual data from a database of the do-
main is not included in the UML model. In
this case, for a special domain, we first can
construct RDFS from the UML using our ap-

Construction of RDF(S) from UML Class Diagrams

249

proach and tool, and then complying with the
RDFS derived from the UML, some actual data
from a database can be directly represented by
RDF statements. For example, a student in-
stance identified by its primary key attribute
SID in a table Student of a database can be rep-
resented by a RDF statement [<rdf:Description
rdf:ID = “¢(SID,)”> <rdf:type rdf:resource =
“#¢(Student)” /> </rdf:Description>], where
¢ (Student) is the RDFS class derived from the
UML. Such applications will be further dis-
cussed in detail in the future work. (iii) We
will also test more and larger scale UML to
further evaluate the tool. Moreover, as we
mentioned at the end of Section 3.2, more fea-
tures in data modelling may be represented by
more expressive knowledge representation lan-
guages. On the basis of the work presented in
this paper, we may further investigate UML-to-
OWL approaches mentioned briefly at the end
of Section 3.2. In addition, an UML from a
specific domain complies with the ad-hoc vo-
cabularies of UML in Section 2.1, and thus
a complex domain-specific mapping from an
UML model to an existing ontology may be re-
alized by jointly using our approach. (iv) We
will also strive to extend our algorithms to other
types of UML diagrams besides class diagrams,
and work toward unification of the RDFS lan-
guage with other similar endeavors in the field.
Further, we may test the retrieval of converted
diagrams within a suitable expert system envi-
ronment. In this paper, our main focus is the
conversion of UML-to-RDF(S). All these per-
spectives will be investigated and discussed in
depth in our future work.

Acknowledgments

The work is supported by the Fundamental Sci-
ence Research Funds for the Education De-
partment of Liaoning (L2013098), the National
Natural Science Foundation of China (61202260)
and the Fundamental Research Funds for the
Central Universities (N120404005).

References

[1] F. AMATO, A. MAZZEO, A. PENTA, A. PICARIELLO,
Building RDF Ontologies from Semi-Structured Le-
gal Documents. In Proceedings of the International

Conference on Complex, Intelligent and Software
Intensive Systems, pp. 997-1002, 2008.

R. S. AGUILAR-SAVEN, Business process modelling:
Review and framework. International Journal of
Production Economics, 90(2), pp. 129-149, 2004.

T. BERNERS-LEE, J. HENDLER, O. LASSILA, The Se-
mantic Web. The Scientific American, 284(5), pp.
34-43,2001.

K. BACLAWSKI, M. KOLAR, P. KOGUT, ET AL, Ex-
tending UML to support ontology engineering for
the Semantic Web. In Proceedings of the Fourth
International Conference on UML, pp. 342-360,
2001.

P. BROWN, Object-Relational Database Develop-
ment. Addison-Wesley, 2001.

S. CRANEFIELD, UML and the Semantic Web. In
Proceedings of the first Semantic Web Working
Symposium, pp. 113-130, 2001.

S. CRANEFIELD, S. HAUSTEIN, M. PURviS, UML-
Based Ontology Modeling for Software Agents. In
Proceedings of the Ontologies in Agent Systems
Workshop, pp. 21-28, 2000.

W. W. CHANG, A Discussion of the Rela-
tionship Between RDF-Schema and UML. A
W3C Note (1998), NOTE-rdf-uml-19980804,
http://www.w3.org/TR/NOTE-rdf-uml/

G. ENGELS, R. HECKEL, S. SAUER, UML-A Uni-
versal Modeling Language. In Proceedings of the
Application and Theory of Petri Nets, pp. 24-38,
2000.

G. Gu1ZZARDI, G. WAGNER, H. HERRE, On the Fou-
dations of UML as an Ontology Representation
Language. In Proceedings of the 14th International
Conference Engineering Knowledge in the Age of
the Semantic Web, pp. 47-62, 2004.

L. HAN, T. W. FININ, C. S. PARR, J. SACHS, A.
JosHi, RDF123: From spreadsheets to RDF. In
Proceedings of the 7th International Semantic Web
Conference, pp. 451-466, 2008.

I. HORROCKS, P. F. PATEL-SCHNEIDER, F. VAN
HARMELEN, From SHIQ and RDF to OWL: The
making of a web ontology language. Web seman-
tics: science, services and agents on the World Wide
Web, 1(1), pp. 7-26, 2003.

M. KOROTKIY, J. L. Tor, From Relational Data
to RDFS Models. In Proceedings of the 4th In-
ternational Conference on Web Engineering, pp.
430-434,2004.

M. KRISHNA, Retaining Semantics in Relational
Databases by mapping them to RDF. In Proceedings
of the 2006 IEEE/WIC/ACM International Confer-
ence on Web Intelligence and Intelligent Agent
Technology, pp. 303-306, 2006.

M. C. A. KLEIN, Interpreting XML Documents via
an RDF Schema Ontology. In Proceedings of the
13th Database and Expert Systems Applications,
pp- 889-894,2002.

250

Construction of RDF(S) from UML Class Diagrams

[16] B.H. KUMAR, M. S. P. BABU, Study and Construct-
ing RDF model for a well formatted Valid XML
document. International Journal on Computer Sci-
ence and Engineering, 5(7), pp. 648-652, 2013.

[17] 1. S. KM, C. S. YOO, M. K. LEE, Y. S. KiM, Object
Modeling of RDF Schema for Converting UML
Class Diagram. In Proceedings of the International
Conference on Computational Science and Its Ap-
plications, pp. 31-41, 2005.

[18] W. Y. MALLEDE, F. MARIR, V. T. VASSILEV, Al-
gorithms for mapping RDB Schema to RDF for
Facilitating Access to Deep Web. In Proceedings
of the First International Conference on Building
and Exploring Web Based Environments, pp. 32-41,
2013.

[19] F. MICHEL, J. MONTAGNAT, C. FARON ZUCKER, A
survey of RDB to RDF translation approaches and
tools. Report, pp. 1-24,2013.

[20] RDF-W3C, RDF 1.1 Primer, W3C Working Group,
2014, http://www.w3.org/TR/2014/NOTE-
rdf11-primer-20140225/

[21] J. E. SEQUEDA, M. ARENAS, D. P. MIRANKER, On
directly mapping relational databases to RDF and
OWL. In Proceedings of the 21st World Wide Web
Conference, pp. 649—658, 2012.

[22] P.T.T. THUY, Y. K. LEE, S. LEE, B. S. JEONG, Trans-
forming Valid XML Documents into RDF via RDF
Schema. In Proceedings of the International Con-
ference on Next Generation Web Services Practices,
pp- 35-40, 2007.

[23] UML (Unified Modeling Language), Object Man-
agement Group, http://www.uml.org/

[24] V. VIDYA, S. C. PUNITHA, A Survey on Ontology
Tools. International Journal of Scientific & Engi-
neering Research, 3(10), pp. 1-8, 2012.

[25] XML Schema Part 2: Datatypes Second Edi-
tion, W3C Recommendation, 28 October 2004,
http://www.w3.org/TR/xmlschema-2/

[26] A.K.W.YEUNG, G. BRENT HALL, Database Models
and Data Modelling. In Spatial Database Systems:
Design, Implementation and Project Management
(ALBERT K. W. YEUNG, G. BRENT HALL), pp. 55—
92, Chapter 3. Springer, 2007.

Received: August, 2014
Revised: October, 2014
Accepted: October, 2014

Contact addresses:

Qiang Tong

Software College

Northeastern University
Shenyang 110819

China

e-mail: tongg@swc.neu.edu.cn

Fu Zhang

College of Information Science and Engineering
Northeastern University

Shenyang 110819

China

e-mail: zhangfu@ise.neu.edu.cn

Jingwei Cheng

College of Information Science and Engineering
Northeastern University

Shenyang 110819

China

e-mail: chengjingwei@ise.neu.edu.cn

QIANG TONG IS CURRENTLY a PhD candidate in the College of Informa-
tion Science and Engineering at Northeastern University, China. Qiang
Tong is also working as a lecturer at Software College, Northeastern
University, China. His research interests include RDF, SPARQL and
database management.

FU ZHANG received a PhD from the Northeastern University (China) in
2011, and is currently working as an associate professor in the College
of Information Science and Engineering at Northeastern University,
China. His current research interests include XML, description logics,
and ontology in the Semantic Web.

JINGWEI CHENG received a PhD from the Northeastern University
(China) in 2011, and is currently working as a lecturer in the College of
Information Science and Engineering at Northeastern University, China.
His current research interests include description logics, ontology and
the Semantic Web.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

